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Abstract

Ridge Development and Coarsening in

Evaporatively-Driven Climbing Films

by Peter J. Lamb

May 2003

In thin-film mixtures of alcohol and water, differences in evaporation rates and

surface tensions between the two liquids can cause what is known as Marangoni

convection within the fluid. This can lead to the formation of interesting insta-

bilities on the surface of the film, such as the commonly observed “wine tears”

phenomenon.

Similar instabilities are observed when an inclined plate is immersed in a water-

alcohol reservoir. In addition to the tears, small ridges can be observed where the

thin-film along the side of the plate rejoins the larger reservoir. These ridges slowly

drift to the side and merge with other ridges, coarsening into larger ones.

Using lubrication theory, Hosoi and Bush developed a one-dimensional model

of the ridge instability which takes into account gravity, capillarity and Marangoni

stresses at the surface of the film and results in a fourth-order non-linear partial

differential equation describing the height of the ridges as a function of time and

position along the plate. Two different but complementary numerical models were

implemented to solve their equation. Both models are able to show development

of ridges from random initial conditions as well as lateral ridge movement and

coarsening. In addition to the numerical approaches some analysis was done on

the equation to gain further insight into the nature of the ridge coarsening.
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Chapter 1

Introduction

When wine is swirled up the side of a glass, the fluid convects up the sides

where it beads up on the leading edge, eventually dripping down. This phe-

nomenon of wine “tears” or “legs” has fascinated people for a long time.

The same effect and additional surface instabilities can be observed when an

inclined plate is immersed in a reservoir containing an alcohol-water mixture as

shown in Figure 1.1. In addition to the tears which form, other interesting instabil-

ities form on the surface of the thin film on the side of the plate. At the base of the

film, where the plate emerges from the liquid reservoir, small ridges form, even-

tually drifting sideways and merging with each other into coarser ridges. These

instabilities can be seen in the pictures taken by Hosoi and Bush and shown in

Figure 1.2.

The mechanism driving these surface instabilities is what is known as Marangoni

convection. Differences in surface tension and evaporation rates between water

and alcohol lead to surface tension gradients along the free boundary of the film.

Alcohol evaporates more quickly, and has a lower surface tension than water. Parts

of the film further up the side of the plate have had the alcohol evaporating for

longer, resulting in a higher concentration of water and higher surface tension fur-

ther up the side. This tends to draw more of the fluid up the plate, eventually

beading up at the leading edge and forming tears. When the film is perturbed up-

ward from its steady-state, it has a higher water-concentration and higher surface
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Figure 1.1: Physical setup

tension at that point, drawing up fluid and forming ridges. Studying the formation

and evolution of these ridges is the focus of this thesis.

Historical background and approaches to this system are described in the pa-

per by Hosoi and Bush [8]. They develop a one-dimensional model describing the

formation and evolution of the ridges, and it is upon this model that the majority

of this work is based. Chapter 2 presents their model and another more general-

ized approach I undertook towards deriving a governing equation for the system.

Chapter 3 of this paper describes the analytical approaches taken to gain further

insight into these equations, and Chapter 4 presents the numerical models devel-

oped to solve these equations and the results from those models.
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Figure 1.2: Wine ridges and tears shown in a watchglass from above, and on a plate from the side.
Photographs courtesy of John Bush’s website, http://www-math.mit.edu/ bush/tears.html



Chapter 2

Models

This chapter presents and discusses the important aspects of the ridge-coarsening

model developed by Hosoi and Bush [8]. Their model results in a non-linear,

fourth-order partial differential equation describing the evolution of the height of

the ridges through time.

Also presented in this section is an alternative and more generalized model

of ridge development and coarsening using the general thin-film equation as pre-

sented in the thin-film survey article by Oron et al. [9] and the simple assumption

that surface tension varies linearly with the height of the film.

All of the variables and constants used in these models and throughout the

paper are shown in Tables 2.1 and 2.2.

Variable Symbol CGS Units

Fluid velocity u = (u, v, w) cm · s−1

Distance x = (x, y, z) cm

Time t s

Film height h cm

Pressure p g · cm−1 · s−2

Surface Tension σ g · s−2

Alcohol concentration c unitless

Table 2.1: Variables used
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Constant Symbol CGS Units

Vertical length scale, or average film thickness H cm

Horizontal length scale L cm

Average speed up the plate U cm · s−1

Diffusivity of alcohol in water D cm2 · s−1

Viscosity µ g · cm−1 · s−1

Density ρ g · cm−3

Surface stress τ = µU/H g · cm−1 · s−2

Surface tension of fluid in reservoir σ0 g · s−2

Concentration of alcohol in reservoir c0 unitless

Change in surface tension due to concentration α g · s−2

Change in surface tension due to height β g · cm−1 · s−2

Acceleration due to gravity g cm · s−2

Angle of inclination of plate θ unitless

Table 2.2: Constants used

2.1 The Model of Hosoi and Bush

Because we are considering a thin-film where the horizontal length scale, L, is

much larger than the vertical length scale, H , i.e. H � L, we can apply the thin-

film or lubrication approximation to our system. This, combined with the fact

that we are dealing with relatively small Reynolds numbers, allows the inertial

effects of the system to be ignored, simplifying the Navier-Stokes equations to the

following as shown in Hosoi and Bush:

∇p = µ∇2u + ρg (2.1)

∇ · u = 0 (2.2)



6

with free surface boundary conditions of

n̂ · T · ŝ = ∇xσ (2.3)

n̂ · T · n̂ = σ∇ · n̂ (2.4)

where n̂ is the unit vector normal to the surface of the film, ŝ is the unit vector

tangential to the surface of the film, and T is the stress tensor.

In many systems, the surface tension, σ, can be assumed to be constant. That

is not the case for this system. Bush and Hosoi work from the assumption that

surface tension is a linear function of concentration of alcohol in the mixture, c,

σ(c) = σ0 − α(c − c0) (2.5)

where α = −(∂σ/∂c)|c=c0 and c0 is the concentration of alcohol in the reservoir.

Since the surface tension of water is higher than that of alcohol, surface tension of

our mixture decreases as alcohol concentration increases, meaning that α is posi-

tive.

Hosoi and Bush derive the following equation for concentration as a function

of z, y and h,

c = −
τ

α
y −

τ

αDµ

[

ρg sin θ

(

1

24
z4 −

1

6
hz3

)

+
1

6
τz3

]

+ c0 (2.6)

and show that when L sin θ < 1, (where L is a nondimensional quantity defined

in Table 2.3) concentration is inversely proportional to height. That is, as height

increases concentration decreases, leading to increased surface tension and the for-

mation of instabilities. This is the mechanism driving our Marangoni instabilities.

To simplify Equations 2.1 through 2.4, Hosoi and Bush use the functional de-

pendence of σ in Equations 2.5 and 2.6, rescale all of the variables so that they are

unitless, apply the lubrication approximation again, and also neglect derivatives

in the slowly varying y-direction up the plate.
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The variables are rescaled as follows

(u, v) = U(ũ, ṽ) w = εUw̃

(x, y) = L(x̃, ỹ) z = Hz̃

p = (Uµ/H)p̃ t = [H/(Uε2)]t̃

(2.7)

and the resulting equations for velocity and pressure from Equations 2.1 through 2.4

are solved to a first-order approximation and then averaged across the depth of

the film to result in a fourth-order, non-linear partial differential equation for the

height of the film along the plate,

ht +

[

1

3
h3(Chxxx − L cos θhx) +

1

4
Mh4hx(1 − Lh sin θ)

]

x

= 0 (2.8)

The first term in the brackets represents stabilizing capillarity, the second is a stabi-

lizing gravity term, the third is the destabilizing Marangoni surface stress and the

fourth is another stabilizing term due to gravity’s effect on the Marangoni convec-

tion. This equation is used as a starting point for the rest of the paper.

All of the variables in Equation 2.8 are the non-dimensional versions of the di-

mensional variables shown in Table 2.1 and are scaled as shown in Equations 2.7.

The constants in this equation are non-dimensional quantities as defined in Ta-

ble 2.3

Dimensionless Quantity Symbol Definition

Marangoni numbers M τH2

Dµ

L Hρg

τ

Capillary number C ε2 σ0

µU

Aspect ratio ε H
L

Table 2.3: Dimensionless quantities
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2.2 A More Generalized Approach

Let us instead examine the generalized lubrication model, in one dimension, with

a no-slip condition at the fluid-plate interface, and no other external forces besides

gravity. From Oron, this becomes

µht +

[

σx

h2

2

]

x

−

[

1

3
h3(ρgh cos θ − σhxx)x

]

x

= 0 (2.9)

To simplify Hosoi and Bush’s derivation, and to express it in more generalized

terms, we conveniently suppose that our surface tension is not a function of con-

centration, but rather that it is a linear function of height,

σ(h) = σ0 + β(h − H)

where β = (∂σ/∂h)|h=H and H is the thickness of the non-perturbed film. This

means that for β > 0, our surface tension increases with height.

In fact, for this system, σ is not a linear function of height. It depends on height

in a more complicated fashion as seen in Equations 2.5 and 2.6, but by approximat-

ing the dependence as linear, we greatly simplify the derivation of the governing

partial differential equation. The approximation may, in fact, work well enough.

Using Equations 2.5 and 2.6, we can actually calculate what β should be for this

system

β =

(

∂σ

∂h

)

h=H

β =

(

∂σ

∂c

)

c=c0

(

∂c

∂h

)

h=H

β = −α

(

τH2

2αDµ
(ρgH sin θ − τ)

)

β =
τ 2H2

2Dµ

(

1 −
ρgH

τ
sin θ

)

β =
Mτ

2
(1 − L sin θ) (2.10)
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Returning to Equation 2.9, we rescale the dimensional variables as shown in Equa-

tion set 2.7 in order to render the equation dimensionless and simpler to work

with.

After completely rescaling our variables, substituting in the calculated value

for β from Equation 2.10, and reducing to order ε, Equation 2.9 becomes

ht +

[

1

3
h3(Chxxx − L cos θhx) +

1

4
Mh2hx(1 − L sin θ)

]

x

= 0 (2.11)

which is essentially the same that was achieved after the lengthy derivation pre-

sented in Hosoi and Bush. The difference is that the there are fewer h’s in the

Marangoni terms. This is a result of approximating surface tension as a linear

function of height when in fact it has a higher order dependence.

An advantage to directly deriving a partial differential equation for the evolu-

tion of the ridges from the thin-film equations under the assumption that surface

tension is a function of height is that this method may be able to be used in other

contexts. For example, a thin-film of oil when heated will, under certain condi-

tions, form temperature-driven Marangoni surface instabilities. This could be un-

derstood as resulting from the surface tension’s dependence on the height of the

film. Thicker portions of the film are further from the heat source, thus having a

lower temperature and higher surface tension.



Chapter 3

Analysis

Before solving Equation 2.8 numerically, we first apply some analytic tech-

niques to further understand the system. We begin by rewriting the equation as:

ht = −

[

h3

(

C

3
hxx + f(h)

)

x

]

x

(3.1)

which itself can be rewritten as

ht = −
[

h3f ′(h)hx

]

x
+ O(hxxxx) (3.2)

where

f(h) = −
1

12
ML sin θh3 +

1

8
Mh2 −

1

3
L cos θh (3.3)

f ′(h) = −
1

4
ML sin θh2 +

1

4
Mh −

1

3
L cos θ (3.4)

Ignoring the O(hxxxx) terms of Equation 3.2, we see that in order to avoid desta-

bilizing negative diffusion, we must have h3f ′(h) ≤ 0. The height of the fluid,

h, is always positive, so the stability is governed by the sign of f ′(h), which is a

parabola opening downward.

Our two roots are given by

r1, r2 = M





1 ∓
√

1 − 16
3M

L2 sin θ cos θ

2L sin θ



 (3.5)

Since 0 < θ < π
2

and M,L > 0, we see that 16
3M

L2 sin θ cos θ > 0, meaning we cannot

have a negative root. This makes sense because otherwise no thin-film would be

stable.



11

-

6

?

h

f ′(h)

unstable stablestable
r1 r2

Figure 3.1: Stability graph

Given the physical parameters, we know that 16
3M

L2 sin θ cos θ < 1, so both roots

are real, giving us two positive roots, r1 and r2 as shown in Figure 3.1

This can give us an understanding as to why the ridges form. When r1 < h < r2,

f ′(h) > 0, meaning the surface is unstable and will adjust until h < r1 or h > r2.

The smaller positive root corresponds to the maximum stable height of the thin-

film connecting the ridges. The larger positive root corresponds to the minimum

height a stable ridge can be. When f ′(h) > 0, we have negative diffusion and the

fluid surface is unstable.

3.1 Linear Stability Analysis

A linear stability analysis can be conducted on Equations 2.8 and 2.11 as is done in

Hosoi and Bush. To gain further insight, we examine what happens when we let

h = 1 + h̄, where h̄ is a very small perturbation around the base height of H = 1.

That is, we are seeing what happens when we slightly perturb the steady, level

fluid. This technique allows us to ignore the non-linear effects.
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Substituting this linearized h into both 2.8 and 2.11 yields the same linear partial

differential equation,

h̄t +

[

1

4
M(1 − L sin θ) −

1

3
L cos θ

]

h̄xx +
1

3
Ch̄xxxx = 0 (3.6)

which means that if we look for wave solutions to Equations 2.8 and 2.11 of the

form h̄(x) = eωteikx where ω is the growth rate of the solution and k is the wavenum-

ber, we find the dispersion relation between ω and k to be

ω =

[

1

4
M(1 − L sin θ) −

1

3
L cos θ

]

k2 −
1

3
Ck4 (3.7)

When ω < 0, perturbations decay in time and the solution is stable. Conversely,

the solution is unstable and ridges form when ω > 0 or

1

3
L cos θ <

1

4
M(1 − L sin θ) (3.8)

If this condition holds, then perturbations are magnified, forming ridges. The most

unstable wavelength occurs when ω is maximized, which happens when ∂ω
∂k

= 0.

We see that the most unstable wave number is

k∗ =

√

[

3

8
M(1 − L sin θ) −

1

2
L cos θ

]

/C (3.9)

where k∗ = 2π
λ∗

, λ∗ being the unitless wavelength of the ridges. So kexp = k∗/(2π) is

the number of ridges we expect to initially arise from random initial conditions in

a unitless interval of length 1 before the non-linear Marangoni effects cause coars-

ening to occur. Table 3.1 shows the expected and observed wave numbers for a

variety of different runs.
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Run C L M θ kexp kobs

H9 0.01 2 500 0.45 7.71 8

H10 0.01 2 900 0.45 10.44 10

H23 0.1 3 500 0.2 4.33 5

H2c 0.005 2.1 200 0.45 5.30 5

Table 3.1: Expected and observed wave numbers for various runs

3.2 Steady State Ridge Profile

In the system, the ridges eventually stop coarsening and become relatively stable.

This also occurs in the two numerical models developed and discussed in Chap-

ter 4. We can examine the shape and size of the steady-state ridges by examining

what occurs when we let ht = 0. From Equation 3.1 we see that in order for this to

occur
C

3
hxx + f(h) = P (3.10)

where P is a constant, pressure-like term. The mature, quasi-steady-state ridges

shown in Figure 4.5 have relatively constant P terms within the ridges, supporting

this claim. Multiplying both sides of equation 3.10 by hx and integrating with

respect to x we get that

C

6
h2

x −
1

48
ML sin θh4 +

1

24
Mh3 −

1

6
L cos θh2 + K = Ph

h2
x =

1

8C

(

ML sin θh4 − 2Mh3 + 8L cos θh2 + 48Ph + K
)

where K is a constant of integration. This leads to an ordinary differential equation

for the height of a constant-P, non-evolving ridge,

hx = ±

√

1

8C
(ML sin θh4 − 2Mh3 + 8L cos θh2 + 48Ph + K) (3.11)

If the values of C, L, M, and θ, our non-dimensional parameters, P , our steady-

state pressure within the ridge, and K, the constant of integration, are all known
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then Equation 3.11 can be solved using a fourth-order Runge-Kutta method.

The parameters of C = 0.1,L = 3,M = 500 and θ = 0.2 are used because the

corresponding numerical simulation for run H23 is well-behaved, reaches a quasi-

steady-state solution, and produces a nice number of ridges.

These parameters were used in the numerics of Chapter 4 to evolve an initial

random profile into four steady-state ridges shown in figure 4.5. Both numerical

methods produced ridges with a relatively constant value of about P = 33 within

them. Using these parameters, along with setting K = 0, Equation 3.11 is solved

using a fourth-order Runge-Kutta method. The positive square root was used to

produce the left side of the ridge, and the negative square root was used to produce

the right side of the ridge. The results can be seen in Figure 3.2.

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

x

h(
x)

Figure 3.2: Constant pressure ridge for run H23 parameters

Notice the nearly identical size and shape as the ridges produced in Figure 4.5.

This could possibly lead to the development of a relationship between the pressure

and size and shape of the resulting ridge.
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Some of the numerical results from Chapter 4 show the larger ridges inter-

spersed with smaller ridges as shown in Figure 3.2. These smaller ridges have

their own smaller, constant pressure term. Since these ridges are occurring when

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

x

he
ig

ht

Figure 3.3: Large ridges interspersed with smaller ones

the height, h, is small, the h2, h3, and h4 terms of equation 3.11 could possibly be

ignored to produce parabolas. This has not yet been examined in any depth.



Chapter 4

Numerical Models

Two distinct but complementary numerical models were programmed using

Matlab to solve Equation 2.8 on an interval with random perturbations around the

base height of H = 1 and periodic boundary conditions. The first model uses a cen-

tered finite-difference scheme for calculating spatial derivatives with an implicit

timestep. The second model uses a pseudospectral method for spatial derivatives

and takes an explicit time step, but at every timestep the solution is integrated to

within an acceptable error using a fourth-order Runge-Kutta integrator. The two

major differences in these two methods, and in most numerical methods in gen-

eral, are how the spatial and time derivatives are treated. This chapter will briefly

explore some of these issues and see how they apply to our system in particular.

4.1 Time Derivatives: Explicit versus Implicit

Looking at Equation 2.8 we see that the time derivative of h is a function of the

spatial derivatives and the dimensionless parameters,

∂h

∂t
= f(hn, hn

x, hn
xx, . . . , parameters) (4.1)

If hn
i is the height of the film at node i and time n, and ∆t is the size of our timestep,

then the time derivative of h at node i can be approximated as

∂hi

∂t
≈

hn+1
i − hn

i

∆t
(4.2)

An explicit time step sets the time derivative equal to f evaluated at the current
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timestep,
hn+1 − hn

∆t
= f(hn, hn

x, h
n
xx, . . . , parameters)

To advance the solution forward one timestep, we simply use the known solu-

tion at the current time to individually advance each point. This is fairly straight-

forward to solve, but often either entirely unstable or requiring extremely small

timesteps.

An implicit time step sets the time derivative equal to f evaluated at the next

timestep,
hn+1 − hn

∆t
= f(hn+1, hn+1

x , hn+1
xx , . . . , parameters)

This involves advancing all the points forward one timestep simultaneously. So

each timestep involves inverting an N by N sized matrix, where N is the number

of points in our solution. This method is always stable but much more compu-

tationally intensive to solve than the explicit timestep. An implicit timestep was

used in the finite-difference model. An explicit timestep was used with the pseu-

dospectral method, but to maintain stability a fourth-order Runge-Kutta method

with an adaptive timestep was used to integrate the solution at each timestep to

within an acceptable error range.

4.2 Spatial Derivatives: Finite Differences versus Pseudospectral

The difficulty in solving equations numerically is that we must discretize what is a

continuous system. This creates problems in how derivatives are taken. There are

several different possible approaches when trying to approximate spatial deriva-

tives. In general terms, however, we are always simply just linearly recombining

our nodal values at each point in the solution interval to calculate the derivative at

each point. So calculating the derivatives becomes equivalent to multiplying our
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solution vector by a “derivative matrix” D, where

fx = Df fxx = D2f fxxx = D3f fxxxx = D4f (4.3)

The question then becomes what to use for our derivative matrix of weights, D.

The most straight-forward and intuitive approach for calculating derivatives is

the centered finite-difference method. To calculate a spatial derivative of our func-

tion f at node i, we simply calculate a rate of change between the two immediate

neighbors,
∂fi

∂x
=

fi+1 − fi−1

2∆x
(4.4)

where ∆x is the size of our grid spacing. For example, if we have a length L = 1

interval with J = 10 nodes, ∆x = 0.1, and the finite-difference approach gives us a

derivative matrix

D =





















































0 5 0 0 0 0 0 0 0 −5

−5 0 5 0 0 0 0 0 0 0

0 −5 0 5 0 0 0 0 0 0

0 0 −5 0 5 0 0 0 0 0

0 0 0 −5 0 5 0 0 0 0

0 0 0 0 −5 0 5 0 0 0

0 0 0 0 0 −5 0 5 0 0

0 0 0 0 0 0 −5 0 5 0

0 0 0 0 0 0 0 −5 0 5

5 0 0 0 0 0 0 0 −5 0





















































A more involved global approach to taking spatial derivatives for functions

on periodic intervals such as the one we are dealing with in our system is the

pseudospectral approach. Let’s say that we divide our length L interval into J

nodes. In the finite-difference approach, we only use the information contained in

2 of these J nodes for calculating the derivative. The pseudospectral method uses
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the fact that our function is periodic on our interval and can be represented as a

partial Fourier series of sines and cosines. The derivation shown in Appendix A

shows that our matrix of weights, D, for the pseudospectral method becomes,

Djk =











0 if j = k,

π
L

cos (j − k)π cot (j−k)π
J

if j 6= k.

(4.5)

For our example interval with L = 1 and J = 10 the pseudospectral method

gives us the derivative matrix

D =





















































0 9.7 −4.3 2.3 −1.0 0 1.0 −2.3 4.3 −9.7

−9.7 0 9.7 −4.3 2.3 −1.0 0 1.0 −2.3 4.3

4.3 −9.7 0 9.7 −4.3 2.3 −1.0 0 1.0 −2.3

−2.3 4.3 −9.7 0 9.7 −4.3 2.3 −1.0 0 1.0

1.0 −2.3 4.3 −9.7 0 9.7 −4.3 2.3 −1.0 0

0 1.0 −2.3 4.3 −9.7 0 9.7 −4.3 2.3 −1.0

−1.0 0 1.0 −2.3 4.3 −9.7 0 9.7 −4.3 2.3

2.3 −1.0 0 1.0 −2.3 4.3 −9.7 0 9.7 −4.3

−4.3 2.3 −1.0 0 1.0 −2.3 4.3 −9.7 0 9.7

9.7 −4.3 2.3 −1.0 0 1.0 −2.3 4.3 −9.7 0





















































which is an obvious contrast to the sparse derivative matrix used in the finite-

difference scheme. Here, all of the points in the interval are used in calculating the

derivative at a point, not just the two immediate neighboring points.

The pseudospectral method is very efficient and accurate for calculating the

derivatives of periodic functions, like the sin function shown in Figure 4.1.

However, the pseudospectral method becomes much less efficient for calculat-

ing derivatives for functions which are not easily represented as a partial Fourier

series of sines and cosines, like the step function shown in Figure 4.2.

As might be expected in modeling the ridge formation and evolution, because

the ridges are very periodic, the pseudospectral method does a good job approx-
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Figure 4.1: Plots of sinx,cosx and the derivative of sin x taken using both pseudospectral and finite-
differencing. The pseudospectral derivative and cosx lie directly on top of each other, showing the
high accuracy pseudospectral derivatives have for periodic functions. The finite-difference deriva-
tive, however, is clearly much less accurate in this situation.
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Figure 4.2: A step function and its pseudospectral and finite-difference derivatives. Because the
step function does not lend itself to being easily represented by sines and cosines in a partial Fourier
series, the finite-difference method of taking derivatives is much more accurate.
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imating spatial derivatives. We can, in fact, use far fewer grid points with the

pseudospectral method to achieve the same order of accuracy achieved using the

finite-difference approach.

4.3 Numerical Results

Both the pseudospectral and finite-difference methods were tested for a variety of

parameters as shown in Appendix B. In all cases we began with some random

perturbation around the base height of H = 1. For parameter sets that were stable

according to Equation 3.8, no ridges formed. However, for unstable parameter sets

both numerical models successfully simulated the formation and evolution of the

ridges. In most cases the initial wavelength seen to emerge before any coarsening

occurred was correctly predicted by Equation 3.9. In many cases, coarsening was

observed for both methods and can be seen in the Figures 4.3 and 4.4. Figure 4.5

shows the quasi-steady-state ridges and the nearly-constant pressure-term profiles

for both numerical methods using certain parameters.
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(a) Run H9: finite-difference method using 334 grid points
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(b) Run H9s: pseudospectral method using 100 grid points

Figure 4.3: Ridge evolution and coarsening for both methods solving Equation 2.8. Parameters
used were C = .01,L = 2,M = 500, θ = .45, H = 0.003 cm and L = 7.5 cm.
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(a) Run H10: finite-difference method using 334 grid points
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(b) Run H10s: pseudospectral method using 150 grid points

Figure 4.4: Ridge evolution and coarsening for both methods solving Equation 2.8. Parameters
used were C = .01,L = 2,M = 900, θ = .45, H = 0.003 cm and L = 7.5 cm.
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(a) Run H23: finite-difference method using 334 grid points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

x

pressure term 

film
height 

(b) Run H23s: pseudospectral method with 100 grid points

Figure 4.5: Steady-state ridges and their nearly constant pressures for C = .1,L = 3,M = 500, θ =

.2, H = 0.003 cm and L = 7.5 cm.
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4.4 Positivity Issues

Both of the numerical methods worked well for solving Equation 2.8 in the initial

timesteps. As long as the parameters used caused the system to be unstable, ridges

would develop. However, virtually all of the simulations had problems with even-

tually returning negative values and developing singularities. Once this occurred,

the solution could no longer be solved for future timesteps. Numerous attempts

were made to try to fix the negativity problems.

For the finite-difference method, a positivity-preserving scheme presented in

the paper by Zhornitskaya and Bertozzi [11] was implemented in the attempt to

avoid physically impossible negative values and the resulting singularities. This

scheme changed the way the h3 in front of the Chxxx term was approximated. This

positivity preserving scheme helped, but did not entirely get rid of solutions be-

coming negative.

The same negativity problems were found with the pseudospectral method as

well. This problem of obtaining negative, singular solutions still remains unre-

solved.



Chapter 5

Conclusion and Future Work

Surface instabilities in thin-film mixtures of alcohol and water, like wine swirled

up on the inside of a glass, driven by Maragoni convection, leads to a variety of

different and interesting mathematics. In the paper on this topic by Hosoi and

Bush [8], the lubrication approximation and various other simplifications are used

to reduce the Navier-Stokes equations to a single, one-dimensional, non-linear par-

tial differential equation describing the evolution of the height of the film in time.

The majority of the work done was from this equation.

A more generalized approach was taken, using the simplifying assumption that

surface tension is merely a linear function of height. This assumption was used

with the general thin-film equation as presented in Oron [9] to derive an alterna-

tive partial differential equation for the height of the film. This partial differen-

tial equation is exactly the same as Hosoi and Bush’s except that the non-linear

Marangoni terms have a lower order dependence upon h.

A variety of analytical techniques were used to gain more insight into the devel-

opment of the ridges. A linear stability analysis was done on both Equations 2.8

and 2.11 to predict the most unstable ridge wavelength that will intially emerge

before non-linear effects cause coarsening to occur. To this linear approximation,

both equations are the same, and the number of initial emerging ridges predicted

by this analysis was accurate for the majority of numerical simulations.

The majority of the work accomplished was numerically solving Equation 2.8.

It was successfully solved using two different methods. The first method used

was a centered finite-difference approach with an implicit timestep. The second
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method used a pseudospectral scheme to calculate spatial derivatives and took ex-

plicit timesteps which were adapted appropriately by a fourth order Runge-Kutta

solver to within an acceptable error range. Both of these methods were relatively

successful in numerically solving this non-linear partial differential equation and

modeling the ridge emergence and coarsening. Yet both solvers had problems with

preserving positivity.

Future work would be to try making the solvers more numerically robust and

avoid negative values and singularities. Also, further development of the more

generalized model resulting in Equation 2.11 would be interesting. It was shown

in this paper that to a linear approximation, this newly derived equation is iden-

tical to Equation 2.8 derived by Hosoi and Bush. What is not known is how the

different non-linear Marangoni terms effect the coarsening dynamics of the ridges.

It may be that the physical differences that result are essentially negligible, but it

also may be true that these differences significantly effect the coarsening dynam-

ics. Solving Equation 2.11 numerically and comparing the results with Hosoi and

Bush’s equation solved with the same parameters could answer these questions.



Appendix A

Derivation of the Pseudospectral Derivative Matrix

Assume that we have a function f(x) periodic on an interval of length L whose

nodal values, fk are known at J equally spaced points on the interval. We know

that the f can be approximated as the partial Fourier series

f(x) ≈
J−1
∑

k=0

cke
ikx (A.1)

where ck are the Fourier coefficients. Multiplying both sides by e−ik̃x and integrat-

ing over our interval we get

∫ L

0

f(x)e−ik̃x dx ≈

∫ L

0

J−1
∑

k=0

cke
−ik̃xeikx dx

≈

∫ L

0

(

c0e
−ik̃xe0ix + c1e

−ik̃xeix + c2e
−ik̃xe2ix + . . .

)

dx

≈ c0

∫ L

0

e−ik̃xe0ix dx + c1

∫ L

0

e−ik̃xeix dx + c2

∫ L

0

e−ik̃xe2ix dx + . . .

≈ Lck̃

because
∫ L

0

e−ik̃xeix dx =











0 if k 6= k̃,

L if k = k̃.

Therefore,

ck ≈
1

L

∫ L

0

f(x̃)e−ikx̃ dx̃ (A.2)
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meaning Equation A.1 becomes

f(x) ≈

J−1
∑

k=0

cke
ikx

≈

J−1
∑

k=0

(

1

L

∫ L

0

f(x̃)e−ikx̃ dx̃

)

eikx

≈
J−1
∑

k=0

∫ L

0

(

1

L
f(x̃)eik(x−x̃)

)

dx̃

≈
J−1
∑

k=0

J−1
∑

l=0

1

J
fle

ik(x−xl)

≈
1

J

J−1
∑

l=0

fl

J−1
∑

k=0

eik(x−xl)

≈
1

J

J−1
∑

l=0

fl

J−1
∑

k=0

rk

where r = ei(x−xl). If S =
∑J−1

k=0 rk then

S = r0 + r1 + r2 + · · · + rJ−1

rS = r1 + r2 + · · · + rJ

S − rS = r0 − rJ = 1 − rJ

S =
1 − rJ

1 − r
=

1 − eiJ(x−xl)

1 − ei(x−xl)

which, expanded out, becomes

Sl(x) =
1

J
sin

J(x − xl)

2
cot

(x − xl)

2
(A.3)

giving us that

f(x) ≈
1

J

J−1
∑

l=0

Sl(x)fl (A.4)

and

f ′(x) ≈
J−1
∑

l=0

S ′

l(x)fl (A.5)
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Taking the derivative of Sl(x) with respect to x gives us our pseudospectral deriva-

tive matrix D,

Djk =











0 if j = k,

π
L

cos (j − k)π cot (j−k)π
J

if j 6= k.

(A.6)



Appendix B

Runs Conducted

Approximate height Number of

Name C L M θ of mature ridges kexp observed ridges

Hs .1 0 200 .45 3-4 4.36 5

H2 .005 2.2 200 .45 - 3.37 2?

H2b .005 2.3 200 .45 1 0 0

H2c .005 2.1 200 .45 1.3 5.30 5,3,0

H3 .2 1 200 .45 2.5 2.30 2

H4 .1 1 200 .45 2.5 3.26 3

H5 .2 2 300 .45 1.5 1.32 1

H5b .2 2 1000 .45 1.5 2.46 2

H5c .2 2.1 1000 .45 1.5 2.00 2,1

H5d .4 2 1000 .45 1.5 1.74 2,1

H6s .02 1 500 .45 2.5 11.56 11,10

H7 .1 1 500 .45 2.5 5.17 5

H8 .01 1 500 .45 2-4 16.35 17,16

H9 .01 2 500 .45 1.5 7.71 8,7,6

H10 .01 2 900 .45 1.5 10.44 10,9,8

Table B.1: Runs using the centered finite difference method with 334 grid points on Equation 2.8.
Empty entries means the simulation was not run sufficiently long for the ridges to fully develop. A
ridge height of 1 and kexp = 0 means that the solution is linearly stable for the given parameters,
i.e. L sin θ > 1.
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Approximate height Number of

Name C L M θ of mature ridges kexp observed ridges

H11 .1 2 900 .45 1.5 3.30 3,2

H12 .01 3 900 .45 1 0 0

H13 .01 2.5 1500 .45 1 0 0

H14 .001 3 1500 .45 1 0 0

H15 .0001 3 1500 .45 1 0 0

H16 .00001 3 1500 .45 1 0 0

H17 .01 3 1500 .45 1 0 0

H18 .001 3 1500 .45 1 0 0

H19 .001 3 1500 .45 1 0 0

H20 .01 2.2 1500 .45 1.5 7.67 7?,3

H21 .02 2.2 1200 .45 1.5 4.83 5?,2

H22 .01 .1 200 .45 3-4.5 13.48 13

H23 .1 3 500 .2 2 4.34 5,4

H24 .1 3 1000 .2 2 6.16 6

H25 .05 3 1000 .2 2 8.72 9,8

H26 .1 4 1000 .2 - 4.36 5

H27 .02 4 1000 .2 - 9.75 10

H28 .01 4 1000 .2 1.7 13.79 12,11,10

H29 .001 9 1000 .1 - 29.17 25?

H30 .005 9 1000 .1 1.5 13.04 13,10

H31 .003 9 1000 .1 1.5 16.84 17,13

H32 .008 15 1300 .05 1.8 19.04 18,17

H33 .008 20 2000 .05 1 0 0

H34 .01 40 2000 .01 - 33.00 30-35?

H35 .1 100 2000 .001 2-5 12.58 13

H36 .07 500 5000 .001 2-2.5 15.77 16,15,14

Table B.2: More centered finite difference runs with 334 grid points
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Number of Approximate height Number of

Name C L M θ grid points of mature ridges kexp observed ridges

H9s .01 2 500 .45 100 1.5 7.71 7,6

H10s .01 2 900 .45 150 1.5 10.44 10,8,6

H23s .1 3 500 .2 100 2 4.34 4

H23bs .1 3 500 .2 40 2 4.34 4,3

H27 .02 4 1000 .2 100 1.7 9.75 10,8,7

Table B.3: Some runs using the pseudospectral method on Equation 2.8
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