
Claremont Colleges Claremont Colleges 

Scholarship @ Claremont Scholarship @ Claremont 

Pitzer Senior Theses Pitzer Student Scholarship 

2023 

Can the XY+Z Heisenberg Model Be Compressed Using the Yang-Can the XY+Z Heisenberg Model Be Compressed Using the Yang-

Baxter Equation? An Exploration of the Compression of Quantum Baxter Equation? An Exploration of the Compression of Quantum 

Time Dynamic Circuits Describing Heisenberg Spin Chains Time Dynamic Circuits Describing Heisenberg Spin Chains 

Miriam Caron 
Pitzer College 

Bo Peng Dr. 
Pacific Northwest National Laboratory 

Scott Gould Dr. 
Pitzer College 

Kevin Setter Dr. 
Pitzer College 

Niranjan Govind Dr. 
Pacific Northwest National Laboratory 

Follow this and additional works at: https://scholarship.claremont.edu/pitzer_theses 

 Part of the Quantum Physics Commons 

Recommended Citation Recommended Citation 
Caron, Miriam; Peng, Bo Dr.; Gould, Scott Dr.; Setter, Kevin Dr.; and Govind, Niranjan Dr., "Can the XY+Z 
Heisenberg Model Be Compressed Using the Yang-Baxter Equation? An Exploration of the Compression 
of Quantum Time Dynamic Circuits Describing Heisenberg Spin Chains" (2023). Pitzer Senior Theses. 
136. 
https://scholarship.claremont.edu/pitzer_theses/136 

This Open Access Senior Thesis is brought to you for free and open access by the Pitzer Student Scholarship at 
Scholarship @ Claremont. It has been accepted for inclusion in Pitzer Senior Theses by an authorized administrator 
of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu. 

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/pitzer_theses
https://scholarship.claremont.edu/pitzer_student
https://scholarship.claremont.edu/pitzer_theses?utm_source=scholarship.claremont.edu%2Fpitzer_theses%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/206?utm_source=scholarship.claremont.edu%2Fpitzer_theses%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/pitzer_theses/136?utm_source=scholarship.claremont.edu%2Fpitzer_theses%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu


Can the XY+Z Heisenberg Model Be Compressed Using the Yang-Baxter Equation?

An Exploration of the Compression of Quantum Time Dynamic Circuits Describing

Heisenberg Spin Chains

A Thesis Presented

by

Miriam Caron

To the Keck Science Department

of

Claremont McKenna, Scripps, and Pitzer Colleges

In Partial Fulfillment of

The Degree of Bachelor of Arts

Senior Thesis in Physics

12 December 2022



AIP/123-QED

Can the XY+Z Heisenberg Model Be Compressed Using the Yang-Baxter Equation? An

Exploration of the Compression of Quantum Time Dynamic Circuits Describing

Heisenberg Spin Chains

Miriam Caron,1, 2, 3, a) Bo Peng,3, b) Scott Gould,1, 2, c) Kevin Setter,1, 2, d) and Niranjan

Govind3, e)

1)Pitzer College, 1050 N Mills Ave, Claremont, CA 91711
2)Keck Science Department, 925 N Mills Ave, Claremont, CA 91711
3)Physical and Computational Sciences Directorate, Pacific Northwest National

Laboratory, Richland, WA 99352

(Dated: 12 December 2022)

Abstract

Quantum computing is currently deployed on noisy intermediate-scale quantum (NISQ)

devices, which are only able to simulate circuits reliably on shallow depth quantum circuits.

A promising problem on near-term quantum computers is quantum time dynamics (QTD).

However, QTD circuits grow with increasing time simulations making them difficult to

simulate on NISQ devices. This thesis project explores QTD simulations in variations of

1D Heisenberg spin chains with nearest-neighbor and transverse external field interactions

with an eye towards studying the dynamics in broader classes of spin models. I first study

the quantum Yang-Baxter equation (YBE) and how it has been shown to compress simu-

lations of QTD of spin models without external magnetic fields and its relationship to the

free fermion model. I then combine this research with similar attempts at compressing

QTD simulations of spin models that include an external field like the XY+Z model. I find

that the XY+Z model cannot be compressed and deployed on a NISQ device because the

YBE cannot be performed on the model perfectly, however, a more generalized transverse

field model can be compressed.
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I. INTRODUCTION

From creating more accurate weather and climate change models to streamlining drug and

vaccine development1, the ability of quantum computers to harness the properties of quantum me-

chanics make their development revolutionary to modern technology. Current quantum computers

are considered noisy intermediate-scale quantum or NISQ devices. They operate using quantum

dots, superconducting loops, ions or neutral atoms2. These computers are highly susceptible to er-

ror due to their sensitivity to environmental influences and the nature of their design which means

that their output are often highly noisy, hence their name.

In this thesis project I focus on the ability to preform quantum time dynamics (QTD) on NISQ

devices. Since QTD result in very deep quantum circuits, it is a challenge to simulate them on

quantum hardware. In other words, the shallower the quantum circuit, the less noise in the output,

thus it is important to compress quantum circuits as much as possible, to make them shallow,

prior to executing them on NISQ devices.2 Simulating QTD on very large systems also becomes

a challenge on a classical computer. Thus, this problem is well-suited for quantum computers.

Quantum time dynamics give us the ability to predict the evolution of a quantum system given an

initial state. In other words, QTDs describe how a Hamiltonian evolves after it has been perturbed3.

The question of QTD is of high interest because it would be another step towards proving the

supremacy of quantum computers over classical computers. The issue with executing QTD on a

quantum computer is that their circuits are typically very deep which, as discussed earlier, leads to

highly noisy outputs on NISQ devices. Because of this, it is important to compress QTD circuits

as much as possible before they enter a NISQ device.

More specifically, I focus on theoretical research behind the possibility of compressing the

QTD of 1D quantum Heisenberg models so that they can be deployed on NISQ devices. It is of

interest to use NISQ computers to simulate the Heisenberg models as it could be a stepping ground

towards more complex quantum models as well as improvements in quantum technologies4.

In this project I first investigate the Heisenberg Hamiltonian and it’s quantum time dynamics

(QTD) as well as the Yang-Baxter equation (YBE), and the free Fermion model so that I am set

up with the necessary tools to understand how to compress specific variations of the Heisenberg

Hamiltonian. I then closely follow Ref. 3 to understand how quantum circuits for QTD simula-

tions of 1D-Heisenberg models can be compressed using the YBE. Specifically, 1D-Heisenberg

models when no transverse field is present and the specific case when there is a transverse field but

4



the two interaction terms are equal. Finally, I attempt to extend this exposition to my own study

of the compression to a more general Heisenberg Hamiltonian with a transverse field, specifically

the XY+Z model, utilizing the YBE. Although I find that it cannot be perfectly turned over with

the YBE, I am able to find an almost YBE-able model by employing a generalized Heisenberg

Hamiltonian and transforming it to a free Fermion model by following the work of Ref. 5. How-

ever, because the XY+Z model is not able to be cleanly compressed it cannot be deployed on a

NISQ device.
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II. BACKGROUND

A. Theory

I start by reviewing the Heisenberg Hamiltonian, quantum time dynamics, the Yang-Baxter

Equation, and their connections to free fermion models in order gain a full background required

to understand quantum time dynamic circuit compression of 1D Heisenberg models.

1. Heisenberg Hamiltonian

The Heisenberg Hamiltonian6–8 is commonly used to describe the quantum mechanics of mag-

nets organized in a lattice. The Hamiltonian can be written as

Ĥ =−∑
α

(Jα

N−1

∑
i=1

σ
α
i σ

α
i+1)−hβ

N

∑
i

σ
β

i , (1)

where α sums over {x,y,z}, Jα describes the exchange interaction between nearest-neighbour

spins along the α−direction, σα
i is the α-Pauli operator on the ith spin, hβ (t) is the time am-

plitude of the external magnetic field along the β ∈ {x,y,z} direction. Although the Heisenberg

Hamiltonian can describe lattices of magnets in multiple dimensions9, in this project we focus on

1D lattices, also known as chains, where at each lattice point is a spin as shown in figure 1. As

well, the interactions are limited to nearest neighbor and external field interactions, meaning that

for magnet i we only focus on it’s interactions i− 1 and i+ 1 as well as it’s interaction with the

external field hβ , but we do not care about it’s interaction with any other spin in the chain. For the

purposes of this project, we limit the spins to be 1
2 spins, meaning that they can only be equal to

+1 (oriented up) or −1 (oriented down).

The model varies by the relation between the interactions terms Jx, Jy, Jz, and the external field

terms hx, hy, and hz. For example, the XY variant of the model means that there exists a Jx and Jy

interaction terms but not a Jz or any external field. Another variation is the XX +Z model where

Jx is equal to Jy and Jz is equal to zero and there does exist a external magnetic field but only in

the Z direction, which is characterized by hz. 9
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FIG. 1. A visualization of a 1D-Heisenberg spin chain, where the arrows represent the orientation of the

magnets, and the colored bars represent the interactions.

2. Quantum Time Dynamics

Quantum state evolution over time10,11 is governed by the time-dependent Schrödinger or Dirac

equation

ih̄
∂

∂ t
|ψ(t)⟩= Ĥ |ψ(t)⟩ . (2)

The formal solution to this equation can be expressed as

|ψ(t)⟩= e−iĤt/h̄ |ψ(0)⟩ , (3)

where e−iĤt/h̄ is the evolution operator. In the 1D Heisenberg model, with the exception of N = 2,

all the elements in the Hamiltonian do not commute with each other, thus one cannot decompose

the time evolution operator as a product of two-body evolution operators.12 In order to mitigate

this, the Trotter decomposition13 can be used to rewrite the time evolution operator in terms of two-

body components. For N = 3 excluding the external field, the time evolution of the Schrödinger

equation is:

e−iĤt/h̄ =
[(

∏
α

eiθα (σ
α
1 ⊗σα

2 ⊗1)/n)× (
∏
α

eiθα (1⊗σα
2 ⊗σα

3 )/n)]n

+O(t/n)
(4)

Where the Pauli matrices are defined as:

σx =

0 1

1 0

 ,σy =

0 −i

i 0

 ,σz =

1 0

0 −1

 (5)

In order to eexponentiate the Pauli matrices you can use the generalized Euler formula14

ei·θ ·A = cos(θ) · I + i · sin(θ) ·A (6)
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for a matrix A. Thus you can calculate each term of the Hamiltonian as:

eiJxt(σ x
1⊗σ x

2 )/h̄ =


cos(θx) 0 0 isin(θx)

0 cos(θx) isin(θx) 0

0 isin(θx) cos(θx) 0

isin(θx) 0 0 cos(θx)



eiJyt(σ y
1⊗σ

y
2 )/h̄ =


cos(θy) 0 0 −isin(θy)

0 cos(θy) isin(θy) 0

0 isin(θy) cos(θy) 0

−isin(θy) 0 0 cos(θy)



eiJzt(σ z
1⊗σ

z
2)/h̄ =


eiθz 0 0 0

0 e−iθz 0 0

0 0 e−iθz 0

0 0 0 eiθz



(7)

Here, θα = tJα/h̄. However, the Trotter decomposition leaves us with the error term O(t/n) which

scales linearly with time. This can be mitigated by taking a smaller step size and iterating the QTD

circuit many times. This results in an overall increase in circuit depth which results in lots of noise

on NISQ devices. To reduce this noise and retrieve a comprehensible output from the NISQ device

the circuits must be compressed as much as possible3. In general there is only one external field

present so you do not have to worry about decomposing the external field term of the Hamiltonian.

3. Yang–Baxter Equation

The Yang–Baxter equation (YBE), otherwise known as the star–triangle duality, was introduced

independently in theoretical physics by Yang15 in the late 1960s and by Baxter16 in statistical

mechanics in the early 1970s. In statistical mechanics, the YBE has been shown to reduce a

system of four interactions, described as the star, to a system of three iteractions, the triangle,

without changing the total energy of the system.

Interestingly, the YBE can also be expressed in term of the third Reidemister move in knot

and braid theory17,18. Because the matrix corresponding to the CNOT gate can be expressed as a
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braid19, the YBE can be applied to CNOT gates. Any unitary matrix R can be expressed using

combinations of the CNOT matrix. It follows that any quantum gate expressed as R, which are

required to be unitary, can be described by combinations of CNOT gates. Thus the YBE can be

applied to quantum gates which I call R.20 The quantum YBE on three qubits is written as: Briefly,

the relation is a consistency or exchange condition that allows one to factorize the interactions of

three bodies into a sequence of pairwise interactions under certain conditions. Formally, this can

be written as:

(R⊗1)(1⊗R)(R⊗1) = (1⊗R)(R⊗1)(1⊗R,) (8)

where the R unitary gate is a operator that linearly maps R : V ⊗V →V ⊗V defined as a twofold

tensor product generalizing the permutation of vector space V , or a parameterized unitary gate.

The quantum YBE is also referred to as turnover of gates and is necessary in order to compress

quantum circuits, to make them shallower, so that they can be deployed on NISQ devices.

4. Free Fermion Model

Spins in a Heisenberg spin chain can only be up or down at every site. This property is similar

to the fermion gas, where the Pauli exclusion principle requires that no two fermions with the

same spin orientation can occupy the same energy level.21 This means that energy levels either

have one or zero fermions in them. Pascual Jordan and Eugene Wigner first noticed that the sites

in a Heisenberg spin chain can be thought of as energy levels of an atom. The spins pointing up or

down can be thought of as full or empty energy levels in an atom as shown in equation 9 where c†

is the creation operator and c is the annihilation operator, respectively.

| ↑>≡ c†|0 >, | ↓>≡ |0 > (9)

Hence, the spin raising and lowering operators can be represented below in equation as 10.

σ
+ = c† =

0 1

0 0

 ,σ− = c =

0 0

1 0

 (10)

Further, the spin-raising and spin-lowering can then be re-written in terms of the transverse

9



spin operators as shown below in equation 11.

σX =
1
2
(σ++σ

−) =
1
2
(c† + c)

σY =
1
2i
(σ+−σ

−) =
1
2i
(c† − c)

(11)

Finally, the z-component of the spin operator can be written as a combination of up and down

arrows as in equation 12.

σz =
1
2
[| ↑><↑ |− | ↓><↓ |]≡ c†c− 1

2
. (12)

However, this analogy is not quite perfect because the spin operators are local operators, meaning

that the only affect the (neighboring) local spins operators. However, free fermions operators are

non-local meaning that they affect the operators at all sites. Jordan and Wigner accounted for this

by including a phase factor called the string of all fermions.21,22 Put another way, the string terms

keep track of the orientation of all of the previous spins and corrects the phase of the current spin.

The string phase corrector is defined as eiπ ∑l≤ j nl where nl is either zero or one depending on the

previous spins orientation.

FIG. 2. 21 An illustration of the string phase shift for the site j = 4 decomposed into a product of a fermion

operator and a string operator.

Once the string operator is added to σ
+
i and σ

−
i the transformation is complete to create the

complete Jordan-Wigner transformations22 which are shown below in equation 13 where the op-

erators are acting on spins i.

σ
+
i = c†

i eiπ ∑l≤ j nl

σ
−
i = c†

i eiπ ∑l≤ j nl

σ
z
i = c†

i ci −
1
2
.

(13)

10



The Jordan-Wigner transformation is important because it has been found that the Yang-Baxter

equation can only be used on a model if and only if it can be represented as a free fermion using

the Jordan-Wigner transformation.21 As I will discuss further, the Yang-Baxter equation will be

necessary to compress a quantum circuit, therefore finding out if a model is able to be represented

as a free fermion is indicative of if the resulting circuit that can be deployed on a NISQ device.

11



III. METHODS

A. Circuit Representation of the QTD of the Heisenberg Model Without an External Field

Due to their simplicity in form and ability to be solved exactly, I first examine the QTD circuit

of 1D-Heisenberg models when no transverse field is present before adding in the transverse field

later.

When no external field is present we can rewrite the Heisenberg Hamiltonian only including

the components describing the interactions between the neighboring spins. I call this Hamiltonian

Ĥi for the interaction Hamiltonian.

Ĥi =−∑
α

(Jα

N−1

∑
i=1

σ
α
i σ

α
i+1), (14)

The solution to the time dependent Schrödinger equation is given by:

e−iĤit/h̄ = ∏
α

eiJα t(σα
1 ⊗σα

2 )/h̄ +O(t/n) (15)

Combining equations (7) and (15) gives us:

∏
α=x,y,z

eiJα t(σα
1 ⊗σα

2 )/h̄ =

eiθz cos(γ) 0 0 ieiθz sin(γ)

0 e−iθz cos(δ ) ie−iθz sin(δ ) 0

0 ie−iθz sin(δ ) e−iθz cos(δ ) 0

ieiθz sin(γ) 0 0 eiθz cos(γ),


(16)

where γ = θx −θy and δ = θx +θy. The optimal circuit for this matrix is:

∏
α

eiJα t(σα
1 ⊗σα

2 )/h̄ =

• Rx(2θx) H • S H • Rx(−π/2)

Rz(−2θz) Rz(−2θy) Rx(π/2)

(17)

This circuit is a constant depth circuit for each time step because the number of one- and two-

qubit gates does not increase with the time step.

Two commuting families of operators exist, as shown in Fig. 3, as orange and blue two-qubit

gates, respectively. As mentioned in subsection II A 2,the depth of the QTD circuit grows linearly

with the time step. As shown in Ref. 3, Fig. 3 shows the quantum circuit for a given time t using n

12



n times

= = ∏eiJαΔt(σα⨂σα)/ℏ

N qubits = N spins

FIG. 3. Quantum circuit for time evolution of N spins, composed of n alternative layers using the Trotter

approximation.3

Trotter steps. Each Trotter step is composed of a bilayer of two-qubit gates. The first layer acts on

the first two qubits, followed by the third and then the fourth qubits and so on. Orange rectangles

represent the first layer. The second layer of two-qubit gates starts from the second qubit and acts

on the next two qubits. Blue rectangles represent the second layer. Both orange and blue rectangles

combine to form an alternative layer, covering all possible nearest-neighbor interactions.

B. Circuit Compression of the QTD of the Heisenberg Model Without an External Field

In order to compress a QTD circuit, the circuit must satisfy the commutation, merging, and

turnover (or YBE) identities23.

1. Commutation

Commutation means that you can switch the order of gates applied to the circuit without chang-

ing the circuit. Formally defined, if two gates A and B commute then

A ·B = B ·A (18)

If a quantum gate U1 is operating on qubit i and i+ 1 and another quantum gate U2 is operating

on i ≥ ±2 and i ≥ ±2±1, then the gates U1 and U2 commute because they are not acting on the

same qubit. As well, if the quantum gates are representing transverse directions of the Heisenberg

model then the model will commute because transverse vectors and matrices always commute.

13



FIG. 4. Quantum circuit representation of commutation for two unitary commuting gates R1 and R2.3

2. Merge Identity

Fusion or merging means that you can combine two gates of a circuit into the same gate5.

Merging is possible when identical gates described by different parameters act on the same qubits.

For a quantum gate R the fusion identity can be written as:

Ri j(θ 1
x ,θ

1
y ,θ

1
z ).R

i j(θ 2
x ,θ

2
y ,θ

2
z ) = Ri j(θ 3

x ,θ
3
y ,θ

3
z )

∋ θ
1
x +θ

2
x = θ

3
x ,θ

1
y +θ

2
y = θ

3
y ,θ

1
z +θ

2
z = θ

3
z .

(19)

FIG. 5. Quantum circuit representation of fusion for two identical gates R1 and R2.

3. Turnover

Turnover means that for three identical quantum gates R, (1⊗R)(R ⊗ 1) = (1⊗R)(R ⊗

1)(1⊗R,) which was proved by the YBE discussed in subsection II A3.

FIG. 6. Quantum circuit representation of the turnover identity.3

14



4. Using Reflection Symmetry and the Merge Identity to Compress a QTD Circuit

In order to compress the Heisenberg model it is first required to demonstrate reflection sym-

metry in a quantum circuit described by two iterations of the QTD circuit by the Trotter decom-

position. Peng and co-workers3 produced figure 7 which proves reflection symmetry exists on

four qubits. It should be noted that by performing these same moves, reflection symmetry can be

extended to N qubits.3

FIG. 7. Reflection symmetry is achieved by using the YBE four times on four qubits (action of YBE on

which triplets is shown by black dots)3.

FIG. 8. Compression scheme for 4 qubits. Reflection symmetry exists with two layers of alternative gates.

Addition of a third layer can be absorbed into the two layers by recursive usage of reflection symmetry (red

bracket) via the YBE and merge identity (black dotted box)3.

Now that reflection symmetry has been displayed, compression of a Heisenberg model without

the presence of an external field can be shown in figure 8.
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The combination of reflection symmetry and the merge identity allows for the compression of

N alternative layers of gates to N/2 alternative layers for N qubits. This is demonstrated in Ref. 3.

5. Algebraic Conditions for Reflection Symmetry

In order to determine if the reflection symmetry can be applied to a variation of the Heisenberg

model the YBE needs to be satisfied. Peng and co-workers proved the following theorem for the

conditions of application for the YBE on Heisenberg models without external fields.3

Theorem I: Given the time evolution operator that takes the following form, the YBE holds if and

only if the following 16 relations between the γ’s and δ ’s are satisfied:

R(γ,δ ) =


eiδ cos(γ) 0 0 ieiδ sin(γ)

0 e−iδ cosγ ie−iδ sinγ 0

0 ie−iδ sinγ e−iδ cosγ 0

ieiδ sin(γ) 0 0 eiδ cos(γ)

 , (20)
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(R(γ1,δ1)⊗1)(1⊗R(γ2,δ2))(R(γ3,δ3)⊗1)

= (1⊗R(γ4,δ4))(R(γ5,δ5)⊗1)(1⊗R(γ6,δ6)) (21)

sγ2cγ1−γ3cδ1−δ3sδ2 = cγ5sγ4+γ6sδ4+δ6
cδ5

(22)

cγ2cγ1−γ3cδ1+δ3sδ2 = cγ5cγ4+γ6sδ4+δ6
cδ5

, (23)

−sγ2cγ1+γ3sδ1−δ3cδ2 = cγ5sγ4−γ6cδ4+δ6
sδ5

, (24)

cγ2cγ1+γ3sδ1+δ3cδ2 = cγ5cγ4−γ6cδ4+δ6
sδ5

, (25)

sγ2cγ1+γ3cδ1−δ3cδ2 = cγ5sγ4+γ6cδ4+δ6
cδ5

, (26)

cγ2cγ1+γ3cδ1+δ3cδ2 = cγ5cγ4+γ6cδ4+δ6
cδ5

, (27)

−sγ2cγ1−γ3sδ1−δ3sδ2 = cγ5sγ4−γ6sδ4+δ6
sδ5

, (28)

cγ2cγ1−γ3sδ1+δ3sδ2 = cγ5cγ4−γ6sδ4+δ6
sδ5

, (29)

sγ2sγ1+γ3cδ1−δ3cδ2 = sγ5sγ4+γ6cδ4−δ6
cδ5

, (30)

cγ2sγ1+γ3cδ1+δ3cδ2 = sγ5cγ4+γ6cδ4−δ6
cδ5

, (31)

sγ2sγ1−γ3sδ1−δ3sδ2 = sγ5sγ4−γ6sδ4−δ6
sδ5

, (32)

−cγ2sγ1−γ3sδ1+δ3sδ2 = sγ5cγ4−γ6sδ4−δ6
sδ5

, (33)

−sγ2sγ1−γ3cδ1−δ3sδ2 = sγ5sγ4+γ6sδ4−δ6
cδ5

, (34)

−cγ2sγ1−γ3cδ1+δ3sδ2 = sγ5cγ4+γ6sδ4−δ6
cδ5

, (35)

−sγ2sγ1+γ3sδ1−δ3cδ2 = sγ5sγ4−γ6cδ4−δ6
sδ5

, (36)

cγ2sγ1+γ3sδ1+δ3cδ2 = sγ5cγ4−γ6cδ4−δ6
sδ5

, (37)

where sp and cp denote sin(p/2) and cos(p/2), respectively.

The proof of Theorem I is straightforward but lengthy and tedious if one expands both sides

of Eq. (21) and performs a term-by-term comparison.3
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IV. RESULTS

A. Compression of the QTD of the Heisenberg Hamiltonian With a Transverse Field

In this section I investigate the ability for 1D Heisenberg models in the presence of a transverse

external field to be compressed using the same three rules (commutation, merging, and turnover)

as the models without an external field. I first follow the works of refrence3 on the XX+Z model.

I then try my own hand at compressing the XY+Z model.

1. XX+Z Model

The XX+Z Heisenberg model is described by the Hamiltonian

Ĥ =−Jx

N−1

∑
i=1

σ
x
i σ

x
i+1 − Jx

N−1

∑
i=1

σ
y
i σ

y
i+1 −hzσ

z
i (38)

Note that in this specific case Jx = Jy, Jz = 0, and hz ̸= 0. In the appendix of Peng et al.’s paper3

they prove that the YBE can be used on this model and thus it can be compressed to N +1 layers

for a N qubit system. In order to compress the model, they first break up the Hamiltonian into the

external field and non-external field section of the model:

H = HXX +HZ (39)

with

HXX =−Jx ∑
i
(σ x

i σ
x
i+1 +σ

y
i σ

y
i+1),

HZ =−hz ∑
i

σ
z
i . (40)

They then note that because Hxx and Hz are transverse, they commute. Thus [HXX ,HZ] = 0.

Because Hxx and Hz commute, it follows that you can decompose the QTD solution without any

trotter error to

e−iHt = e−iHXX te−iHZt = e−iHZte−iHXX t (41)

and

[e−iHXX t ,e−iHZt ] = 0. (42)
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I was able to confirm that HXX and HZ do commute by creating the matrix representations of

the sub-Hamiltonians on the program Maple and check their commutability. See appendix. A to

see the construction of the HXX matrix representation and check it’s commutation with HZ .

Peng and coworkers demonstrate how this model is compressed in figure 9 by separating out

the transverse field blocks from the interaction blocks using commutation the model forms "a

circuit for pure XX model plus a single Rz layer3 ." They then invoke the same three rules for

compression, commutation, merging and turnover, to compress this circuit down to N +1 layers.

FIG. 9. Circuit compression for XX+Z model. Two-qubit gates for XX interaction are denoted by blue

blocks, and single qubit Rz gates are denoted by green blocks. Note that blue and green blocks commute3.

2. XY+Z Model

The XY+Z Heisenberg model is described by the Hamiltonian

Ĥ =−Jx

N−1

∑
i=1

σ
x
i σ

x
i+1 − Jy

N−1

∑
i=1

σ
y
i σ

y
i+1 −hzσ

z
i (43)

Note that in this specific case Jx ̸= Jy ̸= 0,Jz = 0 and hz ̸= 0.

This model differs from the XX+Z model because there are two distinct interaction terms.

Figure 10 shows the circuit that describes this model on three qubits. Figure 11 shows the extension

of this circuit to N qubits.
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FIG. 10. The XY+Z QTD circuit for three qubits24

FIG. 11. The XY+Z QTD circuit for N qubits

I proposed that in order to compress this circuit you would first recognize that the interaction

term in the Y direction can be re-written in terms of the X interaction and Z external field. The

relationship of the YiYi+1 to XiXi+1 and Zi quantum gates is shown by equation 4423. I proved this

substitution works by programming it on Maple. You can see the results of it in appendix. B.

This substitution can be represented by the circuit shown in figure 12.

YiYi+1 = ei π

4 Ziei π

4 Zi+1XiXi+1e−i π

4 Zie−i π

4 Zi+1 (44)

Now that we see the relationship between the YiYi+1, XiXi+1, and Zi gates, we can substi-

tute ei π

4 Ziei π

4 Zi+1XiXi+1e−i π

4 Zie−i π

4 Zi+1 in for every YiYi+1 gate. This is represented by combin-

ing the circuits represented in figures 12 with 11 and replacing every green Yi,i+1 block with a

ZiZi+1Xi,i+1ZiZi+1 block. This substitution is shown in the circuit represented in figure 13.

Now the circuit is entirely expressed in terms of the gates XiXi+1 and Zi similar to section IV A 1
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FIG. 12. The XY+Z QTD circuit for N qubits

FIG. 13. The XY+Z QTD circuit for N qubits after substituting in ei π

4 Ziei π

4 Zi+1XiXi+1e−i π

4 Zie−i π

4 Zi+1 for every

YiYi+1 block.

describing the XX+Z model. As shown above in section IV A 1, I believed that the gates XiXi+1

and Zi commute and observe the merging identity. Therefore, I proposed that once the circuit

describing the XY +Z is only in terms of the quantum gates XiXi+1 and Zi it can be completely

compressed to N +1 gates. The method to compress the XY+Z QTD circuit would be similar to

section IV A 1 as described in figure 9. Just like in the XX+Z can, I proposed that you first separate

out the XiXi+1 gates from the Zi gates using commutation and then compressing the interaction

gates to N gates using symmetry reflection described in and the external field gates to one singular

column of gates using the merge identity.

By turning the XY + Z into a XX + Z like model, I analytically proposed that a complete

turnover and compression is possible with the same conditions and restraints for the XY + Z as

for the XX +Z model. It should be noted that published works2324 have analytically and numer-

ically shown that although the XY +Z model can be compressed, it is not a perfect turnover and

does not quite work with the YBE.
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V. DISCUSSION

A. Further Examination of the XY+Z Model

After further examination I now understand that I am not able to compress the XY +Z model

using the same method as the XX+Z Hamiltonian sub-model. This is because when I substitute

every Y block for zzXzz blocks I am turning the model into a X +Z model, not a XX +Z model.

This is demonstrated in figure 14 and proved in Appendix. B. The difference is that in the XX +Z

model there exists a Y block that has the same interaction term as the X block. As shown in

Appendix. A, HXX and HZ commute which allows the separation and turnover required for the

compression. However, HX and HZ without the HY block with the same interaction term as HX

do not commute. I figured this out by creating matrix representations in maple of Hx and Hz and

checking their commutability on Maple. As you can see in Appendix. C, the matrix representations

of HZ ·HX is not equal to the matrix representation of HX ·HZ , ergo they do not commute. This

means that we cannot separate out Hx and Hz required to do the compression. Therefore we

cannot compress the same method as the XX +Z model or preform the YBE on the XY +Z model.

Therefore, we cannot apply the Yang Baxter Equation to the XY + Z model and it is not Yang-

Bazterizable.

FIG. 14. The correct substitution for the XY+Z model.
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B. Expressing a Yang-Baxterizable Heisenberg Model as a Free Fermion Model

As mentioned in section II A 4, if the Yang-Baxter equation can be preformed on a model, that

is if it is Yang-Baxterizable, then it will also be able to be transformed into a free-fermion model.

I will demonstrate this for the XX+Z model that I displayed can be compressed using the Yang-

Baxter equation in section IV A 1. In order to do this I will use the Jordan-Wigner transformations

described in equation 13 changing the Hamiltonian from being described with spin operators to

creation and annihilation operators. Using the Jordan-Wigner transformation the HXX component

of the XX+Z Hamiltonian described in equation 43 becomes equation 45.

HXX =−JX ∑
i
((

1
2
(c+i + ci))(

1
2
(c+i+1 + ci+1))

+(
1
2i
(c+i − ci))(

1
2i
(c+i+1 − ci+1)))

=−Jx

2 ∑
i
(c+i ci+1 + ci+1c+i )

(45)

Notice that there is no string operator in the above equation 45. That is because all of the strings

cancel except the eiπn j which has no effect.

The external field in the Z-direction (HZ) component of this Hamiltonian becomes equation 46.

Hz =−hZ ∑
i

c+i ci +
1
2 (46)

Combining these back together, the entire XX+Z Heisenberg Hamiltonian expressed as a free-

fermion model in equation 47.

HXX+Z =−Jx

2 ∑
i
(c+i ci+1 + ci+1c+i )−hZ ∑

i
c+i ci +

1
2 (47)

I have demonstrated that a Yang-Baxterizable Heisenberg model can also can also be converted

to a free fermion model and vice versa. This is true not just for the XX+Z model, but for any Yang-

Baxterizable model.21 This is significant because there are cases in which it is difficult to tell if

a model is Yang-Baxterizable, however it is less difficult to convert it to a free fermion model.

The ability to convert a Heisenberg spin model to a free fermion model is indicative of if it can be

compressed and thus used on a NISQ device.
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C. The Free Fermion Model of the Generalized Heisenberg Model and Its Yang

Baxterability

Because non Yang-Baxterizable models cannot be transformed into free fermion models, I

know that the XY+Z cannot be transformed into a free fermion model. However, we can get

around this by re-writing the XY+Z model as a version of a more general Heisenberg model.21

The general Heisenberg model is given by equation 48.

Hgeneral = ∑
i
(aiσ

x
i σ

x
i+1 +biσ

y
i σ

y
i+1 + fiσ

x
i σ

y
i+1 +diσ

y
i σ

x
i+1)

+hz ∑
i

σ
z
i

(48)

Notice that the difference between the XY+Z model and the more general model is that here

there are terms which combine σ x and σ y whereas in the XY+Z model there are not. To turn the

Hgeneral model back into the XY+Z model, I would set fi and di , the interaction terms of those

spins, to equal zero. Hgeneral , however can be transformed into a free fermion model. I begin this

by using the Jordan-Wigner transformation as shown in equation 13 to re-express Hgeneral in terms

of annihilation and creation operators as seen below in equation 49.

Hgeneral = ∑
i
[(

ai

2
(c†

i + ci))(
ai

2
(c†

i+1 + ci+1))

+(
bi

2i
(c†

i − ci))(
bi

2i
(c†

i+1 − ci+1))

+(
fi

2
(c†

i + ci))(
fi

2i
(c†

i+1 − ci+1))

+(
di

2i
(c†

i − ci))(
di

2
(c†

i+1 + ci+1))]

+hz ∑
i

c†
i ci −

1
2
.

(49)

After expanding out the terms, Hgeneral can be re written as equation 50 where α = 1
4(−i fi −

idi +ai −bi) and β = 1
4(i fi − idi +ai +bi).

Hgeneral = ∑
i
(αic

†
i+1c†

i +α
∗
i ci+1ci +βici+1c†

i +β
∗
i c†

i+1ci)

+hz ∑
i

c†
i ci −

1
2
.

(50)

Because I have written the general Heisenberg model as a free fermion model, I know it is possible

to use the Yang-Baxter equation on it. Thus if we set fi,di = 0 and adjust α and β we could then
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write the XY+Z model in terms of a free fermion model. However, by setting fi,di = 0 it changes

the structure of the free-fermion model which makes the ability for the model to turn over (imple-

ment the Yang-Baxter equation) imperfect. This imperfection makes the Yang-Baxerized XY+Z

no longer a SU(2) lie algebra like the other models which can turn over without the intermediate

step of the generalized Heisenberg model.5 It is important that the XY+Z model is no longer a

SU(2) model because it means it will not turn over perfectly, thus, it will not compress cleanly.
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VI. CONCLUSIONS AND OUTLOOK

I have studied how the turn over relation, commutation and merging identity can be utilized to

compress QTD circuits of 1D Heisenberg spin chains with with adjacent-neighbor and transverse

field interactions from deep to shallow circuits so that they can be deployed on the current NISQ

computers. I have found that along with QTD circuits describing Heisenberg models without trans-

verse fields, the XX+Z model3 can also be scaled depending on the number of spins independently

of time and step size. This produces a shallow quantum circuit for efficient time dynamics sim-

ulations of 1D lattice spin chains with nearest-neighbor interactions on real quantum computers.

The depth of quantum circuits for each time step is independent of time and step size and depends

only on the number of spins3. Through my exposition of the subject, I found that the QTD circuits

of models without a transverse field, describing N spins, can be scaled to N columns of quantum

gates3 and the specific case of the XX+Z model with transverse fields on N spins can be scaled

down to N +1 columns. I also found that any Yang-Baxterizable model can be transformed into a

free fermion model. However, after looking into the topic myself, I found the XY +Z model was

not able to be turned over cleanly, therefore, it can not be compressed and deployed on a NISQ

device or turned into a free fermion model.

There is still much to be done on this topic. I am curious about the possibility of representing

commutation and the merging identity in terms of topology rules just as the turnover relation

is. The purpose of this would be to then find a way to completely represent the compression of

quantum circuits using braid rules which could help people with a background in topology, such

as myself, find new ways to compress quantum circuits.

These applications of the techniques of commutation, merging, and turning over quantum gates

in QTD circuits of the Heisenberg Hamiltonian are significant because they open up the possibility

of simulating a broader class of Heisenberg models on NISQ devices in the future. As well, these

results provide promising evidence for more complicated quantum models that are not able to be

simulated on classical computers to do so on NISQ devices.
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VIII. APPENDIX

Appendix A: Proof that Hxx and HZ commute .

I used Maple to check that Hxx and HZ commute. This is seen if figure 15

FIG. 15. The commutation of Hxx and HZ

Appendix B: Proof that HY is equal to HzHzHX HzHz

I used Maple to check that HY = HzHzHX HzHz. This is seen if figure 16.

Appendix C: Proof that HX and Hz do not Commute

Using Maple, I found that Hz and Hx do not commute proving that the XY +Z model cannot be

compressed. This is seen if figure 17.
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FIG. 16. HY = RzRzHX RzRz

FIG. 17. The matrix representations of HZ ·HX is not equal to the matrix representation of HX ·HZ thus they

do not commute.
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