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Abstract

Searching for Supersymmetric Cycles

A Quest for Cayley Manifolds in the Calabi-Yau 4-Torus

by Chris Pries

April 2003

Recent results of string theory have shown that while the traditional cycles studied

in Calabi-Yau 4-manifolds preserve half the spacetime supersymmetry, the more

general class of Cayley cycles are novel in that they preserve only one quarter of

it. Moreover, Cayley cycles play a crucial role in understanding mirror symmetry

on Calabi-Yau 4-manifolds and Spin � -manifolds. Nonetheless, only very few non-

trivial examples of Cayley cycles are known. In particular, it would be very useful

to know interesting examples of Cayley cycles on the complex 4-torus. This thesis

will develop key techniques for finding and constructing lattice periodic Cayley

manifolds in Euclidean 8-space. These manifolds will project down to the complex

4-torus, yielding nontrivial Cayley cycles.
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1

0.1 Overview

It appears that there is a theory that generalizes and unifies the various string theo-

ries and supergravity. This new theory has been named M-theory. However, many

of the specifics of M-theory are not known. The main focus of this thesis is to find

examples of nontrivial cycles in the Calabi-Yau complex 4-torus. This will allow

the specifics of M-theory to be examined and hopefully better understood.

Conformal field theory, which relies heavily on complex analysis, forms the

backbone of string theory. However in M-theory the complex numbers are not suf-

ficient. For this reason we need to employ the more general division algebras of

the quaternions and Cayley numbers. Moreover, in order to describe spin struc-

tures in higher dimensions, something essential to M-Theory, we will need make

use of the Clifford algebras. All these algebras are reviewed in Chapter 1, where

we also review a number of deep connections between these structures and the

various branches of differential geometry.

Chapter 2 provides some of the connections between physics and geometry,

offering motivation for this thesis. Since our focus is to better understand M-theory,

we provide a simplified review of string theory and its relationship to M-theory.

This will help provide a framework for understanding these problems.

Chapter 3 will focus on Cayley geometry. We first summarise the method of cal-

ibrations, paying special attention to the case of the Cayley calibration, and then

discuss the specific problems we will address in this thesis. My principle results

are roughly divided up into two categories. First in Chapter 4, we discuss our

results concerning the angles between various Cayley planes. In particular we de-

rive the Cayley Angle theorem, which is a new result, and important for resolving

singularities in intersecting Cayley manifolds.

Very few examples of nontrivial Cayley cycles are known. In fact even locally
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linear Cayley manifolds, such as polytopes, are unknown and would be interest-

ing. In this thesis we develop a technique for constructing lattice periodic Cayley

polytopes, which uses the general theory of finite reflection groups, lattices, and

polytopes. We review this and some of the related areas of complex and quater-

nionic reflections in Chapter 5.

Finally, in Chapter 6 we present our new results on the construction of finite

Spin � subgroups and lattice periodic Cayley polytopes (called honeycombs). More-

over this technique can be used to find finite quaternionic and special unitary

groups in a manner that is easier then previously known techniques. These hon-

eycombs project to non-trivial Cayley cycles in � ��� � ���� , the Calabi-Yau 4-torus.



Chapter 1

Cayley Numbers and Spin Structures

Every mathematician and physicist of the modern day is familiar with the com-

plex numbers, � . They have become an integral part of mathematics and are es-

sential for describing the physical world as we know it. Part of the beauty and

power of the complex numbers resides in the natural geometric structure that they

possess, namely there is a natural length associated with every complex number

which is multiplicative, i.e., ������� �������	�
��� for all �:��� > � . Moreover, multiplication

by a unit complex number corresponds to a rotation in the complex plane.

These and other factors caused Hamilton and others in the mid- � ��/�/ s to ex-

plore the possibility of a number system with geometric properties similar to the

complex numbers, but for 3-dimensional space. This led to Hamilton’s invention

of the quaternions in 1843. Attempts to generalize to even higher dimensions re-

sulted in the invention of what we now call the Cayley numbers and the Clifford

Algebras. Remarkably these algebraic structures incorporate and help explain the

seemingly arbitrary nature of spin in quantum mechanics, and are fundamental

for understanding string theory and its generalizations.

1.1 The Division Algebras

A real algebra is a vector space over the real numbers equipped with two operations,

the commutative addition of the vector space and a (not necessarily associative)

multiplication which distributes over the addition,

��
 ������� ���J����
��3� ������
�� � � (1.1)
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for all � ���'� � in the algebra. Furthermore, we require that these algebras contain a

multiplicative unit, � .
A real division algebra is an algebra additionally equipped with an inner prod-

uct whose associated norm is multiplicative. Immediate familiar examples are the

real and complex numbers. It is possible to show that there is no such three-

dimensional algebra, however Hamilton came up with a four-dimensional alge-

bra which he designated the quaternions, denoted
�

in homage to Hamilton. The

structure of the quaternions mirrors that of the complex numbers. They are the

real linear span over four orthogonal vectors ��� �� � �� � �� where
�� � � �� � � �� � � K � .

We immediately see that there are several copies of � contained in
�

. Lastly the

multiplication between
�� � �� � �� mimics the vector cross product, namely

�� �� � K �� �� � ��

with cyclic permutations. This, together with the distributive law completely spec-

ifies the algebra. Notice that the quaternions do not commute while the complex

numbers do. Moreover, we can adopt the natural inner product from � � for the

quaternions. The associated norm is then ��� �(� �
�� � �

�� ��� �� �
�
� �

�
� �
�
� �
�
���
�
.

This norm satisfies the multiplicative condition, making
�

a division algebra.

Just as a complex number can be broken into its real and imaginary pieces, so

too can the quaternions. The real part of a quaternion is the projection onto the �
axis, while the remaining vector piece is the imaginary portion, denoted 	�

� and
��� � , respectively. It is fairly straight forward to verify that for any unit imaginary

quaternion � , we have �
�
� K � so that ��� # � K � . This motivates us to define a

quaternion conjugate by �O��	�
�� K ��� � . (In fact this definition makes sense for

any algebra with unit � ). Then, since
�

is a division algebra, we can determine the

inverse of any nonzero element by � � # � ��� ��� �
�
.

The above process can be repeated to produce an additional division algebra of

dimension 8 known as the Cayley numbers, octonions, or octaves, written
�

. In

fact all four of the discussed division algebras can be brought together under what

is termed the Cayley-Dickson process. Given an algebra � , we can define a new
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algebra � ����� � where multiplication in � is defined by,

� � � �3����� � � � �J��� � K ���'� � � � � � � (1.2)

with � ���'� ��� � > � . We say � was obtained from � via the Cayley-Dickson Process.

Applying the Cayley-Dickson process to � yields � , applying it to � yields
�

, and

applying it to
�

yields
�

. This sequence continues, but the resulting algebras con-

tain zero divisors (i.e., are no longer division algebras). In fact in each application

of the Cayley-Dickson process some property is lost. The complex numbers are

not ordered, the quaternions are not commutative, and the Cayley numbers are

not associative.

This also permits us to view each algebra as a subalgebra of the larger ones,

�0� � � � �� , � � � � �
��
, and

� � � � � �� , where the orthogonal basis elements of
�

are ��� �� � �� � �� � �� � �� � � �� � � �� � . In this basis the multiplication table for
�

is as in Table

1.1. However, as we know from
�

, this decomposition is not unique. In fact, in the

�
�� �� �� �� �� � �� � �� �

� �
�� �� �� �� �� � �� � �� �

�� �� K �
�� K �� �� � K �� K �� � �� �

�� �� K �� K � �� �� � �� � K �� K �� �
�� �� �� K �� K �

�� � K �� � �� � K ��
�� �� K �� � K �� � K �� � K � �� �� ��
�� � �� � �� K �� � �� � K �� K � K �� ��
�� � �� � �� � �� K �� � K �� �� K � K ��
�� � �� � K �� � �� � �� K �� K �� �� K �

Table 1.1: The multiplication table for the Cayley numbers, � .

case of
�

if � is any imaginary unit vector then ��� � � � � � as a division algebra.
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Similarly there are many subalgebras of
�

isomorphic to
�

. We have the following

theorem due to Artin,

Theorem 1.1.1 (Artin) The subalgebra � generated by any two elements of
�

is isomor-

phic to a subalgebra of
�

. In particular, it is associative.

Moreover, these four algebras exhaust the possible real division algebras:

Theorem 1.1.2 (Hurwitz) Up to isomorphism, the only normed real division algebras are

� , � ,
�

, and
�

.

For proofs of these theorems I direct the reader to the appendix of [18], which has

an extensive discussion of the Cayley numbers. Also, the interested reader might

look at [29]. Throughout this text I will frequently switch between the terminology

Cayley numbers, octonions, and octaves.

1.2 General Linear Groups

Recall that we can define the algebras of � ��� matrices with real or complex

entries, !�� � �B� and !�� � � � . From these we can define various subgroups, e.g., the

subgroups of invertible transformations
��� � � �B� and

��� � � � � . Using determinants

and (hermitian) inner products, with possibly indefinite signature �	�R����� , we can

define the orthogonal and special orthogonal groups, � �
�R����� and ��� �	�R����� and their

complex counterparts the unitary and special unitary groups, � �	�R����� and � �U�
�R����� .
All of this is well known and covered in a variety of standard texts on Lie groups,

differential geometry, and special relativity.

It is possible to define these groups because the real and complex numbers are

fields. The quaternions, while not a field, share many of the nice properties that

fields possess. In fact, if we are careful to mind the order of multiplication, we can

construct an algebra out of the � ��� matrices with quaternion values, !�� � � � .
These acts on the left of vectors in

��

. However in order to consider this a linear
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space we have to let the scalars act on the right. The group of invertible elements

will be denoted
� �
� � � � .

Just as we can use the symmetric inner product on �
� 

� � � 
 to define a her-

mitian inner product on � 
 , we can similarly define a hermitian symmetric inner

product on
� 


. ��� �����I� � #�� # � 
 
 
�� �
� � � K 
 
 
 K �

�
	 � � �
	 ��� (1.3)

The real portion of this inner product is identical to the real inner product on

� �


� � � 


. The group that preserves this inner product will be denoted ���U�
�R�����
or simply ���U��V � when � �C/ . When V�� � we find that ���U� �'� � � � � ��
 ��� � � >
�

and � � �I� ��� , where
���

denotes the left multiplicative action of � > �
on

��

.

For completeness, let � � denote the right multiplicative action of � > � on
� 


, i.e.

right multiplication by � (conjugation ensures that this is an action: ��������� ������� ).
Similarly we can define the right and left “action” of Cayley numbers on

� 

. While

defined similarly, the notion of an action in these contexts is malformed since the

Cayley numbers are not associative.

Strictly speaking, there is a slightly larger group than
��� � � � � which preserve

quaternion lines ( i.e., the right
�

span of � > � 
 ). We can augment this group by

right quaternion multiplication by a scalar. In this case the following sequence is

exact:

� K � �"! K � ��� � � � � � � ! K � ��� � � � � 
 � ! K#� ��� (1.4)

where � ! and
� ! are the subgroups of invertible elements. The new group

��� � � � � 

� ! is known as the enhanced

�
-general linear group. It also has an analogous sub-

group ���U�
�R����� 
 ���U� �'� which is defined in the obvious manner.

There is some confusion of notation. Often the groups � �U��V � are written � �?� VR� .
However these could equally refer to the real symplectic or skew groups, associ-

ated with a skew inner product. To avoid confusion I have decided to use the

notation ���U�
�R����� throughout. This notation is natural as these groups are closely



8

related to the unitary groups. In fact, all these groups can be understood as sub-

groups of each other: � �U�
� ������� �U��	 �R� 	���� , � �	�R������� ��� ��	 �R� 	���� .

1.3 The Clifford Algebras, Pin, and Spin

Clifford algebras are another attempt to provide an arbitrary vector space with

some sort of algebraic structure. However there is much more to Clifford alge-

bras then their algebraic structure. Ultimately they help provide the mathematical

framework that explains the phenomenon of intrinsic spin in physics. Clifford al-

gebras have many deep connections to certain differential forms and the structure

of certain types of manifolds. However, they also have a rich structure of their

own. Much of this subject matter is far beyond the scope of this thesis. Although

we provide an abbreviated summary of the relevant subject matter, the reader will

find a more comprehensive treatment in F. Reese Harvey’s book [17].

To begin, Clifford algebras are best understood in the context of the exterior

algebra and tensors. Given a real vector space � with inner product and associated

norm
� � � and �	��
 �	� , respectively, the tensor algebra,

�
���
��
<���� �

<
���

is a graded associative algebra with unit. It also has an associated inner product

derived from (and also denoted by)
� � � . If we let �:�M� � denote the two-sided ideal in

�
� generated by elements of the form
� � � > �

�
� , where

� > � , then the exterior

algebra 	�� � �
� �
�:�M� � . In other words, the exterior algebra is the quotient of the

tensor algebra by all symmetric or partially symmetric tensors.

Alternately, we can let �:�M� � denote the two-sided ideal in �
� generated by el-

ements of the form
� � � � ��� � � � with

� > � . Then the resulting quotient algebra

is known as the Clifford Algebra of � , denoted �
	��M� � . It clearly is related to the ex-

terior algebra, yet is a distinct entity. In particular, as vector spaces ��	��&�U� and 	��
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are isomorphic. These algebras have a number of natural involutions. Consider

the isometry on � sending � to K � . This extends to an algebra automorphism of

�
	��M�U� which we will denote by
���� �� . Similarly the anti-automorphism of �
� de-

fined by reversing the order of simple products descends to an anti-automorphism

of �
	��M� � . We will denote this by the check involution
���� �� . It is straight for-

ward to verify that � and � commute. Thus we can define a third involution by their

composition, denoted
���� ��

. The automorphism allows us to split �
	��M� � into two

pieces,

�
	 even �M� � � 
 � > �
	��M� � � �� � � � � ��	 odd �&�U��� 
 � > ��	��M� � � �� � K � � � (1.5)

Once given these algebras we can consider the multiplicative group, �
	 ! �&� � ,
much in the same way as we consider

��� �&�U� as a subgroup of linear transforma-

tions of � . In fact this group will turn out to be either one or two copies of a general

linear group over � � � or
�

. If we consider a non-null vector � > � � �
	��M�U� , (i.e.,

� � � .� / ) 1 then we have that � � # � K � � � � �
�

is the inverse of � . Hence all such � are

elements of �
	 ! �M� � .
Definition 1.3.1 The Pin group is the subgroup of �
	 ! �&� � generated via multiplication

by unit vectors in � . If �J� ��� � � then this will be denoted Pin� � � .

Since every vector in
� � V �&� � is a simple product, each element has a well defined

even-odd parity. This motivates the following definition:

Definition 1.3.2 The group Spin is the even subgroup of Pin. i.e. Spin� � � �T� � even �
Pin��� � .

In what seems like a coincidence, the Spin and Pin groups are closely related to the

��� �M� � and � �&�U� groups. If � > � is a non-null vector (i.e., � � � .�0/ ), then reflection

1In vector spaces with indefinite inner products it is possible to have vectors with nonzero co-
ordinates, whose norm is zero. For example in �	� with the indeinite inner product, 
���
�������
 ���

�������� , any vector of the form ��
�����
 � will have zero norm.
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along � is given in terms of Clifford multiplication by Ref
� � � � � K � � ��� # for all� > � . Thus we define the twisted adjoint representation �� � of the group �
	 ! �&� � on

�
	��M�U� ,
�� � �4� � ��� �� � � � # � (1.6)

for all � > �
	 ! �M� � and
� > �
	��M�U� . Similarly we can define the adjoint representation

by removing the tilde automorphism. On the even algebra the tilde automorphism

is the identity so that this distinction is lost. This permits us to project the Spin and

Pin groups into the orthogonal groups:

Theorem 1.3.1 The sequences,

� K � � � K#� Pin
����K#� � �&� � K#� � (1.7)

� K � � � K � Spin
����K � ��� �&� � K#� � (1.8)

are exact sequences, where � � � 
�6 � � .
In other words, Spin and Pin are double covers of ��� �&�U� and � �&�U� respectively.

This has deep consequences which will be made more apparent shortly.

Let us examine the Clifford algebra ��	���	�� . As a vector space it is the span of

these four orthogonal elements, ��� � #�� � � � � # � � . Notice that the square of any of the

last three is minus the identity. In fact we see that this algebra is identical with

the algebra of quaternions,
�

. Moreover making use of the identity ��	 even ��
���� � �
�
	���
 K ������� , we see that span 
���� � # � � � � # � � � � � � � � � �
	 even ��� � � � �

as well. It can be

shown that Spin � �� ��� � �'� , is the standard double cover of � � ���4� . In fact when

viewed simply as matrix algebras, the clifford algebras correspond to many of our

familiar examples, see Table 1.2.

The vector space that the Clifford algebras act upon when viewed as matrix

algebras is known as the space of Pinors. Similarly, the space that the even Clif-

ford algebras act upon is known as the space of Spinors. Additionally we have the

identity ��	 even � 
���� � �� ��	 even ���4� 
4� . Given an orientation for � � ��� � � we can define
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� / � 	 � � 
 � �

� �0/ � � � �
�
� ! � � � � ! � ��� � ! � � �B�

! � � �(�
�

! � � �(�

� � � � � � ! � � �B� ! � � � � ! � � � �
! � � � �
�

! � � � �
! � �

� � ! � � � � !�#&% � �B�

� � 	 ! � � �B�
! � � �B�
�

! � � �B�
! � � �B� ! � ��� � ! � �

� �
! � �

� �
�

! � �
� �

! � �
� � !�#&% ��� �

Table 1.2: The Matrix algebras isomorphic to the Clifford algebras for � � ����� � . Note that 	�
 �
���� ��� � ��	�
 �
� ��� ��������� � � � .

9 > ��	��M� � to be the unit volume form. Then � > �
	 �&�U� is said to be self dual if

9 � � � and anti-self dual if 9 � � K � . In the cases where �
	��M� � is split into two sim-

ple matrix algebras !�� ��� � �8!�� ��� � , then these two algebras can be realized as the

self dual and anti-self dual portions of the Clifford algebra. The induced represen-

tations of Spin or Pin will be referred to as the positive and negative representations

of these groups, acting on the positive or negative spinors or pinors, ��� � � � . In

low dimensions the Spin and Pin groups are often isomorphic with the orthogonal

group of their space of spinors or pinors, as was for the Spin � case above. How-

ever, in higher dimensions these groups can be highly nontrivial subgroups of the

larger groups, e.g., Spin � below.
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1.4 The Connection to the Division Algebra
�

We saw in the last section that the quaternions re-emerge in the study of the Clif-

ford algebras. One might hope that a similar re-emergence might happen for the

octonions as well. However one will quickly be disappointed. All the Clifford al-

gebras, since they can be realized as matrix algebras, are associative. Nonetheless,

the octonions do provide a useful model for the Clifford algebras �
	 � � � and �
	 ����� .
In eight dimensions the Clifford algebra has three inequivalent eight-dimensional

representations. More precisely the following sequences are exact and correspond

to inequivalent representations,

� K � � � � 
�����9 � K � Spin
�
���K � ��� � � � K � � (1.9)

� K � � � � 
���� K 9 � K � Spin �
���K � ��� � � � K � � (1.10)

� K � � � � 
���� K ��� K � Spin
�

���� ���K � ��� �&� � K � � � (1.11)

They are the positive, negative and vector representation. There are outer auto-

morphisms of Spin � that exchange these representations known as the triality au-

tomorphisms. All three of the vector spaces � � � � � � 	 � � � can be identified with

the octonions
�

. For example, � �0�
	 � � � can be identified as,

���
��
	��
 / K � �

K � � /

��
� � > ���
�� � (1.12)

In this context the unit volume element for ��	�� � � and the even Clifford algebra are

given by

9 �
�
 � /
/ K �

��
and ��	 even �&� ���

��
	��
 � /
/ �

��
� � ��� > End � � � � �
�� � (1.13)

Octonion multiplication helps unify and relate the three eight-dimensional repre-

sentations of Spin � as follows:
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Theorem 1.4.1 (The Triality Theorem) Let ��� 	 ��� � ��� � � be a triplet of orthogonal linear

maps on
�

. Then ��� 	 ��� � � > Spin � with � � the vector representation of ��� 	 ��� � � if and only

if � 	 � � 
 ��� ��� � � � � 
�� � ����� for all
� ��� > � .

For a proof of this theorem and a more comprehensive discussion see [17].

The octonion model for Spin � helps us construct such a model for Spin � . Recall

that the subgroup of Spin 
 that fixes a vector in the vector representation is isomor-

phic to Spin 
 � # . Thus we have the following representations (with the important

standard isomorphisms):

Spin � � � � > Spin
� ��� � � �'��� �
	 (1.14)

Spin % � ��� > Spin � ��� � � �'� � � and � � � �� � � ���
 � � � � ��� � (1.15)

Spin � � � � > Spin
� ��� � � �'� � ����� � � �� � � �� � and � � � �� � � �� 
 � � ���U��	4� (1.16)

Spin
�

� ��� > Spin � ��� � � �'� � ����� � � �� � � �� ��� � � �� � � ��
and � � � �� � � �� 


(1.17)

� � � �U� � � � ��� � �'� (1.18)

Because of the Triality Theorem, we can get another useful characterization of

Spin � . Namely setting � � � > � yields � 	 � � � ��� � � � � for all
� > � and ��� 	 ��� � � >

Spin � . Finally, returning to the octonion model we find that,

Spin � is generated by
�
 � � /

/ � �
��

with � > ��� � � (1.19)

There are other associations which are worth mentioning. First of all the octo-

nions are closely related to the exceptional Lie group
� �

. In fact this is the group

of algebra automorphism of the octonions, ( � > ��� if and only if � � � ��� ��� � � ��� ��� � ).
In particular this means that any element of

���
must fix � > �

, so that
� � �

��� � ��� � �
� � � � ��� . In fact
� �

is precisely the subgroup of Spin � that fixes � > � .

Recalling Theorem 1.4.1, we see that
���

is the subgroup of Spin � that is identical to

its vector representation, � 	 ��� � ��� � .
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Figure 1.1: Parallel Transport on a Manifold

1.5 Holonomy and Spin Structures

Let �&! ����� be a Riemannian Manifold, with connection � . This connection is not

necessarily compatible with the metric. Let ����� /�� ��� � ! be smooth, such that

� �&/4��� � . Then � is a path starting at � . Recall that, using the metric and the con-

nection, there is a well defined map, known as parallel transport, from the tangent

space at � to the tangent space at � �	��� for all � > � /�� ��� , ��
 � � � � � ! � �

�

��� ! . Let

� be a smooth path, such that � �&/ � ��� � �'� � � > ! . Then � is a loop based at

� . When restricted to loops the associated parallel transport maps are invertible

linear maps and form a subgroup ����	 � ��� � � ��� � � � ! � under loop composition
��
 � � N�� ��
�� N . Moreover it can be shown for connected manifolds ! that this

group is independent of base point, see [21].

Recall that there is a unique connection ��� compatible with the metric � , known

as the Levi-Civita connection. When the connection is this unique connection, then

parallel transport preserves the length (i.e., the metric) on the tangent plane. In this

case the associated group ����	 � ����� � is a subgroup of � � � � ! � , and is known as the

holonomy group. While certain types of manifolds have holonomy that is the full

orthogonal group, most have holonomy that is a proper subgroup of some kind.
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The holonomy group of a manifold is an extremely useful concept. It allows

us to gain a great amount of knowledge about the manifold. One reason it is so

powerful is that it captures information about both the topology and curvature

of the manifold. Berger has classified the possible holonomy groups for compact

connected Riemannian manifolds. Of particular interest is when the manifold is

not a symmetric space. In this case the holonomy group falls into one of seven

types:

Theorem 1.5.1 (Berger) Suppose �M!7����� is a Riemannian manifold of dimension V that

is irreducible2 and not a symmetric space. The connected component of the holonomy group

is isomorphic to one of the following:

1. � ��	�� ��� � � ��� � VR� ,

2. VS� 	 ; , ; � 	 , and � ��	�� ��� � � � � ; ��� ��� ��	 ; � ,

3. VS� 	 ; , ; � 	 , and � ��	�� ��� � � � �U� ; ��� ��� ��	 ; � ,

4. VS� � ; , ; � 	 , and � ��	�� ��� � � � �U� ; ��� ��� ��� ; � ,

5. VS� � ; , ; � 	 , and � ��	�� ��� � � � �U� ; � 
 ��� � �'��� ��� � � ; � ,

6. VS� � , and ����	������ ��� � � � ��� � ��� , or

7. VS�0� , and ����	������ ��� Spin � � ��� �&� � .

For a proof of the above theorem see [21].

2It can be shown that when the holonomy group is reducible, e.g. ��� ��� ���	��� ��
 ��� � , then the
manifold is isomorphic to a product of manifolds. Each of the resulting manifolds can be seen
to have irreducible holonomy, exactly matching the irreducible parts of the original holonomy.
Hence we only wish to consider manifolds that cannot be decomposed as a simple product.
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There is a substantial amount that can be determined about the manifold from

its holonomy group. For example there is a 1-1 correspondence between constant3

tensors on the manifold and invariants of the associated holonomy group:

Theorem 1.5.2 Let � be a �	�R����� -tensor on the Riemannian manifold �M!7����� . � is a con-

stant tensor, so that � �E� / , if and only if the restriction of � to the tangent plane at� > ! , ��� , is left invariant under ����	�� � � �
For proof, see [21]. This naturally induces certain constant differential forms on

the given manifold, depending on its holonomy group.

There is a family of manifolds known as spin manifolds which are closely related

to the holonomy groups. If we are given an oriented Riemannian manifold �M!7����� ,
it naturally induces a unique principal ��� � VR� -bundle over ! , � ! . Sometimes we

can construct a Spin 
 -bundle over this same manifold ! , that is locally based on

the projection � � Spin 
 � ��� � VR� . With this spin structure, we can then define a

vector bundle over ! associated with the spin structure. This vector bundle will

have fibers that are the vector space of spinors associated with Spin 
 (alternatively

we could use the vector space of complexified spinors � � � ). This is known as the

(complex) Spin Bundle. Spin structures do not exist on all manifolds, nor are they

always unique. There exist characterizations that allow one to determine which

manifolds admit spin structure, but they are fairly technical and off topic.

The Levi-Civita connection induces a natural connection on the Spin Bundle,

and so we can discuss the notion of constant spinors. As we have seen Spinors are

closely related to tensors and so it is not surprising that we are able to find a similar

1-1 correspondence between certain holonomy groups and the number of constant

complexified spinors. In particular there are only covariantly constant spinors in

the holonomy cases listed in Table 1.5, and only in the numbers listed.

3Constant tensors (and as we shall see shortly, spinors) are also known as parallel tensors (and
spinors). The defining condition is that

� � ��� , where � is the tensor (or spinor).
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Holonomy Parallel Forms Num. Par. Spinors

��� � VR� On � � ���C� � � # 	 � � � 	 
 
 

	 � � 
 V ���
� � VR� On � 
 ���$�

<� � ����# 	 � � # � 
 
 
�� ��� 
 	 � � 
 � V ���

� �U��V � On � 
 ��� < and
� � ����# 	 
 
 
 	 ��� 


� 	 � 	 �
� � ��/�� VA� 	 ;

� 	 � ���
� � � ��� VS� 	 ; � �

���U��V � 
 � �U� � � On
� 
 �	�7�
�

�
� ���

�

 ���

�
� V ���

���U��VR� On
� 
 � �

� �
�<� � ����# 	 � � # � 
 
 
�� ��� 
 	 � � 
 �

� � ��� 
 K �� � �
� 	 � V � ��� � � �0/

Spin � On � �4�	�"� � ! 	 - ��� - � 	 � ��� � � ��/
� �

On �
� ��- and � - � � �

In even dimensions the complexified spinors spilt into odd and even parts ��� .

� � is the number of even/odd constant spinors for a particular choice of Spin

structure. Here switching the choice of orientation switches � 	 and � � .

Table 1.3: Constant Forms and Spinors for particular Holonomy

Even more can be said based on the Holonomy group. On certain manifolds,

the Ricci curvature is identically zero. In this case the manifold is called Ricci

flat. It turns out the Ricci flat manifolds are precisely the ones with holonomy

� �U��VR� � � �U��V �3� � � and Spin � . These are remarkably the same holonomies that ad-

mit constant spinors! See [21] and Table 1.5.

1.6 More Connections to the Division Algebras

As we saw in the last section, much of the structure of a Riemannian manifold

is determined by its holonomy group. In general we found that manifolds with
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smaller holonomy admitted more constant differential forms and often more con-

stant spinors. These different manifolds can also be understood in the context of

the division algebras.

Recall that the division algebras � and � can naturally be used as the scalars

for the vector spaces �



and � 
 . Similarly we were able to define a scalar action of
�

on
� 


. However, since the quaternions are non commutative this action is only

a right action. In all of these generalized vector spaces we can define a notion of

isomorphism, � � � � � , by

� � � � �3��� � ����� � � �R�����3� (1.20)

� � � � �F� � � � � � � (1.21)

where
� � � is the real norm, �R��� > � 
 , and

� > � � � ���
� � . The octonions, since

they are not associative, do not have an associated action on
�

, however we can

still make the above definition sensible when � � � , if we restrict ourselves to the

case VA� � .
Since all of these division algebras admit a vector-space-like structure, it is nat-

ural to ask whether this can be generalized to the case of manifolds, i.e., can we

have manifolds such that their tangent planes admit structures analogous to the

division algebra and that vary differentiably. In this context it is better to expand

the above definition to allow the isomorphism to vary:

Definition 1.6.1 Suppose the � is a normed linear � -space of rank n. An � -linear isom-

etry � of � is called a twisted isomorphism if there exists � > � � � �B� such that

� ��� � � ��� ��������� � �3� (1.22)

for all � > � and
� > �7� � � �
� � � � .

Hence we can determine the group of twisted isomorphisms for each algebra, la-

beled
���

. It can be shown that
� ��� � ��VR� , � � � �U��VR� , ��� ����� � VR� 
 ��� � �'� ,
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and
��� � Spin � . See [22] for details. This permits us to immediately make the

generalization we wished:

Definition 1.6.2 A Riemannian manifold �&! ����� is called a Riemannian � -manifold if the

holonomy group is a subgroup of
� � ��V � � � � ; � with ; � dim ! � V dim � .

We immediately see that all these cases occur.

There is a very natural actions of
� � ��VR� on the algebra � , given by:

9�� ������� � � � � � � � � �����3� (1.23)

9 � ������� � � � � � � � � �����3� (1.24)

9 � ������� � � � � � where ���I����� > � �U��V � 
 ���U� �'� � (1.25)

9 � ������� � � � � � � � � > Spin � � ��� � � � as above � (1.26)

where � > � � ��VR� and
� > � . If this map fixes � > � then � is known as special.

Thus we get the following associations between related holonomy groups, differ-

ent kinds of differential Riemannian geometry, and different normed division alge-

bras, outlined in Table 1.4. It is remarkable that all the most important geometries

arise through this method.
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Div. Algebra Riemannian � -Manifold Special Riemannian � -Manifold

� � � VR� ��� ��VR�
Riemannian manifold Oriented Riemannian manifold

� � � VR� � �U��V �
Kähler manifold Calabi-Yau manifold

� ��� � VR� 
 ��� � �'� ���U��V �
Quaternionic-Kähler manifolds Hyperkähler manifolds

�
Spin �

� �

Spin � -manifold
� �

-manifold

Table 1.4: The Relationship between Holonomy Groups, Geometries, and Division Algebras



Chapter 2

Geometry and Physics

Ever since the formulation of general relativity, geometry and physics have

been inseparable. This is even more true today. The basic structure of string theory

and M-theory are essentially geometric in nature. Moreover, the physical nature

of string theory has helped provide insight into unexpected phenomena in mathe-

matics. Most notably, due to the physical insights of string theory the discovery of

mirror symmetry was possible.

Furthermore string theory and M-theory provide a wealth of interesting un-

solved problems, fueling the on going developments in modern geometry. For this

reason, we will review some of the ways that geometry has emerged as essential

to physics and discuss some of the connections of string theory to the geometries

discussed in Chapter 1.

2.1 A Brief Introduction to the Geometry of Physics

Prior to the 1900s, Newtonian mechanics dominated physics. Here time and space

are completely separated. The physical space that we live in is taken to be � �
,

and objects move through this space in accordance with our everyday intuition.

However, beginning with Einstein’s, Lorentz’s, and Minkowski work on special

relativity we have learned that space and time are really inseparable. From the ge-

ometric point of view, special relativity can be understood in terms of an indefinite

metric on � � , with signature �G� ��� � ��� � ��� K � � , � �
�
� � �

�
� � �

�
� ���

� K �
�
� �
�
. In this

way time and space can be united through a judicious choice of metric on a larger
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manifold. This is a basic philosophical approach to modern physics: different as-

pects of physics can be united, with better understanding of each, by looking at a

larger space with a special structure.

New understanding can be gained form such an approach. In special relativity

an inertial reference frame corresponds to three vectors in this space that behave as

Euclidean space does along with an orthogonal “time-like” vector. Then the trans-

formations that change inertial reference frames are precisely those that preserve

this unusual indefinite metric (known as Lorentz transformations). They include ro-

tations among the three Euclidean “space-like” vectors as well as Lorentz boosts

which accelerate the reference frame. However, due to the indefinite metric vec-

tors of the form � � � ��� ��� ���� where
�� > � �

remain invariant (mod rotations). Since the

norm of such a four vector is zero with this metric these are known as null vectors.

They correspond to the trajectory of an object moving at velocity � , the speed of

light. In other words, the speed of light is the same in all inertial reference frames.

The move to general relativity is made by simply replacing the flat spacetime of

� � by a four manifold equipped with an indefinite metric of signature �G� ��� � ��� � ��� K �'�
and making the assumption that the curvature of the manifold is proportional to

the amount of “stuff” (mass and energy) in the manifold at the point in question.

In particular, we can show that Einstein’s field equations must be satisfied:

� <�� K �
	 � <�� ��� � <�� �0� �

�
� � �

<�� � (2.1)

where � <�� is the Ricci curvature, � is the scalar curvature, � <�� is the metric,
�

is the

gravitational constant, � <�� is the stress-energy-momentum tensor (a measurement

of the density of energy and matter), and � is the cosmological constant1.

Unlike Newtonian mechanics or special relativity, where objects move along

simple straight lines, in general relativity space is curved according to equation

1Experimental evidence has shown that a non-zero cosmological constant is needed to explain
some phenomenon, although it is very close to zero
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(2.1), and objects move along geodesics. Hence, in the vicinity of matter an objects

inertial trajectory will be bent according to the curvature of spacetime. This would

look like the object was being pulled toward the matter. Hence general relativity

explains gravity in terms of geometry.

Similarly, certain aspects of quantum mechanics (or quantum field theory, QFT)

can be explained in terms of geometrical structures. Developed by countless physi-

cists starting around 1905, the basic premises of QFT are that all the particles we

know of are governed by a variety of locally defined fields. In order to accurately

describe the world, these fields not only have to take on tensor values, but also

spinor values. Hence physics must take place on a manifold which admits a Spin

bundle, a very geometric constraint. Moreover these field take on additional inter-

nal structure, which accounts for the various forces seen in nature2.

These fields can then be used to determine the probability of seeing a partic-

ular sort of event, although precisely determined predictions are impossible. For

example we may have a particle which is described by the spinor-valued function

5 tensored with an additional � � �'� structure. In the physics notation this would be

denoted: � 5 � �
<����

. The the probability of finding the particle in a region
� � � �

at time � is given by,

Probability in
� � � 58� �

<��
� 58� �

<�� � � ���
� 5 � � � ��� �

�
� � � (2.2)

Notice that the phase of the �U� � � structure doesn’t matter in this situation. In the

full context of QFT this �U� �'� structure would correspond to a force analogous to

electricity and magnetism. Such an internal structure is known in the physics liter-

ature as a gauge symmetry. Understanding the structure of all such gauge symme-

tries is a very important unsolved problem. Professor Tian has shown the impor-

tance of Cayley manifolds in this context, [27].

Three of the four fundamental forces (electromagnetism, strong and weak nu-

2Excluding gravity. QFT cannot be consistently used to explain gravity
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clear forces) can be incorporated into QFT in this way. However, gravity cannot. It

can be shown that any theory that uses point like interactions leads to unresolvable

difficulties when gravity is incorporated. Moreover the geometric characterization

of general relativity is incompatible with the quantum nature of particles in QFT.

Furthermore, QFT offers no explanation for the existence of these various inter-

nal structures, nor for the large number of elementary particles that we observe in

nature. One important attempt to solve this is to assume that the tensor and spinor

particles undergo a sort of symmetry among each other. If this symmetry exists

globally, then it corresponds to the existence of a constant spinor, � , on the space-

time manifold. Such a spinor relates particles in the following way: If - is a scalar

particle field, then the quantity 5"���
- is a new spinor field that is determined by

the constant spinor � and the field - . This symmetry is known as supersymmetry3.

As we have seen, the existence of constant spinors is intimately related to the

geometry of the manifold, and particularly to the holonomy group of the mani-

fold. This inevitably incorporates the curvature of the manifold, and hence gravity,

which we noted was incompatible with QFT. However, supersymmetric theories

have proved to be very important, and it is believed that supersymmetry is an

actual approximate symmetry.

Attempts to explain the existence of the internal symmetries of QFT have re-

sulted in studying higher dimensional spaces. In these spaces the extra dimen-

sions, which we don’t observe, are curled into some sort of manifold, hence the

whole space locally looks like �
� � # �"! . This is known as compactification. The

various internal structures of quantum mechanics are then explained by various

geometric structure of the manifold ! . For example, if the holonomy of ! is one

of the Ricci flat holonomies, then ! admits a constant spinor. Hence the theory

3One consequence of super symmetry is that the paired particles, e.g., � and � ����� , have iden-
tical masses. This is note observed in nature. However supersymmetry solves many additional
problems with quantum mechanics, and so is still a desirable symmetry. Hence it is believed that
some sort of approximate supersymmetry still exists in nature.
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Figure 2.1: The non-local character of interacting strings

naturally incorporates supersymmetry.

2.2 String Theory, M-Theory, and F-Theory

String Theory has become popular partly because it solves many of these difficul-

ties between quantum mechanics and gravity in a very natural way. Moreover it

is essentially the only theory that does so (of course it brings in its own problems).

The basic idea is to replace the point particles of quantum field theory with very

small one-dimensional strings. There is only one type of these strings. The large

number of particles that we observe are really different vibrational modes of the

string. One of the most surprising and inspirational results is that in all consistent

string theories one gets a particular mode that behaves exactly as a gravitational

particle should behave. Moreover since the particles are not point particles, the

theory is manifestly non-local and avoids the problems encountered with other

quantum theories of gravity.

For technical reasons, string theories require that there be ten dimensions, nine

space-like and one time-like. Since we do not observe ten dimensions in the real
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Figure 2.2: Vibrations of a string can be decomposed in Euclidean space

world, only four, string theories require the remaining space to be compactified on

a six dimensional manifold. This idea has many additional benefits. For example,

in Euclidean space the vibrations of a string can be decomposed into independent

orthogonal directions, e.g. in the
�

-, � - and � -directions. However in a curved man-

ifold this is not always possible. In a curved manifold, vibrations in one direction

can potentially effect the vibrations in other directions. Since these vibrations are

supposed to correspond to particles, curved space allows for these particles to in-

teract with one another, an essential ingredient for any theory expected to describe

the real world.

In physics the use of symmetry is extremely important. By assuming a slightly

simplified model with additional symmetries, many ground breaking insights can

be made. For example the most important solution to the field equations of general

relativity was made by Schwarzchild. He assumed spherical symmetry and that

space was a vacuum � � <�� � / � . This led to the condition that the Ricci curvature

must vanish as well. He was then able to solve this case. This is the basic model

that is used in almost all black hole calculations in general relativity. Similarly, we

must assume certain symmetries in string theory (and M-theory). These symmetric

models will give us insight into the more general case. In particular the compacti-

fied manifolds are assumed to be Ricci flat and hence admit a constant spinor, i.e.,

supersymmetry.
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The basic model for string theory involves compactifying the additional six di-

mensions down to a manifold with holonomy � � � � � . Hence this manifold will be

a Calabi-Yau manifold. However this does not uniquely define the string theory.

There are actually five distinct string theories that fit this model.

However it has been shown that these five ten-dimensional string theories un-

dergo a number of dualities which relate them to one another. One such symmetry

is mirror symmetry, which relates type II A string theory to type II B sting theory.

Moreover, Witten has demonstrated that it appears the they are all special limits of

one eleven-dimensional theory now called M-Theory. Moreover it has been shown

that eleven-dimensional supergravity appears to be another limit of this theory.

For example, if we consider a a two dimensional torus embedded in an eleven di-

mensional space, we can imagine two natural limits. If we shrink the size of the

torus to zero, then it becomes a point object; this limit is eleven dimensional su-

pergravity. If instead, we let the torus be wrapped along one of the compactified

dimensions and we let this dimension shrink to zero the we get a string in a ten

dimensional space. It can be shown that this corresponds to type II A string theory.

Hence it seems that the string theories are really limits of a larger theory.

However it should be stressed that the specifics of this theory are poorly de-

fined, and much concerning it is still conjectural. In this theory
� �

-manifolds play

a central role, analogous to the role played by Calabi-Yau manifolds. Furthermore

some of the limiting processes in M-Theory are more natural than others, leaving

some aspects of these string theories unexplained. A clear global picture has yet to

emerge. Vafa, [28], has been able to explain some of the more unnatural dualities

in terms of an analogous twelve-dimensional theory known as ‘F-Theory’. In this

context the critical dimension of the compactified manifold is 8 real dimensions.

Here Spin � -manifolds play a crucial role analogous to
���

- and Calabi-Yau man-

ifolds. While Calabi-Yau manifolds are relatively well understood, very little is

known about general
� �

- and Spin � -manifolds. To this end the focus of this thesis
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Figure 2.3: String Theories as the Limits of M-Theory

has been to provide a rich set of tools for studying these objects, particularly in the

Spin � case.

Finally, string theory and M-theory are not just theories of strings. Rather,

higher dimensional objects naturally emerge. These are known as p-branes. One

particularly important example is known as a D-brane. This arises from bound-

ary conditions imposed by the compactification and through the string dualities.

In what is known about M-theory, we have found that these membranes actually

play a role as fundamental as strings. In particular, minimal surfaces play an ex-

tremely important role in understanding the specifics of the theory and choice of

compactified manifold. We now understand black holes as a particular type of

minimal surface that exhibits a self-singularity. For this reason it is important to

study the structure of minimal surfaces and their intersections.

There are many powerful tools that are being developed to accomplish this.

Many algebraic geometric techniques have been developed for counting the inter-
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sections of minimal surfaces (e.g. Seiberg-Witten theory). Also, there are varia-

tional methods that examine how minimal manifolds develop singularities. One

particularly elegant method for investigating minimal surfaces in general is known

as calibrated geometry. This will be the topic of the next chapter.



Chapter 3

The Cayley Calibration

The field of calibrated geometry began with the work of Wirtinger [30] in the

1930s, de Rham [12] in the 1950s, and Federer [14] in the 1960s, who used Kähler

forms and their powers to prove that compact complex submanifolds of Kähler man-

ifolds are volume-minimizing in their homology classes. In the early 1970s, Berger

[2] extended this approach to quaternionic forms. In the early 1980s, Harvey and

Lawson wrote a monumental work [18] on this subject. They exhibited and stud-

ied several beautiful geometries of minimal subvarieties other than complex sub-

manifolds which include associative geometry, coassociative geometry and Cayley

geometry.

As we will see, calibrations and their calibrated submanifolds are intimately

connected to the geometry of the manifold. Much of the structure of the manifold

can be understood in terms of the structure of the calibrated submanifolds. It is in

this context that mirror symmetry has its most profound influence on mathematics.

3.1 Method of Calibrations

Let ! be a Riemannian manifold, a calibration on ! is a closed p-form - such that

- � �� #�� � � � �
��
� ��� � (3.1)

on all orthonormal p-tuples of tangent vectors at all points of ! , i.e., on all tangent

p-planes � # 	 � � 	 
 
 
 	 � � with � � # 	 � � 	 
 
 
 	 � � � � � . A tangent plane is calibrated

if - achieves the maximal value � on it. A p-dimensional submanifold of ! is

called calibrated if all of its oriented tangent planes are calibrated. The crucial
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result, known as the fundamental theorem of calibrated geometry, states that any

calibrated closed oriented p-dimensional cycle � � ! is of absolutely minimal

volume in its homology class.

This is an immediate consequence of Stokes’s theorem. Let � � ! be a closed

oriented p-dimensional cycle, calibrated by the p-calibration - . Let ��� �F! be

any other p-dimensional, oriented cycle in � ’s homology class. Thus there exists

a �	�U� �'� -dimensional manifold � ��! such that the boundary of � is � � with the

proper orientation and � with the opposite orientation. From the definition of a

calibration we have the following result,

� ��	�� � � � �
�
���
-?� (3.2)

with equality if and only if � � is calibrated by - . In particular, � ��	�� �S�=� �
� - .

Thus,

� ��	�� � � � K � ��	�� �A� �
�
���
- K

�
�
- �

�
��� - �

�
� �4- �0/�� (3.3)

where the last two equalities are due to Stokes’s theorem and the fact that the cal-

ibration - is closed. Thus the volume of � is less than or equal to the volume of

any other cycle in its homology class.

Recall that the holonomy of a manifold determines the number and type of

constant differential forms on that manifold, see Table 1.3. Furthermore, these

holonomy groups are closely related to the particular geometry of that manifold.

It happens each of these constant forms is a calibration that distinguishes certain

submanifolds. For example, if the holonomy is � � VR� then the manifold admits

a Kähler form, � . The n’th powers of this form calibrate complex n-dimensional

submanifolds, showing that indeed complex submanifolds are volume minimiz-

ing. Calabi-Yau manifolds have the additional constant form
�

, which defines a

one parameter family of special Lagrangian calibrations, 	 

� � <�� � � . The manifolds

calibrated by these new forms are consequently called special Lagrangian mani-

folds. In the exceptional cases, Spin � and
� �

, the calibrating form � is known as
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the Cayley calibration, while the special forms - and � - are known as the associa-

tive and coassociative calibrations, respectively. These will be discussed in more

detail in the next section.

Mirror symmetry is perhaps one of the largest triumphs of string theory. It is

related to the one of the string theory dualities, and was predicted based on unrig-

orous physical arguments. To the surprise of the mathematical community, mirror

symmetry has to a large extent been realized, although many conjectures still re-

main. Heuristically, mirror symmetry is a map between two Calabi-Yau manifolds

which preserves much of the structure, e.g., their cohomology rings are dual in a

particular sense. Moreover these Calabi-Yau manifolds can be radically different

from one another; one smooth, for example, while the other contains several sin-

gularities. In the context of string theory this is a map from type II A string theory

to type II B string theory.

Calibrated geometry received renewed attention in 1996 when the role of the

special Lagrangian geometry in mirror symmetry was discovered by Strominger,

Yau, and Zaslow (see [26]). The reader might also consult [4], [20], [17], and [3].

Here Calabi-Yau 3-manifolds are realized as special Lagrangian torus fibrations

over some base manifold.

S.L. �
� � � ! %���

�

� � � e.g., �
� �

In this context it is possible to define a dual torus fibration over the same base

manifold, and to construct a map between the two Calabi-Yau 3-manifolds. This

is precisely the mirror map. The mirror map exchanges complex and special La-

grangian manifolds, sending the complex submanifolds of the first Calabi-Yau to

the special Lagrangian of the second, and the complex submanifolds of the second
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to the special Lagrangian of the first1. Moreover the cup products of the Calabi-

Yau manifolds’ cohomologies are preserved under this mirror map. Hence the

cohomologies of these manifolds share related structures.

There has been new interest recently in the geometry of Cayley cycles. Follow-

ing [26], the roles of exceptional geometries in mirror symmetry were first inves-

tigated in [1], From the physics point of view, the authors showed that the Cayley

cycles in Spin � holonomy eight-manifolds and the associative and coassociative

cycles in
� �

holonomy seven-manifolds preserve half of the space-time supersym-

metry. They discovered that while the complex and special Lagrangian cycles in

Calabi-Yau 4-folds preserve half of the space-time supersymmetry, the Cayley sub-

manifolds are novel as they preserve only one quarter of it. They also conjectured

as to what kind of roles Cayley cycles will play in mirror symmetry for Calabi-Yau

4-folds (in contrast to the roles of complex and special Lagrangian cycles in the mir-

ror symmetry of Calabi-Yau 3-folds) and proposed the problem of finding explicit

examples of Cayley cycles to demonstrate the above conjectured phenomenon.

In particular, while in Calabi-Yau 3-folds the complex and special Lagrangian

cycles fill out all the � � � � cohomology classes, it is not known if this holds for

Calabi-Yau 4-folds. It is quite possible that complex and Special Lagrangian cycles

fall short of filling out all of the �
�
�
�

cohomology classes. One hope is that Cayley

cycles could fill out the remaining classes, (complex and Special Lagrangian cycles

actually being subcases of Cayley cycles). See [1] for the details of their conjecture.

In the above context this would be realized as associative or coassociative fi-

brations over some base manifold in the
���

case and Cayley cycle fibrations in

the Spin � case. The nature of these calibrated submanifolds determines the overall

structure of the fibration. For example, in the Calabi-Yau manifolds if the special

1This is not true as stated as special Lagrangian manifolds are 3-dimensional and complex sub-
manifolds are even dimensional. However the special Lagrangian submanifolds will be sent to a
stable complex bundle (i.e. a complex submanifold plus some additional one dimensional piece)
which defines the complex submanifold.
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� � � Associative � � � � ! ����
�

� �
Co-associative � � � � ! ����

�

� �

Spin � � Cayley � � � � ! �Spin �
�

� �

Figure 3.1: The Conjectured Fibration Structure of � � and Spin � manifolds.

Lagrangian fibers do not intersect each other, then the fibration will be a simple

product manifold. Thus understanding the structure of these possible intersections

is crucial for understanding the structure of the manifolds. While there has been

substantial work on this in the Calabi-Yau case, essentially none has been done in

the
� �

and Spin � cases. The key to understanding this problem lies in understand-

ing the linear case. Hence the next chapter provides a detailed classification of the

allowed angles between Cayley 4-planes.

Cayley submanifolds and Cayley cycles have another important application in

the further development of gauge theory as discussed by Gang Tian in his paper

[27]. Identifying Cayley cycles in the complex 4-dimensional torus (a Calabi-Yau

4-fold) is a problem suggested to my advisor, Professor W. Gu, by Professor G.

Tian. There are methods for construction Cayley cycles on general Spin � -manifolds

using the solutions on the complex four-torus, further motivating this case.

Recall a flat torus � � � � � �� can be identified as � � � � � � � � � where � is a lattice

in � � � Any Cayley cycle in � � lifts to a � -periodic Cayley cycle in � � . Unfortu-
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nately, few non trivial Cayley submanifolds or Cayley cycles are known even in

� � . Even nontrivial cases where the Cayley manifold is locally linear (e.g. a space

filling polytopes) are extremely interesting. In Chapters 5 and 6 we will provide

the background and develop a technique for constructing lattice periodic Cayley

manifolds which are locally linear.

3.2 Cayley Calibration on � �

The Cayley Calibration is closely related to associative and coassociative calibra-

tions, which are the special forms associated with the Cayley geometry. The fol-

lowing discussion on these calibrations mainly follows from [18] and [22].

In the associative geometry, we use the associative calibration (i.e. the 3-form)

- � � ��� � � � ��� � ��� � �
on

� ��� � � > ��� � � � � �

. It is called associative because the local

system of differential equations for this geometry is essentially deduced from the

vanishing of the associator � � ��� � � ��� � � ��� � K � ��� � � � This is a natural generalization

to the nonassociative Cayley numbers of the familiar commutator � � ��� � � � � K � � .

It measures the associativity of of
� ��� � � .

In the coassociative geometry, we use the coassociative form 5 on
��� �

, denoted

� - , where � � 	 � �
� � 	 � � �

is the usual hodge star map of Euclidean spaces,

mapping simple forms to simple forms. It is called coassociative because it is the

dual geometry of the associative geometry.

In Cayley geometry, we use the Cayley calibration � > 	 � � ! on
�
� � � � . It is

given � ! 	A- �$5 � Cayley geometry is the most complex and fascinating geometry

discussed in [18], as it contains all the other geometries as subcases. In particular

if you fix a complex structure � � > �
� � 
 � � ��� > ��� � � � � � � � � where � � is

right-Cayley multiplication, then �"� 	 
?� � � K #� �
�
.

In local coordinates, � can be written as

� � � ��� � � ��� ��� ��� ��� � � ��� � (3.4)
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where
� ��� � � ��� > � . Here we make use of the triple cross product of Cayley num-

bers ( see [18], def. B.3). One can verify that � is alternating, closed, and has a

maximum value of one on normed four-planes. Moreover, we can equivalently

make use of the Cayley quadruple cross product to obtain,

� � � ��� � � ��� ��� 	 
R� � � � � � � � � � (3.5)

Theorem 3.2.1 � � � � � � for all
� > � � � ���4� � 	 ��� � with equality if and only if

�
is

a Cayley � –plane (i.e.
�

or K �
is a complex 	 –plane with respect to one of the complex

structures determined by a two-plane contained in
�
� )

A � -plane is called a Cayley plane if � achieves the value � on it. We call a

4-manifold a Cayley manifold if all its tangent planes are Cayley planes. We use
� � �L� to denote the set of Cayley planes.

Recall that � � � V � is the subgroup of ��� �&� � generated by � % � 
 � � � � >
��� �

and � � � � � � � where � � is the right Cayley multiplication. There are several

alternate definitions of Spin � which are particularly useful,

� � � V � � 
 � > � � �&�4� � � ! �"� � � � (3.6)

Spin � � � � > � � �
��� � � � ��� ��� � � � � � � ��� 
 � �?��� > � (3.7)

where � � � Spin � � � � � ��� � � � � ��� � is defined by � � � ��� � � ��� � # � �'� 
 ��� for all

� > � , which is the standard double cover of ��� � by Spin � . Notice in particular

that Spin � is precisely the subgroup of ��� �&� � that fixes the Cayley calibration.

Theorem 3.2.2 The action of � � � V � on
� � �L� is transitive with isotropy subgroup � �

� �U��	4� � � � ��	4� � � � ��	4� � � � � ��� � �'� � � �U� � � � ���U� �'� � � � � Thus
� � �L� � � � � � V � ��� �

Remark 3.2.1 The geometry of Cayley submanifolds includes several other geometries:

1. A submanifold ! which lies in
��� � � �

is Cayley if and only if ! is coassociative.
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2. A submanifold ! of
�

of the form � � � , where � is a submanifold of
��� �

, is

Cayley if and only if � is associative.

3. Fix a unit imaginary quaternion � > � % � ��� �
. Consider the complex structure� � � � � and let

�
� � � � � Each complex surface in

�
, with the reverse orientation,

is a Cayley submanifold.

4. In addition to choosing one of the distinguished complex structures
� �

(as in (3))

choose a quaternion subalgebra �� of
�

orthogonal to � and identify � � � � � with
�� � �

. Each special Lagrangian submanifold of � � � � � is a Cayley submanifold.

There are few known Cayley submanifolds which are not holomorphic or special La-

grangian.

3.3 Partial Differential Equations of Cayley Manifolds

One special type of Cayley submanifold we can look for is the graph of a function� � � � � � �
. That is, manifolds parametrized as � � � � � � ��� > � � � � �

. The

local system of partial differential equations for this case is deduced in [18].

We denote a point in
�

by
� � � # � � � �� � �

�
�� � �

�
��
.

Definition 3.3.1 The Dirac operator � is defined on
�

as� � �
� �� � # K � �� � � �� K � �� �

�

�� K
� �� �
�

��
� (3.8)

The first order Monge-Ampere operator on
�

is defined as

� � �
� � �� � � � � �� �

�
�

� �� �
��� �

� � �� � # � � �� �
�
�

� �� �
��� �� K� � �� � # � � �� � � � � �� �

� � �� �
� � �� � # � � �� � � � � �� �

� � ��
(3.9)

and a third operator is defined by

P � � ��� � � � �� � # � � �� � � K � �� �
�
�

� �� �
��� ��	� �
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��� � � � �� � # � � �� �
�
�

� �� � � � � �� �
� � �� �

� � �� � # � � �� �
�
K

� �� � � � � �� �
� � �� �

(3.10)

Theorem 3.3.1 Suppose
� � � � � � �

is � # . The graph of
�

is a Cayley manifold if

and only if
�

satisfies the differential equations

� � � � � (3.11)

P � � / (3.12)

Note that the resulting PDEs are only first order, however, the � � term is highly

nonlinear. No one knows how to solve this system in general.

3.4 Cayley Manifolds with Symmetry

In some of the author’s previous work, he a Professor W. Gu were able to provide

several non-trivial solutions to the Cayley PDEs. The principle method was to look

for solutions with a novel symmetry. By using such symmetry groups the system

of PDEs governing the Cayley graphs were usually simplified to an ODE, in much

the same way a surface of revolution is determined by its values on a 1-dimensional

curve. We summarize the main ideas below.

We define a symmetric submanifold of � � is a manifold ! � �
, equipped with

a subgroup of the special orthogonal group,
� � ��� �&� � , such that ! is invariant

under the action of this group. In other words, given
� > � and

� > ! we have
� � � � > ! . In principle we could choose an alternate group from which to draw our

symmetries, such as the full orthogonal group � �&�4� or the affine reflection group
� � � � � � � , however for the purposes of this paper, ��� �&� � is sufficient.

The symmetry of such a submanifold allows us to specify the submanifold at

fewer points in the following sense: Let ! be a symmetric submanifold of � � with

symmetry group
�

. Suppose that the map
� � � � � 
 � ! � � � , with � open in

� � , is a local parametrization of ! at a point � > � � � � �0! � � � .
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Since ! is invariant under the action of the group
�

, for all
� > � ,

� � � � � ��� �
! . Moreover, the map

� � � � � � ! is a local parametrization of ! at the

point
� �	� � . Since we are assuming that

� � ��� �&� � , if ! is oriented, this new

coordinate parametrization will preserve this orientation. Consequently, we only

need to specify the submanifold ! on a subset such that the orbit of this subset,

under
�

, results in the whole manifold. This leads to the familiar result that a

surface of revolution in �
�

is fully determined by its values along a planar curve.

We are particularly interested in the case when the manifold ! is Cayley. The

the author and Professor W. Gu were able to show in their paper, [15], that if
� > �

is an element of the symmetry group of the 4-submanifold ! , and
�
�
> � � � ��� � is

the tangent 4-plane at � > ! , then the tangent plane at
� �	� � > ! is determined by

� � 
 � � �
� � � � � . Hence we have � � � � 
 � � � � � � � � � � ��� �

� ! � � � � � . This implies that if

the symmetry group is a subset of Spin � and � �C! is such that its orbit is all of

! , then if
�
� is Cayley for all

� > � , ! is a Cayley submanifold.

As noted above, one particularly interesting example is when the submanifold

! is locally the graph over
� � �

of a function
� � � � �

. In this case, we have

the additional restriction that the symmetry group leaves the two orthogonal sub-

spaces
�

and
� � invariant, and is hence a subgroup of the isotropy subgroup � .

This result is the basis of [15], which examines some important three dimensional

subgroups of � . Several new Cayley manifolds were discovered, which were pre-

viously unknown.

During the summer of 2002, Professor W. Gu and the author were able to ex-

pand the work of [15], to include a complete classification of the three dimensional

subgroups of � . Then each case was carefully examined. The simplifications in

the first paper, [15], were removed.

This approach has been quite fruitful and and has provided a series of novel

Cayley manifolds with symmetry. Physics is intimately connected to symmetries.

In the future it would be interesting to explore what the physical significance of
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these symmetries is in the relevant M-theory.

3.5 Importance of the Choice of Complex Structure

One particularly interesting result I have been able to demonstrate concerns the

importance of the choice of the complex structure when considering whether a

plane (or submanifold) is complex or special Lagrangian:

Theorem 3.5.1 Let
� > � ��� ��� � be a Cayley 4-plane. Then there exists complex structures� #3� � � > 
 � � � � � � � > ��� � � � � � % , such that under

� # � is special Lagrangian and

under
� �

,
�

is complex with the opposite orientation.

Here � � represents right multiplication by � > � .

Proof: We first quote a lemma from Harvey and Lawson [18]:

Lemma 3.5.1 Suppose
� > � ��� ��� � � 	 � � . Then

�
is Cayley if and only if K �

is a

complex 2-plane with respect to one (or all) of the complex structures
� ��� ��� � ��� � where� 	 � is a real 2-plane in

�
.

All that remains to show is that the same plane is special Lagrangian under the

appropriate choice of complex structure. Notice that the Cayley plane
� � � � 	 � 	

� 	 � � � � � � � � � �
is special Lagrangian with respect to the complex structure��� � � � . In other words for all

� > � � , ��� � � � � � � . Now since Spin � is transitive, any

other Cayley manifold can be written
� � � � � with

� > Spin � .

We can now consider the complex structure �� � � � ��� � � � # . Under this complex

structure we see that for all
� � > �

, �� � � � � � � � � � �
. Thus we see that under this

choice of complex structure
�

is Lagrangian. Since
�

is also Cayley, we have that
�

is special Lagrangian.

Notice that any Calabi-Yau manifold comes equipped with a natural complex

structure, and it is this complex structure which is relevant for the conjectures of
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[1]. However this leads to several new directions. It immediately begs the question

of whether every Cayley manifold can be locally written as a complex, or special

Lagrangian with a locally chosen complex structure (of course it would still be

possible that no such global complex structure could be chosen). In other words,

I can attempt to prove or disprove the existence of a Cayley manifold that cannot

locally be special Lagrangian or complex with respect to any of the six-sphere of

important complex structures. Alternatively, this leads us to try to reformulate the

Cayley equations in terms of some sort of local complex structure or weak form of

it.

3.6 Alternate Equations

Along the lines discussed above, I was able to obtain the following result,

Theorem 3.6.1 Let the manifold ! � �
� � � � be the graph of a function

� � � � �
. If�

satisfies the following three conditions,

1. Span 
 ���� ��� � ���� � � � �
Span 
 ���� ��� � ���� ��� �

2. � � ��/

3.
���
� ��� �

���
� � � �

���
� ��� �

���
� ��� �0/ ,

then ! is a Cayley graph.

The first of the above conditions is very strong and is related to the Cauchy-Riemann

equations of complex analysis and geometry.

Proof: Let ! ��
 � � � � � � � � > � � � > � � � � . Let � # � �(� ���
� ���
� , � � � � � ���

� � � � ,

etc. be the tangent vectors to ! at � . Now suppose that ! satisfies the above three

conditions. Then, Span 
 � #3� � � � �
Span 
 � � � � � � and

� # � � � � � � � � � � K �
� �� � # � � �� � � � � �� �

�
�

� �� �
�
� K ���	� � � � � � (3.13)

� / (3.14)
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by the assumed conditions. Now, without loss of generality, we can choose an or-

thonormal basis for the tangent plane of ! at � , � #���� � ��� � ��� � such that Span 
 � #3� � � � �
Span 
�� #���� � � and similarly for � � ��� � . Furthermore, we have that � � � #
� � #�� � � �
K � � � � � � � � � � . Hence, � # � � � � � � � � � and � � � # 	 � � 	 � � 	 � � ��� � , and the tangent

plane is Cayley.



Chapter 4

The Cayley Angle Theorem

In three dimensions, the notion of an angle begins with two intersecting lines.

However this is easily generalized to angles between intersecting planes or be-

tween an intersecting line and plane. The angle between a line and a plane, for

example, is the smallest angle between the line, ��# , and every line contained within

the plane,
�

. Since the angle lies between zero and � � 	 by convention, the mini-

mum angle, � , maximizes 1324) � .

In higher dimensions the process becomes slightly more complicated. For ex-

ample in six dimensions, we can consider two 3-planes, � and � , intersecting at the

origin. It is possible for these 3-planes to coincide, intersect on a 2-space, inter-

sect on a line, or merely intersect at the origin. Given this extra freedom, we can

define three angles between these planes. First choose unit vectors �R# > Span 
�� �
and � # > Span 
�� � such that � � #���� # �

� 1324) � # is maximized. This is well de-

Figure 4.1: Line and Plane Intersect at an Angle
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fined because the set of unit vectors in the span of a 3-plane, ie �
�
, is compact.

Thus � # defines the first angle. Note also that if ��.� / this defines a unique vector

� � # � Span 
�� � such that � #�� � # 1�2�) � #R� � � # )�*,+ � # .
Next define unit vectors � � > Span 
�� � and � � > Span 
�� � such that � � � � # ,

� � � � # , and � � � ��� � �
� 1324) � � maximized. This defines the second angle. Con-

tinuing this process we get a unique sequence of three angles � # � �
� � � � which

characterize the separation of the 3-planes.

Many areas of calibrated geometry focus on determining the allowed angles

between minimizing planes. This is the first step toward determining the allowed

angles of minimizing cones. It is also useful in the study of singularities. For

our purposes it will be interesting to discover the allowed angles between Cayley

planes. In this chapter we derive conditions on the allowed angles between Cayley

planes. doing so will require some extensive cases by case analysis.

4.1 Choosing a Standard Position

We begin by considering two Cayley planes, � and � separated by the unique an-

gles ��#3� � � � � � � � � , and noting that since Spin � � ��� �&� � it preserves angles. Hence we

are free to apply elements of Spin � to change to a more convenient basis. Thus we

may take �U� � 	
�� 	 �� 	 �� � � � �

, and still retain the freedom to apply elements

of the isotropy group of � , namely � � � ��� � �'� �����U� �'� ����� � �'� � � � .
From the discussion above it is clear that in most cases we have � � ��# 	 � � 	

� � 	 � � , with,

� #F� � # 1�2�) ��# � � # �� )�*,+ ��#�� (4.1)

� � � � � 1�2�) � � � � � �� )�*,+ � � � (4.2)

� � � � � 1�2�) � � � � �
�� )�*,+ � � � (4.3)

� � � � � 1�2�) � � � � �
�� )�*,+ � � � (4.4)
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where � < ��� <�> �
and we have made use of the Cayley multiplication. There are

only two places where the previous discussion needs modification. First of all, if

one or more of the angles is zero then the corresponding vector � < is no longer well

defined. However, if that is the case then we know that Span 
���� � � falls short of

filling out all of
�

. In fact, each zero angle adds a dimension to the space of vectors

orthogonal to both � and � . Thus in such a situation we should choose � < from this

space, subject to being orthogonal to the previous � < s1 A similar ambiguity occurs

if a particular angle is � � 	 . In this case, � < is not well defined. However, it forces

the existence of a subspace of � that is orthogonal to � and of exactly the desired

dimension. Choosing � < from this space, we can continue as before. These choices

ensure that 
 � < � and 
�� < � are orthonormal sets whose span is
�

.

Secondly, in order to preserve the desired orientations, we must choose to relax

the convention / � � � �
� � 	 , consequently we also sacrifice the monotonicity of

the angles. In particular we choose � # 	 � � 	 � � 	 � � � ��	
�� 	 �� 	 �� .

We can further simplify � by carefully applying an element from � . Recall that

� � #3��� � ��� � � > � acts on � � � ��
> � � � �� by

� � � �� �� �&� � � � # � �0�&� � � � # � �� � (4.5)

Restricted to just
�

, � becomes ���U� �'� �����U� �'� � � � � � � � � � � . Thus we may apply

an element of � with � # and � � chosen so that � # � ��� � � � �� � � � � ��
, and � � �

��
.

We can choose � � � � � ## �'# , so that after applying the element of � , � # �� � . Finally,

since 
������ � ��� � ��� � � forms an orthonormal basis for
�

, we have � � � 6�� � � � . Having

relaxed the conditions on the range of � � , we can, without loss of generality, select

1This vector still may not be well defined, however this convention will ensure the correctness
of what follows.
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the positive case. This yields the final basis simplification,

� #F� � 1324) ��# � �� )�*,+ ��#3� (4.6)

� � � �� 1324) � � � � � �� )�*,+ � � � (4.7)

� � � �� 1324) � � � � �
�� )�*,+ � � � (4.8)

� � �
�� 1324) � � ��� � � � � � �� )�*,+ � ��� (4.9)

Up to now, we have not made use of the fact that � is Cayley. This final re-

quirement will put restrictions on the allowed values of the � < . Recall that � �
� # 	 � � 	 � � 	 � � is Cayley if and only if the following two conditions hold,

��� � � # � � � � � � � � � � � /�� (4.10)

	 
?� � # � � � � � � � � � � � � � (4.11)

See equation (3.5). Using Lemma B.10 from Harvey and Lawson, [18], we can

evaluate these. 2

Since the � < are orthonormal the second of the above equations follows from the

2Notice, however that Lemma B.10 of Harvey and Lawson needs the following modification:


 � � � � ��� � ��� ��� �	� ��

� � ��� ��� ��� �����
� � � ��� ����� ��
�� � � � ��� ����� ��
 � � � � ��� ����� �	� �
� ��� ��� ��� � ��
���� ��� ��� ��� � �	� � � ��� ��� ��� � �	� �
���� terms �
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first. Thus the fact that � is Cayley is equivalent to the following the requirement,

� � � � # � � � � � � � � � � (4.12)

� � � 1324) ��# 1324) � � 1�2�) � � 1324) � � ��)�*,+ ��# )�*,+ � � )�*,+ � � )�*,+ � � �
K � � � �� ��� )�*,+ ��# )�*,+ � � 1324) � � 1324) � � ��1324) ��# 1�2�) � � )�*,+ � � )�*,+ � � �
K � � �

�� ��� )�*,+ ��# 1�2�) � � )�*,+ � � 1324) � � ��1324) ��# )�*,+ � � )�*,+ � � 1324) � � �
K � � � � �

�� ��� )�*,+ ��# 1�2�) � � 1324) � � )�*,+ � � �$1324) ��# )�*,+ � � )�*,+ � � 1324) � � �
K �� � 1324) ��# )�*,+ � � )�*,+ � � )�*,+ � � K )�*,+ ��# 1324) � � 1324) � � 1324) � � �
K � � � �� � �� � )�*,+ ��# 1�2�) � � )�*,+ � � )�*,+ � � K 1�2�) ��# )�*,+ � � 1324) � � 1�2�) � � �
K � � �

�� � �� � )�*,+ ��# )�*,+ � � 1324) � � )�*,+ � � K 1�2�) ��#�1324) � � )�*,+ � � 1324) � � �
K � � � � �

�� � �� � )�*,+ ��# )�*,+ � � )�*,+ � � 1324) � � K 1324) ��#�1324) � � 1324) � � )�*,+ � � � � (4.13)

� � �B# �0��� � �� � � � �0��� �
�� � � � ����� � � �

�� � � �
K �� �R# K ��� � �� � �� � � K ��� �

�� � �� � � K ��� � � �

�� � �� � � (4.14)

where we have defined the following terms for simplification,

�B#F� �
� � 1�2�) � ��# � � � � � � � � � � �$1324) � ��# � � � K � � K � � �
� 1324) � ��# K � � � � � K � � � ��1324) � ��# K � � K � � � � � � � (4.15)

� � � �
�
� 1�2�) � ��# � � � � � � � � � � �$1324) � ��# � � � K � � K � � �

K 1324) � ��# K � � � � � K � � � K 1�2�) � ��# K � � K � � � � � � � (4.16)

� � � �
� � 1�2�) � ��# � � � � � � � � � � K 1324) � ��# � � � K � � K � � �
� 1324) � ��# K � � � � � K � � � K 1324) � ��# K � � K � � � � � � � (4.17)

� � � �
� � 1�2�) � ��# � � � � � � � � � � K 1324) � ��# � � � K � � K � � �
K 1324) � ��# K � � � � � K � � � �$1324) � ��# K � � K � � � � � � � (4.18)
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�R# � �
� � )�*,+ � K ��# � � � � � � K � � � � )�*,+ � K ��# � � � K � � � � � � (4.19)

K )�*,+ � ��# � � � � � � � � � � K )�*,+ � ��# � � � K � � K � � � � (4.20)

� � � �
� � )�*,+ �M� ��# K � � � � � K � � � � )�*,+ �M� ��# K � � K � � � � � �
K )�*,+ � ��# � � � � � � � � � � K )�*,+ � ��# � � � K � � K � � � � (4.21)

� � � �
� � )�*,+ � ��# � � � K � � K � � � � )�*,+ � K ��# � � � K � � � � � �
K )�*,+ � ��# � � � � � � � � � � K )�*,+ � K ��# � � � � � � K � � � � (4.22)

� � � �
� � )�*,+ � K ��# � � � � � � K � � � � )�*,+ �M� ��# � � � K � � K � � �
K )�*,+ � ��# � � � � � � � � � � K )�*,+ � K ��# � � � K � � � � � � � (4.23)

Immediately we can see that the nature of the conditions on the � < depends on

how the basis ��� � � ��� � � � � � � compares to ��� �� � �� � �� . If they were to coincide, then the
� �� portion of equation (4.14) reduces to � #�� � � � � � � � � � K )�*,+ � ��# � � � � � � � � � � �0/ .
This forces the sum of the � < to be an integer multiple of pi. However, because of

orientation considerations we can further reduce this to even integer multiples of

pi. There are further equations from the remaining portions of (4.14), which we will

discuss below. For now it suffices to show that we must choose a representation

of the coordinates of � � and � � that brings to light how this basis compares to the

standard basis for
�

.

Furthermore, the � < and � < , while defined for convenience, demonstrate and

enormous amount of symmetry. This comes through when we look at various
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sums and differences among the � < and � < ,

�B# � � � �$� � �$� � � 1324) � ��# � � � � � � � � � �3� (4.24)

�B# � � � K � � K � � � 1324) � ��# � � � K � � K � � � � (4.25)

�B# K � � K � � �$� � � 1324) � ��# K � � K � � � � � � � (4.26)

�B# K � � � � � K � � � 1324) � ��# K � � � � � K � � � � (4.27)

�R# � � � � � � � � � � K )�*,+ � ��# � � � � � � � � � � � (4.28)

�R# � � � K � � K � � � K )�*,+ � ��# � � � K � � K � � �3� (4.29)

�R# K � � K � � � � � � K )�*,+ � ��# K � � K � � � � � �3� (4.30)

�R# K � � � � � K � � � K )�*,+ � ��# K � � � � � K � � � � (4.31)

These formulas will be very helpful in analyzing equation (4.14).

4.2 Choosing the Basis Representation

With the observations of the last section we can now proceed to write the ����� � ��� � ��� � � �

orthonormal basis in a useful manner. First observe that we can write � � � �� 1�2�) -(�
� �� )�*,+(- , where � �� is an imaginary unit quaternion orthogonal to

��
. This provides

us with a useful representation, with � � automatically normalized, with - � /
corresponding to � � � ��

. Now it is useful to fully specify � �� , hence we let � �� ��� 1324):9?� �� )�*,+B9 . Since we require � � to be orthogonal to � � this limits our choices. Let

� #�� K �� )�*,+(-�� � �� 1324) - and �
� � K �� )�*,+�9(� �� 1324):9 . Thus, � # is orthogonal to � � , and

�
�

is orthogonal to
��

and � �� , hence also orthogonal to � � . Since � # is in the span of
��

and � �� , � # and �
�

for an orthonormal basis for the imaginary quaternions orthog-

onal to � � . Hence, we can define a new angle 5 such that � � � � #�1324) 5 � �
� )�*,+L5 ,

so that � � and � � , (and hence their product), can be fully defined in terms of three
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Figure 4.2: An Arbitrary Basis

angles -?��9 � 5 as follows:

� � � �� 1324) - � �� )�*,+B- 1324):9U� �� )�*,+(- )�*,+�9 � (4.32)

� � � �� � K )�*,+B- 1�2�)�5(� � �� � 1324) - 1�2�):9 1324)�5 K )�*,+�9B)�*,+L5L�
�
�� �&1324) - )�*,+B9 1324) 58�$1324) 9�)�*,+ 5(� � (4.33)

� � � � � �� )�*,+B- )�*,+L58� �� � K )�*,+B9 1324)�5 K 1324) - 1324):9B)�*,+L5L�
�
�� �&1324):9�1324) 5 K 1324) -�)�*,+B9B)�*,+ 5(� � (4.34)

Notice that if - � 9O� 5 � / , we have the standard
�� � �� � �� basis. Also, if )�*,+(-��C/

then 9 is not fully specified. In such a situation we may, without loss of generality,

take 9 �0/ .
Using these expressions for � � and � � we can calculate the K � � �� � K � �

��
and K � � � �

��

terms of equation (4.14). Separating out the linearly independent pieces yields the
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following eight equations involving the � < and � < terms,

� � �B# � � � 1324) - � � � �&1324) - 1324):9�1�2�)�5 K )�*,+B9�)�*,+ 5L�
� � � �&1324) 9�1324)�5 K 1�2�) - )�*,+�9B)�*,+L5L�3� (4.35)

/ � � � )�*,+(- )�*,+�9 K � � )�*,+(- )�*,+L5 (4.36)

/ � � � )�*,+(- )�*,+�9 K � � )�*,+(- )�*,+L5 (4.37)

/ � � � � 1�2�) - )�*,+�9�1324)�5 �$1324):9B)�*,+L5L� � � � ��)�*,+B9�1�2�)�58�$1324) - 1324):9B)�*,+L5L� (4.38)

/ � �R#R� � � 1324) - � � � �&1324) - 1324):9�1324)�5 K )�*,+�9B)�*,+L5L�
� � � �&1324) 9�1324)�5 K 1�2�) - )�*,+�9B)�*,+L5L�3� (4.39)

/ � � � )�*,+(- )�*,+ 9 K � � )�*,+B- )�*,+ 5 (4.40)

/ � � � )�*,+(- )�*,+ 9 K � � )�*,+B- )�*,+ 5 (4.41)

/ � � � � 1�2�) - )�*,+�9�1324)�58�$1324) 9B)�*,+L5L� � � � � )�*,+�9�1324) 58�$1324) - 1324):9B)�*,+L5L� (4.42)

We can now begin a case by case analysis based on the three angles, -?� 9 � 5 . We

choose to work from the more general cases to the more specific cases, and we will

first consider )�*,+(-�.�0/ . This will lead to numerous subcases which we will analyze

in turn, after which we will return to the )�*,+B-Q�0/ cases.

4.3 Case by Case Analysis

The assumption )�*,+(-�.�0/ allows us to simplify the above equations a great deal. In

particular we can define the column vectors
��(� �M��#3��� � ��� � � � � �3�

�
� �J���R#3� � � � � � � � � � ,

and the following array,

� �

�������

1324):9 / / 1324)�5
)�*,+�9 / K )�*,+L5 /
/ K )�*,+�9 / )�*,+ 5
/ 1324) 9 1324) 5 /

�
������
� � (4.43)
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Then after some manipulation equations (4.35)-(4.42) can be reduced to,

� ��B�

�������

1324):9
)�*,+B9
/
/

�
������
� � � �

� � �/ � (4.44)

This leads us to consider � � � � � 1324)
�
5 K 1�2�)

�
9 . The only way for

�
� to be non-

trivial is for
�

to be singular, thus in the most general cases
�

is non-singular and
�
�8� �/ . Let us focus on the case where

�
� � �/ and return later to the case where

�
is singular. Thus we have �?# � � � � � � � � � � / , which quickly leads to the

following equations,

��# � � � � � � � � � � V?# � � (4.45)

��# � � � K � � K � � � V � � � (4.46)

��# K � � � � � K � � � V � � � (4.47)

��# K � � K � � � � � � V � � � (4.48)

where V < > @ . This permits us to make progress with the remaining equations.

Define the function � � � @ � 
�6 � � to be � � if the integer is even and K � otherwise.

Then we have,

�B# � �
� � � � ��V?#�� � � � ��V

� � � � � � V � � � � � ��V � � �M� (4.49)

� � � �
� � � � ��V?#�� � � � ��V

� � K � � � V � � K � � ��V � � �G� (4.50)

� � � �
� � � � ��V?#�� K � � ��V

� � � � � � V � � K � � ��V � � �G� (4.51)

� � � �
� � � � ��V?#�� K � � ��V

� � K � � ��V � � � � � ��V � � �G� (4.52)

forcing � < � ��� #� ��/�� K #� � or K � . Using this we can return to equation (4.44), and re-

duce it to three cases. The four � � ��V < � can always be divided into two groups, based

on their value. The three cases we will consider are the three ways those groups
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can be realized: � � ��/4�3� ����� �'� � and ��	 � 	4� . We can use these groupings to determine

the possible values of the � < , and then make use of equations (4.44) to determine

which are allowed and which are not. This in turn will determine the angles � < . It

is important to keep in mind our assumption that 1324) 5T.� 681324) 9 , as most of the

following cases will contradict it (we could equivalently use sines).

��� ��� � : Since the same number of � � � V < � are positive and negative, we immedi-

ately have �B#��0/ . The remaining � < are related to ��# by changing the effective sign

of two of the � � � V < � . Inspection shows that at least one of the � < must be zero and

one 6 � . The remaining � < can have the other value of 6 � or be zero. It is useful to

recall the relevant equations from (4.44),

�B# 1324):9 � � � 1324)�5 � 1�2�):9 � (4.53)

�B# )�*,+B9 K � � )�*,+L5 � )�*,+B9R� (4.54)

K � � )�*,+�9U�$� � )�*,+L5 � /�� (4.55)

� � 1324):9 � � � 1324)�5 � / � (4.56)

Notice that because of the first two equations, since � #(��/ , if either of � � or � � is

6 � , then our assumption that 1324):9 .� 681324)�5 is violated. Thus we must take both

� � and � � equal to zero. However, with this choice the last two equations force

� � � / which is in violation of our earlier analysis. Thus there are no cases where

the angles are grouped as ��	 � 	4� .
��� ��� � : Here again we can determine the values of � # �F6 #� right away. The

rest of the analysis is slightly more complicated then the ��	 � 	4� case. Notice that the

remaining � < s are identical to ��# , except that they have two � � ��V < � with their signs

changed,
� .� � . Thus which group � � � V #�� belongs to becomes important. We have

two cases. First suppose that � � ��V #�� belongs to the group of one. Then a simple

calculation shows that ��#�� K � � � K � � � K � � � 6 #� . However, the second pair

of equations then imply that 1324) 9 �C681324)�5 in violation of our assumption. Thus

we must take � � ��V?#�� to belong to the group of three. In this case all the � < s will have
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absolute value #� , however while two of the � < s will have the same sign as ��# , the

remaining one will have the opposite sign. Regardless of the choice of these signs,

if we look at the second pair of equations we find that again we are in violation of

our assumption 1324):9Q� 681324)�5 . We are thus forced to conclude that this grouping

is also not permitted.

���R���:� : From this grouping we immediately find that � � � � � � � � �T/ and

that �B#(�J6 � . Examining the first two of the above equations shows that only the

positive case is a solution. However it is a solution. Thus we have found that the

only configuration that works is when all the V < are even integers, V < � 	 ; < . Thus

we can solve for the allowed angles,

��#F� �
; # � ; � � ; � � ;

�
	 � (4.57)

� � � �
; # � ; � K ; � K ;

�
	 � (4.58)

� � � �
; # K ; � � ; � K ;

�
	 � (4.59)

� � � �
; # K ; � K ; � � ;

�
	 � (4.60)

where ;=<�> @ are any four integers. This shows us that in most instances the only

allowed angles are multiples of � � . The only way to get more interesting angles is

to have the
�

and
� �� bases aligned in a sense yet to be made precise.

Recall that any three orthogonal vectors in
�

determine a unique Cayley plane

containing them. Thus we suspect that the above prescription is over determined.

Indeed, since the ;=< are only determined up to mod 4, we can eliminate one of

them. This can be made more apparent if we use vector notation:

�������

��#
� �

� �

� �

�
������
� � ; #

�������

�
�
�
�

�
������
� � ; �

�������

�
�
K �
K �

�
������
� � ; �

�������

�
K �
�
K �

�
������
� � ; �

�������

�
K �
K �
�

�
������
� � ; # ���#�� ; � �� � � ; �

�� � � ; �
�� ���

(4.61)
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)�*,+(-�.�0/ , 1324)�5�.�7681324) 9 Case.

Angles

��# � ��� � 	 � � 	 � ��

� � � � � � � � � � � ��

� � � � � � � 	 � � � � ��

� � � � � � � � � � 	 � ��

Table 4.1: Summary of the solutions to the � ��� ������ , �
	�� ���� �
�
	���� case. Here ������� mod 4. Note
that the form of these solutions is not unique.

Now the four vectors
���#3� �� � � �� � � �� � , while linearly independent under @ , are not lin-

early independent under @C; � � � @ . For example a choice of ; � � ; � � ;
� �

��V � ; #Q� / is equivalent to the choice ; #Q� V with ; < �F/�� � � 	 � � � � . Thus

without loss of generality we have,

��#F� �
; � � ; � � ;

�
	 � (4.62)

� � � �
; � K ; � K ;

�
	 � (4.63)

� � � � K ; � � ; � K ;
�

	 � (4.64)

� � � � K ; � K ; � � ;
�

	 � (4.65)

for any ; <?>A@O; � � � ,
� � 	 � ��� � .

For now, we will return to a case that was previously put aside. Namely we will

consider when the matrix
�

is singular. This is equivalent to 1324) 9 � 681324)�5 . Since
�

is singular, we cannot immediately jump to the conclusion that
�
� � �/ , however

we can still simplify the equation (4.44). First of all we can fully describe all the

singular cases with the angle - and two 6 prescriptions: 1324)�5 � �G6���H 1324) 9 and

K )�*,+ 5"� �M6��GN�)�*,+�9 . Assuming that 5 .�0/�� � � � � � �
�� , the results of the simplifications
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are the following,

�B# �$� � �M6�� H � � �G6��GH � � � ��� (4.66)

�B# K � � ����� H � � �G6��GH � � � ��� (4.67)

�B# � � � �G6��MN � � �G6��GN4� � � ��� (4.68)

�B# K � � �G6��MN � � �����GN4� � � ��� (4.69)

�R# � � � �G6��GH � � �G6�� H � � � /�� (4.70)

�R# K � � �����GH � � �G6�� H � � � /�� (4.71)

�R# � � � �G6��GN � � �G6��GN � � � /�� (4.72)

�R# K � � �G6��GN � � �����GN � � � / � (4.73)

This naturally results in four cases. In each case the eight equations result in re-

dundancies that reduce the number of equations to six. These six equations can be

solved to find conditions on the four angles dependent on one free parameter.

For example, consider �G� ��H � �M� �GN . The resulting equations are:

�B# �$� � � � � �$� � � ��� (4.74)

�B# K � � K � � �$� � � ��� (4.75)

�B# K � � � � � K � � � ��� (4.76)

�R# � � � � � � � � � � /�� (4.77)

�R# K � � K � � � � � � /�� (4.78)

�R# K � � � � � K � � � / � (4.79)

Because of the symmetry of the � < and � < these equations actually simplify a great
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deal. Discarding the � < and � < notation we get,

1324) � ��# � � � � � � � � � � � ��� (4.80)

1324) � ��# K � � K � � � � � � � ��� (4.81)

1324) � ��# K � � � � � K � � � � ��� (4.82)

)�*,+ � ��# � � � � � � � � � � � /�� (4.83)

)�*,+ � ��# K � � K � � � � � � � /�� (4.84)

)�*,+ � ��# K � � � � � K � � � � / � (4.85)

The first of these forces ��#R� � � � � � � � � � 	 � ; for some ; >8@ , and similarly for

the other two sums of angles. However, in this case the angle �4# � � � K � � K � � � �

remains undetermined. Nonetheless, we can solve for the angles exactly as before,

��#F� �
; # � � � ; � � ;

�
	 � (4.86)

� � � �
; # � � K ; � K ;

�
	 � (4.87)

� � � �
; # K � � ; � K ;

�
	 � (4.88)

� � � �
; # K � K ; � � ;

�
	 � (4.89)

where ;=< >C@ and
�

is free. Notice that just as before these equations are over

determined. We have ; < ; < � � and
� � � � . This allows us to eliminate on of the

integers. Without loss of generality we choose to eliminate ; # , yielding,

��#F� P(� �
; � � ;

�
	 � (4.90)

� � � P(� � K ; � K ;
�

	 � (4.91)

� � � K P(� �
; � K ;

�
	 � (4.92)

� � � K P(� � K ; � � ;
�

	 � (4.93)

where we have made the substitution PQ� � � � 	 . The remaining cases are similar

and we have tabulated them for reference in Table 4.2.
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)�*,+B- .�0/ , )�*,+ 5"�76 )�*,+B9 ,

1324) 5 � 681324) 9 Non-Boundary Cases

Cases Angles

�G� � H � �M�
�MN ��# � P(� � � � 	 � ��
� � � P(� � � � � � � ��

� � � K P(� ��� � � � ��
� � � K P(� � � � � 	 � ��

� K �GH:� �G� �MN ��# � P(� ��� � 	 � ��
� � � K P(� ��� � � � ��
� � � K P(� � � � � 	 � ��

� � � P(� � � � � � � ��

�G� � H � � K �MN ��# � P(� ��� � 	 � ��
� � � K P(� ��� � � � ��
� � � P(� � � � � � � ��

� � � K P(� � � � � 	 � ��

� K � H � � K �GN ��# � P(� ��� � 	 � ��
� � � P(� ��� � � � ��
� � � P(� � � � � 	 � ��

� � � P(� � � � � � � ��

Table 4.2: Summary of the solutions to the � ��� � ���� , � 	�� � � � � ��� � 	�� � ���� , ��� � � � � � � ��� � � � � ����
cases. Here � is a free angle and ��� � � mod 4. Note that the form of these solutions is not unique.
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The boundary cases are somewhat more interesting. If either )�*,+ 5 or 1324)�5 is

zero, then the rank of
�

will be reduced to two. This results in fewer equations

and would seem to permit greater freedom for the angles � < . In the course of our

calculations, we will see that indeed this is the case.

Suppose that )�*,+ 5 � )�*,+�9 � / . We have two subcases, 1324)�5 � �G6�� 1324) 9 . In the

following derivations we will use notation that reflects this choice. The upper sign

in the parentheses will correspond to the positive choice, while the lower one to

the negative. This reduces equations (4.44) to the following,

�B#��M6�� � � � ��� (4.94)

� � �M6�� � � � /�� (4.95)

�R# �M6�� � � � /�� (4.96)

� � �M6�� � � � / � (4.97)

This simple set of equations can be reduced to give equations for the allowed � < .
In the (+)-case, the above equations reduce to the following equations,

��# � � � � � � � � � � 	 � ; #3� (4.98)

��# K � � K � � � � � � 	 � ; � � (4.99)

Now, instead of a single free parameter, we have two, which can be used to solve

for the angles. However, just as before, we have a redundancy, which once re-

moved, yields the following equations,

��#F� P � �$P � � �
;
�
	 � (4.100)

� � � P � � K P � �
K ;

�
	 � (4.101)

� � � K P � �$P � � � K ; �
	 � (4.102)

� � � K P � K P � � �
;
�
	 � (4.103)

By now it should be clear that as we move to cases more restrictive on the angles

-?� 5 � and 9 , we gain more freedom in the � < s, exchanging the half-integer multiples
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of pi for free parameters. The remaining three boundary cases are similar with the

results listed in Table 4.3.

Up until now, we have only considered cases where )�*,+(-F.� / . These have

covered most of the cases, yet the results have been rather limited, with only a few

discrete angles permitted. Now we turn to the case where )�*,+B- �0/ . In this case, as

mentioned above, we can set 9=��/ without loss of generality. Note that 1324) - �76 � .
The equations (4.35) - (4.42) now become,

� � �B# �$� � 1�2�) - �$� � �&1324) - 1324)�5L�
� � � �&1324) 5(� � (4.104)

/ � � � � )�*,+ 5L� � � � �&1324) - )�*,+(5L� (4.105)

/ � �R# � � � 1324) - � � � �&1324) - 1324)�5(�
� � � �&1324) 5(� � (4.106)

/ � � � � )�*,+L5L� � � � �&1324) - )�*,+L5(� (4.107)

If )�*,+L5E.�J/ , then these quickly reduce to a case nearly identical to the recently

examined boundary cases, depending on the sign of 1324) - � 6 � . Namely we get

the following equations,

��# �$1324) - � � � � � �$1324) - � � � 	 � VR#�� (4.108)

��# �$1324) - � � K � � K 1324) - � � � 	 � V � � (4.109)

where V <?>S@ . These of course brake up into two cases, both of which we can solve

for the angles � < . The results are listed in Table 4.4.

On the other hand, if )�*,+L5 � / , then 1324) 5 � 6 � and we get only the one

equation,

��# � � � 1324) - � � � 1324) - 1�2�)�58� � � 1324) 5"� 	 � V � (4.110)

where V >7@ . There are of course four cases, corresponding to the four possible

choices for 1324)�5 � 6 ����1324) - � 6 � . These break down nicely into different condi-

tions on the angles � < , which can in turned into solutions for the � < in terms of three
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)�*,+B- .�0/ , )�*,+ 5"�76 )�*,+B9 ,

1�2�)�5"�7681324) 9 Boundary Cases

Case Angles

)�*,+L5"� )�*,+B9=��/ ��# � P � ��P � � � � ��

1�2�)�5"�7� 1324) 9 � � � P � K P � � � � � ��
� � � K P � ��P � � � � � ��
� � � K P � K P � � ��� ��

)�*,+L5"� )�*,+B9=��/ ��# � P #R��P � � ��� ��

1324) 5"� K 1324):9 � � � P # K P � � ��� ��

� � � P # K P � � � � � ��
� � � P #R��P � � � � � ��

)�*,+ 5"�7�S)�*,+�9 ��# � P #R��P � � ��� ��

1324)�5"�01324) 9 �0/ � � � P # K P � � ��� ��

� � � P #R��P � � � � � ��
� � � P # K P � � � � � ��

)�*,+ 5"� K )�*,+B9 ��# � P � ��P � � ��� ��

1324)�5"�01324) 9 �0/ � � � P � K P � � � �
��

� � � K P � K P � � � � ��

� � � K P � ��P � � � � � ��

Table 4.3: Summary of the solutions to the � ��� � ���� , � 	�� � � � � ��� � 	�� � ���� , ��� � � � � � � ��� � � � � ����
cases. Here � is a free angle and ��� � � mod 4. Note that the form of these solutions is not unique.
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free parameters. However, the symmetry is brought out more if left in the con-

ditions form. These last remaining cases are tabulated in Table 4.4. Finally, these

results yield the following theorem.

Theorem 4.3.1 Let � � � # 	 � � 	 � � 	 � � be a Cayley plane in the standard position with

respect to
�

, i.e. with,

� #F� � 1324) ��# � �� )�*,+ ��#3� (4.111)

� � � �� 1324) � � � � � �� )�*,+ � � � (4.112)

� � � �� 1324) � � � � �
�� )�*,+ � � � (4.113)

� � �
�� 1�2�) � � ��� � � � � � �� )�*,+ � � � (4.114)

� � � �� 1324) - � �� )�*,+B- 1324):9U� �� )�*,+(- )�*,+�9 � (4.115)

� � � �� � K )�*,+B- 1�2�)�5(� � �� � 1324) - 1�2�):9 1324)�5 K )�*,+�9B)�*,+L5L�
�
�� �&1324) - )�*,+B9 1324) 58�$1324) 9�)�*,+ 5(� � (4.116)

� � � � � �� )�*,+B- )�*,+L58� �� � K )�*,+B9 1324)�5 K 1324) - 1324):9B)�*,+L5L�
�
�� �&1324):9�1324) 5 K 1324) -�)�*,+B9B)�*,+ 5(� � (4.117)

Then the angles � < ��-?� 5 ��9 must be as designated in Tables 4.1, 4.2, 4.3, and 4.4.
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)�*,+B- �0/ Cases

Case Angles or Conditions

)�*,+ 5�.�0/ ��# � P � �$P � � ��� ��

1324) -Q�7� � � � � K P � K P � � ��� ��

� � � P � K P � � � � � ��
� � � K P � �$P � � � � � ��

)�*,+ 5�.�0/ ��# � P # �$P � � ��� ��

1324) - � K � � � � P # �$P � � � � � ��
� � � P # K P � � � � � ��
� � � P # K P � � ��� ��

)�*,+ 5"�0/ 	 � V � ��# � � � � � � � � �
1324) - �7� ����1324)�5"�7� �

)�*,+ 5"�0/ 	 � V � ��# K � � K � � � � �
1324) -Q� K ����1�2�)�5 �7� �

)�*,+ 5"�0/ 	 � V � ��# � � � K � � K � �
1324) -Q�7� ����1324) 5 � K �

)�*,+ 5"�0/ 	 � V � ��# K � � � � � K � �
1324) - � K ����1324)�5"� K �

Table 4.4: Summary of the solutions to the � ��� � � � , cases. Here � � is a free angle and ��� �
� mod
4 and 
 ��� . Note that the form of these solutions is not unique.



Chapter 5

Reflection Groups and Polytopes

Ever since the time of the ancient Greeks, mathematicians have been fascinated

with polygons and polyhedra, particularly when they possess some sort of sym-

metry. While many things have been known about these shapes in two and three

dimensions we have really only begun to understand the higher dimensional cases

in the past 150 years. Indeed there are still many questions still left unanswered to

this day.

The study of polyhedra (and in higher dimensions, polytopes), begins with the

study of reflection groups, as demonstared by the life work of H. S. M. Coxeter

and others. The vast majority of regular polytopes have symmetry groups that are

generated by reflections. Indeed one of the principal tools in studying polytopes

is to study their symmetry groups. We will find that the reflection groups play a

double role in the search for Cayley polytopes, and so we breifly this subject.

Recently there have been generalizations of the notion of a reflection to include

complex and quaternionic reflections. Not unexpectedly, these lead to correspond-

ing complex and quaternionic polytopes. Many of the constructions used in the

real case generalize to the complex case as well. These ideas factor into our search

for Cayley polytopes, but as we will see the Cayley setting helps provide a unifying

framework for understanding them.
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5.1 The Real Reflection Groups

Recall that a reflection in �&��� � � ��� �� �



through a fixed vector � can be explicitly

defined using the standard inner product.

Ref ��� � � ��� K
� � � � �� � ��� � � (5.1)

where � > � . In this context � is called a root vector of the reflection. Clearly

this map leaves invariant the subspace orthogonal to � while sending the line con-

taining � to its antipode. Thus if
�

is a finite reflection group generated by such

reflections as the above one, we can associate with
�

a collection of lines in � cor-

responding to all the reflections contained in
�

. Clearly
�

must permute these

lines into themselves. Thus the set of unit vectors 
�6�� #3� 6�� � � � � � � 6�� � � contained

in these lines are permuted and hence stable under the action of
�

.

The above observations help motivate the following definition of a root system,

see [19]. This definition is more general as it permits non-unit length vectors. The

important thing is that for each reflection group we can construct such a root sys-

tem.

Definition 5.1.1 A root system in a finite dimensional vector space � is a finite collection

of vectors � that satisfies the following two properties:

� � � �Q� 
�6�� � � for all � > � � (5.2)

Ref � �7� � � for all � > � � (5.3)

Moreover, starting with a root system, � we can associate a finite reflection group

generated by reflections in the roots of � . Thus studying root systems in conjunc-

tion with finite reflection groups is very natural. However as Humphreys points

out in [19], the problem with root systems is that they can be extremely large com-

pared with the dimension of � , e.g. the dihedral group can have a root system in

�
�

with as many elements as the group itself.



66

Fortunately, although it is not at all obvious, given a root system, � , with associ-

ated group
�

, we can find a distinguished subset,
� � � , unique up to conjugation

by
�

, such that � �'� �
is a basis for the � -span of � in � , ��	4� the group

�
associated

with � is generated by reflections in the vectors of
�

, and ��� � every � > � is a linear

combination of
�

with coefficients all of the same sign. Such a set is called a simple

system. For a proof of their existence and motivation see [19].

Since it is a basis, the number of vectors in
�

is equal to the dimension of the

span of � . This is known as the rank of � or
�

. Any two vectors in such a simple

system will have negative inner product, ie
� � #3��� � �(��1324) ��# � � / for all � #���� � > �

.

Let ; ��� #3��� � � denote the order of Ref � � Ref �
� > � . Recall that in two dimensions,

(the span of 
�� #3��� � � ), the composition of two reflections through roots with angle

��� � K -?��/ � - � � � 	 results in a rotation in the plane of angle 	 �
� 	 � K 	�- � K 	�- .

Since in our case this element has order ; ��� #���� � � , we have that 	�-O� 	 � � ; ��� #3��� � �
or -Q� � � ; ��� #3� � � � .

Remarkably, we can associate more objects with our growing collection,
� � �U� �

.

Given a simple system we can construct a labeled graph, � , (known as a Coxeter

graph) that contains all the information of the simple system. For each root in the

simple system we have a node, and between any two nodes we place a labeled

edge with label ; ��� < ��� � � where the roots � < ��� � are those associated with the edge.

Since the simple systems are conjugate under
�

, these graphs are unique for each

finite reflection group. Note however that not all graphs are permissible. Only

certain ones will actually be realized as corresponding to finite reflection groups.

See Figure 5.1. In general we omit edges with label 	 and leave edges that would

be marked with the label � as unmarked, since these are so common.

These graphs provide us with a useful representation of the group. We can

often detect many of the outer automorphisms of the group by examining the

symmetries of its graph. Moreover we will see that these graphs can be used to

systematically construct uniform polytopes that have the symmetry groups which
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Figure 5.1: Graphs Corresponding to the Real reflection groups
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are reflection groups. Then certain symmetries of the graphs correspond to certain

relationships between the polytopes. This will be made more precise later, but for

example, the graph for the group
�

� is symmetric with respect to its outer nodes.

This is the reflection group of the tetrahedron. The symmetry of the graph corre-

sponds to the fact that the tetrahedron is dual to itself. Most of these groups also

arise as the reflection symmetries of certain lattices in different vector spaces.

Recall that a lattice in a vector space � is the integer span of a basis � for � .

We call an orthogonal subgroup
� � � �M� � crystallographic if it stabilizes such a

lattice. One particularly interesting kind of lattice is when it is the span of a root

system in � such that the reflections in the root vectors stabilize the lattice. In

this case there will be an associated crystallographic reflection group which will

be exactly the group corresponding to root system. However not all root systems

yield lattices in this way. It can be shown that a necessary and sufficient condition

is that the integers ; � � #���� � � be 	 � ��� � or � , see [19]. Additionally the root vectors

can have two different lengths, which are referred to as long or short root vectors.

Thus sometimes for the same group, we can get different lattices. A summary of

the relevant results can be found in Table 5.1. Notice that the group � 
 has two

associated lattices. The first is referred to as the � 
 lattice, while the second is the

� 
 lattice.

The sporadic groups � 
 have a very nice lattice representation in terms of the

Cayley numbers. If we identify � � � � � then the following Cayley numbers are the
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Group
� 
 � 
 � 
 � � 
 �

Order � V � � ��� 	 
 V�� 	 
 V��

Space
�

 	 # �

�
coords �0/

�



�



Long Roots

Short Roots

� < K � � �
� � � .� � � V � �

6 � < 6 � �

6 � <
6 	 � <

6 � < 6 � �

Num. Roots

Long : Short
V���V � �'� 	 V���V K �'� � 	 V 	 V � 	'V ��V K � �

Group � � � 

Order � � 
 	 	 
 � # V��
Space � � �




Long Roots

Short Roots

6 � < 6 � �

6 � < � #� �G6 � < 6 � � 6 ��� 6 �	� �
6 � < 6 � �

Num. Roots

Long : Short
	 � � 	 � 	 V � V K �'�

Group � � �L% � �

Order
��
 ��� � 	�
�� ��/�/

� 	 # � 
 � � 
 

�

 �

	 ��
�/ ����/ � /
� 	 #

�

 � � 
 
 
 �


 ����� � /
� 	

� 
 � � 
 

Space ��� � � � �

�

� � ��� � � % � � 
�� > ��� � � � � �� �
Long Roots

Short Roots
See Below See Below See Below

Num. Roots

Long : Short
	 � / � 	 � � 	

Table 5.1: The Finite Crystallographic Groups and their Root Lattices
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240 root vectors of the � � Lattice.

6 ��� 6 �� � 6 �� � 6 �� � 6 �� � 6 �� � � 6 �� � � 6 �� � �
�
	 �M6 � 6 �� 6 �� 6 �� � �3� �	 �G6

�� 6 �� 6 �� � 6 �� � �3�
�
	 �M6 � 6

�� 6 �� 6 �� � �3� �	 �G6
�� 6 �� 6 �� � 6 �� � �3�

�
	 �M6 � 6 �� 6 �� 6 �� � �3� �	 �G6

�� 6 �� 6 �� � 6 �� � �3�
�
	 �M6 � 6 �� � 6 �� � 6 �� � �3� �	 �M6

�� 6 �� 6 �� 6 �� �3�
�
	 �M6 � 6 �� 6 �� 6 �� � � � �	 �G6

�� 6 �� 6 �� � 6 �� � �3�
�
	 �M6 � 6 �� 6 �� 6 �� � �3� �	 �M6

�� 6 �� 6 �� � 6 �� � �3�
�
	 �M6 � 6

�� 6 �� 6 �� � �3� �	 �G6
�� 6 �� 6 �� � 6 �� � � �

By taking just the imaginary (i.e. orthogonal to � > � ) portion we recover an � �

lattice. Taking the portion of this orthogonal to
��

yields an �(% lattice. Remarkably

the � � lattice is closed under Cayley multiplication (see [6], [9]).

5.2 Real Regular Polytopes

Abstractly, we can view a polytope in �E� � 
 as a collection of vertices � � , edges

� # , faces �
�
, . . . , and V K � -cells � 
 � # . We require that these collections satisfy

certain requirements to be consistent with out notion of a polytope, e.g. each vertex

belongs to an edge. Such a definition is very general and includes all manner of

strange and unusual polytopes. In order to get a handle on this we will have to

impose certain restrictions. In particular we will concentrate on regular polytopes.

Definition 5.2.1 A polytope ��� � � � � � ��� 
 � #�� is uniform if all its subpolytopes are regular

as well, and there is a subgroup of � ��VR� that is transitive on the vertices of the polytope.

This subgroup will be known as the symmetry group. If the symmetry group is additionally

transitive on the ; -cells of the polytope, then the polytope is regular.
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In fact this definition is too general as well. In low dimensions all uniform poly-

topes have symmetries that can be realized as reflection groups. However in higher

dimensions there are polytopes that have symmetries that are not reflection groups.

See [9].

Nevertheless the polytopes that have symmetries that are reflection groups are

well known and have a nice construction that makes use of the graph of the sym-

metry group. Consider the group � � . This group is generated by three reflections

in three “mirrors”, Ref

 # � � # � � � � Ref


 �
� # � � # � � Ref


 �
�
�
� # � . See Figure 5.2. Notice that that

origin lies on the intersection of all three mirrors, and that hence this point is fixed

by the entire reflection group. However if we instead consider a point that lies in

the first two mirrors but off the third mirror, then the situation is more rich. Let’s

designate this by putting a circle around the third node as in 5.2. First of all the or-

bit of this point consists of the eight vertices of the cube. Also, the isotropy group

of this point is the group � � ���4� , as can easily be seen by removing the circled point

from the graph. If we look at subgraphs that contain this point we find two: � � � � �
and

� # � � # . Using this same method it is easy to see that the first corresponds

to a square while the second a line segment. These are the various types of sub-

polytopes that are contained in this polytope. If instead we had decide to start with

a vertex on the last two mirrors, but off the firsts, it is straight forward to check that

the resulting polytope is the octahedron, the dual of the cube. Moreover all of the

same observations carry over, the interesting subgraph with the circled point now

being � � � � � corresponding to the triangular faces.

The above construction can easily be generalized in several ways. We can

choose an interior point or more then one point (provided it is equidistant from

the circled mirrors). Moreover all these sorts of constructions result in regular

polytopes of one kind or another. This is known as Wythoff’s construction and

is described in [7], [9], [6], [8]. When the circled vertex is an outer vertex we can

determine the type of faces that the polytope will have by removing one of the
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4

Figure 5.2: The Mirrors of the Reflection Group ���

other outer vertices. It is clear that if the graph is linear, then there will only be

one remaining outer vertex. Thus the polytope will have only one type of “face”.

Moreover it can be shown that in the linear case the symmetry group is transitive

on these faces. By induction this means that only linear graphs result in regular

polytopes. In low dimensions the only graphs are linear so there is only one pos-

sibility; in higher dimensions there are other types of reflection groups and hence

the difference between uniform and regular polytopes is necessary. It can further

be shown that any regular real polytope admits a reflection group for symmetry

group, which is necessarily linear, see [8]. Thus we recover the classic result:

Theorem 5.2.1 The only regular polytopes in dimension
� 
 are the self-dual regular n-

simplex, the n-cube and its dual the n-cross polytope, corresponding to the reflection groups
� 
 and � 
 respectively.

When the circled point is not an exterior point or when there are more then one

circled point the result is a star- or truncated- or snub-polytope. See Figure 5.3.

Also if all the points are circled then there a different polytope will result if only

the index 2 rotation subgroup is used. This can be designated by using all white
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4 4

Figure 5.3: Some exotic regular polytopes with symmetry � � .

dots. For the most part we will be focusing on the polytopes where only a single

outer vertex is circled. These are tabulated in Table 5.2.

This construction helps us put the polyhedral dualities that we are familiar with

in a broader context. Recall that every regular polygon and regular polyhedra has a

dual which can be obtained, in the polyhedral case, by putting a vertex in the center

of each face and connecting each of these vertices where their faces share and edge.

Since the faces are regular, the resulting polyhedra will also be regular. The new

faces thus correspond to the old vertices, with symmetry group corresponding to

the vertices’ isotropy group. In this way we see that for a polytope resulting from

an external node of a linear graph, the dual polytope results from the same graph

with other external vertex circled.

In higher dimensions the story can be more complicated. The graphs of the

groups � 
 , �L% , � � , and � � all contain three external vertices. With these groups

the corresponding polytopes undergo a kind of triality similar to the duality of the

linear case, see [9].
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5.3 Complex Reflection Groups and Polytopes

The notion of reflection can be generalized to complex vector spaces as well. Many

of the properties of real reflections will be carried over, but some new ones will

emerge. First of all we can define a complex line to be the � -span of a fixed vector,

� > � 
 . We require that any complex reflection fix the orthogonal complement

of its reflection line. Moreover we require the reflection to be unitary, so that the

standard hermitian inner-product is preserved. This allows more freedom than in

the real case. Complex reflections differ from real reflections in that now we have

a phase factor that can be any root of unity. Requiring the reflections to have finite

order leads to the following definition:

Definition 5.3.1 A complex reflection of order � through the complex vector � is the uni-

tary map defined as follows,

Ref � � � � � � � ����� ��� �
< � �

� K �'� �
� �?��� �� � ��� � � (5.4)

where
� � � is the standard hermitian inner product.

With this definition many results from the real case carry over. In particular, we

can associate a labeled graph with each reflection group. The only modification

is that now each reflection in a given root vector may have an order not equal to

two. To convey this information we label each node of the graph with a number, � ,

omitting the label 	 since it is so common.

The definition of a complex-polytope is modeled after the real polytopes. In-

stead of edges which are segments of real-lines, in a complex polytope the ”edges”

are ”segments” of complex lines. Hence they will be real polygons. Despite this

complication, much of the machinery used in the case of real polytopes carries over

to the case of complex polytopes. The regular complex polytopes are classified in

[25] and [8]. Wythoff’s construction carries over in the natural way, and is very

useful in Coxeter’s classification.
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Many interesting phenomena regarding complex reflection groups and poly-

hedra can be explained in the context of Spin % � � � � ��� � , however, it will be un-

necessary to delve into the details. In particular, there are many more complex

reflection groups than in the real case, and their subgroups are more complicated.

The quaternionic analog, described below, conveys the same insight, yet offers a

more reasonable number of examples. Moreover the quaternionic case more read-

ily lends itself to useful generalizations in the Cayley manifold case.

5.4 Quaternionic Reflection Groups and Polytopes

Just as we could extend the real reflections to complex reflection, we can also ex-

tend this to quaternionic reflections. Moreover, we can similarly define quater-

nionic polytopes. This will be helpful as it will provide a model for generalization

to the Cayley case. Recall that a quaternionic vector space can be given an associ-

ated inner product
��� �����L� � � < � < , that is preserved by left unit quaternion multi-

plication, and hence corresponds to a right quaternion structure. We can define a

quaternionic reflection that preserves the above inner product by,

Ref
�
� � � � � � � ��� ��� � K �'� �

� �?������ � ����� � (5.5)

where � > � is a unit quaternion of finite order, usually belonging to a particular

finite subgroup of ��� � �'� . Notice that analogous to the complex case, this leaves

the orthogonal compliment of the right-quaternion span of � fixed, pointwise.

In 1978 Cohen, [5], classified the finite quaternionic reflection groups. His clas-

sification involved splitting the various groups up into several cases, and employ-

ing some deep group theoretical results. Moreover his classification depends on

the classification of complex reflection groups. In particular he examines the ir-

reducible quaternionic reflection groups according to the separate categories: im-

primitive, primitive with imprimitive complexification, and primitive with prim-

itive complexification. In two dimensions these yield 22, 4, and 6 quaternionic
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reflection groups respectively. The first category yields groups of the following

form:

Definition 5.4.1 The quaternionic reflection group
� � � � � � � � � � � � , originally defined

in [5], where �A� � > ���U� �'� are finite with ��� � and � > Aut � � � �A� of order less then

or equal to 2, is the following set of elements in � �U��	�� ,

� � � # �
� �

��� �
�
 �

� /
/ � � � �S�

�� �
 / �
� /

�� �
� (5.6)

The last category relies on analyzing particular root systems and associating groups

with them. Cohen defines six root systems ��#�� � � � � � � � #3� � � � � � in
� �

with their as-

sociated groups � ���(� .
In 1995 Cuypers, [11], expanded on this to produce a classification of the regu-

lar quaternionic polytopes. Just as with the real and complex case, the symmetry

groups of regular quaternionic polytopes can be associated with quaternionic re-

flection groups, which in turn can be associated with a linear graph. This is novel

because unlike the real case, the classification of quaternionic reflection groups

did not make use of graphs. It was conjectured by Cuypers the they could be

used to provide a more direct classification, [11]. Nevertheless, Cuypers was able

to generalize the associated graphs to the particular cases needed for classifying

quaternionic polytopes. The only difference between the complex graphs and his

graphs originates in the fact that for � # � �U� � � a single number � is sufficient for

uniquely determining a finite subgroup, whereas in � � � ��� � �'� it is better to label

the nodes of the graph by the desired group. The non-starry purely quaternionic

polytopes in
� �

are listed in Table 5.4. There are also non-pure polytopes which

are quaternionic extensions of 2-dimensional real or complex polytopes.
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Reflection Group Polytope Name and Symbol Graph

� � � ; � m-gon
m

� 
 Simplex, � 


� 
 n-Cube, � 
 4

n-Cross Polytope, � 

4

� 
 Half-Measure Polytope, � � 

� 


� � Icosahedron
5

Dodecahedron
5

� � 120-Cell
5

600-Cell
5

� � 24-Cell
4

�L% � � �

	 � #

� � � �
�

	 � #

� � #

� � �
� #

� �
�

	 � #
Table 5.2: The uniform polytopes with associated reflection groups
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Polytope Ref. Group Num. Vertices Num.
�

-Edges

O # � O # � ��� #�� �4/ � /
P # � P # � � � #�� ��/ ��/
P
� � P

� � � � � � 	 � / 	 �4/
P � ��� P � � � � � � � � 
 	�/��B��� ��/ � �4��/��B� � 
 	�/4�

C ����� C � � � ��� � � � ��� �'� 	 � � � ����� ���
�
� � � �

�
�B��	 � ��� �

Table 5.3: The Quaternionic Polygons and Corresponding Reflection Groups
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Constructing Cayley Honeycombs

We are interested in construction lattice periodic arrangements of Cayley planes

such that the union of these arrangements remain volume minimizing. One way

to approach this is to realize that each of these Cayley Honeycombs will have an

associated finite subgroup of Spin � , which acts transitively on one of the cells of

the Honeycomb. Thus understanding the finite subgroups of Spin � helps us un-

derstand the Cayley Honeycombs.

Remarkably, there is a very natural way in which the relationship of the Spin

and Pin groups to the orthogonal and special orthogonal groups allows us to use

the classification of reflection groups to make this understanding more clear. More-

over, this context helps provide a cohesive framework in which to study the Uni-

tary and Quaternionic reflection groups and polytopes. Overall this will prove to

be a very productive journey.

6.1 Constructing Finite Spin Groups

In odd dimension, there is an element of the orthogonal group which is singled

out, namely K � . This is the unique element not contained in this special orthogonal

subgroup, which commutes with all other elements of the orthogonal group. With

the identity it forms a � � subgroup which is the center of � � VR� . Moreover, every

element of � � VR� �
��� ��V � can be uniquely written as K � 
 � � � 
 K � where

� > � � ��V � .
We can define a homomorphism - � � ��V � � ��� � VR� which simply sends K � to the

identity.
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Continuing in the odd dimensional case, if
� � � � VR� is a subgroup, then we

can uniquely partition
�

into two sets. Let
� 	 denote the index 	 pure subgroup

of
�

, i.e.
� 	 � � � � � ��V � . Then the remaining portion of

�
can be written as K �� 	

where �� is a subset of ��� ��V � . The map - � � � � 	 � K �� 	 � � 	 � �� 	 . It may

be the case that
�

contains K � . In this case
� 	 � �� 	 , and the map - is a 	 � �

homomorphism. Otherwise it is an isomorphism between
�

and its image.

In even dimensions we do not have this luxury. However, we can still make

some headway. Each subgroup
� � � � VR� can be embedded in ��� ��V � � � in a very

natural way. Namely � �� �G6 ������� where the sign on the 1 is determined by the

determinant of � > � � VR� . Such an embedding is isomorphic to the original group,

and will be an index 2 subgroup of
� # � � . We will denote this group as � � � 	
 	 # ,

e.g. the dihedral group � � � ; � can be embedded in ��� � � � and is denoted � � � � ; ��� 	� .

In odd dimensions the standard volume element for �
	���VR� , 9 , is odd and com-

mutes with the entire algebra. Hence �9 � K 9 and we have �� ��� � � � � �9 � 9 � K 9
� �

.

In the dimensions we are interested in, namely 3 and 7 we additionally have 9
�
� �

so that the 6
9 map to the unique K � > � ��� or ��� . Thus we can lift the map - to

the level of Spin and Pin groups. Namely, since � � � 
�����9 � is normal in Pin �
or �

we have that - � Pin � or
� � Spin � or

� mapping 9 to the identity is a well defined

homomorphism and that the following diagram commutes,

Pin �
or �

����K � � � � or �4�
� - � -

Spin �
or �

����K � ��� � � or � � �
In dimension five we cannot lift the map to the Pin level so easily, nonetheless, we

can still use - to get groups in ��� ��
4� and then lift those at the Spin level.

It is useful to examine the specific case of dimension seven in more detail. Re-

call the model that the Cayley numbers provide for studying ��	�� ��� . Spin � is gen-

erated by right Cayley multiplication, the positive and negative representations
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being equal while 9 has a simple representation,

Spin � generated by
�
 � � /

/ � �
��
� � > ��� ��� 9 �

�
 � /
/ K �

��
� (6.1)

Consider one of the generators of Spin � . ����� � ��� ��� � � � � � �'� 
 � � � K � � � � � . Since

any two elements generate at most a subalgebra isomorphic to
�

, we have that

��� � � ��� �
�� 	 K � � � � �
� � otherwise

�
�� � (6.2)

In other words, �����S� K � � ��� . Consider now the case where we start with a re-

flection group in � ����� that contains K � . Such a group is generated by a number of

reflections along vectors � #3� � � � � � � in
��� �

. It’s double cover in Pin � will then be

generated by elements of the form 9 � � �3� � � � ��9 �
� � . Since the original group con-

tained K � the Pin � group will contain 9 . Thus its projection under - into Spin � will

be generated by � � �3� � � � � �
� � , and we have obtained a finite Spin group from one

of the well know reflection groups. The following well known example will make

this clear.

6.2 An Instructive Example, Spin �

It is useful to examine the three dimensional case in some detail as it is well un-

derstood and provides a model for the more complicated seven dimensional case.

Using the ideas outlined above we should be able to move from the three dimen-

sional finite reflection groups to finite subgroups of Spin � � � ���U� �'� . Fortunately

these are both well known and give us a suitable context in which to evaluate this

method.

There are a variety of finite reflection groups in three dimensions. The irre-

ducible ones are
�

� , � � , and � � corresponding to the reflection symmetry groups

of the tetrahedron, cube or octahedron, and icosahedron or dodecahedron respec-

tively. Of these groups,
�

� and � � are crystallographic, while � � is not, and
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both � � and � � contain K � � while
�

� does not. The orders of these groups are

� � � � � � � � 	 � , � � � � � 	 � � � � �4� , and � � � � � � 	�/ . As we will see, it is convenient

to know the number of roots of the following four dimensional groups, � � with 24

roots, � � with 48 roots, and � � with 120 roots.

From our previous discussion, we can immediately generate two groups in

Spin � based on the groups � � and � � . These groups are formed by taking the

pre-image in Pin � and projecting down into Spin � by - . Since the original groups

contain K � � , the resulting groups in Spin � will have the same order as these original

groups, namely 48 and 120. We can find an explicit construction of these groups

by looking at where the generators of the original groups are sent in Spin � .

Choosing an arbitrary, but useful, representation of � � , we find that it contains

reflections in the following unit vectors: (using the
�� � �� � �� basis)

6 �� � 6 �� � 6 �� � �
�
	
�M6 �� 6 �� �3� �

�
	
�G6 �� 6 �� � � �

�
	
�M6 �� 6 �� � �

These reflections map to elements of Spin � corresponding to right quaternion mul-

tiplication by that imaginary unit vector. Since the non-zero quaternions form a

group, we can view right quaternion multiplication as isomorphic to the quater-

nions themselves ( � ��� � since we are using right quaternion multiplication in-

stead of left). Thus we see that we generate the additional elements,

6 ��� ��
	
�G6 �I6 �� � � ��

	
�G6 ��6 �� �3� ��

	
�G6 �I6

�� �3� �	 �M6 �I6 �� 6 �� 6 �� � �
It is easy to check that these elements are the root vectors (renormalized to unit

length) for the exceptional lattice � � . They form a subgroup of
�

known as the

binary-octahedral group (it is easy to check that this group is the Spin double cover

of the rotation symmetry group of a regular octahedron). Moreover it is easy to

check that the unnormalized lattice is a subalgebra of
�

.

A similar analysis on � � shows that it corresponds to a group in
�

known as the

binary-icosahedral group (which is the double cover of the icosahedron’s rotation
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symmetry group). The elements of this group likewise correspond to a root system

in
�
� � � � of order 120. It is easy to verify that this is the root system for the group

� � , see [13] and [17]. Unfortunately, this root system is not crystallographic and

so does not suit our needs. Nevertheless this correspondence is illuminating and

helps show the relationship of the icosahedral symmetries to the structure of the

� � lattice. Let ��� � � 
 � � � � 	 � 	�1324) � � � 
�� , the golden ratio. Then the group

corresponding to � � has the following elements,

6 ��� 6 �� � 6 �� � 6 �� � �	 �G6 �I6 �� 6 �� 6 �� �3� all even permutations of
�
	 �M6�� 6

�� 6�� � # �� � �
Even more illuminating observations can be made if we return to the � � lattice

above. It is easy to verify based on the root lattice constructions that for all V �

� � 
 is a subgroup of � 
 , hence, even though � � doesn’t contain K � � , we can

find a group corresponding to it as a subgroup of the group corresponding to � � .

The group
� 
 is more tricky. We know that

� 
 � # is a subgroup of � 
 . However

examining the orders of � � 
 �R� � V � �'��� and � � 
 � � 	 
 V � we see that the order of
� 
 only divides the order of � 
 when VO� � ��� � � � � � 	 � K � . It is remarkable that in

dimension 3
�

� is indeed realized as a subgroup of � � . It is worth discussing this

in more detail.

Let
� 	� be the index 2 pure subgroup of

�
� , namely the tetrahedron’s rotation

symmetry group. Let
���

� � � 	� � K � 	� .� �
� be the group generated by

� 	� and the

central inversion. Similarly let � 	� be the index 2 pure subgroup of � � . Then it can

be shown that
� 	� forms an index 4 subgroup of � � . We can thus construct three

additional subgroups of � � which contain
� 	� , namely � 	� ,

�
� , and

� �
� . See Du Val,

[13], for an extensive discussion of the finite three dimensional orthogonal groups.

Of these three new subgroups, only
���

� contains the central reflection. Applying

our standard process to this group results in a Spin group that is the double cover

of
� 	� , known as the binary-tetrahedral group (just as this process yields double

covers of � 	� and � 	� ). Following Du Val’s discussion we know that the maximal
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Group ��� ��� � Image
� 
 � � 	� � ; � � 	�
� 
 � � � � ; ��� 	�
� � 	�
� � 	� �0- � � � �
� � 	�

Table 6.1: The finite Spin � subgroups and their associated ������� � images

common subgroup of � � and � � is the group
���

� . Hence, to find its corresponding

group in
�

, we only need to intersect the two groups corresponding to � � and � � .

The resulting group has the following 24 elements,

6 ��� 6 �� � 6 �� � 6 �� � �	 �G6 ��6 �� 6 �� 6 �� � �
This root lattice corresponds to the lattice of � � . Lastly, - � � � ��� � 	� so that no new

group is achieved this way.

It is remarkable that the structure of the � � and � � lattices, and the � � root

system as well as their relationships and group structure when viewed as subsets

of the quaternions can be explained in terms of the simpler groups � � ,
�

� , and � �

and through the Spin and Pin maps.

There are a few more examples of subgroups of Spin � which we will include

for completeness. Consider the two dimensional dihedral reflection groups � � � ; �
and their even cyclic subgroups � 	� � ; � . From the discussion above we can isomor-

phically embed the dihedral group into ��� ��� � and then lift this group into Spin � .

It will of course have an associated index 2 subgroup which is the lift of the cyclic

subgroup. All of these results are listed in Table 6.2.
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Lemma 6.2.1 Any closed finite set of units of any subalgebra (resp. subgroup)
�

of even

order in
�

(resp.
�

) is a root system when regarded as a subset of � � (resp. � � ).

Proof: This is modified from a similar lemma in [17] which deals with only the

quaternion case. Since both
�

and
�

are normed algebras every such element

must have unit norm (since the norm maps the invertible elements of
�

and
�

homomorphically into �"	 whose only finite group is the identity). Now, since
�

is closed under inverses,
�

is also closed under conjugation. It is well known that

the only element of order 2 in
�

is K � . Because of Theorem 1.1.1, the only element

of order 2 in
�

is also K � . Since every such set of even order contains an element of

order 2,
�

must contain K � . Thus if � > � , then K � > � . Recall that in
�

reflection

through � > ���U� �'� can be written � �� K � � � . Again due Theorem 1.1.1, reflection

through unit � > � can also be written � �� K � � � . Thus since
�

is closed under

multiplication and conjugation,
�

is closed under reflection through its elements.

Hence
�

satisfies the requirements of a root system.

In the quaternion case it was very useful that the invertible elements of
�

form

a group. This caused right quaternion multiplication by � to be identified with

� > � . In the Cayley numbers, we don’t have this luxury. Consequently elements

such as � �< � �� and � �� are not equal in Spin � , although they both correspond to the

element
�� > �

. Thus we cannot use the trick of identifying the group order and

the number of root vectors in the corresponding higher dimensional lattice.

6.3 The Higher Dimensional Cases

The octonion model for Spin � also provides a useful model for understanding finite

subgroups of the lower dimensional cases of Spin % � � � �U� � � and Spin � � � ��� ��	4�
as well. Recall that these spin groups have a particularly nice representation using

the map � . Spin % � 
 � > Spin � � ����� �� � � �� � so that the complex structure � �< is

preserved and Spin � � 
 � > Spin % � ����� �� ��� �� � so that the complex structures � �< ,
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� �� and � �< � �� are preserved. Thus to understand some of the finite subgroups of

these groups, we can employ our techniques from Spin � to reflection groups that

leave various elements of �
�

� � ��� �
invariant.

Beginning with the irreducible seven dimensional reflection groups
�

� , � � , � � ,

and � � , we see that only � � and � � contain the central inversion K � � .

The root system of � � is as follows,

6 �� � 6 �� � 6 �� � 6 �� � 6 �� � � 6 �� � � 6 �� � �
�
�
	
�M6 �� 6 �� �3� �

�
	
�G6 �� 6 �� �3� �

�
	
�M6 �� 6 �� �3� �

�
	
�G6 �� 6 �� � �3� �

�
	
�G6 �� 6 �� � �3� �

�
	
�G6 �� 6 �� � � �

�
�
	
�M6 �� 6 �� � � �

�
	
�G6 �� 6 �� � � �

�
	
�M6 �� 6 �� � � � �

�
	
�M6 �� 6 �� � �3� �

�
	
�M6 �� 6 �� � � �

�
�
	
�G6
�� 6 �� � � �

�
	
�G6
�� 6 �� � �3� �

�
	
�M6
�� 6 �� � �3� �

�
	
�G6
�� 6 �� � � �

�
�
	
�M6 �� 6 �� � �3� �

�
	
�M6 �� 6 �� � � � �

�
	
�G6 �� 6 �� � � �

�
�
	
�M6 �� � 6 �� � �3� �

�
	
�M6 �� � 6 �� � � �

�
�
	
�M6 �� � 6 �� � � �

The generators of the group corresponding to � � (i.e. the double cover of � 	� ) are

right Cayley multiplication by these root elements. A simple examination allows

us to see that the orbit of � > �
will contain, in addition to the above elements,

ones of the form

6 ��� �
�
	
�G6 �I6�� < �3� �	 �M6��

< 6�� � 6�� � 6�� � �3� (6.3)

�
	
�
	
�M6 �I6 �� 6 �� 6 �� 6 �� 6 �� � 6 �� � 6 �� � � � etc. (6.4)

After careful inspection, however, we see that if the “long roots“ of � � are left with

square norm 2, then we simply recover the lattice belonging to � � and moreover

that this lattice is closed under Cayley multiplication. Alternately we could use the

lattice of � � , and recover a similar result.
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Along similar lines we can consider the exceptional reflection group � � � � 	� �

K � 	� . This also results in an eight-dimensional lattice that is closed under Cayley

multiplication. This is, up to conjugation, the � � lattice with the following 240

elements,

6 ��� 6 �� � 6 �� � 6 �� � 6 �� � 6 �� � � 6 �� � � 6 �� � �
�
	 �M6 � 6 �� 6 �� 6 �� � �3� �	 �G6

�� 6 �� 6 �� � 6 �� � �3�
�
	 �M6 � 6

�� 6 �� 6 �� � �3� �	 �G6
�� 6 �� 6 �� � 6 �� � �3�

�
	 �M6 � 6 �� 6 �� 6 �� � �3� �	 �G6

�� 6 �� 6 �� � 6 �� � �3�
�
	 �M6 � 6 �� � 6 �� � 6 �� � �3� �	 �M6

�� 6 �� 6 �� 6 �� �3�
�
	 �M6 � 6 �� 6 �� 6 �� � � � �	 �G6

�� 6 �� 6 �� � 6 �� � �3�
�
	 �M6 � 6 �� 6 �� 6 �� � �3� �	 �M6

�� 6 �� 6 �� � 6 �� � �3�
�
	 �M6 � 6

�� 6 �� 6 �� � �3� �	 �G6
�� 6 �� 6 �� � 6 �� � � �

(6.5)

Coxeter has written about this remarkable lattice, see [6], [9]. In fact regarding this

set of integral Cayley numbers he comments, ”It seems somewhat paradoxical that

the cyclic permutation � �� �� �� �� � �� � �� �� � � which preserves the integral domain is not

an automorphism of the whole ring of octaves: it transforms the associative triad�� �� ��
into the anti-associative triad

�� �� � �� � .”

6.4 The Spin � Case

In the Spin � case we consider the subgroup ��� ��
4��� ��� � ��� that leave
��

and
��

fixed.

Thus when analyzing these subgroups the map - is not so useful, as none of the

elements we are considering will contain the central inversion. However, we can

define a new homomorphism - � which sends the central inversion in � ��
4� to the

identity.
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Viewing
�

as
� � � �

�
� �� , it is natural to split elements into there ”e-part”

and non ”e-part,” as follows � � � �� � ��� ����� with � � � > � 1 . Consider the action

of Spin � elements � �
�

where � > �
. � �

� � � � �3� � � ��� � K ��� � , so that these elements

swap � and � , with some additional quaternionic action. On the other hand the

element � � does not swap these elements. This is a natural splitting in this context.

Right Cayley multiplication by an element that is not of the form � � nor 6 � , can-

not be decomposed into either simple swap or no-swap. Hence, recalling Cohen’s

definition of the groups
� � � � � � � � � � � � , 5.4.1, we see that all of them must split

in this way, and hence, in the vector representation, correspond to subgroups of

�(��� � � � � � � � ��� . This allows us to easily rederive Cohen’s
� � � � � � � � � � � � groups

in the Spin context. It is instructive to work some examples.

First we need to recall some basic facts about the relevant reflection groups. � �
and � � contain the central inversion in their dimensions. Hence � � � � 	� � K � 	�
and K � �

> � 	� . The maximal reflection group in � ��
4� containing � � is
� # � � �

acting on orthogonal subspace. However, since K � �
> � 	� , all elements of the form

�M6 ��� 6 � #�� map to elements of the form � ��� � � � , where �:#�� � � > � 	� . Hence there

are really only two subgroups in Spin � that contains a double cover of � 	� , one of

which is the double cover of � � � 	� . This is clearly Cohen’s
� � � � � � ��� � � , see [5].

Similarly, the maximal reflection groups containing � � and not � � are of the forms

� � � ; � � � � or
� # � � # � � � . Various subgroups of this last one (using the nontrivial

outer automorphism of � � ) account for the remaining
� � � � 
 � 
 � groups discussed

in [5]. Presumably the groups obtained by this method that are not discussed in [5]

are not quaternionic reflection groups.

Similar analysis holds for the remaining groups discussed by Cohen. Moreover

1This is not entirely accurate. The quaternionic structures we are using to define � � are ���� , ���� ,
and ���� ���� . By examining the Cayley multiplication we see that the element � � � 
 �� � � �� � � � �� � � � �	 �
actually corresponds to the element � � � � 
 � � �� � � �� � � �	 � �
� � , so that in the e-part we have
� �� ��� �� � �	 as the quaternionic structure. However, we can still choose to split

� � � �� as � � � � � , and
all of the above analysis holds.
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this technique produces many additional subgroups which are not discussed in [5].

While it will not be necessary to have a detailed discussion of all the quaternionic

cases, it is remarkable that the reflection groups can be reconstructed through this

method. For convenience I have listed some Cohen’s groups along with their im-

ages in ��� ��
4� in Table 6.4.

In order to classify the quaternionic reflection groups with primitive complexi-

fication, Cohen had to employ the use of root systems and engage in a substantial

analysis of them. All of these can be understood in the context of Spin � quite easily.

In the vector representation they correspond to rotation subgroups of irreducible

five-dimensional reflection groups. Now the analysis presented here is not com-

plete. Finding all the finite ��� ��	4� subgroups requires a detailed knowledge of all

the finite ��� ��
4� subgroups. However these are far easier to work with then � �U��	��
directly. In Cohen’s analysis he had to employ many additional technical and non-

trivial results, while also relying on his earlier classification of the finite complex

reflection groups. He also had to separate out the various groups in different cat-

egories, and do separate analysis in order to show that these were the only finite

reflection groups. It is interesting to notice how his groups can be understood more

easily and in a more unified fashion in the context of Spin � . The techniques used in

the Spin � context also yield many additional subgroups, which were not discussed

in [5].

6.5 The Cayley Polytopes

First of all the quaternionic polytopes are examples of Cayley polytopes.

Theorem 6.5.1 All quaternionic polytopes in
� �

are Cayley polytopes.

Proof: ��� ��	4� � � Spin � � Spin � and all such quaternionic polytopes have
� � �

as

an edge. Thus all the edges are Cayley planes and the polytope is Cayley. More-
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� �U��	�� Subgroup Order Image in ��� ��
4�
� � � � � � ��� �'� � � 
 	 � � � 	�

�
� � � � � � ��� �'� ����/�� � � 
�� �

�
� � 	�� � � � � � � � � � � 	 ��/ � - � � � # � � � � �J� � � � 	�� � � � � � � � � � �'� � ��� - � � � # � � � � �J� � � � 	�� � � � � � ��� �'� � � � /�/ ����� 	�

� ��� � � � 	�/ � 	�
� ��� � � � � � / - � � � � �
� � � � � � 
 	�/ � 	�
� � � � � ��� � / � 	�

The group
� 
��

�
�
� is a subgroup of � ��� � of order 2304. It is not a reflection group,

but is generated by elements of the form � � � �� � # � � � where � > �
�� � � and

�'#3��� � > � � ��� � �'� .
Table 6.2: The correspondence between some irreducible Spin � ����� �	� � reflection groups and
��� �	
 � subgroups
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over, these polytopes have associated root systems which make them attractive for

us.

For the more general case of pure Spin � Cayley polytopes we need to make

some generalizations. It will be crucial in generalizing to the Cayley case to under-

stand how to move from a given finite symmetry group to the associated polytope.

Cuypers, [11], makes use of Wythoff’s construction on the graphs of certain quater-

nionic reflection groups. Unfortunately that is not available to us. However since

we are not concerned with making our polytopes regular, we need only consider

the orbit of
� � �

under the action of the associated group. Recall that each of the

groups we considered had an associated lattice in � � . If we take a vector from this

lattice � � �
, we can consider the edge � � � (this is a Cayley four plane). The

orbit of this edge will yield the polytope.

If we had chosen a vector that was not from the lattice, then the resulting poly-

tope would not be uniform. Recall that we can make various real polytopes by

choosing a vector that is orthogonal to multiple root vectors, yet equidistant from

them. The resulting polytope is usually exotic and non-regular. If instead we

choose a vector that is not equidistant from the orthogonal root vectors, we still

get a polytope, however it is usually not uniform. See [24]. Choosing a non-lattice

vector is analogous in the Cayley case.

In computing specifics about the polytopes it will be useful to know the size of

the resulting isotropy subgroups. Recall the the isotropy subgroup of
� � �

is �

defined in Theorem 3.2.2. Elements of � have the following action on
�

,

� � � � � �� �� � � � � # ��� � � � � # � �� � (6.6)
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where � <A> �
. In the vector representation such an element has the following

representation,

� 
 � � � � � � � � � ��� � � �� � � � ��� � # � �'� 
 ��� � � �� � �
� � � � � �'# 
 ��� � � �� ���
� � � � � � �'# � � �0� � � � �'#�� �� �
� �'# � � # ��� � � � � � � �� � (6.7)

Hence the preimage of the isotropy subgroup � is ��� � � � � ��� � � � � ��� � ��� . This

fact allows us to analyze the various polytopes we wish to construct.

For example, starting with � 	� , we see that the isotropy subgroup of
�

, in the

vector representation, is � 	� � � � ���4� � ��� ��� � � � 	� ��� 	� of order 	 � � � 	 � � � � 	 #�# �
�
.

Thus the isotropy subgroup is an index 35 subgroup. Any element of the symmetry

group that leaves the edge � � � invariant must at least fix the subspace
�

and

hence must belong to the double cover of � 	� � � 	� . Moreover this group must leave

fixed the vector � which we can without loss of generality take as �&/ � � � > �
�
. Hence

elements of the isotropy subgroup of this edge must be of the form � � � �R����� > � ,

and belong to the subgroup � 	� � � 	� � � 	� � � 	� . This subgroup is of index 8 in

� 	� � � 	� , hence there are � 
 
�� � 	���/ edges in this Cayley Polytope, with 8 vertices

per edge. Moreover � 	� � � 	� is an index 280 subgroup in � 	� , yielding 280 vertices

and hence 8 edges per vertex. Since the lattice associated to this group is the � �
lattice, and it is manifestly invariant under the action of this group it is trivial to

extend this to a Cayley Honeycomb. However notice that the action of � 	� s double

cover on the � � lattice must be transitive on the long and short roots separately.

Hence, we get the following,

Theorem 6.5.2 Let
� � Spin � be the double cover of � 	� . Let � be its associated � � lattice

in
�

. Let ��� and � � be the integer spans of the short and long lattice vectors, respectively.
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Then the following arrangements of Cayley planes are a lattice periodic Cayley Honeycomb,

� �F� 
�� � � � � � � � > ����� � > � �I� (6.8)

� � � 
�� � � � � � � � > � � � � > � � � (6.9)

Then given any of the many sublattices � � � � , we are assured the existence of

two novel Cayley cycle in � � � � � � � � . � � and � � will be the lifts of these Cayley

cycles to � � . The Cayley polytopes � � and � � are dual to each other in a manner

analogous to the more familiar duality of the cross polytope and the cube.
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