
Claremont Colleges Claremont Colleges

Scholarship @ Claremont Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2003

Designing Smooth Motions of Rigid Objects: Computing Curves in Designing Smooth Motions of Rigid Objects: Computing Curves in

Lie Groups Lie Groups

Ross Monet Richardson
Harvey Mudd College

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses

Recommended Citation Recommended Citation
Richardson, Ross Monet, "Designing Smooth Motions of Rigid Objects: Computing Curves in Lie Groups"
(2003). HMC Senior Theses. 153.
https://scholarship.claremont.edu/hmc_theses/153

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator
of Scholarship @ Claremont. For more information, please contact scholarship@claremont.edu.

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/153?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@claremont.edu

Designing Smooth Motions of Rigid Objects
Computing Curves in Lie Groups

by
Ross Monet Richardson

Weiqing Gu, Advisor

Advisor:

Second Reader:

(Zachary Dodds, Computer Science)

May 2003

Department of Mathematics

Abstract

Designing Smooth Motions of Rigid Objects

Computing Curves in Lie Groups

by Ross Monet Richardson

May 2003

Consider the problem of designing the path of a camera in 3D. As we may

identify each camera position with a member of the Euclidean motions, SE(3), the

problem may be recast mathematically as constructing interpolating curves on the

(non-Euclidean) space SE(3).

There exist many ways to formulate this problem, and indeed many solutions.

In this thesis we shall examine solutions based on simple geometric constructions,

with the goal of discovering well behaved and computable solutions. In affine

spaces there exist elegant solutions to the problem of curve design, which are col-

lectively known as the techniques of Computer Aided Geometric Design (CAGD).

The approach of this thesis will be the generalization of these methods and an

examination of computation on matrix Lie groups. In particular, the Lie groups

SO(3) and SE(3) will be examined in some detail.

Table of Contents

List of Figures iii

Chapter 1: Introduction 1

1.1 The Problem . 1

1.2 Classical Bézier Curves . 3

1.3 Lie Groups and Lie Algebras . 6

Chapter 2: A Simple Approach to Curve Design 11

2.1 Local Parameterization Method . 11

2.2 Difficulties . 12

Chapter 3: Curve Design on SO(3) 16

3.1 Interpolation . 16

3.2 de Casteljau’s Algorithm on SO(3) . 18

3.3 Geometry of SO(3) . 19

Chapter 4: Bézier and Spline Curves on Compact Lie Groups 22

4.1 Bézier Curves on Compact Lie Groups 22

4.2 Properties of Bézier Curves on Compact Lie Groups 24

4.3 Spline Curves on Compact Lie Groups 30

Chapter 5: SE(3) and Non-Compact Lie Groups 32

5.1 The Problem of Bi-Invariance on SE(3) 32

5.2 Metric Structures for SE(3) . 34

5.3 Non-matrix Lie groups and Other Limitations 37

Chapter 6: Knot Insertion and the de Boor Algorithm 39

6.1 Knot Insertion . 39

6.2 The de Boor Algorithm . 44

6.3 Knot Insertion and Further Analysis 45

Chapter 7: Interpolation 48

7.1 Overview of Interpolation in CAGD 48

7.2 Specific Interpolation Problem . 49

7.3 Affine Embeddings and Interpolation 50

7.4 Boundary Constraints . 52

Chapter 8: Conclusion 57

8.1 Further Work . 57

8.2 Recommended Reading . 58

Appendix A: A Matrix Polynomial Approach to Bézier Curves 59

A.1 Introduction . 59

A.2 A First Look at Matrix Polynomials and Polar Forms 61

A.3 Multiaffine Symmetric Maps and Matrix Bernstein Polynomials . . . 63

A.4 A Theory of Matrix Bézier Curves . 68

A.5 Future Work . 73

Bibliography 75

ii

List of Figures

2.1 Local Parameterization Illustration . 12

2.2 Warping of the Exponential Map . 14

5.1 Visualization of Rigid Motions . 33

6.1 A planar diagram for Menelaus’ Theorem. 41

6.2 A Knot Insertion Diagram . 42

6.3 Knot Insertion on Curved Space . 43

6.4 Cubic Spline Example . 46

iii

Acknowledgments

Without the extensive efforts of my advisor, Weiqing Gu, this thesis would

never have gotten off the ground, or indeed kept going. I’m extremely grateful

to her for her instruction, advice, and constant prodding. I’d also like to thank

Zach Dodds for agreeing to read my thesis, and Elizabeth ‘Z’ Sweedyk for encour-

aging me to work in this field as well as listening to me gripe when things went

wrong.

Finally, I’d like to thank Meghan Powers, for her constant support in my senior

year.

iv

Chapter 1

Introduction

1.1 The Problem

In computer animation, it is often desirable to be able to specify the motion of some

rigid object in space. For example, if a camera view is to move in some complicated

manner, one would like to be able to describe this motion analytically. Moreover,

for the purposes of computer animation, one would like to be able to design such a

motion in a way which is easily controlled and computed.

In the mathematical study of rigid motion, it is shown that the position in space

of any rigid object may be equated to an element of the group of Euclidean mo-

tions in R3, SE(3). This group is in fact a Lie group, having the structure of both a

differentiable manifold as well as that of a group. Hence, we can view the prob-

lem of designing the motion of some rigid object as equivalent to the problem of

designing a curve in the space SE(3).

The group of Euclidean motions, SE(3), and the group of rotations in R3, SO(3),

are of special interest because of their relation to rigid motion. As such, some re-

search has been done over the past few decades which examines curve construc-

tion in these spaces. Research in this area was begun by Shoemake in [15]. Shoe-

make’s work utilized the quaternion representation of SO(3) to construct curves

analogous to Bézier curves of CAGD. His idea was to replace linear interpolation

with angular interpolation. Others, including [3] made approaches along the same

lines. A common limitation of this approach is that the curves arrived at are not

2

appropriate for real-time computation.

Recent research in the topic has produced a number of new approaches. The

focus has ranged from the very theoretical work of Park and Ravani, who construct

generalized Bézier curves in Riemannian manifolds in [13], to the more heavily

numeric approaches found in [4] and [14]. While these approaches are greatly

increased in sophistication, they still are limited by numerical difficulties inherent

in their construction.

In this paper we explore a generalization of Bézier curves and spline curves to

the setting of compact Lie groups and related spaces. With our attention focused on

possibly computing such curves, we disregard the classical analytic notion of poly-

nomial curves and instead generalize the underlying algorithm of Bézier curves,

the de Casteljau algorithm, to provide a constructive definition for our desired

curves. Crouch, Kun, and Leite explore an equivalent approach to curve design

in [8] with respect to Bézier curves (though we provide some characterizations of

such curves not explored by the preceding authors). The primary novelty of this

thesis lies in our work on splines and spline interpolation, which does not seem

to appear in the literature. Additionally, we present here a unified approach to

CAGD using notions of geodesic interpolation.

The organization of this thesis is as follows: We begin in this chapter with a

brief review of Bézier curves to give the flavor of the classical theory of CAGD. We

then present the basics of Lie groups and matrix groups, as this is the setting for the

majority of the thesis. In chapter 2 we discuss the technical difficulties surrounding

one obvious generalization of CAGD onto curved space. In the following chapters,

we build up an alternate theory of Bézier curves on curved spaces which is math-

ematically and computationally tenable. We then introduce a definition of spline

curves which is compatible with the Bézier theory thus developed. Finally, we in-

vestigate the topics of knot insertion and spline interpolation using these splines.

3

1.2 Classical Bézier Curves

Computer Aided Geometric Design is concerned with curves and surfaces which

are specified by a discrete set of points and are easily computed. In what follows

we present the construction of the simplest objects in CAGD, Bézier curves. For a

full treatment see [9] and [10].

1.2.1 Multiaffine Maps and Polynomials

We begin with some preliminary definitions about multiaffine functions and poly-

nomials.

Definition 1.2.1 Let E, F be affine spaces (typically Rn). Let f : E → F . We say that f

is an affine map if the following holds

f

(∑
i∈I

λixi

)
=
∑
i∈I

λif(xi),

where the set I is finite and the xi ∈ E. The quantity
∑

i∈I λixi is referred to as a barycen-

tric combination of the points xi.

Definition 1.2.2 Let E, F be affine spaces. A function f : Em → F is a multiaffine

map (specifically, m-affine) if the map is affine in each of its arguments. That is, the map

x 7→ f(x1, . . . , xi−1, x, xi+1, . . . , xm) is an affine map for all i.

Definition 1.2.3 We say that the an arbitrary function f : Em → F (where E and F are

arbitrary sets) is symmetric iff the following holds

f(x1, . . . , xm) = f(xπ(1), . . . , xπ(m)),

where π is a permutation of the set {1, . . . ,m}.

4

Definition 1.2.4 Let E, F be affine spaces. An affine polynomial function of polar degree

m is a map h : E → F such that there is some symmetric m-affine polynomial f : Em →

F , called the m-polar form, with

h(x) = f(x, . . . , x),

for all x ∈ E.

The above preliminary definitions allow us to define polynomial curves, which

shall be the geometric objects of concern to us.

Definition 1.2.5 A polynomial curve in polar form of degree m is an affine polynomial

map F : R → E of polar degree m defined by its m-polar form, which is some m-affine map

f : Rm → E . Here E is some affine space of dimension at least 2.

1.2.2 Polynomial Curves and Control Points

Let f be a symmetric, m-affine map from Rm → E . Choose some affine basis for R,

(r, s), where r < s. We thus have the following

f(t1, . . . , tm) = f((1− λ1)r + λ1s, t2, . . . , tm)

= (1− λ1)f(r, t2, . . . , tm) + λ1f(s, t2, . . . , tm)

=
m∑

k=0

∑
I∪J={1,...,m}
I∩J=∅,|J |=k

∏
i∈I

(1− λi)
∏
j∈J

λjf(r, . . . , r︸ ︷︷ ︸
m−k

, s, . . . , s︸ ︷︷ ︸
k

).

The above equalities follow since f is symmetric and m-affine.

We may express the λi’s as

λi =
ti − r

s− r
, 1 ≤ i ≤ m,

to obtain

f(t1, . . . , tm) =
m∑

k=0

∑
I∪J={1,...,m}
I∩J=∅,|J |=k

∏
i∈I

(
s− ti
s− r

)∏
j∈J

(
tj − r

s− r

)
f(r, . . . , r︸ ︷︷ ︸

m−k

, s, . . . , s︸ ︷︷ ︸
k

).

5

Written in this form it is easy to see that the m + 1 points

ak = f(r, . . . , r︸ ︷︷ ︸
m−k

, s, . . . , s︸ ︷︷ ︸
k

),

completely determine the m-affine map. The converse is true as well. The points

ak are called Bézier control points.

If we set ti = t for all i, then the coefficients of the control points become(
m

k

)(
s− t

s− r

)m−k(
t− r

s− r

)k

.

These are polynomials in t which are called the Bernstein polynomials of degree m

over [r, s], labeled as Bm
k [r, s](t). Observe that the polynomial function associated to

f is given by h(t) = f(t, . . . , t), and so by our discussion is given by

h(t) =
m∑

k=0

(
m

k

)(
s− t

s− r

)m−k(
t− r

s− r

)k

f(r, . . . , r︸ ︷︷ ︸
m−k

, s, . . . , s︸ ︷︷ ︸
k

).

Definition 1.2.6 To any m + 1 points {a1, . . . , am} in an affine space E we define the

Bézier curve determined by these points, B(t), as

B(t) =
m∑

k=0

Bm
k [r, s](t)ak.

Bézier curves posses many useful geometric properties that make them useful

for design purposes. For instance, a Bézier curve lies entirely within the convex

polygon determined by the Bézier control points. See [10] for more details.

1.2.3 The de Casteljau Algorithm

The definition of a Bézier curve via a polar form is more than just mathematically

convinient. Rather, Bézier curves are quickly and efficiently computable using sim-

ple computer arithmetic.

It is clear from the discussion in the previous section that the m+1 control points

{a1, . . . , am} determine the value of an m-affine map. However, because the map is

6

multi-affine, we may make a stronger statement. Observe that if t = (1− λ)r + λs,

and f is a bi-affine map, then

f(t, t) = (1− λ)f(r, t) + λf(s, t),

and so f(t, t) is an affine combination of the points f(r, t) and f(s, t). Further,

f(r, t) = (1− λ)f(r, r) + λf(r, s),

and so f(r, t) (similarly f(s, t)) is an affine combination of the points f(r, r) = a1

(f(s, s) = a3) and f(r, s) = a2. Hence, we observe that starting from the Bézier

control points we may obtain intermediate terms by affine combination, arriving in

a finite number of iterations at f(t, t) = F (t), the polynomial curve at an arbitrary

parameter point t.

The above process is easily generalized to m-affiine maps. The algorithm de-

scribed by this process is referred to as the de Casteljau algorithm.

1.3 Lie Groups and Lie Algebras

The following is a minimal introduction to Lie groups and Lie algebras. For a basic

introduction see Chapter 1 of [6]. A more complete introduction may be found

in [7].

1.3.1 Definitions

Definition 1.3.1 A Lie group is a group G with a differentiable structure such that the

mapping G×G → G given by (x, y) → xy−1, x, y ∈ G, is differentiable.

Definition 1.3.2 The tangent space of the identity e of a Lie group G, TeG, is called the

Lie algebra, g, of the Lie group G when equipped with a certain bilinear operation [,] :

TeG× TeG → TeG.

7

We shall ignore the bilinear operation referenced in the definition, sufficing to note

that such an operation always exists and is unique, and thus every Lie group pos-

sesses a unique Lie algebra. This thesis requires only the metric structure on TeG.

Recall the exponential map is a map from the tangent space of a differentiable

manifold to the manifold itself. Further, this map is always defined in some neigh-

borhood of every point. As such, the exponential map provides a useful mapping

from the Lie algebra of a group to the Lie group itself. In general, this map is

neither injective nor surjective.

Another useful mapping in the theory of Lie groups is the adjoint mapping.

Consider the following action of h ∈ G on elements g ∈ G.

g 7→ hgh−1.

The differential of this action is denoted by Adh and is known as the adjoint map-

ping.

A related map to the adjoing mapping is the confusingly named adjoint action,

denoted adA (A ∈ g), given by

adA : X 7→ [A, X], A,X ∈ g,

where the reader is reminded that [·, ·] is the bilinear form associated with the Lie

algebra g.

1.3.2 Matrix Groups

The group GLn(R) consisting of non-singular elements of Mn×n(R) has a natural

differentiable structure inherited from Rn2 , and is thus a Lie group. Many exam-

ples of Lie groups may be realized as subgroups of GLn(R). Further, the exponen-

tial map when restricted to matrix groups (inheriting the Euclidean metric from

GLn(R)) is the standard matrix exponential defined by

exp A = I + A +
A2

2!
+

A3

3!
+

8

The Adjoint mapping AdA is given by

AdA : X 7→ AXA−1, X ∈ gl(n, R)

in the matrix case.

The following two matrix groups are of use to questions in kinematics.

1.3.3 SO(3): The Group of Rotations in R3

A rigid rotation is a map which preserves length and angle and fixes the origin.

Such rotations in R3 may be realized as orientation-preserving orthogonal matrices

SO(3) =
{
A ∈ M3×3|AT A = I, det A = 1

}
.

If we let A(t) ∈ SO(3) be a curve which passes through I at t = 0, then since

A(t)T A(t) = I for all t, we differentiate to obtain

d

dt
I|t=0 =

d

dt
(A(t)T A(t))|t=0

0 = A′(0)T A(0) + A(0)T A′(0)

= HT + H = 0

Here H is the tangent vector H = A′(0). Thus every member of the tangent

space Te(SO(3)) = so(3) is skew symmetric. Further, if H is skew-symmetric, we

may set γ(t) = exp(tH), which is a curve in SO(3) with γ′(0) = H . Thus we have

the characterization

so(3) =
{
H ∈ M3×3|H = −HT

}
.

Consider the operator ·̂ defined on vectors in R3 as:

·̂ : ω =


ω1

ω2

ω3

 7→ ω̂ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

.

9

Simple computation shows that

ω̂v = ω × v, ∀v ∈ R3.

The elements of so(3) may be interpreted physically, such that an element ω̂

represents a rotation about the axis ω with angle ‖ω‖. Thus we may view elements

in the Lie algebra as generators of rotations. The elements,

L1 =


0 0 0

0 0 −1

0 1 0

 L2 =


0 0 1

0 0 0

−1 0 0

 L3 =


0 −1 0

1 0 0

0 0 0


are thus generators of rotations about the 3 coordinate axes. They also form a basis

for so(3), and thus we see that any rotation is generated by a linear combination of

these rotations.

Finally, SO(3) is a compact Lie group, and thus may be endowed with a bi-

invariant metric.

1.3.4 SE(3): The Group of Ridid Motions in R3

A rigid motion is an orientation preserving map which also preserves length and

angle. A fundamental result of differential geometry states that every such motion

may be represented as the composition of a rigid rotation and a translation. Hence,

the rigid motions of R3 are elements of the the set SO(3) × R3. We may give this

set the product differentiable structure, and further we may consider this set as a

group SO(3)nR3 formed by a semi-direct product. It can be shown that this forms

a (non-compact) Lie group.

We may represent SE(3), the group of rigid motions (with the group operation

of composition) as a matrix group. Each element of M ∈ SE(3) corresponds to a

rotation and a translation, and hence an element R ∈ SO(3) and ~v ∈ R3. We may

10

set

M =

 R ~v

0 1

.

It is easily verified that the set of all such matrices form the proper subgroup

under matrix multiplication. It is also easy to verify that the Lie algebra se(3) is

composed of all matrices of the form H ~v

0 0

, H ∈ so(3), ~v ∈ R3.

We may provide a basis for se(3) as follows: The basis elements {L1, L2, L3}

of so(3) may also be considered basis elements of se(3) corresponding to the pure

rotations. Represented in matrix form we have:

L1 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 L2 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 L3 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 .

Similarly, the standard basis of R3 extends to a basis of the subspace of pure

translations as follows:

L4 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 L5 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 L6 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 .

Chapter 2

A Simple Approach to Curve Design

Our goal is the generalization of the techniques of Computer Aided Geometric

Design to curved spaces. In this chapter we discuss an approach to generalizing

CAGD by utilizing the local affine structure of the coordinate neighborhoods of

our curved space.

2.1 Local Parameterization Method

Consider some curve c : (−ε, ε) → M , where Mn is a Riemannian manifold. For

each t on which c is defined, let (x, U) denote some chart in the differentiable struc-

tures of M which contains the point c(t). Then the map b = x ◦ c : (−ε, ε) → Rn is

the continuous image of c(t) in the affine space Rn. Hence, x−1 ◦ b = c. Thus, we

observe that designing the curve c is equivalent to the problem of designing the

curve b locally in an affine space.

Example 2.1.1 Consider the matrix Lie group SO(3). In a neighborhood about the iden-

tity, the exponential mapping provides a diffeomorphism from so(3) onto SO(3). Thus, a

curve A(t) ∈ so(3) is mapped to a curve eA(t) via this mapping. This is attractive from a

design and computational view point. As so(3) is a (finite dimentional) vector space, and

thus an affine space, we can utilize the techniques of CAGD in this setting1.

In general, matrix groups provide this sort of computational structure. The Lie

algebra of the group is a finite dimensional vector space of matrices. The exponen-

tial mapping may be computed numerically for any such matrix, and in the case of

1See the appendix for an account of CAGD in a vector space composed of matrices.

12

n

explog

M M

R

Figure 2.1: Mapping neighborhoods of a manifold under the logarithm mapping (inverse to the
exponential mapping) maps the control points into the affine space Rn on which we may do CAGD.

some groups such as SO(3) and SE(3) exact closed forms for the exponential map

allow for efficient, high-precision computation. Moreover, on matrix groups the

existence of the logarithm mapping, which is inverse to the exponential mapping,

allows for control points on the group to be mapped to pre-images in the Lie al-

gebra. Thus, curve design on such a group follows the program outlined in figure

2.1.

2.2 Difficulties

In practice, the program for curve design outlined in the last section is rife with

many technical difficulties. The choice of the exponential map, while advanta-

geous from a computational viewpoint, is problematic. First, in general the ex-

13

ponential map is neither surjective nor injective. The space SO(3) provides an

example of a Lie group on which the exponential map is surjective but not injec-

tive (for ω ∈ R3, we have exp(ω̂) = exp(−ω̂), expressing the fact that rotations of

±π about some axis result in the same rotation). SL(n), the group of matrices with

determinant 1, provides an example of a group for which the exponential map is

not surjective.

A related problem is the multivalued nature of the logarithm mapping. The

choice of preimage of some group element under the exponential mapping will

affect the resultant curve. For example, if an element of SO(3) has ω̂ for a preimage

under the exponential map, it will also have

‖ω‖+ 2nπ

‖ω‖
ω̂, n ∈ Z

as a preimage.

The most troubling difficulty of this program, however, is the dependence on a

particular parameterization of the manifold for constructing curves. The intrinsic

geometry of the manifold is thus not used in the construction. It is known that for

spaces of non-zero sectional curvature, the exponential mapping is not in general

a local isometry. Intuitively, this expresses the fact that the geometry of the curve

constructed in affine space is not preserved when it is mapped onto the manifold

via the exponential map. Moreover, even in spaces of constant sectional curvature,

the geometry of the curve in the affine space becomes “warped” as a function of

the distance from the curve to the origin of tangent space (or Lie algebra).

To see this, let p be a point in M . Define f to be the parameterized surface

f(t, s) = expp tv(s), 0 ≤ t ≤ 1, −ε ≤ s ≤ ε,

where v(s) ∈ TpM with v(0) = v and v′(0) = w ∈ Tv(TpM) ≈ TpM . If we choose

w such that 〈v, w〉 = 0, and restrict |v| = |w| = 1, then we obtain the following

formula:

14

p

p
w

v

TMp

0

exp

Figure 2.2: An illustration of how translates of a line segment through the origin of TpM “warp”
under the exponential map. The deviation of these segments from geodesics increases with the
distance from the origin.

∣∣∣∣∂f

∂s
(t, 0)

∣∣∣∣ = t− 1

6
K(p, σ)t3 + R(t), lim

t→0

R(t)

t3
= 0,

about t = 0, where σ is the subspace spanned by v and w in TpM and K(p, σ) is

the sectional curvature at p of the subspace σ. (see [6] for proof).

This provides a measure of how fast the geodesics from p spread apart. Alter-

nately, consider the two lines spanned by v and w in TpM . If we translate the line

spanned by w along v so that it remains parallel to the original line spanned by w,

then we may view ∂f
∂s

(t, 0) to be the degree of “warping” of this line in a neigh-

borhood of the line spanned by v (see figure 2.2). Hence, the image of a curve in

the tangent space of some manifold (under the exponential map) will in general

depend on the basepoint of the exponential map.

Hence, any generalization of CAGD to curved spaces which is based on specific

parameterizations of a manifold will meet with the difficulties outlined above. If

we seek to avoid these difficulties, then, we must appeal to a construction which

15

relies only on the intrinsic geometry of the manifold.

Chapter 3

Curve Design on SO(3)

In this chapter we discuss a different method than that of the last chapter for

promoting the techniques of CAGD onto the group SO(3). Instead of relying on the

use of actual affine spaces, and thus the resulting dependence on specific param-

eterizations, we shall instead seek a generalization of the notion of linear interpo-

lation on curved spaces and use this notion to extend the geometric constructions

of CAGD. In this way we shall construct curves defined using only the intrinsic

geometry of the space. This method shall prove more tenable for our purposes,

and thus shall serve to introduce the techniques discussed in the remainder of this

thesis.

3.1 Interpolation

3.1.1 Riemannian Manifolds

In [13] Park and Ravani seek to extend the notion of Bézier curves in Rn to the

more general setting of Riemannian manifolds. Noting that Bézier’s original con-

struction of these curves involved the notion of an osculating plane, which in turn

requires one to view a manifold as embedded in some ambient Euclidean space,

Park and Ravani were led to instead consider the de Casteljau algorithm to define

Bézier curves as such a definition uses only the intrinsic geometry of the manifold.

The de Casteljau algorithm relies on the notion of linear interpolation in Eu-

clidean space. The natural generalization of straight lines in a manifold is the (ar-

clength) minimizing geodesic. If there exists a unique minimizing geodesic between

17

two points in a Riemannian manifold, then interpolation between these points be-

comes well-defined. Hence, the generalization of Park and Ravani prescribes the

use of exactly this manner of interpolation. This provides a complete mathematical

description of how one generates generalized Bézier curves in a Riemannian man-

ifold if unique minimizing geodesics exist between the points to be interpolated.

The existence of minimizing geodesics between two points, however, is not

guaranteed in general for a Riemannian manifold (see [6] for a good discussion).

Park and Ravani restrict their attention to complete manifolds, a class of Riemannian

manifolds for which such geodesics always exist. The uniqueness of minimizing

geodesics, however, is still not guaranteed.

3.1.2 Lie groups and SO(3)

Let us consider the question of interpolation on the Lie group SO(3). As SO(3)

is compact, it is complete, and so we have the existence of minimizing geodesics

between any two points by connectivity. We also require uniqueness of such a

geodesic if we are to define (geodesic) interpolation. To answer this question, we

examine the exponential map at the identity e. If we have an element ω̂ ∈ so(3)

then we have the following analytic expression (known as the Rodriguez formula)

for its image under the exponential map,

exp(ω̂) = I +
sin ‖ω‖
‖ω‖

ω̂ +
1− cos ‖ω‖

‖ω‖2
ω̂2. (3.1)

For R ∈ SO(3) with Tr(R) 6= −1, the inverse logarithm map is given by the

formula,

log(R) =
φ

2 sin φ
(R−RT), (3.2)

where φ is such that 1 + 2 cos φ = Tr(R) and |φ| < π. The constraint Tr(R) 6= −1

corresponds to the geometric fact that rotations of ±π degrees about some axis are

18

equivalent.

Thus, we see that if we restrict the exponential map at the identity to the ball

B(0, π) of radius less than π centered around the origin then the exponential map

is in fact an embedding. Hence, for every point p ∈ U = expe(B(0, π)) there exists

a unique minimizing geodesic in SO(3) with endpoints e and p. As such, we may

define interpolation between the identity and point in U .

Definition 3.1.1 The λ−interpolant, interpλ(R), from the identity to a point R = expe(ω̂) ∈

U is the unique point given by

interpλ(R) = expe(λω̂) 0 ≤ λ ≤ 1. (3.3)

It is then a simple matter to extend the notion of interpolation to any points

which are sufficiently close in SO(3).

Definition 3.1.2 The λ−interpolant, interpλ(A, B) of A, B ∈ SO(3) such that A−1B ∈

U is given by

interpλ(A, B) = A · interpλ(A
−1B). (3.4)

Remark 3.1.3 The definitions given here may be viewed as interpolating along the one-

parameter subgroups of SO(3) and their translates. The conditions on the elements A, B

enforce the geometric condition that they are not related by a rotation of ±π about some

common axis.

3.2 de Casteljau’s Algorithm on SO(3)

With an adequate notion of interpolation, we are ready to construct an algorithm

on SO(3) analogous to de Casteljau’s algorithm.

19

3.2.1 The Algorithm

Algorithm 3.2.1 (Modified de Casteljau on SO(3))

Input: A sequence of distinct elements {R0, . . . , Rn} in SO(3) which obey the con-

dition R−1
i Ri+1 ∈ U, 0 ≤ i < n and real numbers r, s, t with r ≤ t ≤ s and r 6= s.

Initialization: Set bi,0 = Ri, 0 ≤ i ≤ n, and put λ = (t− r)/(s− r).

Iteration: For stage j (proceeding from j = 1 to j = n) compute the bi,j using the

formula

bi,j = interpλ(bi,j−1, bi+1,j−1), 0 ≤ i ≤ n− j. (3.5)

Output: Return the point b0,n.

In other words, we have defined a curve which is valued at b0,n constructed as

above with parameter value t.

Remark 3.2.2 The observant reader will note that at the iteration step in the above algo-

rithm, there remains the subtle issue of whether a λ−interpolant exists for all consecutive

points bi,j, bi+1,j . The conditions on the input points certainly guarantee the existence of

such interpolants for j = 1, but it is not clear as to whether b−1
i,j bi+1,j ∈ U , as is necessary

for interpolation. We shall see in the following chapter that this condition does indeed hold,

making the above algorithm well defined.

3.3 Geometry of SO(3)

One may introduce many metrics on SO(3) corresponding to physical or other de-

sirable properties. For robotics applications, it is often the case that some actuators

move more easily than others. Thus, we might assign different weights to the co-

ordinate axes. In the basis {L1, L2, L3} of so(3), one obtains a metric that looks

20

like 
wx 0 0

0 wy 0

0 0 wz


for suitable chosen weights wx, wy, wz.

For efficient computational purposes, however, there is a clear choice of metric.

Consider the following inner product defined by setting

〈X, Y 〉 = −Tr(XT Y), X, Y ∈ so(3), (3.6)

and propagating it to the entire group by left translation. It is readily verified that

this is in fact a bi-invariant metric on SO(3). Further, one may show that this metric

satisfies:

〈AdAX, AdAY 〉 = 〈X, Y 〉, ∀A ∈ SO(3).

Thus, we may say that such a metric is Ad-invariant. Indeed, this characterizes all

Ad-invariant metrics on SO(3) up to an arbitrary constant.

By assuming the matrix exponential mapping (in the case of SO(3) given by

the Rodriguez formula) corresponds to the geometric exponential map, we have

actually assumed a metric structure on SO(3). Specifically, we have assumed the

structure inherited from GL(n) thought of as the manifold Rn2 with standard Eu-

clidean structure. This metric is in fact an Ad-invariant metric, and so it takes the

general form of equation 3.6.

Note that under this metric we may compute:

〈Li, Li〉 = 2, i = 1, 2, 3.

Thus, if we desire this metric to agree with the Euclidean metric on R3 (that is,

we desire ‖ω̂‖ = ‖ω‖, ω ∈ R3), then we need rescale the above metric. Thus, we

shall understand to use the following metric on SO(3) unless otherwise specified:

21

〈X, Y 〉 = −1

2
Tr(XT Y), X, Y ∈ so(3). (3.7)

We shall see in the following chapter how the notions of bi-invariance and Ad-

invariance are critical to certain geometric properties we desire in Bézier and spline

curves.

Chapter 4

Bézier and Spline Curves on Compact Lie Groups

In this chapter we shall define Bézier and spline curves on compact Lie groups,

following the methodology of the previous chapter. In particular, we generalize

the de Casteljau and de Boor algorithm in this setting, and use these algorithms to

provide a constructive definition of such curves. Additionally, we provide some

analysis of these curves, especially in relation to properties produced via the clas-

sical theory.

4.1 Bézier Curves on Compact Lie Groups

In the previous chapter we introduced a modification of the de Casteljau algorithm

using the notion of geodesic interpolation. Consider the following more general

setting. Let G be a compact Lie group (with associated Lie algebra g) equipped

with a bi-invariant metric. As some open neighborhood about the identity, e, is

diffeomorphic to a ball centered about Te(G), define U = expe(B(0, r)), where r is

the largest radius such that expe(B(0, r)) is an embedding.

Our notion of geodesic interpolation is easily generalized:

Definition 4.1.1 The λ−interpolant, interpλ(g1, g2) of the points g1, g2 ∈ G is defined as

follows if g−1
1 g2 ∈ U :

Let V ∈ B(0, r) ⊂ Te(G) be the unique element such that

g−1
1 g2 = expe(V).

Then

23

interpλ(g1, g2) = g1 expe(λV). (4.1)

We then have the following algorithm:

Algorithm 4.1.2 (Modified de Casteljau on compact Lie groups)

Input: A sequence of distinct elements {g0, . . . , gn} (called control points) in G which

obey the condition g−1
i gi+1 ∈ U, 0 ≤ i < n, and real numbers r, s, t with r ≤ t ≤ s

and r 6= s.

Initialization: Set bi,0 = gi, 0 ≤ i ≤ n, and put λ = (t− r)/(s− r).

Iteration: For stage j (proceeding from j = 1 to j = n) compute the bi,j using the

formula

bi,j = interpλ(bi,j−1, bi+1,j−1), 0 ≤ i ≤ n− j. (4.2)

Output: Return the point b0,n.

Proposition 4.1.3 Algorithm 4.1.2 is well defined.

Proof. We need only demonstrate that if the {bi,j}i, j fixed, satisfy the relationship

b−1
i,j bi+1,j ∈ U

then the {bi,j+1}i satisfy

b−1
i,j+1bi+1,j+1 ∈ U.

For points g1, g2 ∈ G, set the function d(g1, g2) to be the infimum of the arclength

of all piecewise differentiable curves joining g1 to g2. This function is a metric on

the path components of G (see [6]).

The condition that the point g−1
i gi+1 ∈ U is exactly the condition that the points

gi and gi+1 are connected by a geodesic of length at most R, where R is fixed for

24

G. Hence, it is sufficient to demonstrate that two points a and b have distance less

than R in the metric d if they are to satisfy a−1b ∈ U .

Given points a, b, c ∈ G with a−1b ∈ U and b−1c ∈ U , we shall demonstrate that

interpλ(a, b)−1interpλ(b, c) ∈ U .

Examine d(interpλ(a, b), b). By definition, there exists a geodesic from a to b

of length l1 < R on which interpλ(a, b) lies. The subpath of the geodesic from

interpλ(a, b) to b is of length (1−λ)l1. Thus, d(interpλ(a, b), b) ≤ (1−λ)l1 ≤ (1−λ)R.

Similarly, d(b, interpλ(b, c)) ≤ λR. By the triangle inequality, we have

d(interpλ(a, b), interpλ(b, c)) ≤ d(interpλ(b, c), b) + d(b, interpλ(b, c))

≤ (1− λ)R + λR

= R

Thus, our result follows. �

Definition 4.1.4 We call curves generated by algorithm 4.1.2 Bézier curves on the group

G. It is clear that in Euclidean space, the generalized curves agree with traditional Bézier

curves.

Proposition 4.1.5 Bézier curves on G are smooth.

Proof. As the constructed curve is the finite composition of smooth operations, the

resultant curve is thus smooth. �

4.2 Properties of Bézier Curves on Compact Lie Groups

In this section we examine control properties of Bézier curves on G which are re-

lated to the standard properties of classical Bézier curves.

Proposition 4.2.1 (Left-invariance) If γ(t) is the Bézier curve on G generated on points

{g0, . . . , gn} and h ∈ G, then hγ(t) is the curve generated on points {hg0, . . . , hgn}.

25

Proof. It suffices to show that interpλ(gi, gi+1) is left-invariant in the sense that

h interpλ(gi, gi+1) = interpλ(hgi, hgi+1).

interpλ(hgi, hgi+1) = hgi exp(λ log((hgi)
−1hgi+1))

= hgi exp(λ log(g−1
i h−1hgi+1))

= hgi exp(λ log(g−1
i gi+1))

= h interpλ(gi, gi+1)

�

Proposition 4.2.2 (Invariance under affine parameter change) If the Bézier curve on

G, γ(t), generated on points {g0, . . . , gn} is parameterized on [r, s], then γ(t) agrees with

γ′((t−r)/(s−r)), where γ′(t) is the curve generated on the same points and parameterized

on [0, 1].

Proof. This follows simply from how the parameter λ is generated in algorithm

4.1.2. �

Proposition 4.2.3 (Symmetry) If γ(t) (parameterized on [r, s]) is the Bézier curve on G

generated on points {g0, . . . , gn}, then the Bézier curve on G generated on points {gn, . . . , g0}

parameterized by [r, s] is γ(r + s− t).

Proof. One need only observe that the geodesics between adjacent points are

unique. Hence, it is clear that

interpλ(a, b) = interp1−λ(b, a).

Thus, at each iteration of algorithm 4.1.2 the same points are generated, and thus

the resultant curves agree for each λ. �

26

Proposition 4.2.4 (Geodesic Precision) If the control points lie sequentially on a geodesic

such that the geodesic is minimizing between neighboring points, then the resulting curve

lies on the geodesic.

Proof. As the geodesic is minimizing between neighboring points, the interpolant

of any two points will thus lie on the geodesic. The points produced by the first

round of interpolation will lie in a configuration which satisfies the conditions of

the proposition (by a proof similary to proposition 4.1.3), and so we may iterate

this process. �

Note that in the above proposition the conditions on the configuration of points

is very strict. In the general manifold setting, it is possible to have points lie on a

geodesic such that the subarc of the geodesic between them is not length mini-

mizing (the cylinder is a tradition example of this). It is not known, at least to

this author, if such geodesics exist in compact Lie groups. If not, the requirements

of the above propositions might be simplified significantly. In any case, the con-

trast between the above proposition and the linear interpolation property of Bézier

curves in affine space shows the complications of curved geometry.

Proposition 4.2.5 Let G be a Lie group. If g ∈ G is in U implies that g0gg−1
0 ∈ U for all

g0 ∈ G, then geodesic interpolation is right-invariant.

Proof.

Lemma 4.2.6 Let A ∈ G and V ∈ g such that exp(V) ∈ U . Then,

log(A exp(V)A−1) = AdA log(V).

Proof. It is true that A exp(V)A−1 = exp(AdAV) (see for example [16]). Hence, as

A exp(V)A−1 ∈ U by the hypothesis of the proposition, the logarithm mapping is

27

well defined on this element. Application of log to both sides yields the desired

equality.

�

Let gi and gi+1 satisfy g−1
i gi+1 ∈ U (hence there is a unique length-minimizing

geodesic between them). Then, if h ∈ G, we have the following:

interpλ(gih, gi+1h) = gih exp(λ log((gih)−1(gi+1h)))

= gih exp(λ log(h−1(g−1
i gi+1)h)))

(by lemma 4.2.6) = gih exp(λAdh−1 log(g−1
i gi+1)))

= gihh−1 exp(λ log(g−1
i gi+1)))h

= gi exp(λ log(g−1
i gi+1)))h

= interpλ(gi, gi+1)h

�

Thus we obtain the immediate corollary.

Corollary 4.2.7 Let G be a Lie group with an Ad-invariant metric. Then the de Casteljau

algorithm produces curves which are bi-invariant.

Proof. This is a simple combination of propositions 4.2.1 and 4.2.5, since an Ad-

invariant metric satisfies the premises for 4.2.5.

�

We note that, in particular, bi-invariant metrics are Ad-invariant. Thus, as every

compact Lie group may be endowed with a bi-invariant metric, such a Lie group

will allow for bi-invariant Bézier curves on G according to our construction.

For the purposes of further analysis, it is useful to provide an alternate (though

equivalent) characterization of Bézier curves on compact Lie groups. The remain-

der of this section is an exposition of the work of Crouch et. al. in [8].

Given distinct points g0, . . . , gn ∈ G, define V 1
k , k = 0, . . . , n− 1 by:

xk+1 = gk exp(V 1
k), k = 0, . . . , n− 1. (4.3)

28

Further, for every t ∈ [0, 1] and k = 0, . . . , n − 1, define the elements of the Lie

algebra V j
k (t) by:

exp(V j
k (t)) = exp((1− t)V j−1

k (t)) exp(tV j−1
k+1 (t)), j ≥ 2. (4.4)

Furthermore, for every t ∈ [0, 1] we define a sequence of points in G by the

following recurrance:

p0(t) = g0

pk(t) = pk−1(t) exp(tV k
0 (t)), k ≥ 1.

The expression when k = n gives

pn(t) = g0 exp(tV 1
0) exp(tV 2

0 (t)) · · · exp(tV n−1
0 (t)) exp(tV n

0 (t)). (4.5)

It will turn out that pn(t) is exactly the Bézier curve defined on the points

g0, . . . , gn. The following propositions give a characterization of the derivative of

such a curve. The mechanics and statement of such results assume our group is a

matrix group. For compact Lie groups, this offers no difficulty as we may consider

such groups represented as matrix groups.

Proposition 4.2.8 The derivatives of the polynomial curve t → pn(t) ∈ G defined by

(4.5) satisfy the following boundary conditions:

d

dt
pn(t)

∣∣∣∣
t=0

= ng0V
1
0 ,

d

dt
pn(t)

∣∣∣∣
t=1

= ngnV
1
n−1.

Thus, we may characterize the derivative at the endpoints of the Bézier curve.

A characterization of the second covariant derivative is also available via the

following proposition.

Proposition 4.2.9 If t → pn(t) is the polynomial curve in G defined in (4.5), then:

29

D2

dt2
pn(t)

∣∣∣∣
t=0

=
n!

(n− 2)!
g0Υ0(V

1
1 − V 1

0),

D2

dt2
pn(t)

∣∣∣∣
t=1

=
n!

(n− 2)!
gnΥ1(V

1
n−1 − V 1

n−2),

where Υ0 and Υ1 are respectively the inverses of the operators∫ 1

0

exp(u adV 1
0)du and

∫ 1

0

exp(−u adV 1
n−1)du.

Finally, for completeness, we demonstrate that the curve defined by t → pn(t) is

equivalent to the Bézier curve defined on the points g0, . . . , gn ∈ G. In the following

proposition we relate the V j
i to points produced by the de Casteljau algorithm.

Proposition 4.2.10 Let the points {g0, . . . , gn} ∈ G be given such that g−1
i gi+1 ∈ U , and

let t ∈ [0, 1]. Generate the points ba,b(t), b = 0, . . . , n, a = 0, . . . , n− b, according to algo-

rithm 4.1.2 on these points. Similarly, generate the Lie algebra elements V j
i (t) according

to equations 4.3 and 4.4 on these points. Then we have the following:

exp(V j
i (t)) = bi,j(t)

−1bi+1,j(t). (4.6)

Proof. For i = 0 this is readily verified. Assume equation 4.6 holds for all i =

0, . . . , k − 1, and we shall proceed by induction. From equation 4.4 we have that

exp(V k
i (t)) = exp((1− t)V k−1

i (t)) exp(tV k−1
i+1 (t))

(induction hypothesis) = exp((1− t) log(b−1
i,k−1bi+1,k−1)) exp(t log(b−1

i+1,k−1bi+2,k−1))

= exp(−t log(b−1
i,k−1bi+1,k−1))b

−1
i,k−1bi+1,k−1 exp(t log(b−1

i+1,k−1bi+2,k−1))

= b−1
i,k bi+1,k.

Thus the proof follows by induction. �

We thus obtain the immediate result showing equality of the two constructions.

30

Corollary 4.2.11 The Bézier curve defined on points {g0, . . . , gn} ∈ G according to al-

gorithm 4.1.2 which is parameterized on [0, 1] agrees with the curve t → pn(t) defined by

equation 4.5.

Proof. The above corollary implies that

pi(t) = b0,i(t).

Setting i = n furnishes the result. �

4.3 Spline Curves on Compact Lie Groups

In the prior sections we showed how the algorithmic construction of Bézier curves

is naturally generalized to compact Lie groups via the de Casteljau algorithm, with

the resulting curves sharing many properties with affine Bézier curves. In this sec-

tion we offer a constructive definition of spline curves using the de Boor algorithm.

Definition 4.3.1 We define a knot sequence to be a nondecreasing sequence {uk}k∈Z

with uk ∈ R such that every uk (knot) has finitely many occurrence’s. A knot uk in a knot

sequence has multiplicity n ≥ 1 iff it occurs exactly n times. For any natural number

m ≥ 1, a knot sequence has degree 1 m iff every knot has multiplicity at most m. A knot

uk of multiplicity m is a discontinuity (knot). A knot of multiplicity 1 is a simple knot.

A knot sequence is uniform iff uk+1 = uk + h for some fixed h ∈ R+. Every knot in such a

sequence is thus simple.

Definition 4.3.2 Given a Lie group G, there exists some maximum radius r ∈ R such that

expe |B(0,r) is a diffeomorphism (here expe denotes the exponential map at the identity). A

control point sequence is a sequence {dk}k∈Z of points dk ∈ G such that

d−1
k dk+1 ∈ expe(B(0, r)) = U, ∀k.

1Also referred to as degree of multiplicity.

31

Spline curves in affine space are computed using the de Boor algorithm, a modi-

fication of the de Casteljau algorithm. We shall proceed to define spline curves on G to

be those curves produced by the following generalization of the de Boor algorithm.

Algorithm 4.3.3 (Modified de Boor on compact Lie groups)

Input: A control point sequence {dk}k∈Z with dk ∈ G.

A knot sequence {ui} corresponding to the control points.

A natural number m ≥ 1 specifying the degree of the sequence and a parameter t.

Initialization: Set I = max {k|uk ≤ t < uk+1}.

If t = uI then set r := multiplicity(uI), else r := 0.

Set di,0 := di − 1, I −m + 1 ≤ i ≤ I + 1− r.

Iteration: For stage j (proceeding from j = 1 to j = m − r) compute the di,j using

the formula

di,j = interpλi
(di−1,j−1, di,j−1) I −m + j + 1 ≤ i ≤ I + 1− r. (4.7)

Where λi =
(

t−ui−1

um+i−j−ui−1

)
.

Output: Return the point dI+1−r,m−r.

Remark 4.3.4 Note that in the above definitions we have constructed an analogue to

Open B-spline curves, those defined on an infinite number of control points. We might

also choose to construct generalized versions of finite and cyclic B-spline curves, though

for the sake of simplicity of exposition we shall not detail such curves herein. The inter-

ested reader is directed to chapter 6 of [10], where such curves are discussed at length. The

generalizations to the compact Lie group setting are clear.

We delay the analysis of these curves to chapter 6, where we may discuss the

parallel topic of knot insertion and address some important related geometric is-

sues.

Chapter 5

SE(3) and Non-Compact Lie Groups

In this chapter we shall examine methods of lifting the techniques of the previ-

ous chapters onto the group of Euclidean motions, SE(3). Our exposition in this

regard is a recapitulation of the work of Altafini [1]. We shall also examine the

possible generalizations of these methods to more general Lie groups, as well as

discuss the limitations of these techniques.

5.1 The Problem of Bi-Invariance on SE(3)

In the previous chapter the setting for our curve construction techniques was the

compact Lie groups. The group of Eucliean motions, however, is non-compact. In-

deed, as a differentiable manifold we may represent the group as SE(3) = SO(3)×

R3, and R3 is not compact.

The prior restriction to compact Lie groups allowed us to assume our group

carried a bi-invariant metric, which in turn showed that our curve construction

process was bi-invariant. On non-compact Lie groups no such guarantee is made,

and indeed it is a theorem that SE(3) carries no bi-invariant metric.

To understand the geometric consequences of this fact, it is useful to construct

elements of SE(3) in the following way:

Let F be a fixed reference frame in R3 (we may say that F is an inertial reference

frame). Let M be a second reference frame. There exists a unique rotation RT and

translation tT whose composition map the frame M to F . Together, they form a

map from the space of frames on R3 to itself (see figure 5.1). Indeed, to each frame

33

T

F

M

T = R + tT

Figure 5.1: A construction of the element T ∈ SE(3) as the rotation RT followed by translation tT
which maps the moving frame M to the fixed frame F .

M on R3 there is a unique map of this form, thus giving a correspondence between

frames on R3 and maps of this kind. Such maps form a group under composition,

and indeed this group has an analytic group action. We refer to this as the group

of Euclidean motions, which is the Lie group SE(3) discussed in the introduction.

Now it is useful to consider some change of the frame M to another frame

M ′. There exists a Euclidean motion TM ′→M which maps the frame M ′ to M . The

composition T ◦ TM ′→M is the Euclidean motion corresponding to the frame M ′.

Considering composition as the operation on SE(3), we see that a change of the

moving frame M is accomplished by right multiplication. Similarly, if we were to

choose a different fixed frame, we would discover that this is equivalent to multi-

plication from the left.

We now return to the issue of a lack of bi-invariant metric on SE(3). As SE(3)

is a Lie group, we can equip it with either a left or right invariant metric. If we

choose a left invariant metric, then any geodesics are independent of the choice of

where we fix the frame F . However, as such a metric will not be right invariant,

we can choose some euclidean motion T ′ such that the geodesic joining points

34

T1 ◦ T ′ and T2 ◦ T ′ ∈ SE(3) will not agree with the geodesic joining points T1, T2 ∈

SE(3) right multiplied by T ′. Thus, in the case of the motion of a rigid object the

choice of where to place the frame on the object affects its trajectory on a geodesic.

Alternately, with the choice of a right invariant metric, we can obtain invariance

of the choice of where the moving frame is affixed, but at the cost of the trajectory

being influenced by the choice of fixed frame.

In general, the choice of one type of invariance over another is not prescribed.

However, as a practical matter, there may be a natural choice for the moving frame.

For example, in the context of the motion of a rigid body, often the geometry of the

body itself dictates the choice of such a frame. Thus, left invariance, or invariance

of the fixed frame is generally more desirable for such applications.

5.2 Metric Structures for SE(3)

Consider the group structure on SE(3). The Levi decomposition gives that SE(3)

is the following semidirect product:

SE(3) = SO(3) n R3.

Hence, while we can consider the group to be the direct product SO(3) × R3

as a manifold, the group structure is more complicated. We shall investigate two

possible metric structures, of which one will include this group structure and one

will not. It should be emphasized that neither of the metrics we investigate is a

natural choice for SE(3) in the sense of providing a natural concept of distance.

However, both of the following metrics are useful in that they are feasible from a

computational point of view, as shall be discussed.

35

5.2.1 Ad-invariant pseudo-Riemannian structure

We may choose a metric by structure on SE(3) by retaining the idea of one-parameter

subgroups. The metric one obtains, however, is pseudo-Riemannian in the sense

that it is non-degenerate but not necessarily positive definite.

Let X, Y ∈ se(3). We may represent X =

 ωx

vx

 ∈ R6 and Y =

 ωy

vy

 ∈ R6,

where ωx, ωy are represented in the basis {L1, L2, L3} and vx, vy are represented in

the standard basis of R3.

Then we may write down the most general form of an Ad-invariant metric on

SE(3) as

〈X, Y 〉Ad−inv = α Tr(ω̂x
T ω̂y) + β〈vx, ωy〉R3 + β〈vy, ωx〉R3 , α, β ∈ R\ {0} .

Note that 〈·, ·〉R3 is the standard inner product on R3. Here, we observe that

on the right hand side the first term on the left is the bi-invariant metric on SO(3).

The latter two summands demonstrate the interaction of SO(3) and R3 in the direct

product. Note that α, β can be either positive or negative.

This metric is well studied. The geodesics produced with this metric are re-

ferred to as screw motions, and the parameters α, β correspond to whether the

geodesic curves have positive or negative energy. Moreover, as this metric is Ad-

invariant, by corollary 4.2.7 the curves produced by the de Casteljau algorithm will

be bi-invariant in the sense of chapter 4.

5.2.2 Double Geodesic

A much simpler metric structure may be obtained by disregarding the group struc-

ture on SE(3) and considering the product metric of the bi-invariant metric on

SO(3) and the standard metric on R3.

Thus, we obtain:

36

〈X, Y 〉d−geo = α Tr(ω̂x
T ω̂y) + β〈vx, vy〉R3 , α, β > 0.

5.2.3 Comparison of Metric Structures

Of the two metric structures given above, the former is left invariant while the

latter is neither. Both, however, rely heavily on the standard metric structures of

the underlying manifolds SO(3) and R3. The reason for this choice is motivated by

computation.

The former choice is indeed the Ad-invariant metric inherited by SE(3) from

GL(4) (when SE(3) is viewed as a matrix group as discussed in the introduction).

Thus the exponential map, as well as the logarithmic map, on SE(3) corresponds

to the matrix version of each of these.

Indeed, as we had a closed form for the exponential map on SO(3), we also

have a closed form on SE(3), given by the following:

expSE(3) :

se(3) → SE(3)

V =

 ω̂ v

03×1 0

 7→ g =

 expSO(3)(ω̂) A(ω̂)v

03×1 1


where

A(ω̂) = I +
1− cos ‖ω‖

‖ω‖2
ω̂ +

‖ω‖ − sin ‖ω‖
‖ω‖3

ω̂2.

Similarly, we have a closed form for the logarithmic map:

logSE(3) :

SE(3) → se(3)

g =

 R p

03×1 1

 7→

 ω̂ A−1(ω̂)p

03×1 0


where here

ω̂ = logSO(3)(R)

37

and

A−1(ω̂) = I − 1

2
ω̂ +

2 sin ‖ω‖ − ‖ω‖(1 + cos ‖ω‖)
2‖ω‖2 sin ‖ω‖

ω̂2.

For the latter metric, the geometry splits into the geometry of the manifolds

SO(3) and R3. Thus, computing geodesics in each of these requires computing

geodesics separately on the rotation and translation components. As the Rodriguez

formula gives a closed formula for the geodesics on SO(3) (and the geodesics in R3

are straight lines), such computations are feasible.

Hence, for either choice of a metric structure on SE(3) we have all the tools

necessary to efficiently compute geodesics. Thus, the techniques for construct-

ing Bézier and spline curves in compact Lie groups via geodesic interpolation are

easily generalized to SE(3). Altafini provides in [1] a good comparison of Bézier

curves generated in this way under the above metrics.

5.3 Non-matrix Lie groups and Other Limitations

As illustrated in our discussion of SE(3), non-compact Lie groups do not in general

have a natural choice of metric. On an arbitrary Lie group, it remains in the hands

of the researcher to determine the important geometric properties of the problem

and to understand the limitations of a given metric.

From a computational perspective, the matrix exponential always agrees with

the metric induced on a matrix group from GL(n). In practice, this may be the only

metric for which we may compute the exponential, and indeed for any matrix we

always can compute the exponential. However, we may not in general expect a

closed formula for the exponential, and thus such a computation may require the

more general tools of numerical analysis. Of course, the computational feasibility

of such a general scheme is dubious at best.

As a final note, we observe the simple fact from Lie group theory that there exist

groups which admit no matrix representation. The traditional example of such a

38

group is the Heisenberg group, which is discussed in texts such as [2]. While this

presents no problem to the theoretical developments of this thesis, the possibility

for actual computation on such a group requires a different approach than that

which we have discussed. This highlights the fact that matrix groups, as opposed

to all Lie groups, are the proper setting on which to discuss computation.

Chapter 6

Knot Insertion and the de Boor Algorithm

In this chapter we explore the interplay between the de Boor algorithm, knot

sequences, and knot insertion in splines on curved spaces. In particular, we discuss

the underlying geometry which allows for a consistent knot insertion procedure

in affine space and show how this geometry affects the generalizations of knot

insertion in curved spaces.

6.1 Knot Insertion

In chapter 4 we introduced a notion of spline curves in a (compact) Lie group. For

the purposes of this section, let {ui}i∈Z denote a knot sequence and {di}i∈Z denote

the associated control points.

6.1.1 Classical Knot Insertion

Before delving into knot insertion in Lie groups, it is worth considering the classical

theory of knot insertion. So, for the moment, we shall consider our di to live in an

affine space.

In classical knot insertion, one “inserts” the knot u into the knot sequence {ui}i∈Z.

As the knot sequence is ordered, u has a well defined position in the sequence. The

knot insertion problem then is to find a corresponding sequence of new control

points {du
i }i∈Z which define the same degree n spline as did the previous control

points before the new knot was inserted.

The classical knot insertion algorithm to do this is the following:

40

Algorithm 6.1.1 (Knot Insertion Algorithm)

Input: A knot sequence {ui}i∈Z, a control point sequence {di}i∈Z, and a knot u.

Initialization: Set I = maxuk≤u≤uk+1
k. If u = uI , then let r = multiplicity(u). Else

r = 0.

Output: The control point sequence {du
i } given by

du
i =


di, i < I − n + 1

ui+n−1−u
ui+n−1−ui−1

di−1 + u−ui−1

ui+n−1−ui−1
di, I − n + 2 ≤ i ≤ I + 1− r

di−1, i > I + 1− r

and the knot sequence including u reordered such that u = uI+1.

Depending on how the theory is developed, the fact that the above algorithm is

a consistent process is non-trivial. By this we mean that we desire the control point

sequence obtained by first inserting a knot u and then a knot v to agree with the

sequence obtained by first inserting v and then u.

In the classical, affine setting, this procedure is consistent. Following Farin in

[9], a proof of consistency is as follows:

Let u be in the interval [u, uI+1] and v in the interval [uJ , uJ+1]. Inserting either

u or v via the above algorithm gives two new knot sequences and control point

sequences. By the algorithm we have the following:

du
i =

ui+n−1 − u

ui+n−1 − ui−1

di−1 +
u− ui−1

ui+n−1 − ui−1

di, I − n + 2 ≤ i ≤ I + 1− r

and

dv
i =

ui+n−1 − v

ui+n−1 − ui−1

di−1 +
v − ui−1

ui+n−1 − ui−1

di, J − n + 2 ≤ i ≤ J + 1− r.

If the intervals [uI−n+2, uI+1−r] and [uJ−n+2, uJ+1−r] are disjoint, then the pro-

cesses above are disjoint, and so we may insert the knots u and v in either order

41

R

A
B

P

C

Q

Figure 6.1: A planar diagram for Menelaus’ Theorem.

and obtain the same control point sequences. Otherwise, we need to show that the

expressions

duv
i+1 =

ui+n−1 − v

ui+n−1 − ui

du
i +

v − ui

ui+n−1 − ui

du
i+1 (6.1)

and

dvu
i+1 =

ui+n−1 − u

ui+n−1 − ui

dv
i +

u− ui

ui+n−1 − ui

dv
i+1 (6.2)

are equivalent.

While direct computation can show these expressions to be equal, there is a

geometric proof of the above which is worth exploring. To demonstrate this proof,

we shall first require a classical result in geometry known as Menelaus’ Theorem,

named for Menelaus of Alexandria1.

Theorem 6.1.2 (Menelaus) Referring to figure 6.1, we have the following equality:

vol(B, P)

vol(P, C)
· vol(C, Q)

vol(Q,A)
· vol(A, R)

vol(R,B)
= 1,

where vol(X, Y) denotes the one dimensional volume (length) of the line segment between

X and Y .

1This result was probably known by Euclid. Menelaus showed in book three of Sphaerica a
similar result for spherical triangles.

42

c
����

����

����

����

	�	

��

�
�

d

d

d

d

d d

d

i−1

i

i+1

i

i i+1

i+1
u

v u

v

����

Figure 6.2: For knot insertion to be well defined, we need to show that c = duv
i+1 = dvu

i+1.

Returning to the task of showing that knot insertion is well defined, we refer to

figure 6.2. By Menelaus’ theorem, we have the following relations:

vol(c, dv
i)

vol(dv
i+1, c)

=
vol(dv

i , d
u
i)

vol(di, dv
i)
·

vol(du
i+1, di)

vol(dv
i+1, d

u
i+1)

and
vol(c, du

i)

vol(du
i+1, c)

=
vol(dv

i , d
u
i)

vol(di, du
i)

·
vol(dv

i+1, di)

vol(du
i+1, d

v
i+1)

.

Calculating the ratios on the right hand side is a simple task given the defini-

tions of the points. The resulting computation gives that

vol(c, dv
i)

vol(dv
i+1, c)

=
u− ui

ui+n−1 − u
and

vol(c, du
i)

vol(du
i+1, c)

=
v − ui

ui+n−1 − v
.

This of course is just another expression of equations 6.1 and 6.2, as so provides

the desired identity.

43

v
i i+1 i+1 i+1

u

v

u

d

d

d

d d d d

i−1

i

i

Figure 6.3: A surface obtained by deforming figure 6.2 locally. The geodesics no longer meet in a
point prescribed by Menelau’s theorem.

6.1.2 Curved Spaces

Now that we have a notion of how a consistent knot insertion algorithm is achieved

in affine space, we consider the same problem in the context of curved spaces.

We may define a knot insertion process in curved space in a similar manner to

the classical theory by replacing linear interpolation with geodesic interpolation.

As the above use of Menelaus’ theorem uses only ratios of arclength, one observes

that the ratios involving only the points
{
di−1, d

u
i , d

v
i , di, d

u
i+1, d

v
i+1, di+1

}
are the same

as those of the classical case. Hence, if there exists some analogue to Menelaus’

theorem in curved space, then the above proof of consistency goes through for

curved spaces.

Unhappily, for arbitrary curved space this is not true. Indeed, even on a surface

we should not expect such a condition to hold. For instance, in reference to figure

6.2, if we place a metric on the plane which is flat except in a neighborhood of the

point c we obtain a surface like the one pictured in figure 6.3. Thus, we may force

the geodesics to intersect in a point such that Menelaus’ theorem no longer holds.

Even more troubling is that in dimension at least 3, we are no longer guaranteed

44

that the geodesics connecting du
i to du

i+1 and dv
i to dv

i+1 even intersect! Clearly, for

general curved spaces we are not guaranteed a consistent knot insertion process.

We call then a space on which Menelaus’ theorem is true (using geodesic in-

terpolation) in convex neighborhoods a Menelaus space. One is then led to seek a

classification of these spaces. As the exponential map is a local isometry for spaces

of vanishing curvature we see that all such spaces are Menelaus spaces. What of

the nonzero constant sectional curvature spaces, of which the Lie groups and gen-

eral symmetric spaces are of most interest to this thesis? At present, we have no

answer for such spaces.

And what about spaces which are not Menelaus. It is clear that such spaces

will not have consistent knot insertion procedures using geodesic interpolation. It

might still be useful to characterize the degree to which the order of the knots

inserted affects the outcome. Indeed, if the constant curvature spaces are not

Menelaus, the possible change due to knot order might be bounded. Again, more

research is required so that we might answer these questions.

6.2 The de Boor Algorithm

We introduced the de Boor algorithm in chapter 4 as a means of defining splines

on a group G. One of the classical results of CAGD is that the insertion of a knot

repeatedly to raise the degree of the knot to n (the degree of the spline) is in fact just

the de Boor algorithm. Our definition of knot insertion on curved space, then, is

meant to correspond with the de Boor algorithm in just this way. However, unless

the knot insertion procedure is consistent as discussed above, this correspondence

holds only if no intermediary knot-insertions are performed.

It is worth noting that the de Boor algorithm, in contrast to the knot insertion

algorithm, does not alter the sequences but instead just produces a single resultant

point. Thus, as the sequences remain unchanged the de Boor algorithm does not

45

suffer from the consistency problem, contrasting with the process of knot insertion.

6.3 Knot Insertion and Further Analysis

Knot insertion is related to more than the de Boor algorithm. Indeed, certain meth-

ods of spline analysis are assisted with the tools of knot insertion. We present two

such methods here, those of polar forms and polygonal convergence.

6.3.1 Polar Forms

One of the great advances in the theory of Bézier curves is the polarization tech-

nique. One may associate to each m−degree polynomial curve F (t) (in affine

space) an associated polar form f(x1, . . . , xm) which is symmetric and m−affine

and for which F (t) = f(t, . . . , t). One may in fact build up the theory of poly-

nomial curves using polar forms, and then the theory of Bézier curves becomes a

series of results about the structure of these forms (Gallier does exactly this in his

book [10]). The theory of spline curves, or piecewise polynomial curves, is sim-

ilarly built up in this manner. Indeed, analysis of the derivatives of polynomial

curves is most elegantly stated in the language of polar forms, and this in turn

leads to an elegant characterization of the continuity of joining polynomials.

With these advantages, one is led to question why this thesis and other litera-

ture on curve design in curved space forgoes the polar form technique. To answer

this question one need observe that polar forms rely heavily on notions of affine

space, and for spaces with non-zero curvature no affine-like notion makes sense.

Knot insertion, however, provides a partial link to a concept of polar forms on

curved space. Consider a spline curve on the group G. Then to each control point

di we may associate the subsequence 〈ui, . . . , ui+m〉 of the knot sequence, where m

is the degree of the spline. This is best illustrated with the following example.

46

555

111

112
123

234

345

455

Figure 6.4: A cubic spline corresponding to the knot sequence 1, 1, 1, 2, 3, 4, 5, 5, 5. Note that every
control vertex is associated to 3 (the degree of the spline) consecutive knots.

Example 6.3.1 Consider the (finite) cubic spline given in figure 6.4 associated to the knot

sequence 1, 1, 1, 2, 3, 4, 5, 5, 5. Note that to each consecutive triple in the knot sequence

there is an associated control vertex. Indeed, if we wanted to find the point associated

to an arbitrary triple, say the point 2, 2.5, 2.7, we need only insert the knots 2.5 and 2.7

into the knot sequence through the knot insertion algorithm. The new knot sequence will

be 1, 1, 1, 2, 2.5, 2.7, 3, 4, 5, 5, 5, and so one of the consecutive triples will correspond to

2, 2.5, 2.7, and thus a new control point of the polygon.

As we see in this example, we may create a correspondence between m−tuples

of parameters and points in our space.2. As such, there is some hope of defining

polar forms through a consistent knot insertion process. However, any such theory

is predicated on the geometry of knot insertion, and thus an understanding of

2This correspondence is not total. Indeed, in example 6.3.1 we see that the triple 1, 1.5, 3 cannot
be created, since the knot 2 will always lie betwen 1.5 and 3.

47

Menelaus spaces. Conversely, if one were to find an adequate theory of polar forms

in curved spaces, such a theory would give an understanding of Menelaus spaces.

6.3.2 Subdivision and Convergence

One of the most useful applications of knot insertion is in the process of subdi-

vision, that is, inserting knots to create more control points and thus refining the

control polygon. Subdivision schemes are used both theoretically to show that the

control polygon converges to the desired curve, as well as in practice as a way of

quickly finding a good approximation to the curve using straight line segments.

These purposes are of similar interest in the case of curved spaces. However, as

subdivision is based on knot insertion, the standard analysis of convergence will

require a space to be Menelaus, and thus this interesting question also defers to the

larger issue of classifying Menelaus spaces. It would be interesting, however, to see

if convergence of different subdivision schemes is possible without the machinery

of knot insertion. For spaces which are not Menelaus, we do not expect conver-

gence to the original spline. Indeed, the conditions under which convergence to

some curve happens are still unknown, as are the different affects of distinct subdi-

vision schemes. Such questions seem fertile ground for future exploration.

Chapter 7

Interpolation

The motivating question for this thesis is more specific than the construction

of a curve in non-Euclidean space. Rather, the question sought the construction

of curves which interpolate given elements, subject to certain geometric constraints

such as continuity. One of the great successes of spline curves is their ability to

interpolate arbitrary points in affine space. Thus, this chapter seeks to extend the

techniques used to develop interpolating curves in CAGD to Lie groups.

7.1 Overview of Interpolation in CAGD

In computer aided geometric design, there are many possible interpolation prob-

lems one may hope to solve. At a basic level, one is given a sequence of points

and asked to find a curve, typically a spline curve, which interpolates the points.

Additionally, one might specify the order of the spline curve, the desired degree of

continuity at each of the interpolated points, and an end condition (i.e. a specifica-

tion of behavior of the curve at the endpoints).

The traditional solution to this problem is to assign an indeterminate Bézier

curve (and associated control polygon) to interpolate every consecutive set of points.

One may then determine conditions on Bézier polygons so that the specified de-

gree of continuity may be achieved at each point to be interpolated. Because

splines in affine space are such that every interpolated point may be specified as

a linear combination of n of the indeterminate control points, the interpolation

problem may be transfered to a matrix equation and thus in some cases efficiently

49

solved. Indeed, the industry standard for interpolation are cubic splines of C2 con-

tinuity, due to the efficiency of tri-diagonal matrix solvers.

7.2 Specific Interpolation Problem

Unfortunately, for the case of spline curves in a Lie group G, even the simplest of

interpolation problems presents difficulty. Certainly C0 splines, those with only

simple continuity at the interpolation points, are possible since we may specify

that sequential Bézier curves share endpoints. However, the only degree spline

for which the C0 condition fully specifies the curve is n = 1, which reduces the

problem to piecewise geodesic interpolation.

If we seek greater continuity at the interpolation points, say C1 continuity, the

task becomes more difficult. Let us choose the degree of the spline to be n = 2, so

that this continuity condition specifies the spline. Given points {x0, . . . , xk}, and

associated knots {u0, . . . , uk}, let us attempt to interpolate with the above spline

type.

We now seek to find a sequence of points, {bi} which define the interpolating

spline. If we set b2i = xi for 0 ≤ i ≤ k, we then need only discover the points

b2i+1, 0 ≤ i < k. For C1 continuity we have that

b2i = interpλ(b2i−1, b2i+1), 0 < i < k, (7.1)

where λ = ui−ui−1

ui+1−ui−1
.1

From a computational point of view, we are interested only in matrix groups.

Thus, the problem reduces to a system of matrix equations determined by equation

7.1 as

1Technically, an end condition need be specified in order to determine all the {bi}. For clarity of
exposition we shall ignore this issue.

50

b2i = b2i−1 exp(λ log(b−1
2i−1b2i+1)).

Unlike the affine case, where linear interpolation reduced the problem to a ma-

trix equation, the above problem is decidedly non-linear. Hence, the problem is

reduced to a problem of numerical analysis, albeit a challenging one.

7.3 Affine Embeddings and Interpolation

7.3.1 An Interpolation Program

As seen in the previous section, the general interpolation problem remains difficult

due to the nonlinearity inherent in equation 7.1. In contrast, the affine case proved

tenable due to the fact that points in the desired curve could be expressed as linear

combinations of points in the space. One is then led to wonder whether we might

“linearize” our problem by embedding our curved space into an affine space in

such a way that points in the curved space are expressible as linear combinations

of other points.

If such an embedding exists, then we have the following program for comput-

ing interpolating curves:

1. Embed our Lie group G in Rn, for some n.

2. Find an expression for minimizing geodesics between two points in G which

is expressible as a linear combination of the endpoints.

3. For the given degree spline desired, express the points to be interpolated as

a linear combination of the desired control points.

4. Transform the above constraints to a matrix equation and solve, provided a

solution exists.

51

Remark 7.3.1 Note that in the above program, we desire to express geodesics as linear

combinations of points in G. Note that this requirement is different from expressing

geodesics as linear interpolants of the points. Indeed, for curved G we expect such

geodesics to differ from linear interpolation in general.

7.3.2 S3, SO(3), and Difficulties

We now attempt the above program on the group S3, the unit sphere in R4. Our

interest in S3 arises due to its relation to SO(3). To see this, reinterpret S3 as the set

of unit quaternions, i.e.

S3 =
{

q = a + bı̂ + c̂ + dk̂ ∈ H|a2 + b2 + c2 + d2 = 1
}

.

If one views a vector x ∈ R3 as a pure imaginary unit quaternion, then for any

q ∈ S3 it can be shown that the linear map Lq : Im H → Im H given by

Lq : x ∈ Im H 7→ qxq̄

corresponds to a rotation of x ∈ R3. Moreover, the antipodal points q and −q

correspond to the same rotation. Indeed, the map π : S3 → SO(3) given by

π : q ∈ S3 7→ Lq ∈ SO(3)

is surjective, so to every rotation in SO(3) there are two preimages in S3. Moreover,

π is a local isometry, so specifically minimizing geodesics between two points in a

convex neighborhood of S3 become minimizing geodesics between corresponding

rotations under composition with π. As a result, interpolating on SO(3) may be

viewed as interpolation on S3, a space whose geometry is better understood. Many

references discuss these issues, including [17]. 2

2Geometrically speaking, S3 is the orientable double cover of SO(3) endowed with the covering
metric.

52

On the 3−sphere the minimizing great circle arcs (the geodesics) between points

q1 and q2 are given by
sin (1− t)θ

sin θ
q1 +

sin tθ

sin θ
q2,

where cos θ = 〈q1, q2〉 (see [15]). Thus the utility of working on S3 embedded in this

manner becomes clear; geodesics are expressible as linear combinations of their

endpoints.

Unfortunately, there is an added difficulty which disrupts our interpolation

program. To see this, consider the problem of quadratic spline interpolation as

discussed in section 7.2. To enforce C1 continuity, we have the following set of

equations:

xi =
sin (1− t)θi

sin θi

b2i−1 +
sin tθi

sin θi

b2i+1, 0 < i < L,

with cos θi = 〈b2i−1, b2i+1〉. As we are solving for the b2i−1, we have no a priori infor-

mation about their relative geometry, and thus in addition to the resulting linear

system of equations we must add the additional constraints cos θi = 〈b2i−1, b2i+1〉 in

order to obtain a solution. However, such constraints make the numerical problem

non-linear. Hence, in the case of the three-sphere, we see that our “linearization”

program only serves to reformulate the numerical problem. It remains open as to

whether such a problem admits a tenable solution for computation. However, as

we shall now demonstrate, imposing some boundary data may actually resolve

this problem.

7.4 Boundary Constraints

7.4.1 Quadratic Splines

Considering again the case of quadratic spline curves, we observe that we desire

to find the points b2i+1, 0 ≤ i < k, of which there are k (given k points to interpolate

53

between). Equation 7.1 gives k − 1 equations relating these points. Thus, there is

one degree of freedom in this system. This degree of freedom is traditionally taken

care of by imposing an end condition, boundary data such as the tangent vector at

the beginning of the spline.

Let us impose a boundary condition for some quadratic spline on a compact

Lie group G. We shall specify the point b1 in some manner. Now, in combination

with equation 7.1, the spline is fully determined. Further, we note that b3 is related

to b1 by the equation

b2 = interpλ(b1, b3), (7.2)

where λ = u2−u1

u3−u1
, and b2 is given. It is worth noting that b2 lies on the interpolating

geodesic between b1 and b3, and thus the tangent vector at b1 which generates the

geodesic to b2 also generates the geodesic to b3. Moreover, since the distance be-

tween b1 and b2 is well defined, the continuity condition expressed in equation 7.2

specifies the distance between b2 and b3. Thus, we see that from b1 we may find b3

by

b3 = interpΛ(b1, b2),

where here Λ = 1+ u3−u2

u2−u1
. Observe that here Λ exceeds unity, so the above quantity

is actually an extrapolation of the arc between the points b1 and b2.

We may iterate the above process. As a result, we can calculate a priori the

geometry between the points b2i+1 and b2i+3, which allows us to sidestep the non-

linear constraint in the last section. However, this method gives more geometry

information than pairwise distance; by repeating this process the points b2i+1 are

discovered! Thus, this process forms a self-contained interpolation algorithm for

quadratic splines.

54

7.4.2 Cubic Splines

Next, we may consider cubic, degree 3 splines. In this case, given k + 1 points

x0, . . . , xk and k + 1 knots u0, . . . , uk we seek points d−1, . . . , dk+1 which define a

cubic spline f for which f(ui) = xi for all i. The endpoints give that b−1 = x0 and

bk+1 = xk. The remaining points are given by the relationship:

di−1,1 = interpλi−1(di−1, di) (7.3)

di,1 = interpλi(di, di+1) (7.4)

xi = interpλ′i−1
(di−1,1, di,1), 1 ≤ i < k, (7.5)

where λi−1 = ui−ui−2

ui+1−ui−2
, λi = ui−ui−1

ui+2−ui−1
, and λ′i−1

ui−ui−1

ui+1−ui−1
. It is easy to show that

these relationships leave two degrees of freedom in the spline. In the traditional

theory, these degrees of freedom are fixed by specifying the tangents at the end-

points or equivalently by fixing the points d0 and dk.

If we fix the points d0 and dk, we may then attempt to iteratively find the re-

maining di in a similar manner to that used in the quadratic spline case. We note

that d1 is related to d0 by equation 7.3. However, unlike the quadratic case the point

di−1,1 is not given. More generally, we see that the constraints given by equations

7.3, 7.4, 7.5 depend on the points {di−1, di, di+1, xi}. Thus, if we want to solve for

one of these points we need to know the other three, and so specifically knowledge

of d0 and x1 are not sufficient to determine d1.

Now consider an alternate end condition for the cubic spline. Instead of fixing

the points d0 and dk, we may instead fix the points d0 and d1, corresponding to

a choice of velocity and acceleration at the beginning of the spline. By our argu-

ments above, this satisfies the two degrees of freedom in the spline, and thus fully

determines the spline. Moreover, as the points {di−1, di, xi} fully specify the point

di+1 we thus obtain an iterative method for determining all the di.

We summarize this process for cubic spline interpolation in the following algo-

rithm:

55

Algorithm 7.4.1 (Cubic Spline Interpolation with Beginning Boundary Data)

Input: A sequence of k + 1 points {x0, . . . , xk} in the compact Lie group G. A knot

sequence {u0, . . . , uk}. Points d0 and d1 in G such that x−1
0 d0 and d−1

0 d1 both lie in

some convex neighborhood about the identity.

Iteration: For stage i (proceeding from i = 1 to i = k) compute the bi as follows:

di−1,1 = interpλi
(di−1, di)

di,1 = interpΛi
(di−1,1, xi)

di+1 = interpΛ′
i
(di, di,1),

where λi = ui−ui−2

ui+1−ui−2
, Λi = 1 + ui+1−ui

ui−ui−1
, and Λ′

i = 1 + ui+2−ui

ui−ui−1
.

Output: Return the points {d−1, . . . , dk+1}.

Remark 7.4.2 The resulting spline defined on the points {d−1, . . . , dk+1} and the knot se-

quence {u0, u0, u0, u1, u2, . . . , uk−2, uk−1, uk, uk, uk} interpolates the points xi in the sense

f(ui) = xi, 0 ≤ i ≤ k.

7.4.3 Further Technical Details

The methods presented for quadratic and cubic splines generalizes easily. That is,

for degree n splines, if the first n − 1 control points are specified than one may

find the remaining control points constructively through a series of interpolations

and extrapolations. Moreover, there is no particular requirement that the points

specified need be the first control points. It is easy to see that this method requires

only n − 1 consecutive control points different from the endpoints to be specified.

However, the choice of how one fixes appropriate control points leaves room for

much research.

56

A more pressing technical concern is the choice of knot sequence. Because of

our use of extrapolation, it is possible to construct a knot sequence which forces

two consecutive control points to lie far enough apart such that they are not in

any common convex neighborhood. This will cause the resulting spline to be ill-

defined, since our use of geodesic interpolation requires all consecutive control

points to lie sufficiently close together. The remedy for this problem is to construct

or modify a knot sequence while the control point sequence is constructed in order

to force all control points to lie close enough together. Again, “good” methods for

constructing such a sequence need research.

Chapter 8

Conclusion

In this thesis we have shown an approach to curve design on Lie groups which

is based on the notion of geodesic interpolation. We have demonstrated that in

the case of Bézier curves, the theory of CAGD generalizes easily using geodesic

interpolation, and further we have provided analysis to complement that already

existing in the field.

Additionally, we have shown that one may also define a notion of spline curves

on Lie groups. However, our analysis shows that the tools and applications of

spline curves, especially knot insertion and interpolation, do not generalize as eas-

ily. Indeed, the underlying geometry of curved spaces increases the complexity of

each of these topics. As a result, new routes of investigation have been opened

which should help to further generalize the theory here developed as well as solve

the specific kinematic questions relating to SO(3) and SE(3). Moreover, we have

shown how the central interpolation problem motivating the thesis may be solved

in an efficient manner.

8.1 Further Work

The work in this thesis suggests new routes of investigation. One of the major

pressing questions this thesis raises is the classification of Menelaus spaces, as this

will resolve many issues relating to knot insertion and related topics. Paralleling

this question is the possibility of developing error bounds on knot insertion in non-

Menelaus spaces.

58

The interpolation problem still leaves many questions to be researched. “Good”

methods for choosing boundary conditions and knot sequences require some work.

A more careful attention to the computational efficiency of our approach is needed

for optimized performance.

The analytical tools of the theory still might admit significant improvement. In

particular, a better characterization of derivatives would significantly improve the

theory.

Finally, we suggest that the class of symmetric spaces is perhaps the most gen-

eral setting for the theory we promote here. Indeed, Crouch et. al. demonstrate

how curve design on SO(n + 1) and on Sn are easily related, and it seems natural

that their work should generalize.

8.2 Recommended Reading

For a good introduction to the classical theory, the books by Farin [9] and Gal-

lier [10] are recommended as comprehensive introductions. The former is a more

traditional text, geared to applications of spline curves while the later is a more

mathematical treatise which develops the theory through the framework of polar

blossoms.

The most current work relating to geodesic interpolation-based curve design is

the work of Crouch, Kun, and Leite in [8]. Their work is especially geared toward

application on rotation groups and spheres. Altafini, in [1], applies some of the

techniques from [8] to the special case of SE(3).

Appendix A

A Matrix Polynomial Approach to Bézier Curves

In the following appendix we develop a theory of Bézier curves which is based

on matrix polynomials (contrasting with the traditional theory developed with

simple polynomials). As the material here is not used in the body of the thesis,

it is presented as a more or less self contained work which may be read indepen-

dently of the thesis.

A.1 Introduction

A.1.1 Historical Perspective

The purpose of an appendix is to include material which may not be incorporated

into the linear flow of the main document. Indeed, the material presented here

meets this criterion well. However, it is not intended that the reader should see

this material as completely separate from the main corpus of the thesis. Rather,

this material arose in the investigation of the central problem of this thesis, and

maintains connections to the work of the thesis. Thus we present a very brief his-

torical perspective detailing how this work came about.

In considering the central problem of this thesis, interpolation on Lie groups

(especially those which are realized as matrix groups), our methodology has been

to promote the extremely successful techniques of CAGD in affine space to the Lie

group setting. In this regard, it appeared natural to consider one of the foundations

of the theory, namely polynomials, and consider how the theory might work if we

replaced these with matrix polynomials. Our hope in this regard was to obtain a very

60

analogous theory in matrix spaces which would allow for simple computation in

Lie groups. For reasons which should become clear upon reading this appendix,

this approach did not bear fruit as desired. However, the theory is still interesting

in its own right, and still retains applications to curve planning in useful settings.

As is the nature of mathematical research, the earlier, less fruitful ideas are of-

ten tossed aside in the presentation of the final theory. Such an exposition, how-

ever, reflects little of the journey through which the results were achieved, often at

the expense of disregarding work which is useful and interesting in its own right.

Hence, we take liberties with flexible structure of a senior thesis and present the

following work.

A.1.2 Overview

The appendix unfolds as follows: We begin first by examining matrix polynomi-

als. We then examine the results of a simpleminded attempt to define a blossom

of such polynomials. Following this, we present a more sophisticated and fully

developed generalization of these concepts. This in turn allows us to define Ma-

trix Bézier curves. We demonstrate some subtleties about these curves which differ

from the traditional theory. Additionally we show how many of the properties

of such curves relate to those of the traditional theory. Finally, we conclude with

some applications of the theory as well as possible areas of future work.

Lastly, we note that the notation in this appendix is meant to correspond with

that found in Gallier’s book on CAGD [10]. We expect the reader to encounter little

trouble with this choice, except in our rather technical use of homogenized polar

forms (we denote the homogenized form of a polar form f as f̂).

61

A.2 A First Look at Matrix Polynomials and Polar Forms

Let A ∈ Mn×n(R). Consider a matrix polynomial (an element of R[A]) F where

F (A) = aA2 + bA + cI.

Polynomials provide a natural class of curves on matrices. Thus, we seek effi-

cient means to control and compute such curves. We use the technique of polariza-

tion as our point of departure for the study of such curves.

Analogizing to the traditional theory, we may polarize the above matrix

quadratic in the following manner:

f(A1, A2) = aA1A2 + b
A1 + A2

2
+ cI.

Specifically, observe that this polarization recovers the original matrix polyno-

mial when we let A = A1 = A2. Indeed, one may also verify that the above polar-

ization is also bi-affine in each of its arguments if we view each matrix as living in

an affine space isomorphic to Rn2 . Further, we may generalize the concept of linear

interpolation to apply to matrices. Let M, N ∈ Mn×n(R) such that the difference

M −N is invertible (the reason to be made clear shortly). For λ ∈ R, we see that

A = (1− λ)M + λN

is an affine combination of the matrices M, N .

Denote by Ai, i = 1, 2, the affine combination determined by λi. Thus, as f is

bi-affine we have that

f(A1, A2) = f((1− λ1)M + λ1N, (1− λ2)M + λ2N)

= (1− λ1)(1− λ2) f(M, M) + (1− λ1)λ2 f(M, N)

+λ1(1− λ2) f(N, M) + λ1λ2 f(N, N).

Solving for the λi, we may rearrange the the equation

Ai = (1− λi)M + λiN

62

such that we obtain

λiI = (N −M)−1(Ai −M) = (Ai −M)(N −M)−1 (A.1)

(1− λi)I = −(N −M)−1(Ai −N) = −(Ai −N)(N −M)−1. (A.2)

The above follows since we note that we assumed N −M to be invertible.

Using these identities and letting A1, A2 equal A, we obtain the formula

f(A, A) = (N −M)−1(A−N)(N −M)−1(A−N) f(M, M)

−(N −M)−1(A−N)(N −M)−1(A−M) f(M, N)

−(N −M)−1(A−M)(N −M)−1(A−N) f(N, M)

(N −M)−1(A−M)(N −M)−1(A−M) f(N, N).

We obtain a further simplification by noting that (N −M)−1 and (A−M) com-

mute (similarly (N −M)−1 and (A−N)), as can be seen by equations A.1 and A.2.

Hence, the above becomes

f(A, A) = ((N −M)−1)2(A−N)2 f(M, M)

−((N −M)−1)2(A−N)(A−M) f(M, N)

−((N −M)−1)2(A−M)(A−N) f(N, M)

+((N −M)−1)2(A−M)2 f(N, N).

We note that the curve defined by f(A, A) now completely depends on the

points {f(M, M), f(M, N), f(N, M), f(N, N)}. Thus, we may view the expressions

below as coefficient functions of these points, corresponding to the Bernstein poly-

nomials of the classical theory.

((N −M)−1)2(A−N)2

((N −M)−1)2(A−N)(A−M)

((N −M)−1)2(A−M)(A−N)

((N −M)−1)2(A−M)2

63

Thus, this simple polarization technique gives many shades of the classical the-

ory. However, there is a lack of symmetry in the constructed polarized form f ,

namely, f(N, M) 6= f(M, N). Moreover, the coefficient functions above corre-

sponding to these points differ. In the classical theory, we desire the symmetry

that we lack here, since this symmetry allows us to polynomial curves of degree n

with n+1 points instead of the 2n points required in a construction as above. Thus,

in the following section we discuss a polarization technique which overcomes this

difficulty and lines up well with the classical theory.

A.3 Multiaffine Symmetric Maps and Matrix Bernstein Polynomials

A.3.1 Symmetric Matrix Functions

We desire to construct the symmetric polar blossom of some matrix polynomial. That

is, we desire an m−affine function f : (Mn×n(R))m → Mn×n(R) which is symmetric

(to be defined in a moment) and which recovers the matrix polynomial when all

arguments are set equal to one another.

Given matrix variables X1, . . . , Xn, we first introduce the elemetary symmetric

matrix functions ς(X1, . . . , Xn) as follows:

ς0 = I

ς1 = X1 + . . . + Xn

ς2 = X1X2 + X1X3 + . . . + X1Xn + X2X3 + X2X4 + . . . + Xn−1Xn

+XnXn−1 + XnXn−2 + . . . + XnX1 + Xn−1Xn−2 + . . . + X3X2 + X3X1 + X2X1

ςk =
∑

1≤i1≤...≤ik≤n

(∑
π∈Sk

Xiπ(1)
· · ·Xiπ(k)

)
.

By construction, the above functions are symmetric, i.e. for any permuatation

π ∈ Sn:

ςk(X1, . . . , Xn) = ςk(Xπ(1), . . . , Xπ(n)).

64

We further observe that the above matrix functions are multiaffine, that is, for

every Xi = (1− λ)M + λN we have that

ςk = (X1, . . . , (1− λ)M + λN, . . . , Xn)

= (1− λ)ςk(X1, . . . ,M, . . . , Xn) + λςk(X1, . . . , N, . . . , Xn).

A.3.2 Matrix Polynomials and Blossoms

Given the degree m matrix polynomial

F (X) = amXm + am−1X
m−1 + . . . + a1X + a0I,

we seek to construct the polar blossom. We define this blossom by replacing

the jth order term in F (X),

ajX
j

with

aj

[(
n

j

)
j!

]−1

ςj(X1, . . . , Xn)

for all 0 ≤ j ≤ m. Note that the coefficient change reflects the fact that

ςk(X, . . . , X) =

[(
n

k

)
k!

]
Xk.

Hence, we see that setting Xi = X for all i in the blossom gives

f(X, . . . , X) = F (X).

By construction, we observe that this function f is symmetric and multiaffine,

as we desired.

65

A.3.3 Linear Interpolation and the Matrix Bernstein Polynomials

We now examine polar forms evaluated on matrices which are interpolated lin-

early.

Let Ai = (1 − λi)M + λiN . Then we have the following expression by the

symmetry and m−affine structure of f :

f(A1, . . . , An) = (1− λ1) f(M, A2, . . . , An) + λ1 f(N, A2, . . . , An)

= . . .

=
m∑

k=0

∑
I∪J={1,...,m}
I∩J=∅,|J |=k

∏
i∈I

(1− λi)
∏
j∈J

λj f(M, . . . , M︸ ︷︷ ︸
m−k

, N, . . . , N︸ ︷︷ ︸
k

).

As Ai = (1− λi)M + λiN , we have that

λiI = (N −M)−1(Ai −M) = (Ai −M)(N −M)−1

(1− λi)I = −(N −M)−1(Ai −N) = −(Ai −N)(N −M)−1.

(A.3)

Thus, we can use these equalities to examine the matrix coefficients of the points

f(M, . . . , M︸ ︷︷ ︸
m−k

, N, . . . , N︸ ︷︷ ︸
k

). However, before we proceed, we shall demonstrate a use-

ful characterization of these matrices.

Lemma A.3.1 Both (Ai −N) and (Ai −M) are scalar multiples of (N −M).

Proof. Expanding according to the definitions gives us

Ai −N = (1− λi)M + λiN −N = −(1− λi)(N −M)

Ai −M = (1− λi)M + λiN −M = λi(N −M).

66

�

As an immediate corollary, we see that the above matrices commute.

Now, if we let Ai = A for all i, and substitute the matrix equivalents for λi and

1− λi, we obtain the following coefficient for f(M, . . . , M︸ ︷︷ ︸
m−k

, N, . . . , N︸ ︷︷ ︸
k

):

(
m

k

)
(−1)m−k

[
(N −M)−1

]m
(A−N)m−k(A−M)k.

We shall denote this as the kth Matrix Bernstein polynomial of degree m, or Bm
k (A).

Further, if we apply the equalities from the lemma, we see that this polynomial

equals: (
m

k

)
(1− λ)m−kλkI.

This is the identity matrix multiplied by the standard Bernstein polynomials. As

such, many of the identities that hold for the Bernstein polynomials also hold for

their matrix versions. We list some of these properties in the following section.

A.3.4 Properties of Matrix Bernstein Polynomials

Here we develop properties of the Matrix Bernstein polynomials analogous to the

traditional Bernstein polynomials.

Proposition A.3.2

Bn
k (t) = (N −M)−1(A−M)Bn−1

i−1 (t)− (N −M)−1(A−N)Bn−1
i (t).

Proof.

Bn
i (t) =

(
n

i

)
(1− t)n−itiI

=

(
n− 1

i

)
(1− t)n−itiI +

(
n− 1

i− 1

)
(1− t)n−itiI

= (1− t)Bn−1
i (t) + tBn−1

i−1 (t)

= −(N −M)−1(A−N)Bn−1
i (t) + (N −M)−1(A−M)Bn−1

i−1 (t).

67

�

Proposition A.3.3
n∑

i=0

Bn
i (t) = I.

Proof.

n∑
i=0

Bn
i (t) =

n∑
i=0

(
n

i

)
(1− t)n−itiI

=

(
n∑

i=0

(
n

i

)
(1− t)n−iti

)
I = I.

�

Proposition A.3.4 The power basis {tiI} and the Bernstein basis {Bn
i I} are related by

Bn
k (t) =

n∑
i=k

(−1)i−k

(
n

i

)(
i

k

)
tiI

and

tkI =
n−1∑

i=k−1

(
i
k

)(
n
k

)Bn
i (t).

Proof. Follows from the standard Bernstein polynomials. �

Proposition A.3.5
d

dt
Bn

k (t) = n(Bn−1
k−1 (t)−Bn−1

k (t)).

Proof. Follows from the standard Bernstein polynomials. �

68

A.4 A Theory of Matrix Bézier Curves

A.4.1 Matrix Polynomials and Matrix Bézier Curves

With the framework developed within, we may now proceed to examine the

curves of the form

F (A) =
m∑

i=0

Bm
i (A)Bi, (A.4)

where we call the Bi matrix control points. Any curve of the form of equation A.4

we refer to as a Matrix Bézier curve of degree m.

Note that the above curve is devoid of the notation f(M, . . . , M︸ ︷︷ ︸
m−k

, N, . . . , N︸ ︷︷ ︸
k

), de-

spite our development of curves using the polar blossom f . The reason for this is

that Matrix Bézier curves as defined above differ from matrix polynomial curves

in certain matrix vector spaces. This fact is best illustrated by considering the fol-

lowing example:

Example A.4.1 Let F (X) = X2. Consider the subspace so(3) of M3×3, the Lie algebra of

SO(3). This subspace consists of all skew-symmetric 3×3 matrices, i.e. those A for which:

AT + A = 0.

Let X ∈ so(3). Observe that

F (X)T = (X2)T = (XT)2 = (−X)2 = X2 = F (X).

Hence, for nontrivial X , F (X) /∈ so(3).

Hence, in the affine matrix space so(3) we note that the above example shows

that matrix polynomial curves and Matrix Bézier curves do not necessarily corre-

spond. Matrix Bézier curves are affine combinations of the control points {Bi}, and

thus will always lie in the space. We may say then that the class of Matrix Bézier

69

curves is closed in the affine space of definition. On the other hand, the above ex-

ample shows that F (X) = X2 maps elements from so(3) to elements not in so(3).

Thus, the class of matrix polynomials is not closed in the affine space of definition.

Specifically we observe that F (X) may not be represented in the form of equation

A.4, even though Matrix Bézier curves of degree 2 are well defined.

Thus, we see that in certain affine spaces, the notion of Matrix Bézier curves and

matrix polynomial curves diverges. This is certainly not the case in the classical

theory. Under addition and scalar multiplication, we observe that matrices operate

exactly like points in a vector space (or and thus affine space). The difference, then,

between polynomials and matrix polynomials is the matrix product. Hence, we

may view the difference between this theory and the classical one as due to the

richer structure of the matrix product.

Finally, we note from the preceeding sections, we observe that the definition of

Matrix Bézier curves is no more powerful than that which is obtained as viewing

the control matrices, the {Bi}, as vectors in a vector space and looking at classi-

cal Bézier curves over these points. Thus we see that the theory of Bézier curves

obtained through the use of matrix polynomials is no more powerful than the stan-

dard theory, even though matrix polynomials produce a different set of curves than

those of standard polynomials.

A.4.2 Properties of Matrix Polynomial Curves

Here we present some properties of Matrix Bézier curves, which may be seen to

follow from results of the classical theory. We present proofs with the matrix for-

malism for completeness.

Proposition A.4.2 Affine invariance

Proof. As barycentric combinations are invariant under affine maps, then proposi-

tion A.3.3 confirms this result. �

70

Proposition A.4.3 Convex Hull Property

Proof. Observing that the matrix Bernstein polynomials are all non-negative for

t ∈ [0, 1], proposition A.3.3 shows that each point on a matrix polynomial curve

with t in this range is contained in the convex hull of its control points. �

Proposition A.4.4 Endpoint Interpolation

Proof. This follows from definition of the matrix polynomial curve evaluated at 0

and 1. �

Proposition A.4.5 Symmetry

n∑
i=0

Bn
i (t)Bi =

n∑
i=0

Bn
i (1− t)Bn−i.

Proof. This follows from the easily verified identity

Bn
i (t) = Bn

n−i(1− t).

�

Proposition A.4.6 Invariance under Barycentric Combinations

Proof. For λ1 + λ2 = 1 and control matrices {Bi}n
i=0 , {Ci}n

i=0 ,we have the following:

n∑
i=0

Bn
i (t)(λ1Bi + λ2Ci) = λ1

n∑
i=0

Bn
i (t)Bi + λ2

n∑
i=0

Bn
i (t)Ci.

�

Proposition A.4.7 Linear Precision

If the control matrices {B1, B2, . . . , Bn} all lie on some line between matrices M1 and M2,

then the resulting matrix polynomial curve is a line.

Further, if the control matrices are evenly spaced along the line, then the parameteriza-

tion is just linear interpolation of the matrices M1 and M2.

71

Proof. The first statement follows since all points on the curve are affine combina-

tions of points on the line. Using the identity

n∑
i=0

i

n
Bn

i (t) = tI,

we find that if the Bi are given as

Bi = (1− i

n
)M1 +

i

n
M2

then the resulting matrix polynomial curve will be given by

(1− t)M1 + tM2.

Thus the second statement follows. �

Proposition A.4.8 Pseudolocal Control

Proof. As each Bernstein matrix polynomial has it’s only maxima at t = i/n, the

greatest contribution of the control matrix Bi may be found at this point. �

For the following proposition, we need a definition of derivative. Thus we have

the following:

Definition A.4.9 Let F be a matrix polynomial from some matrix vector space (viewed

as an affine space) V → V . Let it have polar form f : V m → V . Define the derivative

DF (A) as

lim
t→0

F (A + tU)− F (A)

t
,

with

U = |N −M |−1(N −M).

Proposition A.4.10

DF (A) =
m

|N −M |
−−−−−−−−−−−−−−−−−−−−−−→
f(A, . . . , A︸ ︷︷ ︸

m−1

, M)f(A, . . . , A︸ ︷︷ ︸
m−1

, N).

72

Proof. Following the conventions of Gallier in [10], we let F̂ be the homogenized

version of F . As these two functions agree on V , we have

F (A + tU)− F (A) = F̂ (A + tU)− F̂ (A).

By definition of the polar form, we obtain

F̂ (A + tU) = f̂(A + tU, . . . , A + tU︸ ︷︷ ︸
m

),

where here f̂ is the homogenized version of f .

Thus, our difference becomes

F̂ (A + tU)− F̂ (A) = F̂ (A + tU) = f̂(A + tU, . . . , A + tU︸ ︷︷ ︸
m

)− f̂(A, . . . , A︸ ︷︷ ︸
m

),

which reduces through the multilinearity and symmetry to

F̂ (A+tU)−F̂ (A) = F̂ (A+tU) = m t f̂(A, . . . , A︸ ︷︷ ︸
m−1

, U)+
k=m∑
k=2

(
m

k

)
tk f̂(A, . . . , A︸ ︷︷ ︸

m−k

, U, . . . , U︸ ︷︷ ︸
k

),

and hence we have

lim
t→0

F (A + tU)− F (A)

t
= m f̂(A, . . . , A︸ ︷︷ ︸

m−1

, U).

If we substitute U with its definition, we obtain

DF (A) = m|N −M |−1 (f̂(A, . . . , A︸ ︷︷ ︸
m−1

, N)− f̂(A, . . . , A︸ ︷︷ ︸
m−1

, M)).

As f̂ agrees with f on elements of V , this becomes

m|N −M |−1(f(A, . . . , A︸ ︷︷ ︸
m−1

, N)− (A, . . . , A︸ ︷︷ ︸
m−1

M),

or viewed as a vector

m

|N −M |
−−−−−−−−−−−−−−−−−−−−−−→
f(A, . . . , A︸ ︷︷ ︸

m−1

, M)f(A, . . . , A︸ ︷︷ ︸
m−1

, N).

�

73

Proposition A.4.11 Degree Elevation formula

F (A) =
n∑

i=0

n + 1− i

n + 1
Bn+1

i (A)Bi +
n∑

i=0

i + 1

n + 1
Bn+1

i+1 (A)

Proof. This follows from standard Bernstein identities. �

Thus, we observe that we can view a matrix polynomial curve of degree m as

a matrix polynomial curve of degree m + 1. The corresponding control points are

given by

B
(1)
i =

i

n + 1
Bi−1 +

(
1− i

n + 1

)
Bi.

A.5 Future Work

A.5.1 Applications

We developed this theory in the hopes that it would apply to curve design on

matrix Lie groups. For this purpose, the theory in the main body of the thesis

is perhaps better suited. However, the theory in this appendix gives a very nice

formulation for curve design in matrix vector spaces. Indeed, in the space of all

linear transforms on a finite dimensional vector space (Mn×n(R)), this theory is

quite satisfactory.

Path planning in the space of linear transforms may find applications in com-

puter graphics. Indeed, instead of considering the question of rigid motion as we

do through most of the thesis, it is quite feasible that one might desire to animate

an object transforming smoothly under a series of linear transforms. In such a

situation, the above theory becomes quite useful.

A.5.2 Further Questions

Beyond finding further application for this work, much work remains that might

be done. If one considers the motivating construction of the first example, in which

74

a non-symmetric polar form was generated, we note that this construction differs

from the final definition that was settled on for the polar form of a matrix poly-

nomial. Our focus on defining a symmetric polar form essentially reduced the

analysis to that of the classical case; instead, it may be worth pursuing the non-

symmetric construction to see if a computationally tenable and more powerful

theory might be developed.

A second major research question is whether a computationally efficient for-

malism similar to the Matrix Bézier form exists which will always agree with

the matrix polynomials. This problem, of course, is not completely well defined,

adding yet more avenues for research.

Bibliography

[1] C. Altafini. The de Casteljau algorithm on SE(3). Lect Note Contr Inform Sci,

258:23–34, 2001.

[2] Andrew Baker. Matrix Groups: An Introduction to Lie Group Theory. Springer

Undergraduate Mathematics Series. Springer, 1 edition, 2001.

[3] Alan H. Barr, Bena Currin, Steven Gabriel, and John F. Hughes. Smooth inter-

polation of orientations with angular velocity constraints using quaternions.

In Proceedings of the 19th annual conference on Computer graphics and interactive

techniques, pages 313–320. ACM Press, 1992.

[4] C. Belta and V. Kumar. Euclidean metrics for motion generation on SE(3).

Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci., 216:47–60, 2002.

[5] C. Belta and V. Kumar. An SVD-based projection method for interpolation on

SE(3). IEEE Transaction on Robotics and Automation, 18(3):334–345, 2002.

[6] Manfredo Perdigão do. Carmo. Riemannian Geometry, trans. Francis Flaherty.

Birkhäuser, 1992.

[7] C. Chevalley. Theory of Lie Groups. Princeton University Press, 1946.

[8] P. Crouch, G. Kun, and F. Silva Leite. The de Casteljau algorithm on Lie groups

and spheres. Journal of Dynamical and Control Systems, 5(3):397–429, 1995.

[9] G. Farin. Curves and Surfaces for CAGD: A Practical Guide. Academic Press, 5

edition, 2001.

76

[10] J. Gallier. Curves and Surfaces in Geometric Modeling: Theory and Algorithms.

Morgan Kaufmann Publishers, 2000.

[11] J. Gallier. Computing exponentials of skew symmetric matrices and loga-

rithms of orthogonal matrices. August 2002.

[12] A. Karger and J. Novak. Space Kinematics and Lie Groups. Gordon and Broach,

1985.

[13] F. C. Park and Bahram Ravani. Bézier curves on Riemannian manifolds and

Lie groups with kinematics applications. Transactions of the ASME, 117:36–40,

1995.

[14] F. C. Park and Bahram Ravani. Smooth invariant interpolation of rotations.

ACM Transactions on Graphics (TOG), 16(3):277–295, 1997.

[15] Ken Shoemake. Animating rotation with quaternion curves. In Proceedings of

the 12th annual conference on Computer graphics and interactive techniques, pages

245–254. ACM Press, 1985.

[16] Michael Spivak. A Comprehensive Introduction to Differential Geometry, vol-

ume 1. Publish or Perish, Inc., 2 edition, 1979.

[17] J.P. Ward. Quaternions and Cayley Numbers: Algebra and Applications. Kluwer

Academic Publishers, 1 edition, 1997.

	Designing Smooth Motions of Rigid Objects: Computing Curves in Lie Groups
	Recommended Citation

	tmp.1553032813.pdf.cNM5W

