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Preface  

The inspiration of this piece of work came from an experience I had three years ago. At that time 

I was a college freshman who had lived in Beijing for 18 years and had just came to the US for 

college. I was naive enough to choose to take the public transportation to the Getty Center 

because that was what I had been doing in Beijing, and I didn’t have a car. I looked up the route 

on google map. Three hours, two transfers. Fine, I thought. I had been taking public 

transportations for at least 10 years and how bad could that be anyways?   

It took me 7 hours to get there. When I arrived at the Getty Center, exhausted, it was already 5 

PM. I toured two exhibition rooms for an hour and a half, and then left, fearing that I would miss 

the last Metro link and would have to sleep in the Union Station. The way back went smoothly 

and I arrived in Claremont three hours later. After 10 hours on the road and only 1.5 hours spent 

in the Getty Center, I could hardly have had a better introduction to Los Angeles’ public 

transportation system.   

The reason that my outbound trip took 7 hours is that I missed the correct stop or the correct 

direction for 4 times, and each time I had to wait for an hour for the next bus to arrive. Ok I 

admit I might have been daydreaming a little bit, but the buses did not announce the names to 

each stop either. However, the real problem is that if I missed a bus in Beijing, it would have 

taken 10 minutes for the next bus to arrive, or 3 minutes for the next subway. So the trip would 

have taken less than 4 hours. Standing in the sun for an hour to wait for the next bus is also a 

memory that cannot be easily forgotten. I also noticed that all the people who were waiting for 

buses and taking buses with me were poor people, and mostly non-white. It got me into thinking 

how come LA, the supposedly modern and filthy rich city, does not have an effective public 

transportation system. What is the reason that people in cities like Beijing and Tokyo rely much 

more on public transportation than people in LA? Could the situation have been different? One 

of the hypotheses I was ruminating on was that since so few people use public transportation, it 

would not make sense for the public transportation authority to increase frequency or improve 

service. And since the frequency is low, people will have really bad experience taking buses as I 

did. Therefore, the whole situation is locked-in this vicious cycle.  

Then I forgot about all these because I could think of no way to prove my postulation. At the end 

of last year, I stumbled upon a modelling method called “agent-based modelling”. It rekindled 

my hope and interest in this topic because this method allows for building fairly complex and 

interactive models to explore the co-evolution of model components. Therefore, I practiced 

building agent-based models in the spring semester of 2015, and then built an agent-based model 

on public transportation frequency during the summer, which ultimately evolved into this thesis.  
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Introduction 

Los Angeles is notorious for its car dependency, clogged freeways, and lack of good public 

transportation. In particular, improving public transit is often cited as an effective way to solve 

the other two problems. The problem is not limited to LA either. Despite its meager 2% total 

transit share, LA’s ridership rate is higher than 38 of the 50 largest urban areas in the US
1
.  

Public transportation is also linked with social equity. According to US Census data, the poor 

and the minorities are the primary users of the LA public transit system
2
. Activists protest against 

the billions spent for massive highway reconstruction, and repeated and ongoing efforts to 

interfere with transit
3
. Not only are the poor the primary users of public transit, they also can 

benefit the most from improved public transit service. Harvard business professor Rosabeth 

Moss Kanter argues that public transit may aid social mobility, and points out that half of the top 

20 cities for “intergenerational social and economic mobility” are also half of the top 20 cities for 

public transit
4
. The importance of improving public transportation is widely recognized, but how 

one should proceed to do that has sparked lots of controversy.  

People disagree on how to improve Los Angeles’ public transportation. Wendell Cox, who 

served for three terms on the late Mayor Tom Bradley's Transportation Commission, says the 

convenience of the automobile trumps in Los Angeles and public transportation simply won’t 

make sense
5
. Others provide a plethora of proposals. Some suggest using mobile apps to improve 

                                                           
1
 Morris, Eric A. "Los Angeles Transportation Facts and Fiction: Transit." Freakonomics. N.p., 03 Mar. 2009. Web. 

11 Sept. 2015. 
2
 Walker, Chris. "Why Don't White People in L.A. Take the Bus?" L.A. Weekly. L.A. Weekly, 23 June 2014. Web. 

11 Sept. 2015. 
3
 Ramey, Corinne. "How America’s Transportation System Discriminates Against the Most Vulnerable." America’s 

Unfair Rules of the Road. Slate Magazine, 27 Feb. 2015. Web. 11 Sept. 2015. 
4
 O'Hara, Mary. "When Poor People Can’t Get on Due to Lack of Public Transport." The Guardian, 26 May 2015. 

Web. 11 Sept. 2015. 
5
 Walker, Chris. "Why Don't White People in L.A. Take the Bus?" L.A. Weekly, 23 June 2014. Web. 11 Sept. 2015. 
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user experience
6
, some recommend exclusive bus ways

7
, and some suggest frequent bus rapid 

transit
8
 and stress the importance of population density and walkability

9
. According to a survey 

report of 12,000 people across the country from the Transit Center, total travel time and travel 

time reliability are consistently ranked the two most important factors affecting their travel mode 

choice by all age groups, while cost is only ranked the third by the youth group and the 5
th

 by the 

other two groups
10

. Jarrett Walker, a professional transit planning consultant, argues that 

frequency matters because it reduces waiting time, connection time, and improves reliability
11

. 

Besides building rails or designating exclusive lanes for public transit to avoid congestion, these 

are indeed the only places to reduce total travel time. Due to the huge costs associated with 

experimenting with each different idea, it would be helpful to be able to simulate the effect of 

different policies so that we can make better decisions in reality.  

To this end, I developed a theoretical agent based model to study the effect of public transit 

frequency, reliability, and the population constitution on ridership. The model consists of a 

heterogeneous population choosing between driving and taking public transit and a public transit 

authority deciding the optimal service frequency. For each frequency, there will be a long run 

average ridership, and thus also an average profit level. I assume the transit agency has a 

mandate of maximizing ridership subject to a budget constraint. The result is a stable equilibrium 

ridership where neither party has the incentive to significantly change their decisions.  

                                                           
6
 Brown, Justine. "Can Technology Help Improve Mass Transit Use?" Government Technology, 14 May 2015. Web. 

11 Sept. 2015. 
7
 Moore II, James E., and Thomas A. Rubin. "Better Transportation Alternatives for Los Angeles." Reason 

Foundation, 1 Sept. 1997. Web. 11 Sept. 2015. 
8
 Walker, Jarrett. "Los Angeles: The next Great Transit Metropolis?" Human Transit, 30 Mar. 2010. Web. 11 Sept. 

2015. 
9
 Walker, Jarrett. "Explainer: The Transit Ridership Recipe." Human Transit, 15 July 2015. Web. 11 Sept. 2015. 

10
 Walker, Jarrett. "What Motivates Mode Choices for Urban Residents?" Human Transit, 2 Oct. 2014. Web. 11 Sept. 

2015. 
11

 Walker, Jarrett. "Explainer: The Transit Ridership Recipe." Human Transit, 15 July 2015. Web. 11 Sept. 2015. 



Boyu Liu 

 

   7 / 69 
 

Specifically, different setups of the model will be simulated to test several hypotheses. These 

hypotheses were tentative and were proposed in the hope of directing explorations and 

experiments with the various assumptions of this model.     

Hypothesis 1: there could be multiple equilibria, which is defined in this context as the situation 

where the public transit agency may think it is impossible to increase ridership furthermore 

without incurring a long term net loss, but actually profit returns positive after a bigger increase 

in transit frequency.  (See Fig. 1 for an example of this. The two red points represent the two 

local ridership maxima) 

Intuition: this is from my personal experience. I grew up in Beijing where most people use public 

transportation daily. Cities in Japan and some other countries also have the reputation of having 

great public transportation that can get people to anywhere fast. This is in such a huge contrast to 

my experience of using public transportation in LA and I wonder if LA could improve its public 

transit to the same level of efficiency and reliability without having to subsidize it immensely 

forever. This might be possible if better and more frequent service makes public transit 

drastically more attractive and thus resulting in a huge ridership that can share the total cost.  

Hypothesis 2: a small increase in train speed will not significantly increase ridership, especially 

at low train frequencies. 

Intuition: more people spent the majority of the time waiting, especially at low frequencies. This 

is also proposed to explore the sensitivity of the model to the assumption about train speed.  

Hypothesis 3: bigger road capacity will make public transportation less attractive but would not 

affect the likelihood of having multiple equilibria.  
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Intuition: this will reduce congestion overall, but the reduction will not be significantly bigger at 

some frequencies over other frequencies. Therefore, there might be an overall decrease in 

ridership but the reduction will be smooth and will not affect the shape of the profit curve 

significantly. This is also proposed to explore the sensitivity of the model to the assumption 

about road capacity. 

Hypothesis 4: a change in how heterogeneous the passengers’ preferences are will change the 

likelihood of having multiple equilibria.  

Intuition: it makes sense that the population’s preference of driving versus taking trains will 

determine ridership. This is also proposed to explore the sensitivity of the model to the 

assumption about population preference distribution. 

Hypothesis 5: less reliable train arrival time will severely reduce ridership.  

Intuition: based on the survey by the Transit Center mentioned before, travel time reliability is 

one of the most important factors in determining ridership.   

Hypothesis 6: there will be large random variations of long term average profit between different 

simulations (thus hypothetical worlds). 

Intuition: passengers in this model are not assumed to be “rational” but base their decision on 

experiences shaped in part by random factors. Therefore, ridership will have random variations 

that may last.  

Hypothesis 7: lower car ownership will make multiple equilibria less likely to occur  

Intuition: if all potential passengers are absolutely dependent on public transit and will use it 

with no regards to time, then there will be no multiple equilibria at all since the entire population 
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would be already taking public transit at extremely low frequencies and the profit at increased 

frequencies could only be dropping.  

 

 

Figure 1. an example profit curve showing multiple equilibria. The two red dots represent two 

possible outcomes that maximize ridership. The one on the left is the one I have in mind for LA, 

where the public transportation agency has already maximized ridership (locally) subject to 

maintaining non-negative profit. An increase in frequency will incur net loss, but increasing it 

further makes public transit more attractive over driving for so many people that profit returns 

positive. The global optimum is closer to the red dot on the right, where profit hits zero again but 

at a much higher ridership level.   
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The rest of the paper proceeds in the following order: it first describes the modelling approach 

used for this simulation study and all of its components. Then, it described the method being 

used and the model calibration. Results follows and are organized by the seven hypotheses I 

posed earlier. In the end, the conclusion of this study, the limitation of the methods used, and 

possible future directions of this study are discussed.  

Theoretical Model  

Components  

In order to test for existence of multiple equilibria (see Fig. 1), we would need a curve 

corresponding to the profit level at each train frequency so that we could identify frequencies 

where the public transit agency could choose to operate in the long run. Therefore, for each 

frequency within a reasonable range, the profit level is calculated by averaging long term 

ridership and subtracting the total cost of operation.  

The cost of adding each extra train into service is assumed to be constant to reflect the idea of 

average levelized cost, which spreads the total present value of the initial investment and future 

operating costs to the entire life cycle to obtain an index for long term average cost per day of 

operation. Adding one more train is similar to building one more electricity generating plant in 

that they both have a large initial investment and long term operation cost that could fluctuate. 

Levelized cost is the primary way of measuring cost of generating electricity from different 

sources, thus it can be useful here as well.  

Moreover, since this model is theoretical rather than empirical, all parameter values are 

important only in a relative manner. Therefore, I adopted a more explorative approach by 

adjusting cost so that the profit level will cross the x axis and become negative within the 
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frequency range of 1 to 39 that I simulated for all cases. In this way, the “cost” is actually an 

indication of the profitability of the train service so that we can compare the profits at different 

frequencies. Also, this will have the added benefit of giving the profit curve interesting behaviors, 

which is the goal of my exploration.  

The revenue will be proportional to ridership under the assumption of fixed ticket price. 

Ridership is a result of a population with heterogeneous preferences choosing between taking 

trains and driving for commuting. Each individual makes decisions according to a well-defined 

rule and is affected by both one’s own preference and the choices of other people. More people 

taking trains will make it more crowded and thus less attractive. How much people can tolerate 

longer waiting time and travel time will depend on the preference values. More details on how 

decisions are actually made will follow in the sections below.  

The time frame and the space 

The model has discrete time. The time step is one day. In each day, all individuals make their 

travel mode decisions first, commute to work in the mode chosen, then update their decisions the 

next day based on their experience.  We are assuming no weekends, holidays, or other special 

circumstances that can exogenously cause cyclical fluctuation in the number of travelers.   

The space is a hypothetical world where there is only one road and two train stops. All people 

live near one of the stops and work near the other stop. This is a simplified setup, but it is 

nonetheless illustrative of the effect of train frequency and passenger preference. The setup 

resembles the case of daily commute to and from work better and is especially useful for that 
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case. A more realistic road network will boost the importance of frequency
12

, and will only make 

the phenomenon studied here more prominent.  

Individuals 

In computational models, it is not uncommon to model agents with bounded rationality and make 

decisions using different heuristics or rule of thumb strategies
13

. These models were shown to 

perform reasonably well – simple models can explain important observed stylized facts in 

financial time series, such as excess volatility, high trading volume, temporary bubbles and trend 

following, sudden crashes and mean reversion, clustered volatility and fat tails in the returns 

distribution
14

. 

In this model, individuals are assumed to have bounded rationality; specifically, they would not 

know what decisions would be the best for others or what would be chosen by others. Thus, they 

would have to rely on their past experiences. They would expect the time of driving to work and 

the time of taking trains to work is equal to a combination of their most recent five experiences. 

The expectation of travel time in mode i of person j is given by a partial geometric lag15: 

 𝑇_𝑒𝑥𝑝𝑖,𝑗 = 𝑡0,𝑖,𝑗 + 𝛾 ∗ 𝑡1,𝑖,𝑗 + 𝛾
2 ∗ 𝑡2,𝑖,𝑗 + 𝛾

3 ∗ 𝑡3,𝑖,𝑗 + 𝛾
4 ∗ 𝑡4,𝑖,𝑗 

 𝑇_𝑒𝑥𝑝𝑖,𝑗 = 𝑡0,𝑖,𝑗 + 𝛾 ∗ 𝑡1,𝑖,𝑗 + 𝛾
2 ∗ 𝑡2,𝑖,𝑗 + 𝛾

3 ∗ 𝑡3,𝑖,𝑗 + 𝛾
4 ∗ 𝑡4,𝑖,𝑗 

Initially, all five memories are the same and set equal to the time of driving or taking trains 

without congestion or waiting. Then, after each round, 𝑡𝑘+1,𝑖,𝑗 will be substituted by 𝑡𝑘,𝑖,𝑗 (j=0, 1, 

                                                           
12

 One of the primary reasons frequency matters to ridership is that it makes connections easier and faster. Therefore, 

frequency matters more when there are connections to make. See Walker, Jarrett. "Explainer: The Transit Ridership 

Recipe." Human Transit, 15 July 2015. Web. 11 Sept. 2015.  
13

 Hommes, Cars H. "Heterogeneous agent models in economics and finance." Handbook of computational 

economics 2 (2006): 1109-1186. 
14

 Ibid. 
15

 𝑡0 means the most recent experience, and it will become 𝑡1 the next day; i takes on two values, train (tr) or car (c), 

j denotes each person, and 𝛾 is the time discount factor, currently set to 0.9 

N
ext tim

e
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2, 3), and 𝑡0𝑖 will be updated to the new experience if i equals the current travel mode. Memory 

of the other travel mode remains unchanged.  

Then, individuals will minimize their expected travel time subject to certain constraints. 

Individuals are assumed to minimize their travel time because, according to the survey by the 

Transit Center, total travel time is consistently ranked the most important consideration by all 

age groups when people make decisions on whether to use public transit (table 1).  

Table 1. Potential Drivers of Transit Ridership by Age
16

 

 

For modelling purposes, a single preference value is used to summarize all other considerations 

and constraints, such as distance to train stations, cost of driving and taking trains, safety, 

amenities on trains, difficulty of parking, relative importance of convenience, the ability to work 

                                                           
16

 Who's on Board: Mobility Attitudes Survey. Rep. The Transit Center, 2014. Web. 1 Sept. 2015. 

<http://transitcenter.org/wp-content/uploads/2014/08/WhosOnBoard2014-ForWeb.pdf>. 22. 
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while on trains, and environmental benefits. This method of modelling was draw from 

Granovetter’s seminal paper Threshold Models of Collective Behavior
17

. In this paper, 

Granovetter used a single “threshold” value for each person to represent all characters that can 

affect how likely that person will participate in a collective action. The threshold is simply that 

point where the perceived benefits to an individual of doing the thing in question (joining the riot 

in his paper, in this case taking public transit) exceed the perceived costs. The idea is especially 

useful when there are many often unquantifiable factors that can affect a person’s decision and 

allows a straightforward way of modelling the dynamics of group behavior. This method also 

allows for modelling continuous changes in characteristics and was shown to be able to generate 

interesting emerging results that could not have come from the crude dichotomy of splitting 

people into homogeneous groups.  

The preference value will determine the traffic mode decision  𝑖𝑗  of person j in the following way:  

18 𝑖𝑗 =

{
 
 

 
 𝑡𝑟𝑎𝑖𝑛 𝑖𝑓 

𝑇_𝑒𝑥𝑝𝑡𝑟,𝑗

𝑇_𝑒𝑥𝑝𝑐,𝑗
≤ 𝑝𝑗

𝑑𝑟𝑖𝑣𝑒 𝑖𝑓 
𝑇_𝑒𝑥𝑝𝑡𝑟,𝑗

𝑇_𝑒𝑥𝑝𝑐,𝑗
> 𝑝𝑗

  

In other words, if 
𝑇_𝑒𝑥𝑝𝑡𝑟,𝑗

𝑇_𝑒𝑥𝑝𝑐,𝑗
≤ 𝑝𝑗, the relative benefit of taking trains is considered greater than the 

relative benefit of driving for person j. For example, if someone is really poor and can only 

afford taking trains, then his/her preference value will be infinity, which means however long the 

train will take, he/she will always choose the train. A preference value of 1 means the person is 

totally indifferent and will choose the faster mode. A preference value of 0 represents avoidance 

of trains, due to preference for comfort, long distance to train stations, or other reasons. A value 

                                                           
17

 Granovetter, Mark. "Threshold models of collective behavior." American journal of sociology (1978): 1420-1443. 
18

 𝑖𝑗 is the travel mode choice of person j.  𝑝𝑗 is the preference value of person j.  
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of 2 means the person will not switch to driving as long as expected travel time of taking trains is 

less than twice of the time of driving.    

The Population 

There are N residents in the model. It is assumed they live in the same neighborhood around a 

train station, have the same schedule, and work at places close to another train station. Therefore, 

if they were to choose taking trains for their daily commute, they will all want to take the same 

train. They live at different distances to the train station. They also have different attributes such 

as wealth, car ownership, health status, valuation of time, parking distance and fees at destination, 

and personal preferences between taking trains and driving. Relative price of gas and train ticket 

will also affect people’s choices. These attributes would be summarized by the “preference” 

value. It does not take into account anything related to the state of the world, such as train 

frequency. The exact distribution of preference in the population is unknown, thus many possible 

distributions are simulated to determine the effect of the distribution. Granovetter used a 

continuous distribution of “thresholds” in his model, thus, to start with, conventional continuous 

probability density functions were used to model the distribution of preferences in the population. 

The beta distribution is chosen first because it cannot be negative and can be doubled so that its 

peak is at 1.  

19 
𝑝𝑗

2
~  𝐵𝑒𝑡𝑎 (20,20) 

However, one should note that the beta distribution is biased in favor of driving. The need to 

have a quotient rule requires the probability density function of preferences to have a certain 

                                                           
19

 Each person’s preference value comes from a certain distribution. Many distributions are explored, including 

gamma, beta, uniform, and homogenous (no distribution).  
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property to ensure unbiasedness, which is𝑓(𝑥) = 𝑓(
1

𝑥
). Also, since 1 stands for indifference 

towards the two transportation modes, an ideally disinterested preference distribution will have 

half of its value smaller than 1, half of its value bigger than 1, and its peak be at 1. So we also 

need 𝐹(𝑥) = 0.5. One way to get this ideal distribution is to transform the beta distribution.  

𝑝𝑗

2
 ~ 𝐵𝑒𝑡𝑎 (20, 20) 

𝑝𝑗 = {

𝑝𝑗  𝑖𝑓 𝑝𝑗 < 1

1

2 − 𝑝𝑗
 𝑖𝑓 𝑝𝑗 ≥ 1

 

 

However, it turns out the ideal distribution does not noticeably change the result. So I kept the 

beta distribution for convenience.  

For faster model run time, the population is set at 300.  

The Road, Cars, and Trains 

It is assumed that trains have a separate rail from the road, which is used by cars. More cars on 

the road will result in congestion. The most authoritative approximation of the relationship 

between congestion and traffic load is the BPR function, named after the U.S. Bureau of Public 

Roads
20

. It has been cited as among the best performing models
21

. Its formula is: 

𝑇𝑓𝑖𝑛𝑎𝑙 = 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∗ (1 + 𝛼 (
𝑉

𝐶
)
𝛽

)  22 

                                                           
20

 US. Federal Highway Administration. Office of Environment, Planning, and Realty. Travel Model Validation and 

Reasonableness Checking Manual. Federal Highway Administration, 24 Sept. 2010. Web. 1 Oct. 2015. 
21

 Saberi Kalaee, Meead. Investigating freeway speed-flow relationships for traffic assignment applications. Portland 

State University, 2010. 
22

 Travel Model Validation and Reasonableness Checking Manual. Federal Highway Administration. P9-22 
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Where: 

𝑇𝑓𝑖𝑛𝑎𝑙 is the final, congested travel time on a link; 

𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial, or starting, travel time on a link (without congestion);  

V is the assigned volume on a link;  

C is the capacity of the link (at level of service E); and  

α and β are model coefficients 

A summary of calibrated values of the coefficients α and β is reported below
23

:  

Table 2. Range of Reported BPR Function Assignment Parameters 

Facility Type α β 

Minimum  Maximum  Minimum Maximum 

Freeways 0.10  1.20 1.90 10.00 

Arterials 0.15 1.00 2.10 4.00 

 

The function used in this model is a simplified version of it because many of the adjustment 

parameters related to road conditions were not relevant as only the model would only have one 

road segment. The average travel time needed to get to the destination,  tc, is comprised of the 

time needed without congestion Tc and the congestion time, which is determined by the number 

of cars on the road Nc and two coefficients a and b: 

 𝑡𝑐 = 𝑇𝑐 + (
𝑁𝑐
𝑎
)𝑏 

And there will be variability in how long it takes each person to arrive, so the actual car travel 

time of each driver comes from a normal distribution of mean tc and standard deviation 𝜎2. 

                                                           
23

 Travel Model Validation and Reasonableness Checking Manual. Federal Highway Administration. P9-22 
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𝑡𝑐,𝑗~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝑡𝑐, 𝜎
2) 

A graphical representation of their relationship is shown in figure 1.  

Figure 2. Relationship between Number of Cars on road and Congestion when a=25, b=2 

Trains arrive at fixed intervals determined by the number of trains in service. More precisely, the 

interval, 𝑇𝑡𝑟_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, is assumed to be the total period of time under consideration  𝑇𝑡𝑜𝑡𝑎𝑙 divided 

by the number of trains in service during this period, 𝑁𝑡𝑟𝑎𝑖𝑛𝑠. A graphical representation of their 

relationship is shown below in figure 2.  

 𝑇𝑡𝑟_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
1

𝑓
=
 𝑇𝑡𝑜𝑡𝑎𝑙
𝑁𝑡𝑟𝑎𝑖𝑛𝑠

 

f denotes frequency of service, so its inverse represents the time interval between two trains.  
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Figure 3. Relationship between Number of trains in service and Arrival interval (simply a 

reciprocal function, the natural relationship between time and frequency) 

Moreover, there is a limit on the number of passengers that can board a train. Therefore, if the 

amount of passengers is twice as the limit, then each passenger has equal chance of boarding the 

first or the second train. In other words, half of passengers will have a longer wait time, and how 

bad that wait time is depends on train frequency. This is to model the fact that if there are lots of 

passengers and few trains, then the experience will be much worse than if there are fewer 

passengers and more frequent trains. This set up is based on almost ten years of my personal 

experience of taking subways in Beijing, where the limit on the number of passengers each train 

can take consistently caused “congestion” of public transit. However, it doesn’t need to be one 

passenger on each train. So, in this model, the number of passengers on each train will not affect 
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how much each passenger likes trains as long as the number of passengers is below the limit. The 

total time of taking trains to work for person j, 𝑡𝑡𝑟,𝑗 , is given by: 

 𝑡𝑡𝑟,𝑗 = 𝑇𝑡𝑟 +
𝜀𝑗 − 1

𝑓
 

On the right hand side, 𝑇𝑡𝑟is the time needed for the trip, and the second part is the waiting time, 

where 𝜀𝑗 is a random integer denoting which train the person got onto (equal probability), ranging 

from 1 to the integer part of 
Ntr

L
, the total number of trains required. Ntr is the number of people 

taking trains, and L is the limit on number of people per train. 

So the average commute time of taking trains is given by  

∑ 𝑡𝑖,𝑗 
𝑛
𝑖=𝑡𝑟,𝑗=1

𝑛
=  𝑇𝑡𝑟 +

𝑖𝑛𝑡 (
𝑁𝑡𝑟
𝐿 ) − 1

2𝑓
 

The left hand side is the average train passenger’s time used, because n is the total population, 

which equals 300 in this study.  

The idea is that more frequent services is able to accommodate more passengers, while 

infrequent services can only serve a much smaller passenger load for whom the train service 

happens to be convenient. Big and small values of the limit will both be simulated.  

Overall, the number of people driving will be given by: 

𝑁𝑐 =∑[1 − 𝐼(𝑖𝑗)

𝑛

𝑗=1

] = 𝑛 − 𝑁𝑡𝑟 

where 𝐼(𝑖𝑗) =  {
1 𝑖𝑓𝑖𝑗 = 𝑡𝑟𝑎𝑖𝑛 

0 𝑖𝑓 𝑖𝑗 = 𝑑𝑟𝑖𝑣𝑖𝑛𝑔
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And the number of people taking trains will be given by: 

𝑁𝑡𝑟 =∑𝐼(𝑖𝑗)

𝑛

𝑗=1

= 𝑛 − 𝑁𝑐 

The Train Service Provider 

The train service provider will maximize ridership subject to maintaining positive profit by 

deciding how many trains to put into service. Maximizing ridership is a fairly common mandate 

for public transportation, especially for the rush hour service that is being simulated here, since it 

is similar in nature to utility services. For example, the transit plan of Houston Metro proposed to 

devote 80% of its resource to maximizing ridership24. The ticket price is assumed to be fixed, 

because the price is really stable in reality
25

, and this model is more interested in the effect of 

service frequency.  

Since increasing frequency will in general reduce wait time, it should boost ridership and thus 

also revenue. However, we also assumed costs associated with having more trains in service. 

Whether increasing service frequency would raise or reduce profit depends on the situation. 

Obviously, increasing train frequency from 0 to 10 per 4 hours is going to have a much bigger 

effect than increasing frequency from 100 to 110 per 4 hours. There are also a limited amount of 

people. So eventually, the train authority will suffer net loss from having more trains. It also has 

the mandate of maximizing ridership as long as profit remains positive. Therefore, it will try to 

find the point where the profit is slightly positive or zero and putting one more train into service 

will turn that profit into negative.  

                                                           
24

 Walker, Jarrett. "Houston: Transit, Reimagined." Human Transit, 09 May 2014. Web. 11 Sept. 2015. 
25

 For example, base fare in Chicago was $0.45 in 1970, or $2.49 in 2009 adjusted for inflation, while the base fare 

in 2009 was $2/$2.25. For bus fare see http://www.chicagobus.org/history. inflation was calculated by 

http://www.usinflationcalculator.com/  

http://www.chicagobus.org/history
http://www.usinflationcalculator.com/
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However, the train service provider is assumed to have bounded rationality. It does not know 

where the global maximal ridership will be. Therefore, if it turns out that there are multiple local 

maxima (see fig. 1), which one will be chose depends on the starting point.  

Agent based modeling (ABM)26 

Based on the modeling needs, the most appropriate modelling approach would be agent-based 

modelling. The model that has been described above is an agent-based model. In agent-based 

models, a system is modeled as a collection of autonomous decision-making entities called 

agents and their common residing environment. Each agent individually assesses its situation and 

makes decisions on the basis of a set of rules. Agents may interact with other agents directly, or 

by reacting to changes in the system environment caused by actions of other agents. Through the 

interactive and adaptive behaviors of agents, complex phenomena may emerge from the ABM 

system. ABM is especially useful when agents could have nonlinear actions (either drive or take 

trains, nothing in between), when agents have memory and adaptation, and when agent 

interactions are heterogeneous (a diverse preference distribution) and can generate network 

effects (i.e. traffic congestion, train becomes too crowded).  

Simulation  

Calibration  

There are many variables that can be calibrated, but they can be grouped so that the relative 

magnitudes within one group are more important than their absolute values.  

                                                           
26

 Bonabeau, Eric. "Agent-based modeling: Methods and techniques for simulating human systems." Proceedings of 

the National Academy of Sciences 99.suppl 3 (2002): 7280-7287. 
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Population, limit on the number of people in each train, and how fast congestion time grows as 

the number of cars increase are in one group. If the population (𝑛 =  𝑁𝑡𝑟 + 𝑁𝑐) doubles, the limit 

(L) doubles, and the congestion time growth is halved (“a” is doubled), then the dynamics will 

not change
27

.  

𝑎𝑣𝑒(𝑡𝑡𝑟) =
∑ 𝑡𝑖,𝑗 
𝑛
𝑖=𝑡𝑟,𝑗=1

𝑛
=  𝑇𝑡𝑟 +

𝑖𝑛𝑡 (
𝑁𝑡𝑟
𝐿 ) − 1

2𝑓
 

𝑎𝑣𝑒(𝑡𝑐) = 𝑇𝑐 + (
𝑁𝑐
𝑎
)𝑏 

𝑁𝑡𝑟 =∑𝐼(𝑖𝑗)

𝑛

𝑗=1

= 𝑛 − 𝑁𝑐 

The time in which a car and a train can cover the whole distance without congestion, the 

frequency of trains, and how fast congestion time grows as number of cars increases are in one 

group. A doubling of train frequency can attract more people to use trains, but the relative impact 

of that can be reduced by a doubling of the time needed for cars and trains to cover the distance. 

A 20 minutes wait time is much more bearable if the trip is 100 minutes long than if the trip is 5 

minutes long. If it is very easy to get completely stuck in congestion, then however fast a car can 

go without congestion wouldn’t matter.  

𝑇_𝑒𝑥𝑝𝑡𝑟,𝑗 ∝  𝑎𝑣𝑒(𝑡𝑡𝑟) = 𝑇𝑡𝑟 +
𝑖𝑛𝑡 (

𝑁𝑡𝑟
𝐿 ) − 1

2𝑓
 

𝑇_𝑒𝑥𝑝𝑐,𝑗 ∝  𝑎𝑣𝑒(𝑡𝑐) = 𝑇𝑐 + (
𝑁𝑐
𝑎
)𝑏  

                                                           
27

 Suppose both 𝑁𝑡𝑟 and 𝑁𝑐 doubled, but L and “a” are doubled as well, then neither 𝑎𝑣𝑒(𝑡𝑡𝑟) nor 𝑎𝑣𝑒(𝑡𝑐) changes, 

so the system will remain stable if no other variable changes. 
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In light of the difficulty in determining the correct relative magnitude and the lack of relevant 

literature, the model will be set up with plausible parameter values and later tested against other 

possible relative setups.  

Method and dynamics 

The simulation was carried out through the computer programming language Python.  

At the start of the simulation, the computer program first assumed a fixed train frequency. Then, 

300 people were created with random preference values drawn from a distribution based on a 

prior assumption about the shape of the overall preference distribution of the population. In the 

beginning, they do not know anything about potential congestion or waiting time, so they make 

decisions without considering them. Then, there will be a number of cars on the road and a 

number of passengers waiting for trains. Each individual’s travel time will be determined in part 

by the actual situations on the road and at the train station but also to a smaller extent by random 

variations. Several days later, they gradually get better ideas about congestion and waiting time 

and update their decisions based on recent experiences. 

Every day, all people make decisions based on their own memories and preference values 

without knowing other people’s decisions. Since the train frequency is assumed to be the same, 

over time, the number of people choosing each travel mode will stabilize as shown later in actual 

simulations. After 10000 rounds, the average ridership will be calculated. It could be a good 

proxy for long run average revenue of a certain service frequency because, as will be shown later, 

ridership in most cases stabilizes in less than 100 rounds. Then, the same simulation is repeated 

100 times to calculate the expected average ridership at that frequency.  
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Now the expected average ridership was calculated for one service frequency. Then I repeat the 

whole process for all frequencies in 1, 3, 5… 39 per 4-hou-period because that provides enough 

range of values of possible frequencies and also gradual changes to show details along the way. 

For example, for a one-hour period the number of trains can only change from 1 to 2, but for a 

four-hour period it can be any number from 4 to 8, which translates into 1, 1.25, 1.5, 1.75, and 2 

trains per hour. Having 6 trains per 4 hours is the same as having 1.5 trains per hour; only it is 

more intuitive.   

With average ridership values of each frequency, a plot would be created with its x axis as the 

service frequency and its y axis as the long run average ridership at each frequency. The 

ridership could also be viewed as the long run average revenue because the train fare of each 

passenger is assumed to be fixed. Then, as described in the model components section, a cost 

value would be fitted to the curve so that it could be an approximation of the attractiveness of the 

service. A high value means the service could still be worth doing even if it would cost a lot. 

Subtracting the cost from the revenue, we would have a profit curve of the same nature as figure 

1, which is what we needed for the purpose of this study.  

Results  

The result section will be organized by hypotheses. For each hypothesis, I changed some of the 

assumptions about the model to test the effect it will have on the model and the profit curve. All 

the assumptions in each case are summarized in the following table, with the changed 

assumptions in bold.   

To begin with, two base cases were simulated, and they happened to be potential examples of 

multiple equilibria. They both have a preference distribution based on the beta distribution 



Boyu Liu 

 

   26 / 69 
 

shown in the model description, and a congestion function shown in figure 1 (a=25, b=2). They 

both have cars traveling slightly faster than trains without congestion, and a fixed standard 

deviation of actual congestion time (𝜎2) of 5. The first case has a bigger limit on number of 

passengers per train than the second case. These numbers were tentative explorations, but they 

were used as the bench mark later since they displayed the phenomenon of interest. To signify its 

special status, the first case is indexed case 0.   

In case 2 through 5, I experimented with train speed, the congestion function, and the train limit 

to get a better idea of the sensitivity of previous results to their assumptions. To my surprise, all 

four cases displayed multiple equilibria; some of them were even more prominent than the base 

cases. Although there are considerable variations in the manifestation of multiple equilibria that 

showed the impact of the assumptions tested, the overall result demonstrated a considerable 

amount of robustness to these assumptions.  

Case 6 and case 7 explored the effect of the assumption on the preference distribution. Case 6 

explored an assumption about the distribution that is more spread-out, thus the model has a more 

heterogeneous population. Case 7 explored the case where all individuals are indifferent between 

the two travel modes. In both cases, multiple equilibria do not exist. Case 7 exemplified the 

advantage of agent based models; we would never have had examples of multiple equilibria 

without the heterogeneous agents permitted by agent based modeling.  

Case 8 through 10 explored the assumptions about the reliability of both trains and cars. Trains 

were assumed to be perfectly reliable in previous cases. In case 8, they were assumed to arrive in 

random intervals based on an exponential distribution with the mean interval still determined by 

train frequency. Reliability of train arrival interval turned out to have a gigantic impact on 
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ridership. In case 9 and 10, the variability of car arrival time, rather than fixed, was assumed to 

be proportional to the severity of the congestion.  

After that, I plotted profit curves of some previous cases differently to show the random 

variations that have nothing to do with all assumptions tested or train frequency. These plots 

showed that a public transportation authority, even with the exact same service provided, could 

run a net profit or a net loss depending on what kind of potential customers established the habit 

of taking trains.  

In the end, case 11 and 12 explored the consequence of a lower car ownership rate among the 

population. This was done by assuming a huge preference value (which would force them to 

always choose public transit) among a portion of the population. Case 11 has a larger group of 

people (one third) with no car than case 12 (one fifth). It turned out that lower car ownership rate 

will undermine the conditions of multiple equilibria.  

Below, all these cases will be discussed in greater detail.  

Table 3. A summary of all cases  

ca

se 

Distribu

tion of 

prefere

nce 

Mean 

of the 

distrib

ution 

Standa

rd 

deviati

on of 

the 

distrib

ution 

Train 

trave

l time 

(min

utes, 

no 

waiti

ng) 

car 

travel 

time 

(minut

es, no 

conges

tion) 

Trai

n 

limit 

(pers

on) 

Conge

stion 

functi

on 

Standa

rd 

deviatio

n of 

congest

ion (𝛔𝟐) 

Train 

arrival 

schedul

e 

Co

st 

fac

tor 

in 

gra

ph 

0 2*Beta(

20,20) 

1 0.156 25 20 30 a=25, 

b=2 

5 fixed 7 

1 2*Beta(

20,20) 

1 0.156 25 20 100 a=25, 

b=2 

5 fixed 13.

5 

2 2*Beta(

20,20) 

1 0.156 20 20 30 a=25, 

b=2 

5 Fixed  7 
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3 2*Beta(

20,20) 

1 0.156 25 20 30 a=100, 

b=4 

5 fixed 5.5 

4 2*Beta(

20,20) 

1 0.156 25 20 100 a=100, 

b=4 

5 fixed 10 

5 2*Beta(

20,20) 

1 0.156 25 20 70 a=100, 

b=4 

5 fixed 8 

6 2 * 

Beta(3,3

) 

1 0.378 25 20 30 a=25, 

b=2 

5 fixed 7 

7 homoge

nous 

1 0 25 20 30 a=25, 

b=2 

5 fixed 10 

8 2*Beta(

20,20) 

1 0.156 25 20 30 a=25, 

b=2 

5 Expone

ntial  

3.5 

9 2*Beta(

20,20) 

1 0.156 25 20 30 a=25, 

b=2 
Proport

ional to 

congest

ion 

Fixed 15 

10 2*Beta(

20,20) 

1 0.156 25 20 30 a=100, 

b=4 

Proport

ional to 

congest

ion 

fixed 9 

 

Hypothesis 1: there could be multiple equilibria 

Case 0 is the base case for testing, and case 1 changed the limit on the number of people in each 

train from 30 to 100 for the purpose of sensitivity test. The preference distribution for both cases 

is the default distribution, which is 2 times beta (20, 20) (Fig. 10). Trains are assumed to be 

slightly slower than cars when there is no congestion. Congestion is modelled by a quadratic 

function which was shown by figure 1. It is assumed that when there is congestion, on average 

all cars slow down, but some cars will be affected more than others. The standard deviation of 
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car arrival time is assumed to be 5. Trains are assumed to arrive on a fixed schedule. These 

assumptions are summarized in tables and the results will be interpreted later in the discussion.  

This is the base scenario so that we can change the assumptions later to test for other hypotheses.  

Case 0 (Base case) 

Distribution of preference 2*Beta(20,20) 

Mean of the distribution 1 

Standard deviation of the distribution 0.156 

Train travel time (minutes, no waiting) 25 

car travel time (minutes, no congestion) 20 

Train limit (person) 30 

Congestion function a=25, b=2 

Standard deviation of congestion 5 

Train arrival schedule fixed 

Cost factor in graph 7 
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Figure 4. Density plot of 100000 samples from 2*Beta (20, 20) 
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Figure 5. Plot of Profit vs. Service Frequency (case 0) 

 

Case 1 

Distribution of preference 2*Beta(20,20) 

mean 1 

Standard deviation 0.156 

Train travel time (minutes, no waiting) 25 

car travel time (minutes, no congestion) 20 

Train limit (person) 100 

Congestion function Quadratic 

Standard deviation of congestion 5 

Train arrival schedule fixed 

Cost factor in graph 13.5 
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Figure 6. Plot of Profit vs. Service Frequency (case 1) 

Discussion 

1. The tradeoff between profit and ridership 

As shown in fig. 11 and fig. 12, due to the limited number of residents the train station 

serves, there clearly is a decreasing marginal return of higher frequency, which will result 

in plummeting profits eventually.  But a frequency that is too low also means a lower 

ridership and usually incurs a negative profit unless there is a group of people that 

absolutely depend on the transit no matter how long it takes. For the segment with 

positive profit, there can be equilibrium at each frequency and the transportation 

authority faces a tradeoff between profit and ridership. Since the mandate is to maximize 

ridership under a budget, a well-functioning transit agency will choose the point where 

the profit curve crosses the x axis from above.  
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2. The possibility of multiple equilibria 

However, there could be more than one point where the profit curve crosses the x axis 

from above. For example, in case 0 the three such points are around 29, 32, and 36, and 

in case 1 there are two such points, 15 and 20. Unfortunately, the transit agency is not 

omniscient and it may feel satisfied at the point 15 instead of experimenting with higher 

frequency. Because the profit kept falling as the agency ramped up frequency, the agency 

has every reason to assume that this trend will continue and it will lose more money by 

increasing frequency furthermore. Although there is a hint of multiple equilibria, it does 

not seem to be a very strong one.  

 

Hypothesis 2: a small increase in train speed will not significantly increase ridership, 

especially at low train frequencies. 

Although according to the survey mentioned in the introduction, total travel time is one of the 

most important factors in determining ridership, at lower frequency the impact of speed should 

be trumped by the supposedly long waiting time. To test this hypothesis, the travel time needed 

for trains in case 2 is reduced by 5 to 20. All other assumptions of case 2 are the same as case 0. 

The cost factor in the result should be paid special attention because that number signifies how 

attractive trains are to the public in general.  

Case 2 

Distribution of preference 2*Beta(20,20) 

mean 1 

Standard deviation 0.156 

Train travel time (minutes, no waiting) 20 

car travel time (minutes, no congestion) 20 
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Train limit (person) 30 

Congestion function a=25, b=2 

Standard deviation of congestion 5 

Train arrival schedule Fixed  

Cost factor in graph 7 

 

 

Figure 7. Plot of Profit vs. Service Frequency (comparison of case 2 and case 0) 

There seems to be a relationship between train frequency and the difference in ridership between 

the two cases, so I ran a simple linear regression. I hypothesized that it matters more to have fast

er trains when the train frequency is higher. The response variable is the difference, and the expla

natory variable is the train frequency. Their values were calculated by subtracting the ridership at

 each frequency in the two cases shown in figure 7. The data size is 20. I assumed no intercept be
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cause when the train frequency is zero (no service), the ridership in both cases should be zero an

d thus there should no difference in ridership either.  

difference = 𝛽 ∗frequency + 𝜀 

 I was interested in whether the coefficient of frequency is significantly difference from zero and 

how good is the overall fit. A significantly positive coefficient would be consistent with my hypo

thesis.  

Residuals     

Min       1Q   Median       3Q      Max 

-6.5784 -1.3037 -0.2388   1.5545   6.5815 

Coefficients:     

 Estimate Std. Error t value Pr(>|t|)     

Frequency 0.32049     0.02855    11.22 7.95e-10 *** 

Multiple R-squar

ed:   

Adjusted R-squar

ed 

   

0.8689 0.862    

Significance code: *** p<0.01, ** p<0.05, * p<0.1 

 

The effect of train frequency on the difference in ridership is significantly positive at the 1 perce

nt level. The r-squared is surprisingly high, signifying a good fit. This result is consistent with m

y hypothesis.  

Discussion  

Case 2 has similar shaped profit curve as case 0, as well as very similar cost factors. This means 

it matters very little to have a faster public transit, especially when the service frequency is low. 

It could make more sense to improve train speed when the train frequency is higher. Moreover, 

the relative importance of frequency increases in a public transit network, because a higher 

frequency reduces waiting time more when people have to make transfers in a network. So the 

speed of trains may have an even smaller effect in a more connected network. Therefore, in 

general, policy makers should focus more on train frequency.  
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Hypothesis 3: bigger road capacity will make public transportation less attractive but would 

not affect the likelihood of having multiple equilibria.  

 

The following three cases were simulated to study the effect of the shape of the congestion 

function. They were based on the base cases, only with a different congestion function. The old 

congestion function has a=25 and b=2. The new congestion function has a=100 and b=4. Both 

values for “b” were reasonable values from table 1 and both values for “a” were calibrated to 

give the congestion function a reasonable range of values. The new congestion function is 

compared to the old one in figure 13. It reduces congestion, thus reflects an increased road 

capacity. The new congestion function is expected to reduce ridership, because intuitively, more 

people will choose to drive if the road would become less congested. A reduced cost factor in the 

result would corroborate this hypothesis.  

Case 3, case 4, and case 5 have train limits of 30, 100, and 70 respectively. All their other 

assumptions are the same.  

Case 3 

Distribution of preference 2*Beta(20,20) 

mean 1 

Standard deviation 0.156 

Train travel time (minutes, no waiting) 25 

car travel time (minutes, no congestion) 20 

Train limit (person) 30 

Congestion function a=100, b=4 

Standard deviation of congestion 5 
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Train arrival schedule fixed 

Cost factor in graph 5.5 

Instead of the old congestion function:  

 𝑡𝑐 = 𝑇𝑐 + (
𝑁𝑐
25
)2 

The new car travel time is given by: 

 𝑡𝑐 = 𝑇𝑐 + (
𝑁𝑐
100

)4 

 

Figure 8. Comparison of the two congestion functions. The above one is the old one (quadratic), 

and the one below is the new one (quartic).  
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Figure 9. Plot of Profit vs. Service Frequency (case 3) 

Case 4 

Distribution of preference 2*Beta(20,20) 

mean 1 

Standard deviation 0.156 

Train travel time (minutes, no waiting) 25 

car travel time (minutes, no congestion) 20 

Train limit (person) 100 

Congestion function a=100, b=4 

Standard deviation of congestion 5 

Train arrival schedule fixed 
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Cost factor in graph 10 

 

 

Figure 10. Plot of Profit vs. Service Frequency (case 4). The black curve below represents profit, 

the black curve above represents revenue, and the red line represents the “cost”.  

Case 5 

Distribution of preference 2*Beta(20,20) 
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mean 1 

Standard deviation 0.156 

Train travel time (minutes, no waiting) 25 

car travel time (minutes, no congestion) 20 

Train limit (person) 70 

Congestion function a=100, b=4 

Standard deviation of congestion 5 

Train arrival schedule fixed 

Cost factor in graph 8 
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Figure 11. Plot of Profit vs. Service Frequency (case 5). The black curve below represents profit, 

the black curve above represents revenue, and the red line represents the “cost”. 

 

Figure 12. boxplot of long run ridership at frequency 7 and 9 for case 5. (t=13.004, df = 164.71, 

p-value < 2.2e-16)   

 

Discussion  

Indeed, we can see that with a bigger road capacity comes a smaller cost factor, which means the 

transit is less appealing to riders and it can bear less cost. The phenomenon of multiple equilibria 

also seems to be more prominent in these cases than in the base cases. Unfortunately, there does 

not seem to be an obvious explanation or a test that can show it is indeed more prominent. More 

interestingly, and quite counterintuitively, the total ridership (thus revenue) drops significantly at 

frequency 9 for the train limit of 70 and 100 cases (see figure 10 and 11). The decrease in 
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ridership is statistically significant (p<2.2e-16). In previous cases, the total ridership (not shown) 

could plateau despite increasing frequency, which caused profit to plummet, and then start 

increasing again, which caused profit to become positive again. Never has total ridership 

dropped due to higher frequency. However, in case 4 and 5, there is a drop in total ridership due 

to higher frequency for unknown reasons.  

Overall, increasing the road capacity indeed makes public transportation less attractive. However, 

it could have complicated effects on the existence and the prominence of multiple equilibria, and 

could make the optimal frequency more difficult to predict. This also showed the importance of 

making more reliable assumptions on the relationship between traffic load and congestion as it 

could fundamentally change the result. Practical models for the purpose of informing real world 

decisions could calibrate the congestion function based on measurements of the particular road 

under consideration. 

 

Hypothesis 4: more heterogeneous passenger preference will make multiple equilibria more 

likely to occur.  

 

One of the most influential assumptions of the model is the preference distribution. This 

hypothesis is to explore the effect of preference distribution on the existence of multiple 

equilibria. To test this hypothesis, two other preference distributions were run, one was more 

heterogeneous than the previous one (beta (3, 3)), the other one was homogeneous.  

Case 6 

Distribution of preference 2 * Beta(3,3) 

mean 1 
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Standard deviation 0.378 

Train travel time (minutes, no waiting) 25 

car travel time (minutes, no congestion) 20 

Train limit (person) 30 

Congestion function a=25, b=2 

Standard deviation of congestion 5 

Train arrival schedule fixed 

Cost factor in graph 7 

 

Figure 13. Density of 100000 samples of 2*Beta (3, 3) 
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Figure 14. Plot of Profit vs. Service Frequency (case 4) 

Discussion 

Compared the previous cases, the one listed above have populations with a more variable 

preference. This is clear from the more-than-doubled standard deviation, as well as from 

comparing figure 4 and 13. Interestingly, the profit curve is much smoother and no multiple 

equilibria have been found however I twist the cost factor. This curve resembles the standard 

textbook profit curve of a firm. Cases with even more heterogeneous populations were simulated 

and their results were similar to that of case 6 (not shown to conserve space). In general, a 

similar shaped but more heterogeneous population does not lead to multiple equilibria. A 

possible explanation is that the existence of multiple equilibria depends on there being a large 

group of people who are more or less indifferent between the two transportation modes so that 

they would only switch to using public transit after huge improvements in service quality have 
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been made. That group would need to be big enough in number to overturn the previously 

negative profit into positive. There also need to be few people who are going to take public 

transportation with little regards to the service quality so that a lackluster improvement in service 

quality would not suffice. With a combination of these two factors, terrible services and terrific 

services would both be profitable, but mediocre services would not. A more heterogeneous 

population like the one in case 6 increases the group of people who are reliable on public transit 

and reduces the group of people who are more demanding. Therefore, a more heterogeneous 

population would undermine the conditions for the existence of multiple equilibria.    

Case 7 

Distribution of preference homogenous 

mean 1 

Standard deviation 0 

Train travel time (minutes, no waiting) 25 

car travel time (minutes, no congestion) 20 

Train limit (person) 30 

Congestion function a=25, b=2 

Standard deviation of congestion 5 

Train arrival schedule fixed 

Cost factor in graph 10 

 



Boyu Liu 

 

   46 / 69 
 

 

Figure 15. Plot of Profit vs. Service Frequency (case 7) 

Discussion 

On the other extreme, a population with the least variable preference values would be a 

homogenous population. In this case, all the people are assumed to have a preference value of 1, 

which means they are indifferent between the two transportation modes and will choose the 

faster one. The cost factor is much higher than that of case 0, which means that people are much 

more attracted to public transportation in this case. One should note that this case is a lot less 

realistic because such a homogenous group never exists. No multiple equilibria exist in this case 

either. The ridership shoots to the maximum and falls back all in a steady manner.  

A possible explanation for the absence of multiple equilibria could be the following. The 

indifferent group of people are more sensitive to the service quality of public transportation, thus 

could easily be crowded out by the group of people who badly needed public transit. The group 
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relying on public transit makes ridership abnormally high at very low service frequency, thus 

makes a lackluster improvement seemingly pointless. Without such a group, the indifferent 

group would switch to using public transit gradually, resulting in a more steady change in 

ridership.  

The previous two cases showed the importance of the assumption of heterogeneous preferences 

in modelling transit demand as even a subtle difference on that can make a difference on the 

existence of multiple equilibria.  

 

Hypothesis 5: less reliable arrival time will severely reduce ridership.  

 

In previous cases, we assumed the train arrives on a fixed schedule. However, the reality may not 

be as perfect. Moreover, according to the survey by the Transit Center, travel time reliability is 

among the top two considerations when deciding travel mode. Therefore, it would be interesting 

to test the effect of a less reliable train arrival time on ridership. In case 8, trains were assumed to 

arrive based on an exponential distribution whose mean value (i.e. expected arrival time) is the 

same as that in the fixed arrival case. Although the expected train travel time would stay the 

same, this set up would introduce considerable variability in actual travel times.  

Firstly, the real time fluctuation of ridership during the first 10000 rounds will be plotted for both 

the base case and the new case. Then, the usual profit versus service frequency plot will be 

discussed.  
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Comparison of fixed and exponential arrival time in single simulations 

 

 

Fig. 16. Ridership in a single simulation (x=time, y=ridership) – base model, 100 rounds  

 

 

Fig. 17. Ridership in a single simulation (x=time, y=ridership) – base model, 1000 rounds  

Procession of Time (Rounds) 
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ridership 
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Fig. 18. Ridership in a single simulation (x=time, y=ridership) – base model, 10000 rounds 

Figure 16 to 18 are graphical representations of train ridership under fixed train frequency 

(which is 10 in the above graphs). The x axis represents the passage of time, and the y axis 

represents ridership (0-300). Clearly, the ridership becomes stable very fast. In these cases, trains 

are assumed to arrive on fixed schedule, as shown by the equation:  

𝑇𝑡𝑟_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
1

𝑓
=
𝑇𝑡𝑜𝑡𝑎𝑙
𝑁𝑡𝑟𝑎𝑖𝑛𝑠

 

𝑡𝑡𝑟,𝑗 = 𝑇𝑡𝑟 +
𝜀𝑗 − 1

𝑓
 

Therefore, stable ridership means passengers will have the same experience in the future, thus 

the number of people driving and taking trains will remain fairly stable as well.  

300 

Procession of Time (Rounds) 10000 
0 

ridership 
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In the case shown by the following two graphs, trains are assumed to arrive in intervals which 

are drawn from the exponential distribution that has its mean equal to the mean expected interval 

determined by the train frequency. First, all passengers wait for the first train to come. Then, 

people are randomly selected to fill the first train until it is full, and the rest wait for the next 

train. The interval between the (k-1)
th

 train and the k
th

  train, 𝑇𝑘, is given by 

 𝑇𝑘~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(
1

𝑓
) 

So that  

 𝑡𝑡𝑟,𝑗 = 𝑇𝑡𝑟 +∑𝑇𝑘

𝜀𝑗

𝑘=1

 

This set up creates a lot more uncertainty in the time needed for taking trains, so we would 

expect the ridership to be less stable than the base case. This is exactly what happened.  

 

Fig. 19. Ridership in a single simulation (x=time, y=ridership) – exp model, 1000 rounds  

Since the ridership did not seem to have stabilized, more rounds (10000) were simulated.  

1000 0 

300 

Procession of Time (Rounds) 

ridership 



Boyu Liu 

 

   51 / 69 
 

 

Fig. 20. Ridership in a single simulation (x=time, y=ridership) – exp model, 10000 rounds  

In the base model, ridership seems to stabilize after about only 10 rounds (Fig. 16). In 

comparison, it seems the exponential model will never be as stable; ridership fluctuates around a 

certain value even after 10000 rounds. All cases that are studied later have fixed arrival 

schedules unless explicitly specified.   

In reality, the arrival schedule is less reliable than the fixed case, but not as variable as the 

exponential one. Transportation blogger Jarrett Walker displayed a distribution of real world 

arrival intervals of the San Francisco Muni collected by one of his readers.  

 

0 
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Figure 21. Distribution of Arrival Intervals at Powell St Station
28

  

 

Figure 22. Probability Distribution Function of gamma (shape = 3, rate = 2.3) 

The outbound distribution is very similar to a gamma distribution (3, 2.3), which has an average 

of 6.9 and a standard deviation of 3.98. On the other hand, an exponential distribution with a 

mean of 7 has a standard deviation of 7. Therefore, the actually data should be less variable than 

the exponential distribution, but certainly more variable than a fixed schedule, which has a 

standard deviation of 0. The reliability of public transportation in reality is in between the two 

cases shown above, so the variability of real world ridership may also be between that of the two 

cases. Exponential arrival was simulated in case 8. The gamma arrival, which better resembles 

the real world scenario, was also simulated, but would not be reported here, since it turned out to 

be quite similar to the exponential case.  

A more reliable service not only makes passengers less hesitant in choosing public transportation, 

but also makes it easier for public transportation authorities to adjust service frequencies.  

Case 8 

Distribution of preference 2*Beta(20,20) 

mean 1 

Standard deviation 0.156 

                                                           
28

 Walker, Jarrett. "Now, Anyone Can Monitor Reliability." Human Transit, 30 June 2010. Web. 11 Sept. 2015. 
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Train travel time (minutes, no waiting) 25 

car travel time (minutes, no congestion) 20 

Train limit (person) 30 

Congestion function a=25, b=2 

Standard deviation of congestion 5 

Train arrival schedule Exponential  

Cost factor in graph 3.75 

 

Figure 23. Plot of Profit vs. Service Frequency (case 8) 

 



Boyu Liu 

 

   54 / 69 
 

 

Figure 24. Comparison of Profit vs. Service Frequency of case 0 v s. case 10 

Discussion  

If the train arrival time is very unreliable and follows an exponential distribution, then the 

ridership will be severely reduced, especially at lower frequencies (fig. 23). This can also be 

shown by its lowest cost factor (3.5) among all cases. Its only difference with case 0 is the train 

arrival schedule. A comparison of the two cases is shown in figure 24 by assuming the same cost 

factor (7) for both cases.  This is in accordance with Jarrett Walker’s argument that reliability 

makes a huge influence on ridership.  

On the opposite side, the time needed for driving can become less reliable as well. The next two 

cases simulated what would happen when driving time becomes less reliable.   
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Case 9 

Distribution of preference 2*Beta(20,20) 

mean 1 

Standard deviation 0.156 

Train travel time (minutes, no waiting) 25 

car travel time (minutes, no congestion) 20 

Train limit (person) 30 

Congestion function a=25, b=2 

Standard deviation of congestion Total time – time if no congestion (20) 

Train arrival schedule Fixed 

Cost factor in graph 15 

 

Figure 25. Plot of Profit vs. Service Frequency (case 9) 
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Case 10 

Distribution of preference 2*Beta(20,20) 

mean 1 

Standard deviation 0.156 

Train travel time (minutes, no waiting) 25 

car travel time (minutes, no congestion) 20 

Train limit (person) 30 

Congestion function a=100, b=4 

Standard deviation of congestion Total time – time if no congestion (20) 

Train arrival schedule fixed 

Cost factor in graph 9 

 



Boyu Liu 

 

   57 / 69 
 

Figure 26. Plot of Profit vs. Service Frequency (case 10) 

Discussion  

In these cases, instead of assuming constant variance of the time each car would be stuck in 

congestion, I assumed that with heavier congestion, the congestion time would also become 

more variable. By comparing the cost factors of case 8 and 9 with those of case 0 and case 3, we 

do find that less reliable car time will result in more people choosing trains, but the overall shape 

of their profit curves do not seem to be affected as much as we would expect.  

By comparing the cost factors of more variable congestion cases with those of their respective 

base cases, such as case 0 (cost factor=7) and case 9 (cost factor=15), or case 3 (cost factor=5.5) 

and case 10 (cost factor=9), we showed the substitution effect between the two transportation 

modes. Case 9 and case 10 have much bigger cost factors than case 0 and case 3, and their only 

difference is that the earlier two cases have less variable congestion time. We can think of it as 

an improvement of road conditions or an increase in road capacity, and that would reduce 

ridership of public transportation as well as profit level. This result reminds us the substitution 

effect between driving and taking public transportation. A city that wants to promote its public 

transportation should be careful with enlarging road capacity as that could make it harder to 

promote public transportation.  

 

Hypothesis 6: there will be large random variations of long term average profit between 

different simulations (thus hypothetical worlds). 

 

In previous cases, the ridership in all plots was actually the average from 100 simulation runs. 

But it would be interesting to see not only the average ridership, but also ridership of each 

simulation, because the reality corresponds to one single simulation rather than the average of 
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them. Ridership values of simulations with the exact same set up are expected to have substantial 

variation. In this section, all data points were plotted for several selected previous cases to show 

whether there exist large variations.  

 

Figure 27. Box-plot of Profit vs. Service Frequency (case 0). Each dot represents the long run 

ridership at the corresponding frequency for a single simulation run (thus a single hypothetical 

world). The heights of the boxes represent two standard deviations.  
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Figure 28. Box-plot of Profit vs. Service Frequency (case 3). Each dot represents the long run 

ridership at the corresponding frequency for a single simulation run (thus a single hypothetical 

world). The heights of the boxes represent two standard deviations.  
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Figure 29. Box-plot of Profit vs. Service Frequency (case 10). Each dot represents the long run 

ridership at the corresponding frequency for a single simulation run (thus a single hypothetical 

world). The heights of the boxes represent two standard deviations.  

Discussion  

In the above graphs, each dot represents the long term (between 2,000 rounds and 20,000 rounds 

depending on how fast ridership stabilizes) average profit at the frequency corresponding to the x 

axis value in one simulation. Dozens of simulations were run at each frequency and plotted to 

show different possible outcomes that can arise even if everything stays the same. The variability 

is not day to day, but rather reflects difference in long term average profit between hypothetical 

worlds, because as shown in figure 16 - 18, ridership almost never changes after about the first 

10 rounds. They show really big variability at some frequencies, but little variability at other 

frequencies. Also, the variability is big enough so that a profit could be made at frequencies that 

on average should result in a deficit, and vice versa. In the fortunate scenario, the public transit 
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authority could make positive profits at almost every service frequency (fig. 28), thus would 

easily end up at a high service frequency and a high ridership if it truly cared to maximize 

ridership. On the other hand, the transit authority could also make negative profits at all 

frequencies between 19 and 33 (trains per four-hour period). In such an unfortunate scenario, it 

would be must harder to maximize ridership.  

This result is caused by the randomness in whether people can get onto the first available train or 

have to wait for the next one. If the group of people who are really hesitant between driving and 

taking trains had terrible experiences waiting for trains, then they will choose driving and never 

switch back, because that unpleasant memory will be engraved in their memory and trains will 

never get a second chance. On the other hand, if they had great experiences using trains, they 

might just stick with it unless they have consistently bad experiences later on. Therefore, the 

long run ridership partly depends on which group of people established the habit of using the 

public transportation system. This really stressed the uncertainty in the real world situation, and 

the importance of convincing people to give public transit another try after improvements were 

made.  

 

Hypothesis 7: lower car ownership will make multiple equilibria less likely to occur 

In the following two cases, a portion of the population is assumed to have no car. They would 

have an infinite preference value, which means they could only choose to use the public transit 

however long it would take them. For practical purposes their preference values were set as 1000. 

Case 11 has one third of the total population with no car, and case 12 has one fifth. The rest of 

the population in both cases was assumed to have preference values drawn from the same 

distribution as the base case (fig. 4). All other assumptions were the same as those of the base 
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case. The comparison of case 11 and 12 with the base case would reveal the effect of the 

demographical difference of the user population.  

Case 11 & 12 

Distribution of preference 2*Beta(20,20) for 
2

3
𝑁 people, 

1000 for 
1

3
𝑁 people 

2*Beta(20,20) for 
4

5
𝑁 

people, 1000 for 
1

5
𝑁 

people 

mean 1 1 

Standard deviation 0.156 0.156 

Train travel time (minutes, no 

waiting) 

25 25 

car travel time (minutes, no 

congestion) 

20 20 

Train limit (person) 30 30 

Congestion function a=25, b=2 a=25, b=2 

Standard deviation of 

congestion 

5 5 

Train arrival schedule Fixed   Fixed   

Cost factor in graph 8 8 
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Figure 30. Plot of Profit vs. Service Frequency (case 11) 

Figure 31. Plot of Profit vs. Service Frequency (case 12) 
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Discussion  

The profit curve of case 11 is almost a simple downward sloping line. The implication of it is 

that the public transit agency would face a trickier trader-off between ridership and profit. In this 

case, there is almost always a considerable cost in increasing ridership, whereas in previous cases 

it is possible to increase ridership without requiring a bigger budget, because the increased 

revenue might be able to compensate for the cost. The profit curve of case 12 is a downward 

sloping line with a hint of multiple equilibria. It is thus in between case 11 and the base case.  

These cases showed the difference between coverage lines and ridership lines. Coverage lines 

serve places where people badly need or feel entitled to public transportation
29

. They are often 

created for underprivileged communities to provide mobility and social inclusion
30

. Frequent 

lines, on the other hand, are created to maximize ridership so as to reduce congestion and 

emission caused by private cars. Due to their different purposes, ridership lines try to appeal to 

people who drive, while coverage lines serve areas where a portion of the population may not 

have cars. Therefore, models of ridership lines should have populations with higher car 

ownership rates than those in models of coverage lines. Cases 11 and 12, consequently, would be 

more suited to coverage lines, and previous cases would be more suited to ridership lines.  

As case 11 and case 12 showed, coverage lines may face trickier trade-off between frequency 

and profit, thus tend to have lower frequency. Their ridership at low service frequencies would 

be higher than that of ridership lines at the same frequency. Also, since coverage lines are much 

less likely to have multiple equilibria, transit planners should not focus on frequency, but rather 

should focus on strategies such as better zoning or better design of transit networks.  

                                                           
29

 Walker, Jarrett. "Explainer: The Transit Ridership Recipe." Human Transit, 15 July 2015. Web. 11 Sept. 2015. 
30

 Walker, Jarrett. "Purpose-driven public transport: creating a clear conversation about public transport goals." 

Journal of transport geography 16.6 (2008): 436-442. 
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Conclusion, Limitations, and Future Directions 

Conclusion  

This study used an agent-based model to model individual’s choice between taking public transit 

and driving and the resulting public transit ridership. Agent based modeling allowed easier 

incorporation of assumptions such as adaptive expectations, simple decision heuristics, and a 

diverse population, as opposed to the classical assumptions of rational expectations, rational 

choice with utility maximization, and representative agents.  

Simulation results showed the possibility of multiple local optimal points where the public 

transportation agency may locally maximize ridership under a budget constraint. The existence 

of multiple equilibria is moderately robust to changes in model parameters as multiple equilibria 

showed up in various cases.  

The model then explored the effect of changes in various model components. Train speed was 

shown to be of little impact on ridership, especially at low service frequencies. Road capacity 

was shown to have a significant impact on the prominence and the form of multiple equilibria, 

though the specific impact could be complicated and hard to predict. The distribution of 

passenger preferences for public transit could determine the existence of multiple equilibria. 

Neither an entirely homogeneous population nor a really heterogeneous population could result 

in multiple equilibria. It is thus important to be able to model an arbitrarily diverse population 

since a subtle difference could be consequential. Reliability of train arrival schedule was shown 

to be of huge impact on ridership, especially at lower service frequencies. Multiple equilibria 

could still exist when train arrival schedule is unreliable. A reasonable amount of variation in car 

congestion time would not have as big an impact. A lower car ownership within the population 
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would undermine the conditions for multiple equilibria as well as make the trade-off between 

profit and service frequency more difficult.  

Simulation results also showed significant variation in long run average ridership of models with 

the same set up. It is thus possible to have a higher or lower ridership in each hypothetical world 

(or the real world) depending on which group of the population established the habit of using 

public transportation. This result could not have happened had we assumed rational expectations.   

 

Limitations and Future Directions 

 Public Transit Network  

In this model, a simplistic case where there are only two train stations was studied. Real world 

public transportation networks are much more complicated and the real world population is 

much more spatially distributed. A more ambitious model could model all of that with the help 

of a Geographic Information System and a larger scale computer program. That extension would 

confer a lot more functionality to the model. Specifically, the more complete model would be 

able to study transfers within the transit network, optimal dispatch schedule of trains and buses, 

the effect of urban sprawl on people’s mobility, to name a few.   

 Model Calibration  

In this study, almost all the parameters were not calibrated but rather experimented with to 

determine the reasonable range of values. This could be fine for an explorative study. But if a 

similar model were ever to be used to aid real world decisions, calibration of parameters would 

be not only necessary but difficult. However, this is the case for almost all models that aspire to 

inform real world decisions. Conversely, theoretical models used to explore certain phenomena 
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often make assumptions based on intuition without calibrating them based on real world data. 

The real problem with this model is that it would be practically impossible to explore all possible 

combinations of different assumptions as there are a lot of assumptions with large ranges of 

possible values. The number of cases would be exponentially big.  

The calibration of this model could be straightforward. Train travel time, frequency, and 

reliability can be monitored by passengers or the service agency. Car travel time, congestion 

function, and variability of congestion delay could be measured by mobile apps on the 

smartphones of a sample of drivers. The preference distribution of the population could be 

documented by surveys or observed by tracking real world decisions, but this could take more 

time than other calibrations.  

 No Hypothesis Testing 

Although agent based models enabled me to have more flexible assumptions, they do not provide 

closed form analytical solutions. Neither is it easy to do hypothesis testing under this frame work. 

Therefore, it is difficult to determine which factor contributed the most toward the emergence or 

disappearance of a certain phenomenon or to test hypotheses on that. On the other hand, the 

emergence of disappearance of a certain phenomenon could be the coordinated effect of many 

factors involved, thus the customary convention of trying to find a single cause of the 

phenomenon could be misguided. Nonetheless, the habit of looking for the main causes of a 

phenomenon still has its merit as it could help people better understand the phenomenon. There 

is a trade-off to be made between the flexibility of a model and the ease to interpret it. Agent 

based models provide more flexibility of modelling at the expense of interpretability.    
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