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Abstract

Combinatorial Proofs of Congruences

by Jeremy Rouse

May 2003

Combinatorial techniques can frequently provide satisfying “explanations” of var-

ious mathematical phenomena. In this thesis, we seek to explain a number of well-

known number-theoretic congruences using combinatorial methods. Many of the

results we prove involve the Fibonacci sequence and its generalizations.
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Chapter 1

Introduction

In this thesis, we will provide combinatorial proofs of well-known number the-

oretic results. A combinatorial proof, in contrast with an algebraic proof, is a proof

that relies completely (or almost completely) on counting.

Many of the results we will prove will involving Lucas sequences. A Lucas

sequence of the first kind Un(a, b) is defined by U0(a, b) = 0, U1(a, b) = 1, and Un(a, b) =

aUn−1(a, b) + bUn−2(a, b) for n ≥ 2. Here a and b are nonnegative integers. In the

case when a = b = 1, we get the Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

A Lucas sequence of the second kind Vn(a, b) is defined by V0(a, b) = 2, V1(a, b) = a,

and Vn(a, b) = aVn−1(a, b) + bVn−2(a, b) for n ≥ 2. In the case when a = b = 1 we get

the sequence of Lucas numbers

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, . . .

Lucas sequences have fascinated mathematicians for many centuries (see [6],

[8]). In order to prove results combinatorially involving Lucas sequences, we have

to find counting questions that they answer.

The Fibonacci numbers, Un(1, 1), count the ways to tile a board of length n − 1

(a 1× (n− 1) rectangle) with squares (1× 1 tiles) and dominoes (1× 2 tiles). More

generally,
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Theorem 1.1. For nonnegative integers a and b, Un(a, b) counts the ways to tile a board

of length n− 1 with squares of a colors and dominoes of b colors.

This can be proved by induction on n (or see [4] or [2]).

We interpret Lucas sequences of the second kind in a similar way, except we

will tile “bracelets” instead of rectangles. In this case, we think of the left side of

the tiling being connected to the right side of the tiling, with a “clasp” (placed at

the left side of the tiling) identified.

Theorem 1.2. For nonnegative integers a and b, Vn(a, b) counts the length n bracelet

tilings where each square is given one of a colors and each domino is given one of b colors.

In any tiling, we call the ith 1× 1 region in the tiling (reading from the left) the

ith cell.

Using these interpretations, many results have been proven involving Fibonacci

and Lucas numbers (see [4]). Also, these interpretations can be easily extended to

take into account different linear recurrence relations (such as an = an−1 + 3an−2 +

2an−3) and different initial conditions.

In the next chapter, we will provide combinatorial proofs of basic number the-

oretic results, elementary combinatorial proofs of congruences involving Lucas se-

quences of the second kind. Then, we will build on these results, resulting in con-

gruences involving Lucas sequences of the first kind.

In the third chapter, we will discuss integer partitions, and the partition func-

tion. I will discuss possible approaches for giving combinatorial proofs for two

results involving partitions, one due to Leonhard Euler, and one due to Srinivasa

Ramanujan. We will also discuss extending linear recurrence relations and their

combinatorial interpretations to negative indices.



Chapter 2

Congruences

In this chapter, we will give combinatorial proofs of well-known number the-

oretic results (including Fermat’s Little Theorem and Wilson’s Theorem), a result

about Lucas sequences of the second kind mod p, and finally results about Lucas

sequences of the first kind mod p.

In these proofs, our idea is to partition a set into some number of equivalence

classes of size p and equivalence classes of size 1. Then, to determine the size of

the set mod p, it suffices to count the equivalence classes of size 1. The following

lemma is a formalization of this technique that will be useful in many of the proofs.

Lemma 2.1. Suppose that S is a finite set, p is a prime, and f : S → S is a function such

that

fp(s) = s

for all elements s of S (here fp denotes p compositions of f ). Let T = {s : f(s) = s}.

Then,

|S| ≡ |T | (mod p).

Proof. Suppose s ∈ S and m is the smallest positive integer such that fm(s) = s.

Since fp(s) = s, we must have 1 ≤ m ≤ p. Now, suppose n is a positive integer

such that fn(s) = s. Then, applying the division algorithm to n, there exist integers

q ≥ 0 and r such that n = qm + r where 0 ≤ r < m. Then, s = fn(s) = f qm+r(s) =

f r(f qm(s)) = f r(s), since f qm(s) = fm(fm(· · · (fm(s)))) = s. Hence, f r(s) = s,

which contradicts the minimality of m. Hence, r = 0 and m divides n.
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Since fp(s) = s for all s, for any s ∈ S, the smallest positive integer m such that

fm(s) = s divides p. Since p is prime, m = 1 or m = p.

Now, for any n > 0, let n = pq + r where q ≥ 0 and 0 ≤ r < p. Then,

fn(s) = fpq+r(s) = f r(fpq(s)) = f r(s).

Now, for any s, t ∈ S, we say that s ∼ t if there is a positive integer k such that

fk(s) = t. Clearly, ∼ is reflexive. Also if s ∼ t we can choose k so that fk(s) = t and

k < p. Then fp−k(t) = fp−k(fk(s)) = fp(s) = s, so t ∼ s, so ∼ is symmetric. Finally,

if s ∼ t and t ∼ u, there are integers k, l < p such that fk(s) = t and f l(t) = u. Then,

fk+l(s) = f l(t) = u, so s ∼ u. Thus, ∼ is an equivalence relation.

Clearly, if f(s) = s, then s lies in an equivalence class of size 1. Now, if f(s) 6= s,

then the smallest integer m such that fm(s) = s is p. Hence, if t ∼ s, then there

exists an integer k with 0 ≤ k < p such that fk(s) = t. Hence,

t ∈ (s, f(s), . . . , fp−1(s))

Clearly, all elements in the above p-tuple are equivalent to s. I claim that each of

these elements is distinct, since if f i(s) = f j(s) with 0 < i < j < p, then applying

f p − j times to each sides gives fp−j+i(s) = s. Since j > i, 0 < p − j − i < p, a

contradiction.

Hence, for all s ∈ S, the equivalence class containing s has size 1 or p. Note that

the number of equivalence classes of size 1 is |T |, where T = {s : f(s) = s}. Thus,

|S| ≡ |T | (mod p),

as desired.

Using this lemma, we can easily prove many basic number theoretic results.

Theorem 2.2 (Fermat’s Little Theorem). For any integer a,

ap ≡ a (mod p).
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Proof. Consider the set S of tilings of a length p bracelet using squares of a colors,

and no dominoes. Clearly, |S| = ap. For s ∈ S, define f(s) to be the tiling obtained

by shifting every tile of s one cell to the right. It is clear that fp(s) = s for all s ∈ S.

Let T be the set of tilings fixed by f . From Lemma 2.1, it follows that |S| ≡ |T |

(mod p).

Now, suppose t is fixed by f . Then, since if j > i f j−i(t) = t and f j−i sends cell

i to cell j, the contents of these two cells must be the same. Thus, all the squares in

t must be the same color. Conversely, if s is a tiling where all the squares are the

same color, then s ∈ T . Thus, |T | = a. It follows that

ap ≡ a (mod p),

as desired.

Theorem 2.3. If p is prime, and Vn(a, b) is a Lucas sequence of the second kind, then

Vp(a, b) ≡ a (mod p).

Proof. In this case, let S be the set of length p colored bracelet tilings, where colored

squares and dominoes are allowed, with a choices for squares and b choices for

dominoes. From Theorem 1.2 |S| = Vp(a, b). For s ∈ S define f(s) to be the tiling

obtained by shifting every tile of s one cell to the right.

Let T be the set of tilings fixed by f and suppose t ∈ T . As before, if j > i, then

f j−i sends the contents of cell i to cell j. Thus, the contents of all the cells must

be the same. This implies that the tiling t can contain no dominoes, since if one

cell contains the beginning of a domino, every cell must contain the beginning of

a domino. Also, all the squares must be the same color as well. Thus, a tiling s is

fixed by f if and only if s consists of squares of the same color. Thus,

Vp(a, b) = |S| ≡ |T | ≡ a (mod p),

as desired.
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It is interesting to note that Theorem 2.3 is a special case of Theorem 2.2. Taking

b = 0, Vn(a, 0) counts the number of length n bracelet tilings with colored squares.

Hence, Vn(a, 0) = an for all n, so from Theorem 2.3, ap ≡ a (mod p).

Theorem 2.3 can be generalized.

Theorem 2.4. For all k ≥ 1,

Vkp(a, b) ≡ Vk(a, b) (mod p).

Proof. Let S be the set of length kp colored bracelet tilings. From Theorem 1.2

|S| = Vkp(a, b). For s ∈ S define f(s) to be the tiling obtained by shifting every tile

of s k cells to the right. Now, fp(s) rotates s by pk cells, so fp(s) = s.

Now, if t is fixed by f , then if i ≡ j (mod k), then the contents of cells i and j

must be the same. Thus, t is determined entirely by the contents of cells 1 through

k. Thus, any length k bracelet tiling can be extended to a length pk tiling that is

fixed by f (since if the bracelet is not breakable before cell 1 then it will not be

breakable before cell k + 1). Thus, there are Vk(a, b) such tilings fixed by f . Thus,

Vkp(a, b) ≡ Vk(a, b) (mod p).

One corollary of this result is that we can evaluate the right hand side explicitly

when k is itself a prime power.

Theorem 2.5. For all e ≥ 1,

Vpe(a, b) ≡ a (mod p).

Proof. We will proceed by induction on e. The case e = 1 has already been proven.

If e > 1, let k = pe−1. Then, from Theorem 2.4 and the induction hypothesis we

have

Vpe(a, b) ≡ Vpe−1(a, b) ≡ a (mod p).
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Another simple number theoretic result is the following.

Theorem 2.6. If 0 < k < p, then (
p

k

)
≡ 0 (mod p).

Proof. Let S be the set of all k-element subsets of {0, . . . , p − 1}. If s ∈ S, define

f(s) = {j + 1 mod p : j ∈ s}. Clearly, for any s ∈ S, fp(s) = s. Let T be the set of all

subsets in S fixed by f . If t ∈ T then j ∈ t implies that j + 1 mod p ∈ t. Thus, if t is

non-empty, t = {0, . . . , p− 1}. Hence, there are no sets fixed by f so |T | = 0. Thus,

|S| =
(

p

k

)
≡ |T | = 0 (mod p),

as desired.

One more classical number theoretic result that can be proved using these tech-

niques is Wilson’s theorem.

Theorem 2.7 (Wilson’s). If p is prime, then

(p− 1)! ≡ p− 1 (mod p).

Proof. Let S be the set of permutations of {0, 1, 2, . . . , p − 1} that contain only one

cycle. If π ∈ S, we will represent π in cycle notation, and begin with zero. We will

count the number of elements in S. For each k ≥ 1, we have p − k choices for the

kth number in the cycle, so |S| = (p− 1)!.

Let f : S → S add one to each number and reduce mod p. For example, for

p = 5 if π = (0 2 3 1 4), then f(π) = (1 3 4 2 0) = (0 1 3 4 2). Then fp(π) = π for all

π ∈ S. Let T = {π ∈ S : f(π) = π}. Suppose π ∈ T and let x = π(0).

Note that if π is written in cycle notation, then the first entry is 0 and the second

entry is x. Thus, if we apply fk to π, then the first entry in the cycle (before shifting

it to begin with zero) is k mod p and the second entry is x + k mod p. Thus, for all

k, π(k) = k + x mod p. Now,

(0 x . . .) = π = fk(π) = (k x + k . . .).
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In particular, when k = x, we have

(0 x 2x . . .) = π = fx(π) = (x 2x 3x . . .)

thus f(x) = 2x mod p. When k = 2x, π(2x) = 3x mod p, and inductively π(nx) =

(n + 1)x mod p. Thus, all π that satisfy f(π) = π are of the form

(0 x 2x 3x · · · (p− 1)x) .

for some x with 1 ≤ x ≤ p− 1. Conversely, it is easy to see that any permutation of

this form is in T and therefore |T | = p− 1. Thus,

(p− 1)! = |S| ≡ |T | ≡ p− 1 (mod p),

as desired.

Before we prove the next result, recall that if a is an integer and p is an odd

prime, then the Legendre symbol is defined by

(
a

p

)
=


1 if a 6≡ 0 is a square mod p

−1 if a is not a square mod p

0 if p divides a.

.

The following result gives a simple way to calculate Legendre symbols.

Theorem 2.8 (Euler’s Criterion). If p is an odd prime and a is an integer between 0 and

p, then (
a

p

)
≡ a

p−1
2 (mod p).

Proof. First, assume a ≡ 0 (mod p). Then, a
p−1
2 ≡ 0 ≡

(
a
p

)
(mod p).

Second, suppose a 6≡ 0 is a square mod p, and choose x greater than p such that

x2 ≡ a (mod p). Let T be the multiset containing x copies each of all length p − 1
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tilings using all squares, where each square is given one of x colors. For example,

when p = 3, a = 1, and x = 4 with colors from {1, 2, 3, 4},

T =

〈 1︷︸︸︷ 1︷︸︸︷
,

1︷︸︸︷ 1︷︸︸︷
,

1︷︸︸︷ 1︷︸︸︷
,

1︷︸︸︷ 1︷︸︸︷
1︷︸︸︷ 2︷︸︸︷

,

1︷︸︸︷ 2︷︸︸︷
,

1︷︸︸︷ 2︷︸︸︷
,

1︷︸︸︷ 2︷︸︸︷
, . . .

4︷︸︸︷ 4︷︸︸︷
,

4︷︸︸︷ 4︷︸︸︷
,

4︷︸︸︷ 4︷︸︸︷
,

4︷︸︸︷ 4︷︸︸︷〉
.

Since there are xp−1 colored tilings of length p − 1, and each is listed x times,

we have |T | = xp. From Fermat’s Little Theorem, it follows that |T | ≡ x (mod p).

Let U ⊂ T be the multiset of x copies of each length p − 1 tiling where for all

1 ≤ j ≤ p−1
2

, cells 2j−1 and 2j receive the same color, and that color is chosen from

the set {1, . . . , a}. Here, |U | = xa
p−1
2 . Next, we claim that |T − U | ≡ 0 (mod p).

Note that a length p−1 colored square-tiling is in T−U if and only if there exists

a 1 ≤ j ≤ p−1
2

such that cells 2j − 1 and 2j are filled with two squares of different

colors, or with two squares one of whose colors is larger than a. If we condition on

the smallest such j, we have that for 1 ≤ k ≤ j − 1, the squares in cells 2k − 1 and

2k may be colored a ways and 1 way, respectively. The squares in cells 2j − 1 and

2j may be colored in x2− a ways, since we must rule out the cases when these two

squares are both the same color and that color is less than or equal to a. Finally,

if j < k ≤ p−1
2

, there are x2 ways to color cells 2k − 1 and 2k. Further, there are x

copies of each tiling, and this gives that

|T − U | = x

p−1
2∑

j=1

aj−1(x2 − a)xp−1−2j.

By assumption, x2 ≡ a (mod p), so |T −U | = |T |− |U | ≡ 0 (mod p). This gives that

x ≡ |T | ≡ |U | = xa
p−1
2 (mod p).
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Since gcd(a, p) = 1, gcd(x, p) = 1. Therefore,

a
p−1
2 ≡ 1 (mod p),

as desired.

Finally, suppose that a is not a square mod p. We aim to show that a
p−1
2 ≡ −1

(mod p). Let T ′ be the set of all tilings of length p− 1 using only squares, where for

1 ≤ i ≤ p−1
2

the ith square may be assigned a color from the set {1, 2, . . . , p + i}.

Thus, |T ′| = (p + 1)(p + 2) · · · (2p − 1). Now, we could use modular arithmetic

and Wilson’s theorem to get |T ′| ≡ (p − 1)! ≡ −1 (mod p), but we prefer a more

combinatorial approach. Let U ′ ⊂ T ′ be the set of all tilings for which there exists

an 1 ≤ i ≤ p−1
2

such that the ith square is assigned a color from the set Ci =

{i + 1, i + 2, . . . , i + p}.

Now, for u ∈ U ′, condition on the smallest j such that the color of the jth square

is in Cj . For i < j, square i can be given color 1, 2, . . . , i − 1 or i. Thus, there are i

choices for the color of square i. For i = j, square j has p choices. For i > j, then

square i can be given any color from 1 to p + i. Hence, for each j, there are

(j − 1)!p

p−1∏
k=j

(p + k)

tilings. Summing over j, we get that

|U ′| = p

p−1∑
j=1

(j − 1)!

p−1∏
k=j

(p + k).

Since U ′ ⊂ T ′, and |U ′| ≡ 0 (mod p), |T ′| ≡ |T ′ − U ′| (mod p). Now, T ′ − U ′

is the set of all tilings for which the ith square is given color 1, 2, . . . , i − 1 or i.

Thus, |T ′ − U ′| = (p− 1)!, so |T ′| ≡ |T ′ − U ′| ≡ (p − 1)!. By Wilson’s theorem,

(p− 1)! ≡ p− 1 ≡ −1 mod p.

Our goal remains to prove that if a is not a square mod p, then a
p−1
2 ≡ −1

(mod p).
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Let S = {1, 2, . . . , p − 1}. For x, y ∈ S, we say that x ∼ y if xy ≡ a (mod p). If

x ∼ y, then x 6= y since a is not a square mod p. Also, if x ∼ y, and x ∼ z, then

xy ≡ xz, so y ≡ z (mod p), and therefore y = z.

For each tiling in t ∈ T ′, we will rearrange the squares as follows, constructing

a new tiling t′ (which might not be in T ′). We construct the tiling from left to right

two squares at a time. Begin the tiling with the first square from t and the ath

square from t. Then, at each successive step, take the smallest number k in S such

that the kth square in t has not been placed. Append the kth square to the tiling

and then append the lth square, where l is the unique integer such that kl ≡ a

(mod p).

Note that l > k, since if l < k, then the lth square would already have been

placed next to some integer m 6= k. Then, l ∼ m and l ∼ k, implying that k ≡ m

(mod p), a contradiction.

Continue this process until all p−1 squares have been placed. For 1 ≤ i ≤ p−1,

let ni be the cell (in t) that the ith square in t′ came from.

For example, if a = 3 and p = 7, we rearrange a length 6 tiling

1︷︸︸︷ 2︷︸︸︷ 3︷︸︸︷ 4︷︸︸︷ 5︷︸︸︷ 6︷︸︸︷
,

as follows. We begin the tiling with squares 1 and 3. Then, 2 is the smallest number

that hasn’t been placed, so we append square 2 and square 5 (2 · 5 = 10 ≡ 3

(mod 7)). Then, we append squares 4 and 6 (4 · 6 = 24 ≡ 3 (mod 7)). This gives

1︷︸︸︷ 3︷︸︸︷ 2︷︸︸︷ 5︷︸︸︷ 4︷︸︸︷ 6︷︸︸︷
,

and hence n1 = 1, n2 = 3, n3 = 2, n4 = 5, n5 = 4 and n6 = 6.

Let W be the set of all the new tilings t′. Clearly, |W | = |T ′|, since each tiling

w ∈ W was obtained by rearranging the squares in a tiling t ∈ T ′. Note that for

any tiling t′ ∈ W , the number of ways to color the square in cell i is p + ni.
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I claim that |W | ≡ a
p−1
2 (mod p).

Let X ⊂ W be the set of tilings such that the squares in cells 2k − 1 and 2k

always have the same color, and that color is chosen from {1, 2, . . . , a}. Clearly,

|X| = a
p−1
2 . We will now show that

|W −X| =

p−1
2∑

j=0

aj−1 ((p + n2j−1) (p + n2j)− a)

p−1∏
k=2j+1

p + nk.

If z is a tiling in W − X , then there exists a j with 1 ≤ j ≤ p−1
2

such that the

squares in cells 2j − 1 and 2j either do not have the same color, or the color of one

of the two squares is greater than a.

We condition on the smallest such j. In this case, there are a ways to color

squares 2k − 1 and 2k for k < j. Then, there are

(p + n2j−1) (p + n2j)− a

ways to color square j, since the squares in cells 2j − 1 and 2j can be given any

color from 1 to p + n2j−1 or 1 to p + n2j except that they cannot both receive colors

1, 2, . . . , a− 1 or a.

Now, for k > 2j, the square in cell k can receive p+nk colors. Hence, for a given

j the number of tilings is

aj−1 ((p + n2j−1) (p + n2j)− a)

p−1∏
k=2j+1

p + nk.

Summing over j gives that

|W −X| =

p−1
2∑

j=0

aj−1 ((p + n2j−1) (p + n2j)− a)

p−1∏
k=2j+1

p + nk.

Now, the squares were arranged so that n2j−1n2j ≡ a (mod p) for all j and
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therefore

(p + n2j−1) (p + n2j)− a ≡ p2 + p (n2j−1 + n2j) + n2j−1n2j − a

≡ n2j−1n2j − a

≡ 0 (mod p).

Hence, the total number of tilings in |W −X| is a multiple of p.

Thus, |W | ≡ |X| ≡ a
p−1
2 (mod p), as desired.

Finally,

−1 ≡ |T ′| ≡ |W | ≡ a
p−1
2 (mod p),

and the result follows.

Finally, using the material above, we can prove the following result involving

Lucas sequences of the first kind.

Theorem 2.9. If p is an odd prime, then

Up(a, b) ≡
(

a2 + 4b

p

)
(mod p).

Before we can prove this, we will need the following identity involving Lucas

sequences of the first kind. This is a generalization of an identity from [1] with a

simpler combinatorial proof.

Theorem 2.10. If n ≥ 1, then

2nUn+1(a, b) =
n∑

k=0

(
n

k

)
an−2b k

2
c (a2 + 4b

)b k
2
c
.

Proof. Recall that Un+1(a, b) counts the number of length n tilings with squares of a

colors and dominoes of b colors. Thus, 2nUn+1(a, b) counts the number of length n

tilings where each square can be given one of 2a colors and each domino one of 4b

colors (this gives twice as many options per cell, hence the 2n). We will say that a

of the square colors are “light” and a of them are “dark”.



14

We will show that every k-element subset S of {1, . . . , n} generates exactly

an−2b k
2
c (a2 + 4b

)b k
2
c

tilings.

Suppose S = {x1, . . . , xk}, where x1 < x2 < . . . < xk. Define for j = 1, . . . , bk
2
c

the interval Ij = [x2j−1, x2j]. If k is odd, we also create the single point interval

I k+1
2

= [xk, xk].

Now, any cell not belonging to one of the Ij is colored with a light square. An

interval with three or more cells may be tiled by a dark square followed by a string

of light squares, then ending with a dark square. It may also be tiled by a dark

square, followed by a string of light squares (possibly zero if the interval has three

cells), followed by a domino. An interval of length 2 may be tiled by two dark

squares or it may be tiled by a domino. An interval of length 1 (which occurs only

in the case when k is odd) must be tiled by a dark square.

3 or more cells

or

2 cells

or

1 cell

Note that there are bk
2
c intervals of length 2 or more. Each interval of length

2 or more contains either two dark squares (which may be chosen a2 ways) or a

domino (which may be chosen 4b ways). Every other tile (regardless of whether
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or not it is contained in an interval) is a square with a prescribed shade (light or

dark), and therefore can be chosen exactly a ways. Thus, the set S generates

(
a2 + 4b

)b k
2
c
an−2b k

2
c

tilings.

Conversely, given a length n tiling t, we construct the unique set S that gener-

ates t. By our construction, every cell occupied by a light square is not in S. Every

cell occupied by a dark square or the second half of a domino must be in S. It

remains to determine if j ∈ S when cell j is covered by the first half of a domino. If

a domino covers cells j and j +1, j may or may not be in S, depending on whether

or not the domino is in an interval of length 2 or in an interval of length 3 or more,

respectively. Certainly if j = 1, then j ∈ S.

Suppose that for all i < j, it has already been determined whether i ∈ S or

i 6∈ S. If there are an even number of i < j in S, then the domino must be at

the start of an interval, and hence in an interval of length 2. In this case, j ∈ S.

Otherwise, the domino is at the end of an interval of length 3 or more, so j 6∈ S.

Thus, given a tiling, it is possible to find a unique set S that generated it, so the

identity holds.

Now we will prove Theorem 2.9. The proof will use algebraic manipulations,

together with the results that we have proven above.

Proof. Suppose that p is an odd prime. Then, we have that

Up+1(a, b) = aUp + bUp−1 (1).

Also, from Theorem 2.10,

2pUp+1(a, b) =

p∑
k=0

(
p

k

)
ap−2b k

2
c (a2 + 4b

)b k
2
c
. (2)
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Since
(

p
k

)
≡ 0 (mod p) if 0 < k < p, the only nonzero terms (mod p) are when k = 0

and k = p. Thus

2pUp+1(a, b) ≡ ap + ap−2b p
2
c (a2 + 4b

)b p
2
c

(mod p).

From Fermat’s Little Theorem, 2p ≡ 2 (mod p), ap ≡ a (mod p). Further, since p is

odd, bp
2
c = p−1

2
. Also, from Theorem 2.8, we have that

(
a2 + 4b

) p−1
2 ≡

(
a2 + 4b

p

)
.

Combining these, we get

2Up+1(a, b) ≡ a + a

(
a2 + 4b

p

)
(mod p). (3)

It can be seen combinatorially that

Vn(a, b) = aUn(a, b) + 2bUn−1(a, b) (4)

for n ≥ 2 since aUn(a, b) counts the number of n-bracelets with a square on cell

1, and 2bUn−1(a, b) counts the number of n-bracelets with a domino on cell 1. In

particular, taking n = p it follows from (4) and from Theorem 2.3 that

aUp(a, b) + 2bUp−1(a, b) = Vp(a, b) ≡ a (mod p). (5)

Setting Up+1(a, b) = aUp(a, b) + bUp−1(a, b) in (3) leads to

2aUp(a, b) + 2bUp−1(a, b) ≡ a +

(
a2 + 4b

p

)
(mod p). (6)

Subtracting (5) from (6) gives us

aUp(a, b) ≡ a

(
a2 + 4b

p

)
(mod p).

If p does not divide a, then

Up ≡
(

a2 + 4b

p

)
(mod p).
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We will show that the same conclusion is true if p|a.

First we claim that for even numbers n,

Un+1(a, b) = bn/2 + a

n/2−1∑
k=0

bkUn−2k(a, b). (7)

The left hand side counts the number of colored tilings of length n. We condi-

tion on the location of the first square in the tiling. If there is no such square, the

tiling consists of all dominoes. Such a tiling can be created in bn/2 ways. If there is

a square, and the first square lies in cell 2k + 1, it must be preceded by k dominoes,

and followed by a colored tiling of length n− 2k − 1. There are

bkaUn−2k(a, b),

such tilings. Summing over k yields (7).

Now, if p|a, then taking n = p− 1, an even number, in the above identity gives

Up = b
p−1
2 + a

(p−3)/2∑
k=0

bkUn−2k

≡ b
p−1
2

≡
(

b

p

)
(mod p).

Now, b is a square mod p if and only if 4b is. Since p|a, 4b ≡ a2 + 4b (mod p), so(
b

p

)
=

(
4b

p

)
=

(
a2 + 4b

p

)
.

Thus,

Up ≡
(

a2 + 4b

p

)
(mod p),

as desired.

A number of corollaries can be drawn from this.

Corollary 2.11. If p is an odd prime, and Fp = Up(1, 1) is the pth Fibonacci number, then

Fp ≡ 1 (mod p) if p = 5k ± 1 and Fp ≡ −1 (mod p) if p = 5k ± 2.
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For example, if p = 7, F7 = 13 ≡ −1 (mod 7). Also, if p = 19, F19 = 4181 =

220 · 19 + 1 ≡ 1 (mod 19).

Proof. From Theorem 2.9,

Fp ≡
(

5

p

)
.

From the law of quadratic reciprocity, if p and q are distinct odd primes, then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

Hence, in the case that q = 5, we have that(
p

5

)(
5

p

)
= (−1)2· q−1

2 = (−1)q−1 = 1.

Thus, (
5

p

)
=

(
p

5

)
.

Since p is a square mod 5 if and only if p ≡ 1, 4 (mod 5), the desired result follows.

Theorem 2.9 can help determine other members in Lucas sequences of the first

kind mod p. From [3], we have a combinatorial proof of the identity

Umr(a, b) =
r∑

j=1

(
r

j

)
Uj(a, b)U j

m(a, b)br−jU r−j
m−1(a, b).

If we take r = p, the only nonzero term (mod p) is when j = p. This gives

Ump(a, b) ≡ Up(a, b)Up
m(a, b) (mod p).

From Fermat’s little theorem, we have that Up
m(a, b) ≡ Um(a, b) (mod p). Therefore

from this congruence and Theorem 2.9 we have the following result from [6].

Corollary 2.12. If m is a positive integer and p is and odd prime, then

Ump(a, b) ≡
(

a2 + 4b

p

)
Um(a, b) (mod p).
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Here is another result from [6].

Corollary 2.13. For all e ≥ 1, if p is an odd prime then

Upe(a, b) ≡
((

a2 + 4b

p

))e

(mod p).

Proof. The result is clearly true for e = 1. Now, if it is true for e, then from Corol-

lary 2.12

Upe+1(a, b) ≡
(

a2 + 4b

p

)
Upe(a, b) (mod p)

≡
(

a2 + 4b

p

)((
a2 + 4b

p

))e

≡
((

a2 + 4b

p

))e+1

(mod p).

One simple corollary of this is that if p does not divide a2 + 4b then gcd(a2 +

4b, p) = 1. Thus,

Up2(a, b) ≡
((

a2 + 4b

p

))2

≡ 1 (mod p).



Chapter 3

Further Work

3.1 Integer Partitions

The partition function p(n) counts the number of ways to represent the n as the

sum of a non-increasing sequence of positive integers. For example, p(4) = 5 since

4 = 4

= 3 + 1

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1.

For convenience we define p(0) = 1 and p(k) = 0 if k < 0. p(n) can be thought of as

the number of ways to tile a board of length n with tiles of any size, but with the

restriction that the tile lengths cannot increase from left to right.

The partition function has fascinated mathematicians for many years. In fact,

one of the results I’d like to find a combinatorial proof for is due to Euler and states

that

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7)

+ p(n− 12) + p(n− 15)− p(n− 22)− p(n− 26) + · · · .

The sequence 1, 2, 5, 7, . . . is the set of numbers of the form

3k2 ± k

2
.
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Combinatorial proofs of this are known, and Bressoud and Zeilberger give an ele-

gant bijective proof in [5].

However, my approach is different from that of Bressoud and Zeilberger. I

define qk(n) to be the number of partitions of n with all parts having size k or

greater. Using the following lemma, we can express qk(n) in terms of p(n).

Lemma 3.1. For k ≥ 1 and a positive integer n,

qk+1(n) + qk(n− k) = qk(n).

Proof. Given a partition of n with all parts larger than or equal to k, either the last

part is of size k or not. If it is not, then the last part has size k + 1 or greater, and

since the parts are in non-increasing order, all parts have size k + 1 or greater. The

number of such partitions is qk+1(n). On the other hand, if the last part has size k,

removing this part gives a partition of n− k where all parts have size k or greater.

Conversely, given a partition of n− k into parts of size k or greater, adding k gives

a partition of n with all parts of size k or greater. Hence, in the second case, there

are qk(n− k) partitions. Thus, the result holds.

Since q1(n) = p(n) and qk+1(n) = qk(n)− qk(n− k), we have

q1(n) = p(n)

q2(n) = p(n)− p(n− 1)

q3(n) = p(n)− p(n− 1)− p(n− 2) + p(n− 3)

q4(n) = p(n)− p(n− 1)− p(n− 2) + p(n− 4) + p(n− 5)− p(n− 6)

q5(n) = p(n)− p(n− 1)− p(n− 2) + 2p(n− 5)− p(n− 8)− p(n− 9) + p(n− 10)

q6(n) = p(n)− p(n− 1)− p(n− 2) + p(n− 5) + p(n− 6) + p(n− 7)− p(n− 8)

− p(n− 9)− p(n− 10) + p(n− 13) + p(n− 14)− p(n− 15)

Clearly, for a fixed n ≥ 2, qn(n+1) = 0. Plugging in this expression above gives
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special cases of the desired formula for n = 1, 2, . . . , 6. Generalizing this argument

would lead to the result.

Another result (that is actually a congruence) that I wish to investigate is one

discovered by the well-known Indian mathematician Ramanujan.

Theorem 3.2. If n is a non-negative integer, then

p(5n + 4) ≡ 0 (mod 5).

This result, although very simple to state is rather difficult to prove. In fact,

according to Dr. Bruce Berndt at the University of Illinois, Urbana-Champaign, no

combinatorial proof of this fact is known, although there have been many attempts

by people such as Freeman Dyson to find such a proof. One possible combinatorial

approach to this problem is the following.

Given a partition of n, we can turn it into a square-domino tiling of length n in

the following way. Take each part that has size 2 or greater and turn it into some

number of squares (possibly zero) followed by a domino. Then, we add a square

for each part of size 1. For example, if we have 7 = 3+2+1+1, the corresponding

tiling is

.

Now, not all length n tilings correspond to partitions. For example, if n = 5 the

following tiling

does not correspond to a partition. However, it is known that if m|n, then Fm|Fn

(for a combinatorial proof, see [3]). Taking m = 5, we get that if 5|n, then 5 = F5|Fn.

Hence, F5n+5, the number of tilings of length 5n + 4, is a multiple of 5. It suffices to

prove that the number of tilings of length 5k+4 that do not correspond to partitions

is a multiple of 5.

So far, I have been able to find an expression for the number of tilings that do

not correspond to partitions. I give the result below.
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Theorem 3.3. If n is a positive integer, then

Fn+1 − p(n) =
∑

a+b+c≤n,b≥2,c>b

Fc−1 qb(a− b).

Proof. Given a tiling that does not correspond to a partition, we divide it into four

sections.

i) A region where the tiles are in non-increasing order. (This region cannot be

empty).

ii) The first tile that isn’t in non-increasing order (this tile must be larger than the

tile immediately before it).

iii) A region containing some tiling with tiles of length 2 or greater that need not

be in any particular order (this region can be empty).

iv) Some number of squares (this region can also be empty).

Then, if region (i) has length a and ends with a tile of length b (b must be greater

than or equal to 2), the number of ways to tile it is qb(a− b). If region (ii) has length

c (c must be greater than b), then there is one tile of length c in it, and one way to

tile the region. If region (iii) region has length c, then the number of ways to tile it

is Fc−1. In any case, there is only one way to tile region (iv). This gives

Fn+1 − p(n) =
∑

a+b+c≤n,b≥2,c>b

Fc−1 qb(a− b),

as desired.

This result, unfortunately, makes it appear that it is difficult to divide the tilings

that do not correspond to partitions into groups of 5. It is possible that further work

in this area might shed some insight. Another approach would be to apply some

of the techniques of Garcia and Milne as described in [7].
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3.2 Combinatorial Interpretation of Negative Indices

Normally, the Fibonacci numbers are defined by F0 = 0, F1 = 1 and Fn = Fn−1 +

Fn−2 for n ≥ 2. However, we can extend this definition by insisting that

Fn = Fn−1 + Fn−2

be valid for all integers n. For example, we must have that F−1 + F0 = F1, so

F−1 = 1. Similarly, F−2 = −1, F−3 = 2, and the pattern continues with

−3, 5,−8, 13,−21, 34,−55, 89, . . .

leading us to conjecture that for all integers n, Fn = (−1)n F−n.

Perhaps there is a way of extending our combinatorial interpretation of the Fi-

bonacci numbers to count Fn when n is negative. This is what we shall do.

Notice that we can obtain the length n tiling given the length n + 1 tilings and

n + 2 tilings with the following procedure.

i) Add a square to each of the (n + 1)-tilings.

ii) Subtract this set from the set of (n + 2)-tilings.

iii) Remove a domino from each tiling in the resulting set.

When n is non-negative, every (n + 2)-tiling is created from an (n + 1)-tiling by

adding a square or from an n-tiling by adding a domino. Thus, after step ii) above,

each tiling remaining will be an n-tiling followed by a domino.

We can carry out this procedure when n is negative as well, provided we can

make sense of “subtract” and “remove a domino” in these circumstances. We will

apply the procedure when n = −1. There is one length 1-tiling, and one “empty”

0-tiling. Hence, by adding a square to the 0-tiling and subtracting from the 1-tiling,

we end up with the empty set, and hence step iii) has no effect. This implies that

the set of −1-tilings is empty and therefore F0 = 0.
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Applying the procedure when n = −2 runs into a little problem. Here, the set

of (n+1)-tilings is empty, so subtracting this set from the set of n = 0 tilings is easy.

However, removing a domino from the length 0 empty tiling is problematic. To get

around this, we postulate the existence of an “anti-domino”, denoted by −1

with length −2 and the property that −1 = −1 = |, the

empty tiling. This implies that there is a single −2-tiling, namely an anti-domino.

Applying the procedure when n = −3 runs into a different problem. Here,

in step ii), we must subtract the set of −2-tilings with a square appended from

the empty set. To get around this, we will assign weights to our tilings, and as-

sign the one resulting length −3 tiling a weight of −1. This results in the tiling

− −1 −1.

To ease notation when working with negative index tilings we will introduce

the notation −1 = −1 and permit −1 to be a right inverse of .

The tile −1 will be called an “anti-square.” Hence, −1 = |, the empty

tiling, but −1 cannot be simplified in the same way. The result is that to

obtain the −n-tilings, we add an anti-square to the end of each −(n − 1)-tiling

and negate and add an anti-domino to the end of each −(n − 2)-tiling. Using this

notation, we find that the negative index tilings are as follows.
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n = −1

∅

n = −2

−1

n = −3

− −1 −1

n = −4

−1 −1 −1

−1 −1

n = −5

− −1 −1 −1 −1

− −1 −1 −1

− −1 −1 −1

We notice that the length−n tilings are (up to sign) an anti-domino followed by

a length (n− 2) tiling. If this is true, we would have |F−n+1| = |Fn−1| since F−n+1 is

the number of length −n tilings and Fn−1 is the number of length n − 2 tilings. In

fact, this result follows from our inductive definition of the length −n tilings.

Theorem 3.4. If n is an integer, F−n = (−1)n Fn.

Proof. It suffices to demonstrate the result for n > 0. We will prove this by strong

induction on n.

From our observations above, it is clear that the single length −2 tiling is an

anti-domino followed by the length 0 tiling. Hence, the result is true for n = 1.



27

Suppose that for k = 1, 2, . . . , n− 1, the length −k tilings (up to sign) are the an

anti-domino followed by a length k− 2 tiling with squares and dominoes replaced

by anti-squares and anti-dominoes. Suppose further that the sign of all (−k)-tilings

is the same and is (−1)k.

To get the (n − 2)-tilings, we append squares to the length n − 3 tilings and

dominoes to the length n− 4 tilings. To get the length −n tilings, we append anti-

squares to the length −(n − 1)-tilings and anti-dominoes to the length −(n − 2)-

tilings. Hence, if sign is not considered, the length −n tilings are an anti-domino

followed by an anti-(n− 2)-tiling.

Now, if n−2 is even, all the length−(n−2) tilings are positive and length−(n−

1) tilings are negative. Thus, the resulting (−n)-tilings will be positive. Similarly,

if n is odd, the length −(n − 2) tilings are negative and the −(n − 1)-tilings are

positive, so the length −n tilings will be negative, and the result follows.

Notice that the procedure for obtaining length n tilings from the n+1 and n+2

tilings works for a recurrence relationship of the form an+2 = an+1 + an. Hence, we

can expect the same idea to work for Lucas numbers as well. Here we will think

of the multiset of length n Lucas tilings as square and domino tilings where if a

tiling begins with a domino it has multiplicity two. One subtlety in this case is that

the empty tiling has multiplicity two. Applying the procedure described above we

obtain the length n Lucas tilings for a non-positive integer n.
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n = 0

|

|

n = −1

− −1

n = −2

−1

−1

−1 −1

n = −3

− −1 −1

− −1 −1

− −1 −1

− −1 −1 −1

Here, it appears that the length −n tilings are (up to sign) anti-n tilings. It is

easy to prove this by induction, giving the following result.

Theorem 3.5. For any integer n, L−n = (−1)n Ln.

The interpretations of negative index Fibonacci and Lucas sequences can be

used to prove a well-known identity involving them.

Theorem 3.6. If n is an integer, then Ln = Fn+1 + Fn−1.

Proof. I claim that if a domino is added to the left side of all length n− 2 Fibonacci

tilings, the resulting set, together with the length n Fibonacci tilings, will equal the

set of Lucas tilings.
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This is clear if n ≥ 2, since in this case, we will have two copies of each tiling

that begins with a domino. For n = 1, notice that the Fibonacci tilings and Lucas

tilings are the same and that the set of length −1 Fibonacci tilings is empty. For

n = 0, there are two empty Lucas tilings. There is a single empty Fibonacci tiling

of length 0 and appending a domino to the anti-domino in the length −2 Fibonacci

tiling gives two empty tilings.

Now, suppose that n < 0. Then, the length n Fibonacci tilings all begin with

an anti-domino. Adding a domino to the beginning of each length n− 2 Fibonacci

tiling cancels the anti-domino there, and gives all anti-n-tilings. Thus, from the

length n− 2 Fibonacci tilings, we have one copy each of the tilings beginning with

squares, and one copy each of the tilings beginning with dominoes, and from the

length n Fibonacci tilings, we have an additional copy of each tiling beginning

with a domino. Finally, n and n− 2 have the same parity, and hence all the tilings

considered have the same sign. Thus, the result follows.

Now, we will define the Gibonacci (a, b) sequence by G0(a, b) = b, G1(a, b) = a,

and

Gn(a, b) = Gn−1(a, b) + Gn−2(a, b).

Here, Gn(a, b) counts the multiset of length n tilings where each tiling beginning

with a square has multiplicity a and each tiling beginning with a domino has mul-

tiplicity b. Hence, Gn(1, 1) = Fn+1 and Gn(1, 2) = Ln. Since the Gibonacci sequence

has the same recurrence relation as the Fibonacci and Lucas sequences, the proce-

dure described above gives a combinatorial interpretation of Gn(a, b) for all inte-

gers n. For example, consider the sequence Gn(1, 4). It begins with G0(1, 4) = 4

and continues with

4, 1, 5, 6, 11, 17, 28, 45, 73, . . . .

For non-positive n, we get

4,−3, 7,−10, 17,−27, 44,−71, . . .
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Hence, it appears that G−n(1, 4) = (−1)n Gn(3, 4). This is a special case of the fol-

lowing result.

Theorem 3.7. For any integer n,

G−n(a, b) = (−1)n Gn(b− a, b).

Proof. Again it suffices to prove the result for n ≥ 0.

First, it is easy to see that there are G0(a, b) = b copies of the length 0 empty

tilings, and G−1(a, b) = a − b anti-square tilings. These tilings are the negation of

the G1(b− a, b) tilings.

To construct the length −2 tilings, we add an anti-square to each −1 tiling and

negate. Then, we add an anti-domino to each length 0 tiling. Hence, there are b− a

anti-square anti-square tilings, and b domino tilings. Hence, G−2(a, b) = G2(b−a, b).

Notice that in each of these cases, the anti-square tilings are all of the same sign and

the anti-domino tilings are all of the same sign (though these signs need not be the

same).

Now, assume the result is true for n = 1, 2, . . . , k − 1 with k − 1 ≥ 2. We will

prove that (up to sign) the length −k G−k(a, b) tilings are the same as the length

k Gk(b − a, b) tilings. Further, all the square tilings are the same sign and all the

domino tilings are the same sign.

To create the length −k G−k(a, b) tilings, we simply add an anti-square to each

length −(k − 1) tiling and negate, and add an anti-domino to the length −(k − 2)

tilings. Thus, up to sign, the length −k tilings are the same as the length k, Gk(b−

a, b) tilings. Now, it is easy to see that the sign on a tiling will be determined by the

parity of the number of anti-squares in it, since a tiling changes sign if and only if

an anti-square is added to it. Further, in a tiling of length −k, if there are s anti-

squares and d anti-dominoes, s + 2d = k. Hence, s ≡ k (mod 2), so all the tilings

beginning with an anti-square are the same sign and all the tilings beginning with

an anti-domino are the same sign.
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Now, if b − a ≥ 0, all the length −1 tilings were negative and hence a tiling

beginning with an anti-square is positive if and only if its length is even. In this

case, all length k tilings have the same sign and since the Gk(b− a, b) are equal (up

to sign) to the G−k(a, b), it follows that G−k(a, b) = (−1)k Gk(b− a, b).

On the other hand, if b−a < 0, all the length −1 tilings were positive and hence

a tiling beginning with an anti-square is positive if and only if its length is odd.

In this case, the tilings beginning with an anti-square and with an anti-domino

always have a different sign. In this case, the Gk(b − a, b) tilings that begin with

a square are always negative and the tilings that begin with a domino are always

positive. In this case, the G−k(a, b) tilings are negative if and only if they contain an

even number of squares, which happens if and only if k is even. Hence, it follows

that G−k(a, b) = (−1)k Gk(b− a, b), as desired.

While this result provides a workable interpretation of the Gibonacci sequence,

one direction of future work is to determine if there is a better one in general or

one that works in other special cases.

In addition, looking at an interpretation of other linear recurrence relations for

negative indices might be interesting. For example, if we have an = an−1 + 2an−2,

with a0 = 2 and a1 = 1, we have that for negative n the sequence continues

−1

2
,−3

4
,−1

8
,

5

16
,

7

32
, . . . .

Finding a combinatorial interpretation for this sequence could be interesting.

Still, there is another level to which things could be taken. Binet’s formula states

that if n is an integer, then

Fn =
1√
5

[(
1 +

√
5

2

)n

−

(
1−

√
5

2

)n]
.

If we let

Fθ =
1√
5

(1 +
√

5

2

)θ

−

(
1−

√
5

2

)θ
 .
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this expression defines a Fibonacci number for any real number θ. Extending a

combinatorial of the Fibonacci numbers to real indices might allow many of the

well-known identities to be generalized. One particular interesting case is the fol-

lowing. The Fibonacci identity

Fn+1Fn−1 − F 2
n = (−1)n

is well-known. The proof of this identity using Binet’s formula naturally extends

to the following identity.

Theorem 3.8. If θ ∈ R, then

Fθ+1Fθ−1 − F 2
θ = eiπθ.

A combinatorial proof of this result would be quite an achievement.
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