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Abstract

Geometry, Topology, and Applications of the Minkowski

Product and Action

by Micah Smukler

The Minkowski product can be viewed as a higher-dimensional version of inter-

val arithmetic. We discuss a collection of geometric constructions based on the

Minkowski product and on one of its natural generalizations, the quaternion ac-

tion. We also will present some topological facts about these products, and discuss

the applications of these constructions to computer-aided geometric design.
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Chapter 1

Introduction

In this thesis, we present two geometric constructions: the Minkowski product

and the quaternion action, both of which are relatively new to the mathematical

community. We will study both geometric and topological properties of these con-

structions, as well as a number of applications (mainly to computer-aided geomet-

ric design) and more specific constructions based on them.

In Chapter 2, we define both of these constructions, and present some of the ge-

ometric intution and motivation behind them. In Chapter 3, we summarize some

previous results about the topology of the Minkowski product. Chapter 4 discusses

a particular use of the quaternion action to construct surfaces surrounding singular

curves. In Chapter 5, we present the theory that results from examining quaternion

actions of B-spline curves, and compare it to the standard theory of tensor product

surfaces. Chapter 6 will motivate and describe a generalization of the quaternion

action. Finally, Chapter 7 will return to the standard quaternion action, and exam-

ine in particular canal surfaces, their inversions, and an applications of the action

to computer-aided geometric design; we then finish in Chapter 8 with a discussion

of future work.



Chapter 2

Useful Facts and Definitions

We begin by briefly defining the quaternions (in which all our constructions

will take place), and giving some useful facts about them. The proofs of all these

facts are either trivial or can be found in [12]. We then present the definitions of

the Minkowski product and of the action that we will be using, and discuss their

geometric utility and some topological limitations.

2.1 The quaternions

Definition 1 The set of all quaternions, denoted � , is the four-dimensional Euclidean

vector space over � which is spanned by the independent vectors ��� �"� ��� ���
	
. We endow

� with a multiplicative structure whose identity is � by setting
�  ���  ���  � � � ,

�
� ��� � ��� �
,
��� � � � �����

, and
� � ��� � � ���

, and by requiring that the multiplication

be distributive.

It follows from the definition that quaternion multiplication is noncommuta-

tive; however, it is easily shown to be associative. We also will make use of the

following operations on � , all of which are the analogues of similar operations on
�

.

Definition 2 The real part, or scalar part, of a quaternion � � $ 
 % �#
�����
����
, denoted

��� � , is $ . The imaginary part, or vector part, of � is the quaternion % � 
�� � 
!���
, which

has no real part; such a quaternion is called an imaginary quaternion. The conjugate

of � , denoted � or �#" , is the quaternion
�$� � ��%'& � ; like in the complex case, we have
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the identity � �#" � � � �  . Finally, the three-dimensional subspace of � consisting of the

imaginary quaternions is denoted
%'& � ; we frequently identify

%'& � with � � .

The following fact about the quaternions is the source of most of their utility:

Fact 1 Let � and � be unit quaternions (that is,
� � � � � � � � � ). Then the mapping

��� ���
� given by

������� � � � � is a rotation (i.e., an orthogonal linear transformation of positive

determinant). Moreover, all rotations of � (and thus of �
	 ) can be written in this way.

That is, quaternion multiplication has essentially the same geometric interpre-

tation in ��	 as complex multiplication does in �  .
In fact, we can be somewhat more precise about the specifics of a particular

rotation. In the following definition, for a unit quaternion � , we use the shorthand
��
�� ����������
 � ������� .

Fact 2 Choose a positively-oriented orthonormal basis � � � � ����� of
%'& � , the first element

of which is � . The rotation induced by left multiplication of � 
�� is a rotation of
�

in both the

� � -plane and the orthogonal � � � � � � -plane. The rotation induced by right multiplication

is a rotation of
�

in the � � -plane, but of
�!�

in the orthogonal � � �"�#� � -plane.

Since arbitrary unit quaternions are of the form � 
�� for some � and
�
, this fact

allows us to determine the precise geometric meaning of any given quaternion.

The following algebraic fact will occasionally prove useful:

Fact 3 Let ��$ � have nonzero imaginary part. Then � � � � 	
spans a subalgebra of �

which is isomorphic to
�

. That is to say, every plane %'& � which contains the real axis is

a subalgebra of � isomorphic to
�

.

Finally, the following fact is easily verified, but will be used frequently enough

that we explicitly mention it here.
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Fact 4 Let � $ � have nonzero imaginary part. Then there are precisely two elements

� $�� with �  
� � , and both of them lie in the span of ��� � � 	
. In other words, the

quaternion square root of any non-real quaternion is unique up to sign.

Note that this is not true, for example, of
� � , which is the square of any purely

imaginary unit quaternion.

2.2 The Minkowski product

Definition 3 Let * and
�

be subsets of a group � . The Minkowski product of * and�
, denoted *�� � , is the set

*�� � � � $ % � $ $ * � % $ � 	��
(2.1)

The Minkowski product is a very general construction, as it applies to subsets

of an arbitrary group. In general, however, its study under that name has been

restricted to groups with some geometric character; specifically, it was originally

defined by Farouki et al. as a construction in the multiplicative group of
�

[4].

Unless otherwise indicated, we will always be considering the Minkowski product

in the multiplicative group of � ; this construction was originally suggested by Gu

and Wiener [13].

In either
�

or � , the Minkowski product has a geometric significance, derived

from the geometric significance of complex or quaternion multiplication. Suppose

we have two sets * and
�

. It is clear that we can write their Minkowski product as

*�� � �	�

���
 $

� ���
� ��� * %

�
(2.2)

where $ � denotes the set formed by left-multiplying each element of
�

by $ , and

* % is similarly defined in terms of right-multiplication. Multiplication by a con-

stant in either
�

or � corresponds geometrically to a rotation and a scaling in
�

or � . Thus we can think of *�� � as a union of rotated and scaled copies of
�

,
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where the elements of * describe the details of the rotating and scaling; similarly,

it is a union of copies of * , rotated and scaled as described by
�

. This suggests that

we might be able to use the Minkowski product to construct geometrical figures—

such as a torus—which consist of rotated and scaled copies of some single other

figure.

2.3 The quaternion action

Unfortunately, the Minkowski product is insufficiently general to construct the

torus, or many other interesting geometric figures of this sort. This follows from

the fact that one cannot obtain arbitrary rotations in � through left multiplication;

an arbitrary rotation in � requires both left and right multiplication. Because of

this, and because we it will also be convenient to allow translations of the figure,

we introduce the following construction, which, in the quaternions, will remedy

both of these defects of the Minkowski product at the expense of losing the sym-

metry between the sets involved:

Definition 4 Let / & � ; let * &�� � � � . The action of * on / , denoted *	+ / , is

given by

*
+
/ � � $��������
	���
�� "������� � 
 ����������� � � $�� � �����
	�� � � ������� � � ����������� � $ * � 
 $ / 	 �
(2.3)

where � " denotes the quaternion conjugate of � .

Thus * + / consists of a union of rotated, scaled, and translated copies of / ,

where * describes how to rotate, scale, and translate. Moreover, unlike in the case

of the Minkowski product, we can obtain arbitrary surfaces of this form through

the action. For example, we can write the standard torus with core radius $ and

meridinal radius % as an action of the following two sets:

* � � � % � ����� � � 
!� �����!� � ������� � � 
!� � ���"� � � $ � � � � � � 
 � ����� � � � � $$# ! �"�&% � 	 (2.4)

/ � � � ����� � 
!� ������� � � $'# ! � �(% � 	�� (2.5)
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Here / is a circle in the
� �

-plane. The first component of * tells us to scale / by a

factor of % ; the second and third to rotate it about the
�

-axis by an angle � ; the last,

to translate it so its center lies on a circle of radius $ , centered in the
� �

-plane. Thus

*
+
/ is a torus.

2.4 Topological issues and examples

Any topological analysis of the Minkowski product or quaternion action must be-

gin with the following observation:

Proposition 1 The Minkowski product * � � of two sets is a a surjective image of their

Cartesion product * � � , endowed with the standard product topology, under the contin-

uous map
%�� � � � � � � � . Similarly, the quaternion action * + � of two sets is a surjective

image of their Cartesian product, under the continous map
%������ � ��� � ��� � ��� � � � ����� ��� � � "� 
 ��� .

Once stated, the proof of this proposition is clear. It has a number of immediate

topological corollaries: for example, it directly implies that the Minkowski product

or quaternion action of any two compact sets is compact.

In many cases, particularly when we are generating surfaces for graphical dis-

play, we would like to avoid self-intersection for aesthetic reasons. In such cases,

the maps alluded to in Proposition 1 become homeomorphisms onto their images.

If we in addition wish to require that the sets * and
�

be connected curves (as

we might wish to in order to avoid potentially unseemly discontinuities in the

parametrization) we therefore obtain the following result:

Theorem 1 Any set obtainable as the non-self-intersecting quaternion action (and thus

also as the non-self-intersecting Minkowski product) of two connected curves * and
�

is

homeomorphic to either an open disc, a cylinder, or a torus.

Proof : As shown, for example, in [1], any connected curve is topologically either

an open interval or a circle. In the given circumstance, * + � is homeomorphic to
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* � � , by the previous argument. The three cases above follow when both * and
�

are homeomorphic to intervals, when one is homeomorphic to an interval and

the other to a circle, and when both are homeomorphic to circles, respectively.

Thus, if we wish to obtain topologically interesting surfaces as the result of

the quaternion action, we must violate some condition of the above theorem. We

conclude this section with a pair of simple examples of how one might accomplish

this.

We will begin by constructing a Möbius strip using the quaternion action. The

construction is essentially identical to that of the torus given above (where $ �
� � % � � ), with only two exceptions. First, we replace the circle on which we were

acting by a straight line segment: that is, instead of the / used above, we set

/ � � ��� � � $'# � � � ��� 	 . Solely making this change would result in a surface consisting

of unions of vertical line segments a fixed distance away from the
�

-axis: that is,

a cylinder. In order to make the surface into a Möbius strip, we introduce a half-

twist: before performing the rotation given by * , we rotate / in the
���

-plane by

an angle ��� � ; we can do this by conjugating / with the unit quaternion
����� � ����� ��


� � ��� � ����� � . If we make the assignment

� ��� ����� � � 
!� � ���"� � � ��� � � � �

 � �����!�

�
���

(2.6)

we therefore obtain

* � � � � � � � � �"� � � ����� � 
 � ����� � ��� � � $'# ! �"�&% � 	 (2.7)

as a set such that * + / is a Möbius strip. A plot of this Möbius strip is shown in

Figure 2.4.

Now, we can modify the above construction to obtain an embedding of the

Klein bottle in �
	 � 	 . To do so, we replace / by the circle � ��� � � � � ��� 
!� ��������	
.

This replacement means that, instead of constructing a cylinder to which we are
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Figure 2.1: A Mobius strip constructed using the quaternion action

giving a half-twist, we are constructing a torus to which we are giving a half-twist;

thus it yields a Klein bottle.

Finally, we examine the surfaces constructed in light of Theorem 1. The rea-

son why their construction does not violate Theorem 1—despite the fact that both

are quaternion actions of connected curves—is that the maps defined in Proposi-

tion 1 fail to be injective along the subsets � � !
, � � �(%

of the curve * . For

other topological surfaces, similar constructions could be defined; however, since

no other surface besides the projective plane is the surjective image of one of the

three allowable topologies of *'� � , such constructions would in general have to

involve several connected components which would be pieced together to form

the surface.



Chapter 3

Geometry and Topology of the Minkowski Product

We will give a brief summary of the topological properties of the Minkowski

product over
�

. Much of the analysis extends to � , and some of it to the quaternion

action. For more details, the reader is invited to consult [11].

3.1 The self-quotient

As discussed in the previous section, any Minkowski product of curves is the

surjective image of their Cartesian product, under the natural map
%

defined by
%�� $ � % � � $ % . Thus, in cases when we have sufficiently well-behaved sets (if, for

example, they are compact, so injectivity of
%

implies that it is a homeomorphism

onto its image), we need only fully understand the self-intersection of the sets in

order to understand the topology of their Minkowski product. The key to studying

the topological properties of the Minkowski product is therefore the self-quotient of

a complex set * , defined as follows:

Definition 5 Let * & �
, and let *�� � � � $�� � � $�$ * 	

. The self-quotient of * , denoted

* � , is the Minkowski product *�� *�� � .

The primary reason for its usefulness is the following theorem:

Theorem 2 Let * and
�

be subsets of
�

. Then the natural map
% � *'� � � * � � is

injective (and thus bijective) iff * ��� � � � ��� 	 .

Proof : By definition,
%

is injective iff there do not exist two distinct pairs
� $ � % � ��� $�� � %	� � $

* � � with $ % � $
� %	� . But this holds iff there do not exist pairs
� $ � $�� � $ * ��* ,

� % � %	� � $
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� � � with $ � $ � � % � % ���� � (since, if the quotients are � , we have $ � $ � , % � % � ,
which remains consistent with injectivity). But this clearly holds iff * � � � � � ��� 	

,

by the definition of the self-quotient.

The proof of the above theorem actually implies that even more is true: it im-

plies that each point of intersection of the self-quotients * � and
� �

corresponds to

at least one self-intersection of the Minkowski product * � � (possibly more if
%

is at least three-to-one at the point of intersection). Thus the self-quotients of sets

provide a simple criterion for determining when the Minkowski products of those

sets will self-intersect.

The other thing about the self-quotient which it is useful to note is that it fre-

quently suffers from a particular kind of self-intersection at ��� 	 ; namely, ��� 	 has

the behavior that any neighborhood of it becomes disconnected upon its removal.

We refer to such a point as a pinch point. This behavior is illustrated in Figure 3.1,

which shows the self-quotient of the curve given by
��������� ��
,��
 ����� � �������

.

3.2 Results

We will now give a summary of some results that can be derived about planar

Minkowski products. In the interests of space and clarity, we omit the proofs of

these results; they can however be found in [11].

As it happens, the curves which are easiest to classify are those which are the

injective images of the interiors of compact sets: that is, they are either the injective

image of a circle, or the injective image of the interval
� ! � � � via a continuous map

that can be extended to an image of the closed interval # ! � � � . For convenience, we

will call such curves well-behaved.

The first really useful theorem we can prove is the following, which essentially

says that the only singularities in the interiors of Minkowski products are those

caused by self-quotients:
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Figure 3.1: The self-quotient of the plane curve ���������	��
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Theorem 3 Let * and
�

be well-behaved curves such that there do not exist neighborhoods
�

in * and � in
�

with
� � � � � � for some

� $ �
. Then there is a basis for the topology

of *�� � which consists solely of sets which are either open in *�� � or homeomorphic to

a closed half-plane.

It is a fairly easy consequence of this fact that any such Minkowski product is

homeomorphic to either an open disc or an open � -holed annulus for some � , with

the possible addition of some of its boundary.

The obvious question is then: given a particular pair of well-behaved curves *
and

�
, how do we compute the number of holes in * � � ? A complete (but not

necessarily practical) characterization of this is given as follows:

Theorem 4 Let * and
�

be well-behaved curves. Consider the subset � of *  � �  given

by

� � � � $ � $ � � % � % � � � $ � $ � � % � % � 	��

Then � has
� � 
 � path-components, where

�
is the rank of the fundamental group of

*�� � .

Moreover, we can put a more readily calculable upper bound on the rank of the

fundamental group. Let the projected boundary of * � � be the set � * � � � * ��� � ;

let the envelope of *�� � be the set of all points which have a preimage � for which

any open set containing � maps to a set homeomorphic to an open half-plane1. It is

clear that the boundary of a Minkowski product is readily calculable; as it happens,

calculating the envelope of a Minkowski product is also relatively straightforward.

Moreover, the following theorem holds:

1This is not the standard definition of the envelope of a family of plane curves; however, it is
essentially equivalent if the envelope is the Minkowski product of two well-behaved curves and
is easy to define; thus we will use it in the following theorem.
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Theorem 5 The rank of the fundamental group is at most equal to one-half the number of

points where either the projected boundary or the envelope self-intersects, or they intersect

each other.

In some special cases, we can determine a large amount of information about

the Minkowski product even without avoiding self-quotients (and thus pinch points).

For example, if * and
�

are well-behaved curves, both of which admit a real-

analytic parametrization, then they are completely determined by any neighbor-

hoods
�

and � ; it follows that, if there are any neighborhoods of * and
�

which

locally appear to be inverses, then * and
�

are globally inverses. In particular,

then, we can restrict the possible positions of multiple pinch points. Recall that a

logarithmic spiral can be thought of as a � -parameter subgroup of the multiplicative

group of
�

, and is parametrized as
�������������

for some nonzero complex
�
.

Theorem 6 Suppose * and
�

are well-defined curves, both of which admit a real-analytic

parametrization. Then there exists a (possibly degenerate) logarithmic spiral
�

on which

every pinch point of * � � lies. In particular, if either * or
�

is not itself a logarithmic

spiral, then, for any two pinch points � � and �  , there is some branch � ��� � of the complex

natural logarithm such that
� ��� � � �
� ��� � �  $	�

�
(3.1)



Chapter 4

Curves with Singularities

We now turn to a consideration of the quaternion action. Because of the greater

complexity of the quaternion action, it is both more difficult to prove general topo-

logical results about it and easier to use it for specific constructions; most of our

work involving it will therefore be of the second form.

The quaternion action will, given two curves, produce a surface in � 	 � 	 .
In most cases, however, we will want to obtain a surface that lies in some three-

dimensional space. There are two fundamentally different ideas we can use to do

so.

First, we can carefully ensure that the surface produced by the action really lies

in a three-dimensional space. For example, if our set / & � is purely imaginary,

and our set * & � �$� � consists solely of points of the form
� $�� � ��� � ��� � ����������� � , where

��� ����� � is purely imaginary, then the action * + / will itself be purely imaginary. This

method, which was used to produce the pictures in the previous section has the

advantage of completely preserving the geometric intuition behind the action: the

surfaces that result will consist of rotated and scaled copies of * , where / describes

how we are rotating and scaling. However, this approach is rather restrictive: it can

only be used to describe this very specific type of surface. It should be noted that

the example shown in Chapter 2 was of this type.

Second, we can in some way project the surface * + / into a three-dimensional

subset of � (generally
%'& � ). Depending on the specific projection used, the prop-

erties of the resulting classes of surfaces will of course vary. However, in each case,

the class of surfaces that we can produce will be more general then the class of
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surfaces producible by the first method.

In this chapter, we will discuss what is perhaps the most obvious method of

projection, and some of its applications. The essential problem is simple. Given

a piecewise differentiable curve � , it is not generally possible to produce a pipe

surface surrounding the curve, without the introduction of self-intersections in the

surface near the singularity of the curve. However, by using our action and the

technique of projection described above, we can easily construct a type of general-

ized pipe surface, consisting of a 1-parameter family of closed curves surrounding

the curve, which does not in general intersect itself near the singularity, and which,

when “far away” from the singularity, approximates a pipe surface.

4.1 Curves with endpoints

We will begin with a slightly simpler construction which illustrates the basic idea.

Suppose we are given a differentiable curve � with one endpoint. We wish to pro-

duce a generalized pipe surface surrounding � , which behaves nicely at the end-

point. That is, unlike a regular pipe surface, which simply stops at the endpoint,

we wish this surface to close there.

We will proceed as follows. Give � some parametrization � � # ! ��� � ��� � , such

that � � & ��� ��� � �&��� � !
, but � � ����� �� !

for all positive
�
. Identify � � with

%'& � , and

construct a parametrized curve � � # ! ��� � � � , such that � � & ��� � � � ����� is nonzero,

and
%'& � ����� � � �&��� for all

�
. The most straightforward way to do this is to set

� ������� � 
 � ����� .
Using the action, we then construct a surface surrounding � �&��� . Set

� ��������������� � ������
	 ������� � �&�����	 
 � ������� � ������
	 �����
� � �&�����	 �

� �����
� � �&����
	 �����
� � �������	 
 � �����
� � �&����
	 ������� � �������	 �
(4.1)
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and �
����������������� ������ 	 

� ����� ��� ������ 	 �

(4.2)

where
� �����

and � ����� are the Euler angles in � � required to rotate the
�
�

-plane so that

it is orthogonal to � � ����� , and � ����� is defined by

����� � ����� � � � � ����� �� � � ����� � (4.3)

� � � � �&����� �$� � � ������ � � �&���
�

(4.4)

Now, we act on the set

/ � � � ����� � 
 � ����� � � � $'# ! �"�&% � 	 (4.5)

(that is, a circle in the
�
�

-plane) by the set

* � � ���)�
�
�&��� � ����� � � ����� � ����� " � � ������� � � $'# ! ��� � 	 �

(4.6)

The resulting surface will be a 1-parameter family of circles of radius
�
, centered

on � ����� . Moreover, by the way we constructed

�
and

�
, these circles will lie in

a space whose angle with
%'& � is � ����� , and their projections into

%'& � will be

orthogonal to � ����� .
Now, consider the natural projection of this surface into

%'& � obtained by set-

ting the real coordinates of each of its points to zero. It will necessarily be a gener-

alized pipe surface of the type described above, surrounding � ����� . The projection

of each circle will be an ellipse of semimajor axis
�
, the eccentricity of which at a

given point is determined by � ����� : as � ����� increases, so will the eccentricity. When

� ������� % � � , the ellipse will have eccentricity 1 and will therefore be a line segment.

By the definition of � , this will occur precisely when the original curve � ����� has

zero derivative; thus it will occur only when
� � !

. So the resulting surface will

smoothly curve in on itself as it approaches the end of the curve. If we choose
��� � ����� such that its derivative is small relative to ��� ����� , then � �&��� will be small for

large
�
; thus the surface will approximate a pipe surface in this case.
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Figure 4.1: A surface, surrounding the curve � � � � � � � � ��� ��� ��� � , which closes off around the end-
point of the curve.

A surface constructed as above is shown in Figure 4.1. We selected the original

curve � ����� � ����� ������ ��"!#�
, lifted it to the curve � ����� � ��� � ��� 
 � �� 

, and applied this

construction to it using
� � � ��� .

4.2 Curves with singularities

Having performed the above construction, we now return to the original problem

of the chapter: to construct a generalized pipe surface surrounding a piecewise dif-

ferentiable curve, without self-intersection. The construction is similar to the one

in the previous section; however, the requirement that we avoid self-intersection

makes it slightly more delicate. We proceed as follows:

Let � be continuous and piecewise differentiable. We will assume for simplic-

ity that our parametrization � has only one singularity; however, the construction

extends straightforwardly to cases where � has multiple (but only finitely many)

singularities. For reasons which will soon become apparent, we will also restrict
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our attention to curves � where the right- and left-hand limits of the unit tangent

vector at the singularity are well-defined.

Given the above assumptions, we can suppose without loss of generality that �
admits a differentiable parametrization � for which the singularity occurs at � � !#�
(and thus � � � !#��� !

. By translating � , we can also assume thtat � � ! ��� !
. Moreover,

since the unit tangent vector has well-defined limits at the singularity, � has a (not

necessarily unique) tangent plane at the singularity; thus we can rotate � so that

tangent plane is the
�
�

-plane, and so there is some neighborhood
����� ��� �

of 0 such

that, if
� � ��� �

, then � �&��� has positive
�

-coordinate iff
�

is positive.

We proceed almost identically as before. First, we lift � to some � $�� with

nonzero derivative at 0. Then we construct a one-parameter family of circles cen-

tered at the points on � . We will find it useful to construct the this family through

successive rotations, as follows:

Begin by placing a circle of some fixed radius � parallel to the
���

-plane at each

point on � �&��� .
Rotate each of these circles by an angle � �&��� in the � � -plane, where

����� � �
Re �	��
 �
�� ��
 �
� � , and

����� � � � ��
 �
� �� ��
 �
� � .
Rotate each of them by an angle � �&��� in the

���
-plane, where

� � � � �&��� � �����
 �
�� � � 
 �
� � ,
����� � �&������� �����
 �
����� ���� 
 ������ � � 
 ��� � .

Note that, up until this point, we have proceeded precisely as we did before

(since the � defined above is easily shown to be the � used in Section 4.1 above.

For the previous method, we would now rotate each circle by some angle
� �����

in

the
�
�

-plane, calculated to make their projections in � � lie orthogonally to the curve� . However, if we do so, there is no guarantee that the resulting surface will not

have self-intersections. We avoid these self-intersections as follows.

Rotate each circle by an angle � ����� in the
�
�

-plane, where
!�� � � � % � � , and

����� � �&��� � � � � 
 �
�� � � � � 
 �
� � . Since
!�� ����� � �&��� � � , we will always be able to define �

uniquely in this way. Furthermore, by the way � is chosen � ����� � will always be
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less then
� � � ����� � . Since � ����� � gives an upper bound on the

�
-distance of a point

on the circle from � ����� , it follows that all the points on the circle centered at � �&���
will have the same sign as

�
. Thus there is some neighborhood of 0 in which these

circles don’t intersect, so we can choose � small enough that they do not intersect

in general.

It follows that, when we project back down into
%'& � 	 � � , the resulting curve

is a generalized pipe surface which has the desired properties.



Chapter 5

Spline-action Surfaces

5.1 Background

In order to be able to discuss our next topic, the spline-action surface, we will

briefly review the definitions of B-spline curves and of tensor product surfaces.

A B-spline curve of degree � is a piecewise polynomial map
� � � � � of

maximum degree � , where � is a vector space over � . To each B-spline curve we

associate a nondecreasing knot sequence
� � � ��� 	��� �

�
� . We refer to the number of

times that a particular
��� $ � is repeated as the multiplicity of

���
, and require the

following two conditions on
�

:

1. The restriction of
�

to any half-open interval # ��� ����� � � � is polynomial.

2. At each
���

,
�

and its first � � �
partial derivatives are continuous, where

�
is

the multiplicity of
���

.

For the purposes of computing B-spline curves, we can associate to any B-spline

curve
�

an infinite sequence of points in � � , known as the de Boor control points

of the curve, such that evaluating
�

at any point is simply a matter of repeated

linear interpolation between the control points. Computing a point on the curve

in this way is known as De Boor’s algorithm; to perform it on a degree � curve in
�
-dimensional space requires

�
	�� � � �
 linear interpolations.

A tensor product surface of degree
� � � � � is a piecewise polynomial map

� � �  �
� , of maximum degree � in the first coordinate and maximum degree � in the

second coordinate, where � is a vector space over � , and where there exists some
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collection of horizontal and vertical lines such that
�

is polynomial in each region

bounded by those lines.

It is often convenient to think of a tensor product surface as a 1-parameter fam-

ily of degree � B-spline curves, such that the de Boor control points of any one of

these curves themselves lie on degree � B-spline curves.

For a more detailed description of B-spline curves, tensor product surfaces, and

de Boor’s algorithm, the reader is invited to consult Gallier [6].

5.2 Spline-action surfaces

5.2.1 Polynomial surfaces

Since both � and � � � � are vector spaces over � , it is reasonable to talk about

B-spline curves in each of them. This fact motivates the following definition:

Definition 6 A polynomial spline-action surface � & � is a surface given by the

Minkowski action * + / , where * is the image of a spline curve
����� �

in � � � � , and / is

the image of a spline curve � ����� in � .

Note that we can directly use this definition to compute points on some spline-

action surface � as follows. Suppose we have some pair of B-spline curves, parametrized

as
����� ��� � � � ����� ��� ���
	�� ��� � ��� ������� � ����� ��� � ����� � ��� ��� $ � � � � , � ����� $ � . Then � inherits a nat-

ural parametrization # � +�� � ���#����� from
�

and � . Under this parametrization, we can

compute an arbitrary point # � +	� � ��� � ��� � � on � as follows: using two applications

of De Boor’s algorithm, compute
� ���

�
�

and � ��� � � . We then use the formula

# � +
� � ��� � ��� � ��� � � ��� � ��� ���
	�� ��� � � � ��� � � � ������� � ��� � � 

� � ����� � ��� � ��� (5.1)

which follows directly from the definition of the action.

An example of the construction of a spline-action surface follows. We begin

with two curves: one, $ ��� � , which approximates a helix, and the other, % ����� , which
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approximates a circle, and we wish to form a screw-like surface (by rotating and

scaling copies of the circle in a way which corresponds to the helix); see Figure

5.2.1 for plots of the specific curves used. To do so, we calculate $�� ��� � and select

a pair of vectors orthogonal to $
� ��� � . Ideally, we would apply to % �&��� a rotation

which took the
�

- and
�
-axes to this pair of vectors. However, even if these vectors

are themselves piecewise polynomial functions of
�
, the quaternions required to

perform this rotation may not be.

In order to keep our rotation function piecewise polynomial, we therefore must

make more approximations. Instead of rotating by conjugating with a unit quater-

nion, we will rotate by conjugating with a quaternion of the form � 
 ���
, where

� $ %'&��
is some predetermined vector perpendicular to $�� ��� � In this case, since

$ � ��� � never has zero
�
-component, we select

�
� � $��  ��� � � � $ � ��� � ��! � , where $ � ��� ���
� $ � � ��� � � $ �  ����� � $ � � ��� ��� . Some calculation shows that such a conjugation will rotate the

plane
� � !

so that it is perpendicular to $ � ��� � iff
� � �
 �� 
�� � . In this case, $ � � ��� � hap-

pens to be identically � � � ; thus the quaternion by which we wish to conjugate is in

fact polynomial. The resulting surface (with an appropriate normalization of % �����
to avoid self-intersection) is shown in Figure 5.2.1 below.

5.2.2 Rational surfaces

Definition 7 A rational spline-action surface � & � � is a surface whose parametriza-

tion is given by � ���#���������	� - 
���
 �
�� � - 
���
 �
� , where
����� �����

is parametrizes a polynomial spline-action

surface, and
%'& � is identified with � � in the natural way.

We can thus think of a rational spline-action surface as being the result of look-

ing at the projection of a spline surface in � � !
into its quotient space �
% � , and

then examining the resulting surface as a subset of � � & �
% � .
A substantial advantage of the spline-action method of surface construction is

its geometrically intuitive character: that is, that it allows the creation of surfaces
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Figure 5.1: The curves � � � � and
� � � � used to construct the spline surface below.
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Figure 5.2: A spline-action surface
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by simply rotating and scaling curves in a pre-determined manner. It is therefore

a natural question to ask whether the above quotient operation preserves this ge-

ometric intution. As the following proposition shows, the answer is a qualified

yes:

Proposition 2 Let � � � +
� be a rational spline-action surface, formed by the projection

of
� + � as outlined above. Then � will consist of rotated and scaled copies of some rational

spline curve * & � � if
� ���
	�� and

� ������� � are equal and
� � ������� is purely imaginary.

Proof : Fix the argument of
�

at
�
� . The resulting curve in � � 	 %'& �

is given by

$ ��� �&�����
%'& # � +
� � ��� � �������� # � +
� � ��� � �����

�
(5.2)

Since
� ���
	�� and

� ����� � � are equal, � ����� has the same real part as
� ���
	�� ��� � � ����� � ������� � ����� . Since

� ��������� is purely imaginary, it follows that
��� � �&��� � ��� # � + � � ���#����� for all

�#���
. It

follows that $ � � ������� # � + � � ��� � ����� , where

� ������� %'& � �������� � �&����� (5.3)

thus � � is just # � + � � .

5.2.3 Relationships between spline-action surfaces and tensor product surfaces

Using Equation 5.1, we can see that any spline-action surface is automatically a

B-spline tensor product surface in � : it is a map of �  into � , which is polynomial

on the interiors of some collection of rectangles. Specifically, it is polynomial on

the interiors of the rectangles whose vertices are of the form
�&����� ��� �

, where � ��� 	 is

the knot sequence of the spline curve
�������

and � ��� 	 the knot sequence of the spline

curve � �&��� .
Moreover, there clearly exist tensor product surfaces which are not spline-action

surfaces: for any spline-action surface, the curves formed by fixing
�

must be
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achievable from each other by rotation, translation, and scaling. This translates

into the algebraic condition that, for any real coordinates
�
�
� � � � � � ��� � , the condi-

tion

# � +
� � � � � � � � � � # � +
� � ��� � � � � ��� � � # � +
� � ��� � � � � � � # � + � � � � � � � � ��� � � (5.4)

for some � � � � $ � which depend only on
�
� and

� � .
The above condition clearly implies that the set of all surfaces that are realizable

as spline-action surfaces is a proper subset of those realizable by the more common

tensor-product surfaces. However, the spline-action construction is still useful, for

two reasons.

First, it is a much more geometrically intuitive way to construct those surfaces

for which it can be used. That is, if we wish to construct a surface consisting of

rotated, scaled, and translated copies of some specific curve, the spline-action sur-

face provides a geometrically obvious way to do it. Since many important types of

curves (most notably, canal surfaces and approximations to canal surfaces) are of

this form, the spline-action surface clarifies how to construct such a surface.

Second, it provides a significant gain in efficiency in those cases where it does

in fact apply. We will analyze this further in the next section.

5.3 Run-time comparison with tensor product surfaces

As previously claimed, in the event that a given surface is calculable as a spline-

action surface, the applications of De Boor’s algorithm needed to do so are sub-

stantially faster than those applications required to compute the surface as a tensor

product surface. The following theorem makes this notion precise:

Theorem 7 Let � � � + � be a spline-action surface. If we calculate it as such, using

de Boor’s algorithm, the resulting computation will require fewer linear interpolations as

would the computation of � as a tensor product surface. In the limit, if
�

is of large degree,
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it will require only � � � ��� 	 ! � ���
times as many linear interpolations for any fixed degree

of � .

Proof : Suppose
�

is a B-spline curve of degree � , and � a B-spline curve of degree

� . De Boor’s algorithm requires
�
	 � � � 
 linear interpolations to compute a point on

a curve of degree � in
�
-dimensional space. Whether we calculate a point on � as a

spline-action surface or as a tensor product surface, it will require two applications

of De Boor’s algorithm.

To compute � as a tensor product surface, we initially use the relation

# � +
� � ���#������� � � ��� ��� ����	�� ��� � � ����� � ������� � ����� 

� � ������� ��� � (5.5)

to obtain a piecewise polynomial parametrization of
� + � . We then apply de

Boor’s algorithm twice to compute a point on this surface. The surface is in a

4-dimensional space, and is of degree
� � in

�
and � in

�
. Thus we require � 	 � � � � 
 


� 	 � � � 
 linear interpolations to compute � in this case.

To compute � as a Minkowski product surface, on the other hand, we apply de

Boor’s algorithm separately to compute
�

and � . We are then computing one 13-

dimensional instance of de Boor’s algorithm, of degree � , and one 4-dimensional

instance, of degree � . It follows that � � 	 � � � �
 
 � 	 � � � 
 terms are required.

It is clear that we need only compare the first term in each sum, and not difficult

to verify that it is always smaller in the second case than in the first.

It is even possible to improve upon this result in a number of the cases dis-

cussed above, which lower the dimension of the auxiliary space without decreas-

ing the degree of the curve. The following two theorems demonstrate this fact:

Theorem 8 Let � ��� + � be a purely imaginary spline-action surface, where � $ %'& �
and the action of

�
is to conjugate by some quaternion and shift the resulting curve by some

purely imaginary quantity. Then the results of Theorem 7 hold, except that, in the limit,
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the computation of � as a spline-action surface requires only � � �#' 	 ! � � !
times as many

linear interpolations as are required for the tensor-product calculation.

Theorem 9 Let � � � + � be a rational spline-action surface, where � is restricted as in

Theorem 8 (so the results of Proposition 2 hold). Then the results of Theorem 7 hold, except

that, in the limit, the computation of � as a spline-action surface requires only � � � � 	 ! � � �
times as many linear interpolations as are required for the tensor-product calculation.

The proofs of these theorems are omitted, as they are essentially identical to

that of Theorem 7.

The asymptotic estimates in the three theorems above hold when the degree of
�

increases while the degree of � remains fixed. Indeed, the amount of computa-

tion corresponding to � remains the same for either method. Thus we can conclude

that the spline-action method is likely to yield the greatest improvement over the

tensor-product method in the case where the degree of
�

is larger than the degree

of � . In more concrete terms, this will occur when we are given a curve to be ro-

tated and translated, and one of two situations arises. Either the curve used has

an exact rational parametrization of low degree, or we care much more about the

particulars of how the rotation and translation occurs than we do about the exact

shape of the curve itself. In many applications one of these is likely is likely to be

the case. For example, a circle admits such a rational parametrization; thus if we

consider spline-action surfaces on circles (which are canal surfaces) the resulting

calculations will likely be much more efficient than a tensor product construction

of the same surface. Additionally, if we are looking at a surface which roughly ap-

proximates a pipe surface from the side, it is frequently much easier to discern the

precise shape of its spine curve (which is governed by
�

) than the circle surround-

ing it (which is governed by � ); thus, in many graphical examples, the construction

may be useful even if the precise curve desired is not rational.
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Figure 5.3: A surface surrounding the ��� � � � -torus knot, and useful candidate for the spline-action
surface construction

For example, a surface which could be profitably constructed using spline-

action surfaces is shown in Figure 5.3. This surface is constructed through action

on a circle; however, the circle is being rotated and translated in a fairly complex

way, so as to surround a parametrization of the
� ')�"�#�

-torus knot.



Chapter 6

Inversion and Generalized Actions

Up until now, we have for the most part been studying the quaternion action of

one parametrized curve on another. This has resulted in surfaces of the form

� ��� � � ��� � � �&����� ���
	�� �&��� � � � � � ������� � ����� " 

� � ������� ����� � (6.1)

While this class of surfaces has many useful properties, as described in previous

chapters, it also has its defects. Among these is that it is not closed under the ge-

ometric operation of inversion, which may be used to construct many useful sur-

faces. In this chapter, we describe a generalization of the quaternion action which is

naturally closed under inversion, discuss its utility, and show that it is completely

general in the sense that any compact differentiable surface may be constructed in

this form. In later chapters, we will return to the problem of inverting surfaces re-

sulting from the quaternion action, and discuss special cases in which it is possible.

6.1 A review of inversion

We begin by briefly reminding the reader of the definition of inversion.

Definition 8 Let � $ � � � � ! 	 . The inversion of � about the origin, denoted hereafter
�
� � � , is the point

�� � � � . For any � & � � � ! 	 , the inversion of � about the origin is given by

�
� � � � � �

� � � � � $ � 	 �
(6.2)

From a geometric perspective, �
� � � is the point lying on the same ray emanating

from the origin as � , whose distance from the origin is the reciprocal of � ’s.
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The quaternions provide a particularly natural framework for studying inver-

sions in ��	 , as is indicated by the following fact:

Fact 5 For any � $ � , �
� � ����� � " � � � .

Proof : �
� � ��� �� � � � � � � � " � � � � ��� � " � � � .

6.2 Inverting the quaternion action

Armed with the above fact, we can determine �
� *�� / �

for any parametrized curves

* and / . Suppose * & � � � � is parametrized as
� � � �&��� � � ���
	�� �&��� ��� ����� � � ����� ��� � ����� � ����� ,

and / & � is parametrized by � � � � . We will restrict our attention to the cases

where both � and every component of * ’s parametrization are everywhere nonzero.

Begin by defining

�� ��������� �&�����
� � ������� � �&��� " � � � � ��������� ������� ���
	�� ������ �

�
(6.3)

Then (6.1) reduces to

� �&� � � ��� � � ������� ���
	�� ����� � � � � � 
 �� � ����� � ��������� ������� � ����� " � (6.4)

Thus, applying Fact 5, we have

�
� � ��� � � ��� �

� ������� � ����� � � � � � � � " 
 �� ��������� �&��� " � � � � ���
	�� ����� � �� � �����
�

(6.5)

But
� � � � � " 
 �� ��������� �&��� " � � � � � � � � 
 �� ��������� �&���� � � � � �  
 � �� ��������� �&��� �  
,� �$� � � � � � �� � ������� ����� 	 � (6.6)

substituting this into (6.5) yields

�
� � �&� � � �����

� ����� � � �&��� � � � � � � � 
 �� � ������� ������� � ���
	�� ����� � �� � �&��� � � � � � � �  
 � �� ��������� �&��� �  
,� ��� � � � � � �� ��������� �&��� 	 �
�

(6.7)

This is similar in form to a quaternion action. However, in quaternion actions of

curves, the real scaling factor solely dependent on the acting curve (in this case, it



32

is a function of
�

alone). On the other hand, (6.7) has a real scaling factor which

depends on both curves (i.e., it is a function of both
�

and
�
). This observation

motivates the definition of the generalized action, to which we now proceed.

6.3 The generalized quaternion action

Definition 9 Let * & � � ; let / & � , and consider a function
� � * � / � � . The

generalized quaternion action of * on / mediated by
�

, denoted * +.- / , is given by

*
+ -�/ � � ��� � ����� $����
	�� ��� 
 $���������� � $ "����� � � � � $ / � � ��� $����
	�� � $ ������� � � $�� ����� � � $ * 	��
(6.8)

The definition is analagous to the alternate formulation of the quaternion action

suggested by (6.4). Geometrically, the standard formulation corresponds to taking

a set, rotating it somehow, and then translating the resulting set elsewhere; the

alternate formulation, on the other hand, corresponds to taking a set, translating

it, and then rotating the translating set. In the case of the standard action, the two

formulations are obviously equivalent. However, it is not at all obvious that, if we

were to define a generalized action using the standard definition, it would yield

the same class of surfaces. Our use of this alternate formulation is motivated by

(6.7), which is of the form given by (6.8).

It should also be noted that it is not quite immediately clear that the generalized

quaternion action is in fact a generalization of the quaternion action. In the original

quaternion action, it was possible to have any arbitrary set of scaling factors; in

the generalized action, though the scaling factors may depend on either set, there

is a single well-defined factor for every possible choice of the other parameters.

However, since we have not restricted the lengths of the quaternions $ ���
	�� and $ "������� � ,
any scaling factor which appears in a standard quaternion action can absorbed into

these quaternions to yield a representation of it as a generalized action.

Geometrically, the generalized action does the following. Given a subset / of

� , it first translates it (in a way determined by $ � ������� ), and then rotates and scales it
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(in a way determined by $ ���
	�� and $ ����� � � . Finally, it performs an additional scaling,

which may scale different portions of / by different amounts (in a way determined

by
�

). Given this geometric perspective, the following proposition is highly reason-

able. Because of this, and because its proof is essentially identical to the argument

given in the previous section, we omit its proof.

Proposition 3 Let * � - / be formed by generalized quaternion action. Then the set
�
� *�� -�/ �

may also be formed by generalized quaternion action.

So the class of all surfaces which may be formed under generalized quaternion

action is in fact closed under inversion. Moreover, applying the argument from

the previous section gives a simple formula for the inversion’s parametrization, in

terms of the parametrization of the original surface.

We now present a simple example of a generalized action. If we let / be the

unit circle in the
���

-plane parametrized by
�
, let * ��� � � � � � � � (so we are not rotating

/ at all), and set
����� ��� $ � � $  � $ � ����� ����� � �����  � 
 � , we obtain the distorted cylinder

shown in Figure 6.3.

6.4 The universality of the generalized action

The geometric interpretation of the generalized action described above makes it

clear that the generalized action is a very general construction indeed. In fact, as we

will show in this section, every compact differentiable surface in � � is essentially a

generalized action.

The main part of the argument which establishes the above claim lies in the

following lemma:

Lemma 1 Let � & %'& � 	 � � be a differentiable surface, with � $ � . Suppose the line

containing � and the origin is not tangent to � . Then there is some open neighborhood
�

�
� � which is a generalized action.
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Figure 6.1: The generalized action ������� , where � , � , and � are as defined in the section.
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Proof : Let � be the normal vector to � at � ; consider a vector
� $�� � � . Then

there is some open neighborhood � & � of � in which the plane spanned by � and
�

intersects � in a differentiable curve ��� ����� . Moreover, since the line containing

� and the origin is not tangent to � , we can suppose without loss of generality

(possibly by shrinking � ) that the line containing ��� ����� and the origin is not tangent

to � , and that ��� ����� lies entirely on one side of the origin (i.e., there is some line in

the plane containing ��� ����� , passing through the origin, which does not intersect��� �&��� ). It follows that, for any
�

where it is defined, the line containing ��� ����� and the

origin intersects � only at ��� ����� . Thus, since ��� ����� lies in a plane, there exists some

real-valued function
�
�
�����

such that the image of �	� 
 ���- � 
 ��� is a line segment. Moreover,

by the compactness of the unit circle, there is some
�

such that the length of that

line segment is minimized; thus we can suppose without loss of generality (again,

possibly by shrinking V) that this length is independent of
�
. Moreover, we can

reparametrize ��� ����� , if necessary, in terms of distance along that line segment.

Let
�

be a line segment of this length. Then I claim that � is a generalized action

on
�

, mediated by
���&� � � � � �

�
�&���

. It is clear that, for any fixed
�
, there exists a unit

quaternion � � � � such that � � � " is parallel to and has the same length as
�
�
�����

; thus

there also exists a unit quaternion
� � � �

such that and � � � " 
 �
coincides with

�
�
�����

.

It follows that � � / + - � , where
�

and
�

are as above, and / ��� � � � � � � � � � � � � � ��� .
Setting

�
�
� � yields the desired result.

Finally, then, we can prove the theorem alluded to at the beginning of the sec-

tion.

Theorem 10 Let � be a compact differentiable surface in � � . Then, up to piecewise con-

stant translation, � is a generalized action.

Proof : For any point � $ � , there is some
�

� $ � � such that the ray from � 
 �
�

to the origin is not tangent to � 
 �
� . Applying Lemma 1 to � 
 �

� , we obtain a

neighborhood
�

� of � 
 �
� which is a generalized action. Set � �

� �
�
� �

� ; then � � is
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an open neighborhood of � . Since it is defined for each point � $ � , the collection

of all the � � forms an open cover of � ; by compactness, it has a finite subcover

� � � � ����� � � � ���
	
. We know that each of the � ��� is a generalized action up to constant

translation; thus � is a generalized action up to piecewise constant translation.

This theorem then leads to two natural questions. First, we would like to know

when a compact differentiable surface is a true generalized action. Second, we

would like to know when it is a continuous generalized action (in the sense that
�

is continuous, and both * and / are connected).



Chapter 7

Quaternion Action and Inversion of Canal Surfaces

As promised in the previous chapter, we now return to the (non-generalized)

quaternion action. Specifically, we will be examining surfaces formed by quater-

nion action on the unit circle. In particular, such surfaces include canal surfaces

(which can be thought of as being surfaces formed by quaternion action on the

unit circle, where each circle formed is normal to the spine curve formed by the

centers of the circles). As we shall see, the inversion of any such surface remains a

quaternion action; we will derive the formula for the resulting quaternion action.

We then give an application of this material to the theory of blending by use of

Dupin cyclids, which is useful in computer-aided geometric design.

The reason that the inversions of canal surfaces are still quaternion actions is

simple, and lies in the following well-known fact about inversion, which we shall

not prove:

Fact 6 The inversion of a
�
-sphere in � � is another

�
-sphere, as long as the original

�
-

sphere does not intersect the origin.

It follows that inverting a family of
�
-spheres gives another such family. Since

quaternion actions on the unit circle correspond precisely to the unions of collec-

tions of circles ( � -spheres) in � , it follows that they are preserved under inversion.

7.1 Inversion of a particular circle

We wish to determine, in general, how to write the inversion of a canal surface

as a quaternion action, given a representation of the surface itself as a quaternion
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action. In order to do so, we must determine what is obtained by inverting a par-

ticular circle. We will assume the circle does not intersect the origin, and thus that

its inversion is in fact a circle.

We will in fact only solve a restricted version of the problem, in which the circle

lies entirely within a 3-dimensional vector subspace of � . In particular, note that

this allows us to solve the problem for circles lying in
%'& � , which we can identify

with � � .
Let

�
be such a circle, lying in a three-dimensional subspace � of � .

�
pos-

sesses a 1-parameter family of symmetry planes which are orthogonal to the plane

it lies in; all of these planes share a common line (namely, the line passing through

the center of
�

, orthogonal to the plane containing
�

). Such a 1-parameter family

of planes sweeps out all of � ; thus there is at least one such plane % which contains

the origin.

Let � � � � 	
be an orthonormal basis of % . Without loss of generality, we can

set
� � � (since rotating the circle by left-multiplying it by

�
�
�

will not alter the

geometric effects of inversion). As a plane passing through the origin, % is mapped

to itself by inversion. It follows that % must also be a plane of symmetry of the

inversion �
���.�

; thus % contains a diameter of �
���.�

. Since % only contains two

points of
�

, it only contains two points of �
��� �

; those two points are therefore the

endpoints of the diameter, and allow us to obtain the center and radius of
�

. To

obtain its orientation, we use the fact that % is an axis of symmetry of �
��� �

; thus,

in order to get from
�

to �
���.�

, only rotation in % , not the plane orthogonal to it, is

required.

Since % is a plane containing the real axis, it is isomorphic to
�

as a subalgebra

of � . We can therefore apply complex arithmetic to determine the specific diameter

of �
���.�

mentioned above. Suppose the two points of
�

which lie in % are
�����

.

Then it is easy to see that their inversions are the points �	� 
� � � 
 � .
Furthermore, we know that �

��� �
is symmetric about the plane % ; this fact and
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the specification of the diameter in % are sufficient to determine it. But, since %
contains 1, it is invariant under quaternion transformations in which the left and

right quaternion multipliers are equal. It follows that

�
���.��� � � � � (7.1)

where � satisfies the relation �
�  � �  � �  
.

We now place the above calculation in the context of the quaternion action. Let
�

be the unit circle in the
�
�

-plane, and consider the action
� � � ��� � ��� � ��� ��� ��� � + �

of

a point on
�

, where � � $ %'& � . Geometrically, we are taking
�

, translating it

by ��� , and then rotating and dilating it in some arbitrary way. It is clear that any

circle of the form we have been considering can be written as such an action, and

conversely. Moreover, in order to determine the inversion of the resulting circle, it

suffices to determine the inversion of the circle
�,
 � � , for the reasons discussed in

the last section.

Suppose ��� � $ � 
 % � 
 � �
. Then any quaternion multiplication which brings $ � 


% � into the real line while holding
�

fixed will cause its symmetry plane containing

the origin to also contain the real line (since the symmetry plane of
�

is the vertical

plane containing $ ��
 % � ). In particular, then, consider a quaternion
�

satisfying
�  � � $ � � % � . We must left and right multiply by

�
�
�

to obtain the inversion of the

original circle.

The circle we are inverting has center
� � � � . The two points along its diameter

which lie in the desired symmetry plane will be
��� � � �,� 
�� � ���

� 
 � � � � ����� . It follows, by the

above calculation, that the new circle is obtained from the old one by left and right

multiplication by a quaternion � which satisfies the relation

� �  � � � � � � �
 � � ��� $ � 
 % � ��� �  

$  
 %  
�

(7.2)

Thus the inversion of the circle � � 
 �
is given by

�
� ��� 
 �.��� �

�
� � ��� ��� 
 �.� � � � � � � (7.3)
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where
�

and � are as defined above.

7.2 Inversion of canal surfaces and specific examples

The calculations in the previous section motivate the following definition:

Definition 10 Let � � ��� � � � � ��� � ��� ��� ��� � be a point in � � � � , with
� � � � � ��� nonzero. We

define the virtual inversion of � , denoted �
�(� � � , to be the point

�
� � � � ��� �

�
� ��� � � � � � � ��� � � � � � � � � � � ��� � � � � � � � � � � � � � � ��� � � � � (7.4)

Here
�

satisfies the relation
�  � � $ � � % � , where ��� � $ ��
 % � 
 � �

, and � satisfies the

relation �
�  � � � ��� � �
 � 
 � 
 
�� � ��� � � ���
 ��� � � . For a subset * of ��� � � , we write �

� � * � for the set

��� � � � � � � $ * 	
.

In particular, given this definition, it can be seen that the calculations in the

previous section prove the following theorem:

Theorem 11 Let
�

be the unit circle in the
� �

-plane. Consider a quaternion action *�+ �

which is purely imaginary. The inversion of the resulting set about the origin in
%'& � is

given by the quaternion action �
�(� * � + �

.

A partucular canal surface which can be naturally though of in this manner

is the Dupin cyclide, which is the inversion of a torus. Dupin cyclides arise in

computer-aided geometric design as surfaces which can be used to blend two cones:

that is, to smoothly interpolate between them. The above argument can be used to

construct the quaternion action representation of a Dupin cyclide.

A plot of an entire Dupin cyclide, and an illustration of a pair of cyclide frag-

ments of the sort used when blending cones, are shown in Figures 7.2 and 7.2.
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Figure 7.2: A surface which blends two cones
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7.3 The virtual inversion

So far, we have been using the virtual inversion simply as a tool for calculating

the inversion of a canal surface. However, it has other uses. For example, if we

are given a quaternion action on a curve in the quaternions which is nearly a unit

circle, the virtual inversion of the acting set will result in an approximation of the

inversion of the surface.

A specific example of this is given by the virtual inversion used to construct the

cyclid. If, instead of acting on a circle, we act with the same curve on arbitrary pla-

nar shapes, we achieve a surface which approximates to some degree the inversion

of a surface of revolution with that shape as a cross-section; the closer the shape is

to a unit circle, the better the approximation.

More importantly, we recall the application of Dupin cyclides mentioned above:

they may be used to smoothly blend two (circular) cones. Using a surface con-

structed by the virtual inversion, we can therefore smoothly blend two cones over

any single arbitrary shape.

There is one potential difficulty. Depending on the initial orientations of our

two cones, it may be necessary to introduce some twisting into the surfaces, in

order to ensure that they have the same orientation (and thus can be smoothly

joined). However, this too can be circumvented using the quaternion action. All

that is necessary is to introduce an appropriate compensating twist in the surface

by rotating the figure in the plane before applying the quaternion action. Since we

can apply arbitrary plane rotations to any such plane figure before continuing, it is

in fact possible to construct blends of this sort using the quaternion action.

An example surface, which blends two cones over squares, is shown in Figure

7.3.
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Figure 7.3: A surface which blends two pyramids (cones over squares)



Chapter 8

Future Work

Future work to be done on the quaternion action falls into two categories: the

analysis and application of new constructions which use the quaternion action,

and further work on refining the already presented applications. We will briefly

discuss both.

8.1 New constructions

There are a number of possible uses of the quaternion action which have not yet

been studied. Specifically, all the applications presented in this thesis have been to

either pure mathematics or computer-aided geometric design. However, given the

extreme ease with which we can construct many types of geometric objects using

the quaternion action, it is highly likely that it has uses in other fields as well. In

particular, we suggest the following two applications of the quaternion action to

biological modeling:

� The DNA found in living cells forms complex, possibly highly knotted shapes;

however, it maintains its standard double-helical structure. As a result, the

geometric shape it describes is locally a double helix, which globally lies

around some arbitrary spine curve. The existence of this simple, uniform lo-

cal structure maintained within an extremely complex global structure sug-

gests that the quaternion action could be used to model such supercoiled

DNA. In particular, Hao and Olson [7] have used B-spline curves to model
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the supercoiling of DNA; it is plausible that one could extend their results,

using the Minkowski action and the techniques in Chapter 5.

� When modeling tumor growth and response to chemotherapy, the tumor is

frequently modelled as a sphere of variable radius [8]. It is possible that a

more accurate model could be obtained by designing the successive shape of

the tumor as a quaternion action or generalized action.

8.2 Refining current constructions

We have presented a number of potentially useful constructions involving the

quaternion action. Further research into these constructions include the following:

� We stated in Chapter 7 that, because the quaternion action was capable of

accomplishing planar rotations, we could use it to construct blends between

arbitrary surfaces. At the moment, however, the only method we know of for

ensuring the smoothness of the surface is ad hoc trial and error. Developing a

general method for performing this operation would be useful.

� The question of which surfaces can be produced as continuous non-self-intersecting

generalized quaternion actions remains open. In particular, it seems clear that

the topological restriction we placed on them is not sufficient; however, we

as yet know of no examples of surfaces which demonstrate this.

Additionally, it would be useful to carry out the topological analysis in Chapter

3 in greater detail for the Minkowski product over the quaternions, as well as for

the quaternion action, to the extent that doing so is possible.



Chapter 9

Conclusion

We have presented a very natural construction—the Minkowski product—as

well as two of its generalizations, with broad application—the quaternion action

and generalized quaternion action. As well as briefly analysing the topological

implications of their definition, we also have given various constructive methods

that can be used, along with the quaternion action and generalized quaternion

action, to produce a number of interesting and potentially desirable surfaces.

We believe the quaternion action to be both theoretically elegant and useful. We

hope that we have amply demonstrated it to be worthy of the attention the above

questions, and other similar work, would warrant.
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