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Chapter 1

Introduction

Image processing refers to the various operations performed on pictures that are
digitally stored as an aggregate of pixels. One can enhance or degrade the quality
of an image, artistically transform the image, or even find or recognize objects
within the image.

This paper is concerned with image processing, but in a very mathematical
perspective, involving representation theory. The approach traces back to Cooley
and Tukey’s seminal paper on the Fast Fourier Transform (FFT) algorithm (1965).
Recently, there has been a resurgence in investigating algebraic generalizations of
this original algorithm with respect to different symmetry groups.

My approach in the following chapters is as follows. First, | will give necessary
tools from representation theory to explain how to generalize the Discrete Fourier
Transform (DFT). Second, | will introduce wreath products and their application to
images. Third, | will show some results from applying some elementary filters and
compression methods to spectrums of images. Fourth, | will attempt to generalize
my method to non-cyclic wreath product transforms and apply it to images and
three-dimensional geometries.






Chapter 2

Representation Theory

In this chapter, we will briefly cover the basic tools of representation theory. A
more complete treatment can be found in the later chapters$ of (6). Much of the ma-
terial of the section on the algebraic interpretation of the DFT is found (concisely
presented) in (8)| (15), and (19).

2.1 Representations of Groups
Definition 2.1. Let G be a finite group, lef be a field and IeV be a vector space
overF.

1. Alinear representatiomf G is any homomorphisnp from G into GL(V).

2. Letne€ Z". A matrix representatiorf G is any homomorphism fron®
into GL,(F).

A representation for a group is just a map from group elemen&tim linear
transformations irGL(V). WhenV is a finite vector space, we can fix a basis for
V and obtain an isomorphism fro@L(V) to GLn(V). This paper only concerns
finite dimensional vector spaces, so the word “representation” really means either
a linear or matrix representation.

Definition 2.2. Thegroup ringof G overF is the set of all formal sums of the form

%agg, ogeF
ge

where addition and multiplication are performed componentwise.

We call the above group ringG. We can identify a representation with an
FG-module.
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Definition 2.3. Let R be a ring (not necessarily commutative nor with 1).left
R-moduleor aleft module over Rs a setM together with

1. abinary operatior- on M under whichM is an abelian group, and

2. an action ofR on M (that is, a mafR x M — M) denoted byrm, for all
r,s€ Rand for allm,n € M which satisfies

(@) (r+s)m=rm+sm

(b) (rsym=r(sm),

(¢) r(m+n)=rm+rn,

(d) and if the ringR has a 1, then we requirerl= mas well.

An FG-module refers to a module over the group rinG, where the set in-
volved is the vector spadé overF. These modules are important because we can
make a direct correspondence between representatioris@mdaodules.

Supposep : G — GL(V) is a representation @ on the vector spacé overF.
Then, we can maké into anFG-module by using the identification

g9 | -v=S agp(g)(v) forall § aggeFG,veV.

Conversely, given air G-moduleV, we obtain an associated vector space ¢ver
and representation by defining

¢(g)(v)=g-v forallveV,

whereg- v is the action of the group elemegin the elemenv of V.

Thus, giving a representatiam: G — GL(V) on a vector spac¥ overF is
therefore equivalent to giving aRG-moduleV, and we say thaV affordsthe
representation db.

Definition 2.4. Let Rbe a ring andM be anR-module. AnR-submodulef M is a
subgroupN of M which is closed under the action of ring elements, ires N for
allre RneN.

Definition 2.5. Let M be a nonzer&®-module for a ringR.

1. M is said to berreducibleif its only submodules are 0 ard; otherwise M
is calledreducible

2. M is said to baéndecomposabléd M cannot be written asl; & M for any
nonzero submoduldd; andM,; otherwise M is calleddecomposable
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3. M is said to becompletely reduciblé it is a direct sum or irreducible sub-
modules.

Similarly, representations are irreducible or indecomposable according to whe-
ther their corresponding modules have those qualities.

Now we are ready to present some definitions and theorems that lead up to
Wedderburn’s Theorem.

Definition 2.6. The characteristicof a field F is the smallest positive integer
such thatp- 1 = 0 if such ap exists, and 0 otherwise.

Theorem 2.1. (Maschke’s Theoreml)et G be a finite group and let F be a field
whose characteristic does not divig@|. If V is any FG-module and U is any
submodule of V, then V has a submodule W such thrat¥/oW.

Corollary. If G is a finite group and F is a field whose characteristic does not
divide |G|, then every finitely generated F G-module is completely reducible.

Note that in particular, for any finite grou andF = C, everyCG-module is
finitely generated and thus completely reducible.

Lemma 2.2. (Schur's Lemma)f M and N are irreducible (or simple) R-module
and¢ : M — N is a nonzero R-module homomorphism, tipae an isomorphism.

Theorem 2.3. (Wedderburn’s Theorenbet R be a nonzero ring with. If every
R-module is completely reducible, then the ring R considered as a left R-module is
a direct sum:

R=L1®Lo®--- DLy,

where each Lis a simple module with;l= Re, for idempotentsg € R which
satisfy

1. gg;=0ifi # j
2. @2=¢gforalli
3. Zln:la:]'

This theorem guarantees us a decomposition of@@ymoduleM as a direct
sum of irreducible submodules:

MEaMiaMd---DaM,,

where eacly; is a nonegative integer indicating the multiplicty of the irreducible
moduleM;, i.e.
g times

—
aMi=Md---dM,



6 Representation Theory

The above decomposition is called msotypic decomposition and eacqM; are
calledisotypics

Now, there remains the question of finding the idempotentJo explain this,
we must delve into a bit of character theory.

Definition 2.7. A class functioris any function fromG to F which is constant on
the conjugacy classes Gt

Definition 2.8. If ¢ is a representation d& afforded by theF G-moduleV, the
characterof ¢ is the function

x:G—F definedby x(g)=tro(g)

where trp(g) is the trace of the matrix ap(g) with repsect to some basis 6f

By direct computation, #iB = trB A for two n x n matricesA andB. If Ais
invertible, this implies that
trA~'BA=1trB.

Thus, we have that the character of a representation is independent of the choice
of basis of the vector space affording it. We can also show that characters are class
functions, since

x(g7xg) =tr (¢(g7'xg)) =tr ((gHe(x)(9)) =tro(x) = x(x).

Note that ify is the character of a representatipafforded by th&CG-module
M (as above), theny is actually the sum of the characters of the irreducible sub-
modules in the decomposition, i.e.

V=axyitaxt+--+ax.

We can put a Hermitian inner product structure on the space of class functions
as follows:

Definition 2.9. For class function® andy, define the inner product to be
1 -
(0.y) = (y.0) = = %9(g)w(g)
Gl £

where the bar denotes complex conjugation.

Using the characters, we have the following formula for obtaining idempotents.
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Theorem 2.4.Lete,...,e be the orthogonal primitive central idempotent€i®
labelled in such a way that acts as the identity on the irreducibi&G-module M,
and lety; be the character afforded by;MTI'hen

~xi(1) L
a="g g;x.(g Yg.

Using this formula, we can derive an important orthogonality relation between
characters.

Theorem 2.5.LetU andV be non-isomorphic irreducibtl&s-modules, with char-
actersy andy, respectively. Then
(%) =1,and (x,y) =0.

As a consequence of this theorem, we arrive at some key results that will be of
use later.

Theorem 2.6. Let V be aCG-module with charactey. Then V is irreducible if
and only if(x,x) = 1.

2.2 An Algebraic Interpretation of the DFT

[FIXME: diagram here!] Suppose we have a complex-valued fundtit that is
sampled at (or defined on)points; i.e.k € {0,...,n—1}. Then, the classical DFT
of this function is given by
= 27k ]
f(j)=9 f(ke ™.
2,

Similarly, the inverse of this transform, the IDFT, is given by
1 n-1_ ez ik ]
fk)=—75 f(i)e™n.
2

For this section, leG = Z/nZ. Given this functionf, we can identify then
points with group elements & /nZ, and therefore eachbecomes an element of

CG:
f= g; 0g0.

Thus, the space of all functions defined on this domain can be represented as the
CG-module over itselfCG. Let us proceed to decompose this space using Wed-
derburn’s theorem.
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Let ¢ denote the complex representatiorZofnZ, and letg; be the irreducible
representations. Letbe the generator faZ /nZ; thusZ/nZ = (n). To find a
character for our cyclic group, we would like to find a homomorphism betweent the
group elements and the complex nhumbers. Mapping elements of the cyclic group
to thenth roots of unity inC gives us the appropriate homomorphism. Thus, we
define the irreducible characters&f/ nZ to be

1lx) = &,

We know that these characters are irreducible because when we compute the inner
product, we get

(X xi) |G‘ %x. )i (9)

1 n-1 [ evrin
=5 _Z%i(X)Xi(X’)

<20e27tljne—2n']n>

From this information, we can derive the orthognal primitive central idempo-
tents using our previous formula:

] \

H

|G| %x. g Y)g
~n .Z)xa (X" 1)x!
£

1n71

_ - efzmjng
n&

Letw = e . Then, the individual idempotents look like
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== (14x+X 4+ 4 4+x" 1)

1+ X+ 2 +0 353+ + w‘(”‘l)x”‘l)

&P |@ |£D 8’
D\HD\HD\HD\H

=l
(1+ O X+ N+ %+ + wfz(nfl)xnﬂ)
=l

1+a)‘3x+co‘6x2+co‘9x3+---+w‘3(”‘1)x”‘1)

& 1 = % (1—|— o Dyt 20-1y2 4 -300-1)y3 4 w—(n—l)(n—l)xn—l)

Now, the decomposition into the isotypic submodule€ Gfare accomplished
by multplying the idempotents with the desired element filG@A. Thus, for a
function f = 33 X € CG,

where eachy € C. As an example, one of the isotypic componentd a$

er - f: [FIXME: is this wrong?]

1
e f=>(1to xto a4t o MU0 f

1 n—1
== <1+ O X+ 0+ + w’(”*l)x”*) -y X
=3

k

1
=2 (1 +o X+ 0+ + w’(”*l)x”*)
(00 + oax+ 02 + -+ ap_1xX" )

1
= (oco +ota+ o 20+ + o (Y OCn—l)

1 n-1
== z aw X
N

These components look exactly like the Fourier coefficients we saw earlier!
We can express the isotypic components more succinctly in matrix form:

11 1 .1 o

1 (0*1 (072 e wf(nfl) (071
111 o2 o4 ... @2l o
n

1 o (1D p-200-1) w*(n*1)2 On—1

This matrix is precisely the DFT matrix.






Chapter 3

Wreath Product Groups and the
Quad Tree Scan

We can use wreath product groups to describe automorphisms of trees. In this
section, we will describe the wreath product in terms of these automorphisms and
see how we can apply the representation theory of these groups to images. This
approach was studied closely by (8) on iterated wreath products of cyclic groups.
More information on the representation theory of wreath products is in[(7), (11)
and (12).

3.1 Wreath Product Groups

We begin with a definition of a wreath product.

Definition 3.1. Let G be a finite group, andl a permutation group on elements
(a subgroup 08&,). Let G" defined by

ntimes

—N—
G"=GxGx---xG

be the set of orderedttuples of elements db. Then thewreath producof G with
H, denoted5H, is the seG" x H with multiplication defined as

(g,0)(h,7) = ((glhc—l(l),...,gnho-—l(n)) ,cm)
whereg,h € G"ando, n € H.

A wreath product ofG andH is really a semidirect product d&" and H,
where the action oH on G" is to permute the ordering of thetuples. More
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A
B/ \C
/ N\ /N
D E F G
AAN AN

1 2 3 4 5 6 7 8

Figure 3.1: A Graph of a Binary Tree of 3 levels.

preciselyGH is a semidirect product ¢ andG" with respect to the permutation
representatio from H into Aut(G") (the automorphisms d@8").

The wreath product turns out to be a convenient way to describe automorphisms
of trees. An automorphism of a tree can be thought of as a structured permutations
of the leaves of the tree, where subtrees at a given level in the tree are permuted.
Consider the figure 3|1 above: a binary tree with heigl&. At each vertex in the
tree, we can “swap” the two subtrees connected to it, and this corresponds to per-
muting “levels” of trees. Notice that this process preserves the overall “hierarchy”
of the tree — no matter what the operatidnyill always be at the top of the treB,
andC in the second leveD, E,F, andG always in the third level, etc. In addition,
we can also create a one-to-one correspondence between the permutations of the
leaves and the “swapping” of subtrees. For example, if we want the permutation
(1 2), then we would simply do a swap operation on the children of vebtekor
(13)(2 4), we can simply perform a swap on vert8xA more complicated exam-
ple, (16)(25)(37)(48)(53)(64)(71)(8 2), can be performed by swapping on
vertexA, then swapping on verte®, and finally on verteX.

3.2 Quad Tree Decompositions of Images

How can automorphisms of trees help us with image processing? We can re-create
a tree-like structure from a digital image by recusively breaking the image into
pieces, creating a hierarchy within the image. Here’s how it works:

Procedure 3.2.Given a image with dimension$ & 2",
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1. Break the image up into four quadrants, each of dimensloh22"-1.

2. Order the four quadrants clockwise, starting from the top left quadrant.

3. Continue the process recursively, breaking quadrants into sub-quadrants (of
dimension 22 x 2"2) and sub-quadrants into sub-sub-quadrants (of di-

mension 2-3 x 2h-3),

4. Stop at théhth recursive step, when quadrants cannot be broken up further

since they are made of individual pixels.

Example 3.2.1. Suppose we have and4 image, represented by the matrix

b
f

3 — o9

n

c
g

k
0

d
h
|

p

We first break the image into four quadrants, like so: [FIXME: put another maffix me!]

alongside that labels the quadrants]

a b
e f

o
m n

Then, we can break the quadrants recursively:

c d
g h
k |

o p

c d

g' h

%$

ki T

o' p

At this point, we must stop the recursive proceuss since we cannot subdivide the
matrix any further. Now, using the ordering scheme, we can order the vertices as

follows:
1 2|5 6
4 3|8 7
13 14| 9 10
16 15| 12 11

This gives rise to the following quadtree: [FIXME: put a diagram here.]
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3.3 A Decomposition

Let the quadtree be denoted 8§(h), whereh is the number of levels in the tree,
and thus2(h) has 4 leaves. Let the set of leaves 6f(h) be denoteX, and let
L(X) denote the space of all complex valued functionoi.et G be the iterated
wreath product oZ /42Z.

G=Z/47 1 Z/4AZ © --- | Z/4Z,

and letV; denote the space of all functions that are constant on each block of leaves
that descend from a common node at lévé€8) describes &-invariant decompo-
sition of L(X). The key idea in their paper is decomposir{i) into the subspaces

Vi, which gives a complete filtration @f(X) invariant to the group action @.

This idea is really based on what is called fRadon transform Under this
transform, we take the average of a block of four values (corresponding to the
four pixel values) and decompose the space of all values into two components:
the average value component, and the difference component. Define the Radon
transform as

1
A

%, :L(X) =V,  definedby  2;(f)(x) S ),

Xn€A; (X)

whereA| (x) is the set of all pixels within the"2) x 21 subframe of the image.
Here,Z; just maps the pixel values & (x) to its average value. Now we arrive
at a small theorem:

Theorem 3.1. The Radon transform gives a G-invariant decomposition; of s
Viri=V;aW, for allj,
where W is the nullspace of7;.

Notice that this gives rise to a recursive algorithm to decompd3g. At
the lowest level (where the quadrants are individual pixels), we can even use the
classical DFT to decompose the pixel values, because the Oth coefficient of the DFT
(the very first coefficient) is the average or constant component (i.e. the Radon
transform component). Thus, the DFT breaks a space of complex functions on a
group of four pixeld(Xo) as

L(Xo) = Vo Wy & W S W,

where each subspace is one-dimensional @Gridvariant. The spac¥®y corre-
sponds to the Oth Fourier coefficient, a{l corresponds to thkth coefficient.
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Now, we can gather these average values and do another DFT decomposition on
those values, as prescribed by our theorem above. [FIXME: this section needs a lot
more work.]

Algorithm 3.3. We have a recursive algorithm as follows:
1. Divide the image into quadrants
2. Recursively divide quadrants into sub-quadrants

3. At the bottom-most level, perform the DFT on a vector of the four pixel
values, ordered according to our ordering scheme

4. Recusively perform DFTs on the first coefficients and travel back up the
recursive stack.

3.4 The Quad Tree Scan

The above recursive algorithm is quite simple and elegant, but its recursive na-
ture tends to waste precious computing and storage resources. We can solve the
problem much faster using an iterative method.

This method relies on a quick ordering of the pixels on the image. Recall from
sectior] 3.P that an ordering of the pixel values is

1 2 5 6
4 3 8 7
13 14 9 10

16 15 12 11

Simply “marching” through the pixel values and performing DFTs along the way is
faster than the recursive method; which allocates memory for each recursive call,
unnecessarily stores intermediary variables, and needlessly performs the image-
dividing procedure for each recursive call.

A quick march is obtained as follows. We start on the upper-left-most pixel and
attach ordering numbers to the pixel, starting from 1. In addition to this “counter,”
denoted byi, we have three more variables: the row and column position of the
pixel (r,c) (initially (1,1)), and the current “levelf of the pixel (we begin at the
Oth level).

Procedure 3.4. At each pixel, perform a test on the pixel number:

1. Find the largest non-negative intedresuch that 4 dividesi.
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2. If k=1, we have “completed” a level and must move on to the next level.
Thus, resefr,c) = (1,2 + 1), and increment by 1.

3. If k# 1, computem = (i/4¥) mod 4. Herek represents a “local level” of
sorts, andn tells you the relative position within that local level. First, we
reset our row and column positions back to the first pixel in our local level,
this can be accomplised by decrementingy 2¢ — 1 and leavinge fixed.
Now, we change the row and column positions based on the valoe of

which has three possible values:
(@) If m= 1, then increment by 2,
(b) If m= 2, then increment by 2,
(c) If m= 3, then decrementby 2.

Notice that the case whene= 4 cannot occur, sindewas defined to be the
largestinteger such thatkdividesi.
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