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Chapter 1

Introduction

Image processing refers to the various operations performed on pictures that are
digitally stored as an aggregate of pixels. One can enhance or degrade the quality
of an image, artistically transform the image, or even find or recognize objects
within the image.

This paper is concerned with image processing, but in a very mathematical
perspective, involving representation theory. The approach traces back to Cooley
and Tukey’s seminal paper on the Fast Fourier Transform (FFT) algorithm (1965).
Recently, there has been a resurgence in investigating algebraic generalizations of
this original algorithm with respect to different symmetry groups.

My approach in the following chapters is as follows. First, I will give necessary
tools from representation theory to explain how to generalize the Discrete Fourier
Transform (DFT). Second, I will introduce wreath products and their application to
images. Third, I will show some results from applying some elementary filters and
compression methods to spectrums of images. Fourth, I will attempt to generalize
my method to non-cyclic wreath product transforms and apply it to images and
three-dimensional geometries.





Chapter 2

Representation Theory

In this chapter, we will briefly cover the basic tools of representation theory. A
more complete treatment can be found in the later chapters of (6). Much of the ma-
terial of the section on the algebraic interpretation of the DFT is found (concisely
presented) in (8), (15), and (19).

2.1 Representations of Groups

Definition 2.1. Let G be a finite group, letF be a field and letV be a vector space
overF .

1. A linear representationof G is any homomorphismϕ from G into GL(V).

2. Let n ∈ Z+. A matrix representationof G is any homomorphism fromG
into GLn(F).

A representation for a group is just a map from group elements inG to linear
transformations inGL(V). WhenV is a finite vector space, we can fix a basis for
V and obtain an isomorphism fromGL(V) to GLn(V). This paper only concerns
finite dimensional vector spaces, so the word “representation” really means either
a linear or matrix representation.

Definition 2.2. Thegroup ringof G overF is the set of all formal sums of the form

∑
g∈G

αgg, αg ∈ F

where addition and multiplication are performed componentwise.

We call the above group ringFG. We can identify a representation with an
FG-module.
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Definition 2.3. Let R be a ring (not necessarily commutative nor with 1). Aleft
R-moduleor a left module over Ris a setM together with

1. a binary operation+ onM under whichM is an abelian group, and

2. an action ofR on M (that is, a mapR×M → M) denoted byrm, for all
r,s∈ Rand for allm,n∈ M which satisfies

(a) (r + s)m= rm+ sm,

(b) (rs)m= r(sm),
(c) r(m+n) = rm+ rn,

(d) and if the ringRhas a 1, then we require 1m= m as well.

An FG-module refers to a module over the group ringFG, where the set in-
volved is the vector spaceV overF . These modules are important because we can
make a direct correspondence between representations andFG-modules.

Supposeϕ : G→GL(V) is a representation ofG on the vector spaceV overF .
Then, we can makeV into anFG-module by using the identification(

∑
g∈G

αgg

)
·v = ∑

g∈G

αgϕ(g)(v) for all ∑
g∈G

αgg∈ FG,v∈V.

Conversely, given anFG-moduleV, we obtain an associated vector space overF
and representation by defining

ϕ(g)(v) = g·v for all v∈V,

whereg·v is the action of the group elementg in the elementv of V.
Thus, giving a representationϕ : G→ GL(V) on a vector spaceV over F is

therefore equivalent to giving anFG-moduleV, and we say thatV affords the
representation ofG.

Definition 2.4. Let Rbe a ring andM be anR-module. AnR-submoduleof M is a
subgroupN of M which is closed under the action of ring elements, i.e.,rn ∈N for
all r ∈ R,n∈ N.

Definition 2.5. Let M be a nonzeroR-module for a ringR.

1. M is said to beirreducible if its only submodules are 0 andM; otherwise,M
is calledreducible.

2. M is said to beindecomposableif M cannot be written asM1⊕M2 for any
nonzero submodulesM1 andM2; otherwise,M is calleddecomposable.



Representations of Groups5

3. M is said to becompletely reducibleif it is a direct sum or irreducible sub-
modules.

Similarly, representations are irreducible or indecomposable according to whe-
ther their corresponding modules have those qualities.

Now we are ready to present some definitions and theorems that lead up to
Wedderburn’s Theorem.

Definition 2.6. The characteristicof a field F is the smallest positive integerp
such thatp·1F = 0 if such ap exists, and 0 otherwise.

Theorem 2.1. (Maschke’s Theorem)Let G be a finite group and let F be a field
whose characteristic does not divide|G|. If V is any FG-module and U is any
submodule of V , then V has a submodule W such that V= U ⊕W.

Corollary. If G is a finite group and F is a field whose characteristic does not
divide|G|, then every finitely generated FG-module is completely reducible.

Note that in particular, for any finite groupG andF = C, everyCG-module is
finitely generated and thus completely reducible.

Lemma 2.2. (Schur’s Lemma)If M and N are irreducible (or simple) R-module
andϕ : M → N is a nonzero R-module homomorphism, thenϕ is an isomorphism.

Theorem 2.3. (Wedderburn’s Theorem)Let R be a nonzero ring with1. If every
R-module is completely reducible, then the ring R considered as a left R-module is
a direct sum:

R∼= L1⊕L2⊕·· ·⊕Ln,

where each Li is a simple module with Li = Rei , for idempotentsei ∈ R which
satisfy

1. eiej = 0 if i 6= j

2. ei
2 = ei for all i

3. ∑n
i=1ei = 1.

This theorem guarantees us a decomposition of anyCG-moduleM as a direct
sum of irreducible submodules:

M ∼= a1M1⊕a2M2⊕·· ·⊕arMr ,

where eachai is a nonegative integer indicating the multiplicty of the irreducible
moduleMi , i.e.

aiMi =
ai times︷ ︸︸ ︷

Mi ⊕·· ·⊕Mi
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The above decomposition is called anisotypicdecomposition and eachaiMi are
calledisotypics.

Now, there remains the question of finding the idempotents,ei . To explain this,
we must delve into a bit of character theory.

Definition 2.7. A class functionis any function fromG to F which is constant on
the conjugacy classes ofG.

Definition 2.8. If ϕ is a representation ofG afforded by theFG-moduleV, the
characterof ϕ is the function

χ : G→ F defined by χ(g) = trϕ(g)

where trϕ(g) is the trace of the matrix ofϕ(g) with repsect to some basis ofV.

By direct computation, trAB= trBA for two n×n matricesA andB. If A is
invertible, this implies that

trA−1BA= trB.

Thus, we have that the character of a representation is independent of the choice
of basis of the vector space affording it. We can also show that characters are class
functions, since

χ(g−1xg) = tr
(
ϕ(g−1xg)

)
= tr

(
ϕ(g−1)ϕ(x)ϕ(g)

)
= trϕ(x) = χ(x).

Note that ifψ is the character of a representationϕ afforded by theCG-module
M (as above), thenψ is actually the sum of the characters of the irreducible sub-
modules in the decomposition, i.e.

ψ = a1χ1 +a2χ2 + · · ·+ar χr .

We can put a Hermitian inner product structure on the space of class functions
as follows:

Definition 2.9. For class functionsθ andψ, define the inner product to be

〈θ ,ψ〉 = 〈ψ,θ〉 =
1
|G| ∑

g∈G

θ (g)ψ(g)

where the bar denotes complex conjugation.

Using the characters, we have the following formula for obtaining idempotents.
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Theorem 2.4.Let e1,. . . ,er be the orthogonal primitive central idempotents inCG
labelled in such a way that ei acts as the identity on the irreducibleCG-module Mi ,
and letχi be the character afforded by Mi . Then

ei =
χi(1)
|G| ∑

g∈G

χi(g−1)g.

Using this formula, we can derive an important orthogonality relation between
characters.

Theorem 2.5.Let U and V be non-isomorphic irreducibleCG-modules, with char-
actersχ andψ, respectively. Then

〈χ,χ〉 = 1, and 〈χ,ψ〉 = 0.

As a consequence of this theorem, we arrive at some key results that will be of
use later.

Theorem 2.6. Let V be aCG-module with characterχ. Then V is irreducible if
and only if〈χ,χ〉 = 1.

2.2 An Algebraic Interpretation of the DFT

[FIXME: diagram here!] Suppose we have a complex-valued functionf (k) that is Fix me!
sampled at (or defined on)n points; i.e.k∈ {0,. . . ,n−1}. Then, the classical DFT
of this function is given by

f̂ ( j) =
n−1

∑
k=0

f (k)e−2π ik j
n .

Similarly, the inverse of this transform, the IDFT, is given by

f (k) =
1
n

n−1

∑
j=0

f̂ ( j)e2π ik j
n .

For this section, letG = Z/nZ. Given this functionf , we can identify then
points with group elements ofZ/nZ, and therefore eachf becomes an element of
CG:

f = ∑
g∈G

αgg.

Thus, the space of all functions defined on this domain can be represented as the
CG-module over itself,CG. Let us proceed to decompose this space using Wed-
derburn’s theorem.
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Let ϕ denote the complex representation ofZ/nZ, and letϕi be the irreducible
representations. Letx be the generator forZ/nZ; thusZ/nZ = 〈n〉. To find a
character for our cyclic group, we would like to find a homomorphism betweent the
group elements and the complex numbers. Mapping elements of the cyclic group
to thenth roots of unity inC gives us the appropriate homomorphism. Thus, we
define the irreducible characters ofZ/nZ to be

χk(x j) = e2π i j k
n .

We know that these characters are irreducible because when we compute the inner
product, we get

〈χi ,χi〉 =
1
|G| ∑

g∈G

χi(g)χi(g)

=
1
n

(
n−1

∑
j=0

χi(x j)χi(x j)

)

=
1
n

(
n−1

∑
j=0

e2π i j k
n e−2π j i

n

)
= 1

From this information, we can derive the orthognal primitive central idempo-
tents using our previous formula:

ei =
χi(1)
|G| ∑

g∈G

χi(g−1)g

=
1
n

n−1

∑
j=0

χi(xn− j)x j

=
1
n

n−1

∑
j=0

e−2π i j k
n x j

Let ω = e
2π i
n . Then, the individual idempotents look like
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e0 =
1
n

(
1+ x+ x2 + x3 + · · ·+ xn−1)

e1 =
1
n

(
1+ ω

−1x+ ω
−2x2 + ω

−3x3 + · · ·+ ω
−(n−1)xn−1

)
e2 =

1
n

(
1+ ω

−2x+ ω
−4x2 + ω

−6x3 + · · ·+ ω
−2(n−1)xn−1

)
e3 =

1
n

(
1+ ω

−3x+ ω
−6x2 + ω

−9x3 + · · ·+ ω
−3(n−1)xn−1

)
...

en−1 =
1
n

(
1+ ω

−(n−1)x+ ω
−2(n−1)x2 + ω

−3(n−1)x3 + · · ·+ ω
−(n−1)(n−1)xn−1

)
Now, the decomposition into the isotypic submodules ofCG are accomplished

by multplying the idempotents with the desired element fromCG. Thus, for a
function f = ∑n−1

k=0 αkxk ∈ CG,
where eachαk ∈ C. As an example, one of the isotypic components off is

e1 · f : [FIXME: is this wrong?] Fix me!

e1 · f =
1
n

(
1+ ω

−1x+ ω
−2x2 + · · ·+ ω

−(n−1)xn−1
)
· f

=
1
n

(
1+ ω

−1x+ ω
−2x2 + · · ·+ ω

−(n−1)xn−1
)
·

n−1

∑
k=0

αkx
k

=
1
n

(
1+ ω

−1x+ ω
−2x2 + · · ·+ ω

−(n−1)xn−1
)

·
(
α0 + α1x+ α2x2 + · · ·+ αn−1xn−1)

=
1
n

(
α0 + ω

−1
α1 + ω

−2
α2 + · · ·+ ω

−(n−1)
αn−1

)
=

1
n

n−1

∑
k=0

αkω
−k.

These components look exactly like the Fourier coefficients we saw earlier!
We can express the isotypic components more succinctly in matrix form:

1
n


1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(n−1)

1 ω−2 ω−4 · · · ω−2(n−1)

...
...

...
...

...
1 ω−(n−1) ω−2(n−1) · · · ω−(n−1)2




α0

α1

α2
...

αn−1


This matrix is precisely the DFT matrix.





Chapter 3

Wreath Product Groups and the
Quad Tree Scan

We can use wreath product groups to describe automorphisms of trees. In this
section, we will describe the wreath product in terms of these automorphisms and
see how we can apply the representation theory of these groups to images. This
approach was studied closely by (8) on iterated wreath products of cyclic groups.
More information on the representation theory of wreath products is in (7), (11)
and (12).

3.1 Wreath Product Groups

We begin with a definition of a wreath product.

Definition 3.1. Let G be a finite group, andH a permutation group onn elements
(a subgroup ofSn). Let Gn defined by

Gn =
n times︷ ︸︸ ︷

G×G×·· ·×G

be the set of orderedn-tuples of elements ofG. Then thewreath productof G with
H, denotedGoH, is the setGn×H with multiplication defined as

(g,σ)(h,π) =
((

g1hσ−1(1),. . . ,gnhσ−1(n)

)
,σπ

)
whereg,h∈ Gn andσ ,π ∈ H.

A wreath product ofG and H is really a semidirect product ofGn and H,
where the action ofH on Gn is to permute the ordering of then-tuples. More
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A

B C

D

1 2

E

3 4

F

5 6

G

7 8

Figure 3.1: A Graph of a Binary Tree of 3 levels.

precisely,GoH is a semidirect product ofH andGn with respect to the permutation
representationϕ from H into Aut(Gn) (the automorphisms ofGn).

The wreath product turns out to be a convenient way to describe automorphisms
of trees. An automorphism of a tree can be thought of as a structured permutations
of the leaves of the tree, where subtrees at a given level in the tree are permuted.
Consider the figure 3.1 above: a binary tree with height= 3. At each vertex in the
tree, we can “swap” the two subtrees connected to it, and this corresponds to per-
muting “levels” of trees. Notice that this process preserves the overall “hierarchy”
of the tree – no matter what the operation,A will always be at the top of the tree,B
andC in the second level,D,E,F , andG always in the third level, etc. In addition,
we can also create a one-to-one correspondence between the permutations of the
leaves and the “swapping” of subtrees. For example, if we want the permutation
(1 2), then we would simply do a swap operation on the children of vertexD. For
(1 3)(2 4), we can simply perform a swap on vertexB. A more complicated exam-
ple, (1 6)(2 5)(3 7)(4 8)(5 3)(6 4)(7 1)(8 2), can be performed by swapping on
vertexA, then swapping on vertexC, and finally on vertexD.

3.2 Quad Tree Decompositions of Images

How can automorphisms of trees help us with image processing? We can re-create
a tree-like structure from a digital image by recusively breaking the image into
pieces, creating a hierarchy within the image. Here’s how it works:

Procedure 3.2.Given a image with dimensions 2h×2h,
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1. Break the image up into four quadrants, each of dimension 2h−1×2h−1.

2. Order the four quadrants clockwise, starting from the top left quadrant.

3. Continue the process recursively, breaking quadrants into sub-quadrants (of
dimension 2h−2 × 2h−2) and sub-quadrants into sub-sub-quadrants (of di-
mension 2h−3×2h−3).

4. Stop at thehth recursive step, when quadrants cannot be broken up further
since they are made of individual pixels.

Example 3.2.1.Suppose we have an 4×4 image, represented by the matrix
a b c d
e f g h
i j k l
m n o p


We first break the image into four quadrants, like so: [FIXME: put another matrixFix me!
alongside that labels the quadrants]

a b c d
e f g h
i j k l
m n o p


Then, we can break the quadrants recursively:

a b c d
e f g h
i j k l
m n o p


At this point, we must stop the recursive proceuss since we cannot subdivide the
matrix any further. Now, using the ordering scheme, we can order the vertices as
follows: 

1 2 5 6
4 3 8 7
13 14 9 10
16 15 12 11


This gives rise to the following quadtree: [FIXME: put a diagram here.] Fix me!
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3.3 A Decomposition

Let the quadtree be denoted byQ(h), whereh is the number of levels in the tree,
and thusQ(h) has 4h leaves. Let the set of leaves ofQ(h) be denotedX, and let
L(X) denote the space of all complex valued functions onX. Let G be the iterated
wreath product ofZ/4Z:

G = Z/4Z o Z/4Z o · · · o Z/4Z,

and letVi denote the space of all functions that are constant on each block of leaves
that descend from a common node at leveli. (8) describes aG-invariant decompo-
sition ofL(X). The key idea in their paper is decomposingL(X) into the subspaces
Vi , which gives a complete filtration ofL(X) invariant to the group action ofG.

This idea is really based on what is called theRadon transform. Under this
transform, we take the average of a block of four values (corresponding to the
four pixel values) and decompose the space of all values into two components:
the average value component, and the difference component. Define the Radon
transform as

R j : L(X) →Vj defined by R j( f )(x) =
1

|A j(x)| ∑
xn∈A j (x)

f (xn),

whereA j(x) is the set of all pixels within the 2h− j ×2h− j subframe of the image.
Here,R j just maps the pixel values ofA j(x) to its average value. Now we arrive
at a small theorem:

Theorem 3.1. The Radon transform gives a G-invariant decomposition of Vj+1 as

Vj+1 = Vj ⊕Wj for all j ,

where Wj is the nullspace ofR j .

Notice that this gives rise to a recursive algorithm to decomposeL(X). At
the lowest level (where the quadrants are individual pixels), we can even use the
classical DFT to decompose the pixel values, because the 0th coefficient of the DFT
(the very first coefficient) is the average or constant component (i.e. the Radon
transform component). Thus, the DFT breaks a space of complex functions on a
group of four pixelsL(X0) as

L(X0) = V0⊕W1⊕W2⊕W3,

where each subspace is one-dimensional andG-invariant. The spaceV0 corre-
sponds to the 0th Fourier coefficient, andWk corresponds to thekth coefficient.
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Now, we can gather these average values and do another DFT decomposition on
those values, as prescribed by our theorem above. [FIXME: this section needs a lotFix me!
more work.]

Algorithm 3.3. We have a recursive algorithm as follows:

1. Divide the image into quadrants

2. Recursively divide quadrants into sub-quadrants

3. At the bottom-most level, perform the DFT on a vector of the four pixel
values, ordered according to our ordering scheme

4. Recusively perform DFTs on the first coefficients and travel back up the
recursive stack.

3.4 The Quad Tree Scan

The above recursive algorithm is quite simple and elegant, but its recursive na-
ture tends to waste precious computing and storage resources. We can solve the
problem much faster using an iterative method.

This method relies on a quick ordering of the pixels on the image. Recall from
section 3.2 that an ordering of the pixel values is

1 2 5 6
4 3 8 7
13 14 9 10
16 15 12 11


Simply “marching” through the pixel values and performing DFTs along the way is
faster than the recursive method; which allocates memory for each recursive call,
unnecessarily stores intermediary variables, and needlessly performs the image-
dividing procedure for each recursive call.

A quick march is obtained as follows. We start on the upper-left-most pixel and
attach ordering numbers to the pixel, starting from 1. In addition to this “counter,”
denoted byi, we have three more variables: the row and column position of the
pixel (r,c) (initially (1,1)), and the current “level”l of the pixel (we begin at the
0th level).

Procedure 3.4.At each pixel, perform a test on the pixel number:

1. Find the largest non-negative integerk such that 4k dividesi.
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2. If k = 1, we have “completed” a level and must move on to the next level.
Thus, reset(r,c) = (1,2l +1), and incrementl by 1.

3. If k 6= l , computem =
(
i/4k

)
mod 4. Here,k represents a “local level” of

sorts, andm tells you the relative position within that local level. First, we
reset our row and column positions back to the first pixel in our local level;
this can be accomplised by decrementingr by 2k− 1 and leavingc fixed.
Now, we change the row and column positions based on the value ofm,
which has three possible values:

(a) If m= 1, then incrementc by 2k,

(b) If m= 2, then incrementr by 2k,

(c) If m= 3, then decrementc by 2k.

Notice that the case wherem= 4 cannot occur, sincek was defined to be the
largestinteger such that 4k dividesi.
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