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Abstract

Voting theory as been explored mathematically since the 1780’s. Many people
have tackled parts of it using various tools, and now we shall look at it through
the eyes of a representation theorist. Each vote can be thought of as a permutation
of the symmetric group,Sn, and a poll is similar to a linear combination of these
elements. Specifically, we will focus on translating and generalizing the works of
Donald Saari into more algebraic terms to discover not just one space, but a whole
isotypic component essential to positional voting.
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Chapter 1

Introduction

1.1 Background

Voting theory officially began in the 18th century with the Marquis de Condorcet
and Jean-Charles de Borda arguing as to the best method of elections for three or
more candidates. Borda publishedMémoire sur leśelections au scrutinin 1781
[Borda (1781)], causing the French academy to begin looking at voting. In re-
sponse, Condorcet put the pairwise voting scheme into a rigorous and publicized
essayEssai sur l’application de l’analysèa la probabilit́e des d́ecisions rendues̀a
la pluralité des voixin 1785 [Caritat, M. Marquis de Condorcet (1785)]. Neither of
these schemes were completely original, but they did spark much debate, as well
as a new field of political science.

Although debated furiously for time to come, Borda and Condorcet’s methods
of tallying votes are still among the most common schemes. In his pamphlets
from 1874, not published until 2001 [Dodgson (2001)], Charles Ludwige Dodgson
(better known as Lewis Carrol) adjusted Condorcet’s method to better ensure the
existence of a candidate winning in any given pairwise race by finding who was
“closest” to the Condorcet winner.

In the 1950s, Kenneth J. Arrow gave a proof showing that every voting system
was prone to a specific sort of paradox. Given criteria, which he proved indepen-
dent from one another, no method of voting can be guaranteed to escape a paradox
which Condorcet described. Arrow’s Theorem will be explored in more depth in
Chapter 2.

John Kemeny discerned a new method of adjusting the Condorcet vote, which
finds the entire ranking “closest” to the voters’ election. In recent years, Ke-
meny’s Rule and Dodgson’s method have been compared by a few scholars, no-
tably Thomas Ratliff [Ratliff (2002)].



2 Introduction

There have been many economists, political scientists, and statisticians who
have studied voting theory. Recent years have brought significant progress, and
many new people, including Donald G. Saari, professor at the University of Cali-
fornia, Irvine. He uses geometric methods of proving impressive theorems, which
are popular with the modern voting theory community.

1.2 Overview of Thesis

The language of political science has been very verbose, with few definitions prop-
erly nailed down to a formal, rigorous base. It is a primary goal to translate the
problems of voting theory into a form suitable to an algebraist, then to verify some
of these theorems in as precise a manner as possible. The verification will be done
with tools from representation theory to which the whole subject lends itself so
naturally.

In particular, this thesis looks at Saari’s works using algebra rather than ge-
ometry. Some of his ideas are quite simple and elegant when cast in the light of
representation theory. However, his decompositions for the space of votes are not
precise enough. Representation theory is able to point out the underlying group
structures which are invariant in voting so that one might easily separate the por-
tions of the profile space that matter to a final tally.

Using those tools, this thesis will present some original research involving ma-
nipulation of modules in applied representation theory. This will be guided by the
intuitions afforded from voting theory, and take into account Borda’s scheme.

At the end of the thesis, the results will be translated back into the economics of
voting theory, hopefully in a mathematically elegant way. In this way, the concepts
in voting theory will be brought to a formal level for a broader audience within the
mathematical community.



Chapter 2

Theory

2.1 Theorems from Economics

Voting operates on some basic criteria, which all political scientists and economists
take into assumption. The first is that every voter will vote honestly with a transitive
ranking of allncandidates. That is, if a voter prefersA toBandB toC then the voter
prefersA toC. A voter preferring that transitive ranking can then be represented by
one vote forA� B�C. Moreover, every voter should have no more weight than
any other. These fundamental assumptions lend themselves to the use of a linear
function for tallying an election. Any election can be counted in any order, and
if there arec voters for a particular ranking of candidates then the voting scheme
should allow scalar multiplication of that ranking.

Condorcet’s method of pairwise voting takes the list of everyone’s votes to
a space which assigns points to ordered pairs of candidates. The result of the
transformation of the rankingA � C � B gives one point to theA � C, one to
A� B, and one to theC� B coordinates. Condorcet considered a “winner” to be
someone who would beat any other candidate in a two person race. In modern
sources this person is called the “Condorcet winner”’ since there are other forms
of winning an election.

Borda thought that a positional method, involving giving points to each place
in a vote, would be more fair than Condorcet’s method, after coming up with a
paradox similar to this:
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votes ranking
2 A� B�C
1 A�C� B
1 B� A�C
2 B�C� A
2 C� A� B
1 C� B� A

The results of the pairwise test applied to this vote are as follows:A�B at 5: 4,
B�C at 5 : 4, and the paradoxical part (as it is not transitive)C� A at 5 : 4. To
more clearly see the paradox, this means thatA� B�C� A so there is no single
winner.

To combat this intransitivity paradox, Borda assigned points to each candidate
in every vote. So, for example, a vote forA� B�C gives one point toA, 1

2 a point
to B and no points to candidateC.

From Arrow’s theorem, even Borda’s system has a flaw. Condorcet was quick
to come up with a situation in which Borda would have a tough time explaining. If
instead of using Borda’s(1, 1

2,0) weighting vector, one might use a(1, 3
4,0) vector,

although a paradox can be determined for any.
Suppose there are rankings:

votes ranking
1 A� B�C
1 A�C� B
1 B� A�C
1 B�C� A
0 C� A� B
3 C� B� A

At a weight of (1, 3
4,0), this election comes out asB � C � A at a ratio of

5 : 4.5 : 2.75. However, if candidateA were to drop out of the race, giving one
point to B each time he beatsC and vice versa, then the results of the election
would beC� B at a ratio of 4: 3.

The paradox is that if everyone kept their votes the same, but dropped a candi-
date from their ballot then the outcome of the election can change.

More recently, Kenneth Arrow won the Nobel Prize in Economic Sciences in
1972 for his acclaimed theorem in economics. The theorem states that a number of
criteria desired in voting systems are contradictory. These criteria are as follows:
(1) results, (2) monotonicity, (3) irrelevant alternatives, (4) achievability, (5) non-
dictatorship.
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That is a scheme should always provide some result, even if it is declared as a
tie. Monotonicity means that it should never be in a voter’s best interests to vote
his favorite candidate ranked lower than first. Irrelevant alternatives states that a
winner should not change if a non winning candidate drops out of the election.
Achievability is when, for any ranking, there should be some profile which when
counted affords the ranking as outcome. Non-dictatorship just says that more than
one person’s vote should count.

New proofs of Arrow’s Theorem were given by John Geanakoplos [Geanako-
plos (2001)], as opposed to Arrow’s original proof. This version bases its proof
heavily on set theory, which has the advantage of being relatively easy to follow
once the translation from economics into mathematics is understood.

Donald Saari provides the first rigorous attempt at mathematical notation for
voting theory, with the formalization of what he termsvoting talliesas weighting
vectors in positional schemes. Moreover he introduces notation to be the linear
mechanism of counting votes.

With the big names in the economic aspect of voting theory mentioned, now it
is necessary to understand the algebra needed for the thesis.

2.2 Representation Theory

This section contains a review of representation theory needed to understand this
paper. Here we shall also examine the notation and terminology used in the paper.
All definitions and theorems in this section are found in [Dummit and Foote (1999)]
and [Sagan (1991)].

Whenever used,G will designate a finite multiplicative group and 1G its iden-
tity. Where it is unambiguous 1 will suffice to be the notation for the identity.
Group action will be written in a multiplicative manner or with a dot. The first
three points of the definition below define the group action onV, while the fourth
describes the linear component to the definition.

Definition 2.2.1. A representation ofG is a finite-dimensional complex vector
spaceV on whichG acts linearly.

Thus for allg,h∈G, v,w∈V, anda,b∈ C:
(1) g·v∈V
(2) 1·v = v
(3) g· (h·v) = (gh) ·v
(4) g· (av+bw) = a(g·v)+b(g·w)

There are several ways of thinking about a representation. At times it may
be necessary to think of a representation ofG, not as a vector space, but as a
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homomorphismφ from G into GL(V), the general linear group onV. A different
way to think ofGL(V) is the set of linear bijections fromV to itself, where the
group operation is composition of functions.

Direct sums of vector spaces are valuable tools in decompositions. Among the
direct summands many uses, they pull the space into disjoint pieces which can be
used to understand how the vector space behaves when mapped. This provides the
motivation for recalling the definition of a direct sum.

Definition 2.2.2. If U andV are subspaces of vector spaceW which intersect
trivially at {0}, then their direct sumU⊕V is defined as

U⊕V = {u+ v | u∈U ,v∈V}.

To understand this thesis, it is essential to understand the notion of invariance
under group action. In terms of voting theory, this would be exemplified by the
election being invariant under the names of the candidates, or the order in which
they are called. The idea is that if a person supports candidateA that same voter
would support the same candidate even if he were called candidateB. Group in-
variance reflects a structure of fairness among the candidates.

Definition 2.2.3. If V is a nontrivialG-module and a moduleU ⊆V has the prop-
erty that it is closed under the action ofG, thenU is calledG-invariant. So for
everyg∈G andu∈U , g·u∈U .

Often it is useful when a space is decomposed as much as it can be. An ir-
reducible space is one which has no invariant subspaces aside from itself and the
trivial vector space,{0}.

Definition 2.2.4. If V is a G-module containing only{0} andV as G-invariant
subspaces thenV is irreducible.

The following theorem is essential in the decomposition of spaces, and funda-
mental to representation theory itself.

Theorem 2.2.1.(Maschke’s Theorem)If V is a nontrivial G-module then

V = W1⊕W2⊕·· ·⊕Wk

where each Wi is an irreducible G-module.

This means that everyG-module is able to be decomposed into a direct sum of
irreducible modules.
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Theorem 2.2.2. If U is a G-invariant subspace of a G-module V then the or-
thogonal complement of U in V, denoted U⊥V is also a G-invariant subspace and
V = U⊕U⊥V .

Using the homomorphismφ : G→ GL(V) and a fixed basis forV, φ (g) is an
n×n matrix wheren= dim V. The characterχ corresponding to the representation
φ is defined as the trace ofφ , sum of the diagonal entries, in this matrix form. In
this way, we can considerχ : G→ C such thatχ(g) = tr(φ (g)).

As is known from linear algebra, putting a matrix into a different basis amounts
to conjugating it by the proper change of basis matrix. Because tr(B−1AB) = tr(A)
for any matricesA andB, one can see that the character is independent of a basis
chosen forV. Also from that fact, we see thatχ(h−1gh) = χ(g) for anyg,h∈G.
Such functions from groups toC which are constant on conjugacy classes are called
class functions. Worth remembering is that two representations have the same
character if and only if they are isomorphic as submodules ofV.

Definition 2.2.5. Let χ andψ be characters ofG. Then their inner product, denoted
by < χ,ψ > is defined by

< χ,ψ >=
1
|G| ∑

g∈G

χ(g)ψ(g)

whereψ(g) denotes the complex conjugate ofψ(g).

Theorem 2.2.3.A characterχ is irreducible iff< χ,χ >= 1.

With this definition and theorem, we can examine the characters of the sum-
mands comprising a finite dimensionalG-invariant spaceV.

Definition 2.2.6. An isotypic component ofV is the sum of all spaces isomorphic
to some submoduleW.

W + · · ·+W

An isotypic component can then be broken intoa terms, such that there are
exactlya pairwise disjoint submodules ofV isomorphic toW. That is the isotypic
component is actually written as

W⊕·· ·⊕W

with a copies ofW denoted asaW. An interesting note is that ifa≥ 2 then there are
an infinite number of ways of decomposing the isotypic component into a direct
sum of exactlya direct summands.
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Theorem 2.2.4.Let V be a representation of G with characterχ and

V = a1W1⊕·· ·⊕akWk

where the Wi are pairwise non-isomorphic, with ai summands of each Wi up to
isomorphism. Ifχi is the character associated with Wi then< χ,χi >= ai .

Now V = M1⊕ ·· · ⊕Mk where eachMi = aiWi for each of the isomorphic
copies ofWi . Naturally, if ai is greater than 1, then infinitely many bases can be
chosen for theWi , but when collected into the isotypic components, the decom-
position ofV is unique up to ordering. More formally, one can state this as the
following theorem.

Theorem 2.2.5. If V is a nontrivial G-module, then

V = M1⊕·· ·⊕Mk

where the Mi are isotypic G-modules. Moreover this decomposition is unique up to
order of the Mi .

In this paper, we will usually be considering the set of formal linear combina-
tions of elements ofG overC, calledCG, or the group ring ofG overC.

We will not use the next theorem directly, but it is important behind the scenes
of much of the work of representation theory. It allows many results which will
indeed be crucial.

Theorem 2.2.6.The number of irreducible characters, that is characters of irre-
ducible representations, of G is equal to the number of conjugacy classes of G.

WhenCG is written as
⊕

aiWi , the sum of irreducible submodules as just con-
structed, then eachai = dim Wi . From the synthesis of above theorems, every irre-
ducible representation is contained inCG, the following corollary may be stated.

Corollary. |G|= ∑(dim W)2 where the sum is over all non-isomorphic irreducible
representations W.

Schur’s Lemma is a central workhorse of representation theory, and there are
many ways of stating it. We use the following statement of the theorem, as it will
best suit this paper.

Theorem 2.2.7. (Schur’s Lemma)Let V and W be two irreducible G-modules. If
θ : V →W is a G-homomorphism, then either

1. θ is a G-isomorphism, or
2. θ is the zero map.
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The practical use of Schur’s Lemma is that ifM is a linear map fromCG to
Cn andU is an irreducibleG-invariant subspace ofCG thenM(U) is {0} or else
something isomorphic toU .

Corollary. Let X and Y be two irreducible representations of G. If A is any matrix
such that AX(g) = Y(g)A for all g∈G, then either

1. A is a scalar multiple of the identity matrix, or
2. A is the zero matrix.

2.3 Young Tableaux

At a few times throughout this paper, more complicated machinery such as Specht
Modules and Young Tableaux will be required. This thesis requires only a frac-
tion of the theory concerning these structures, so only those theorems which are
essential to the paper are presented. More in depth coverage of these topics can
be found in [Sagan (1991)]. To maintain consistency, all definitions and theorems
come from that same source.

The first definition is that of a partition of a natural numbern. This is identical
to the number theoretical definition.

Definition 2.3.1. A partition λ = (λ1,. . . ,λl ) of n, written λ ` n, has∑λi = n,
λi ≥ λi+1 > 0, andλi ∈Z.

A more generalized definition ofSn, the group of permutations onn letters, is
SA, the group of permutations on the elements of the setA. The Young subgroup
(of Sn) corresponding toλ a partition ofn is now defined as:

Sλ = S{1,2,...,λ1}×S{λ1+1,...,λ1+λ2}×·· ·×S{n−λl +1,...,n}.

A Ferrers diagram or shape ofλ is an array ofn dots intol left justified rows
with row i containingλi dots for 1≤ i ≤ l . For the convenience of this section,
when an example is chosen,λ = (3,3,2,1) unless otherwise specified. A Ferrers
diagram for the partitionλ is then:

• • •
• • •
• •
•

Convention has it that the final dot in this particular Ferrers diagram is at posi-
tion (4,1), so this example allows for the generalization of coordinates in Ferrers
diagrams.
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Using the same partition, the Young subgroup is

S(3,3,2,1) = S{1,2,3}×S{4,5,6}×S{7,8}×S{9}

which in turn is isomorphic to

S3×S3×S2×S1.

Definition 2.3.2. Given λ ` n, a Young tableau of shapeλ is an array replacing
the dots of the Ferrers diagram ofλ with the numbers 1, 2,. . . , n bijectively.

With λ = (3,3,2,1), one Young tableau is:

4 6 1
2 3 7
9 8
5

A Young tableau of shapeλ is often called aλ -tableau. Twoλ -tableaux,t1 and
t2 are row equivalent,t1∼ t2, if corresponding rows of the two tableaux contain the
same elements.

Definition 2.3.3. A λ -tabloid,[t], is the row equivalence class oft:

[t] = {t1|t1 ∼ t}.

The permutation module corresponding toλ , Mλ is defined next. As for group
rings,FA denotes the set of formal linear combinations of the elements of a setA
with coefficients from the fieldF.

Definition 2.3.4. With λ ` n,

Mλ = C{[t1],. . . , [tk]}

where{[t1],. . . , [tk]} is a complete set ofλ -tabloids.

This is equivalent to saying

Mλ =
〈
{[tλ ]}

〉
.

As is typical when examining vector spaces, the dimensionality usually reveals
something important. The following proposition is proved in [Sagan (1991)], and
is thus omitted from here.
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Proposition 2.3.1. Mλ is generated by any oneλ -tabloid and dim Mλ = n!
λ1!...λl !

Later it will be necessary to see dominance in partitions. This occurs in an
application of Schur’s Lemma and in the general decomposition ofCSn into Specht
Modules, which will be seen soon enough.

Definition 2.3.5. Let λ = (λ1,. . . ,λl ) and µ = (µ1,. . . ,µm) be partitions ofn.
Thenλ dominatesµ, writtenλ . µ if

λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi

for everyi ≥ 1. If i > l or i > m thenλi = 0 or µi = 0 respectively.

The last definition involving purely Young Tableaux, without Specht Modules,
involves group actions. To talk about group action, letσ ∈ Sn andt a λ -tableau,
thenσt = (σti, j) whereti, j is the(i, j) coordinate of tableaut.

2.4 Specht Modules

All irreducible submodules ofCSn eventually turn out to be what are called Specht
Modules. These correspond to tableaux, and decompose each permutation module
in a natural way.

First, however, there will be more notation leading up to the definition of
Specht Modules.

Definition 2.4.1. Suppose tableaut has columnsC1,C2,. . . ,Ck. Then define

Ct = SC1×SC2×·· ·×SCk.

Definition 2.4.2. Define
κt = ∑

σ∈Ct

sgn(σ)σ .

Definition 2.4.3. Givent a tableau, the associated polytabloid is

et = κt [t].

Definition 2.4.4. For any partitionλ , the corresponding Specht Module,Sλ is the
submodule ofMλ spanned by the polytabloidset wheret is the shape ofλ .

To show that the Specht Modules are irreducible, the following lemma is needed.

Lemma 2.4.1. If t is a tableau andσ a permutation, thenκσt = σκtσ
−1, and

eσt = σet .
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Proof: The following are equivalent:
(1) π ∈ κσt

(2) π [σt] = [σt]
(3) σ−1πσ [t] = [t]
(4) σ−1πσ ∈ κt

(5) π ∈ σκtσ
−1

Now eσt = κσt [σt] = σκtσ
−1[σt] = σκt [t] = σet . 2

Because of the previous lemma, the next proposition is proved.

Proposition 2.4.2. Sλ is a cyclic module (one with a single generator), generated
by any given polytabloid et where t has shapeλ .

With symbolic and technical effort, one can prove the following theorem and
corollary.

Theorem 2.4.3.The Sλ for λ ` n form a complete list of irreducible Sn-modules
overC.

Corollary. The permutation modules decompose as

Mµ =
⊕
λ.µ

mλ µSλ

for choices of mλ µ specified in [Sagan (1991)].

Armed with the understanding afforded by Specht Modules, tackling parts of
voting theory will prove to be shorter and perhaps more elegant.



Chapter 3

Translations from Economics

Translating the world of voting theory into algebra was the first goal of the the-
sis. This chapter begins with the previously established vocabulary of economics,
specifically dealing with positional voting. It then continues with some new terms
and draws on the combinatorial structure of Latin squares.

3.1 Basic Vocabulary

Looking at voting from a mathematical standpoint relies on several algebraic struc-
tures, the most important of which is the symmetric group. Invariance under action
from a permutation corresponds to changing the names of the candidates according
to the very permutation picked. Given that a voter should not care about the name
of his favorite candidate, the invariance induced by this group is considered to be
of primary importance.

Definition 3.1.1. The group of permutations onn letters, called the symmetric
group, is designated bySn.

Both the two line and disjoint cycle notations for elements inSn are used. The
following is an example of a permutation inS5.

Permutation Two-Line Cycle
1→ 2
2→ 1
3→ 5 (12345

21534) (1 2) (3 5 4)
4→ 3
5→ 4
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After the next definition, the reason for using two-line notation will reveal it-
self. However, there will be a substitution of letters for numbers. Here is how the
candidates can be encoded into the symmetric group by the process of ranking.

Definition 3.1.2. A ranking of candidatesX1,X2,. . . ,Xn is a transitive sequence
Xσ(1) � Xσ(2) � ·· · � Xσ(n) for someσ ∈ Sn. Thus a ranking can be given byσ

when no confusion will arise.

With this definition, we can writeA�C� B to meanA beatsC who in turn
beatsB. Again, when it is not ambiguous will arise,A�C� B can be written as
ACB. ReplacingA with 1, B with 2, andC with 3, ACB is turned into 1� 3� 2,
which is interpretable in two line notation as(123

132) or in cycle notation as(2 3).
Thus this ranking corresponds to switching the second and third candidates. In this
paper, the phrase “two-line notation” will be used through this bijection frequently.

For the purposes of standardization, the use of lexicographic order provides a
convenient convention in any list of candidates. ThusA� B� ·· · � N will be
considered as the first permutation, andN�M � ·· · � A last. When necessary,σi

will denote theith permutation under this ordering.
For the sake of example, here is the lexicographic ordering on three candidates.

Number Two-Line Cycle
1 ABC 1
2 ACB (2 3)
3 BAC (1 2)
4 BCA (1 2 3)
5 CAB (1 3 2)
6 CBA (1 3)

The space of possible votes, or profiles, is now just a linear combination of the
rankings. The profile space forn candidates is ann!-dimensionalSn-module over
C, that is a vector space with multiplication naturally defined like that in the group
ring. A profile is an element of the profile space, which we can identify with an
n!-dimensional vector where theith component is the number of votes attributed to
σi . Formally, the profile space has the following simple definition.

Definition 3.1.3. The profile space,Ωn is the group ringCSn. Elements ofΩn are
called profiles.

Using the lexicographical ranking is arbitrary, but makes computer coding a bit
easier, and it gives a standard basis forΩn.

A good way to think of an element ofΩn, isomorphic toCSn is as an entire
poll, where each entry is the number of votes for the corresponding ranking. Note
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that complex numbers of votes are allowed. This is to allow the structure of repre-
sentation theory to operate smoothly. Never, however, will this paper use anything
but real values for the number of votes. In fact, although in this paper it is written
as the complex fieldC, the rational fieldQ is sufficient in all theorems here when
the group considered is the symmetric group. [James and Kerber (1981)] The nota-
tion C is kept despite its unnecessary extra elements for the purposes of appearing
in the form of the statements of theorems.

With the votes in place, now it is necessary to examine how to form a procedure
to count the votes. In the same way as Saari and Borda, we define weighting
vectors.

Definition 3.1.4. A weight vectorw = [w1 w2 . . . wn] is a vector inRn such that
1 = w1 ≥ w2 ≥ ·· · ≥ wn = 0.

The fact that the vectorw begins at 1 and ends at 0 is a convention. Given a
vector beginning at 7 and ending at 5 would work just as well, since it could be
converted linearly to a proper weighting vector by subtracting five then dividing by
two.

Let wσ denote the vector[wσ(1) . . . wσ(n)], not necessarily a weight vector.
Also letMw be the matrix with permutations of the weight vectorw as its columns.
That isMw = [wσ1 wσ2 . . . wσn! ], and we can writeMw : Ωn → Cn. Mw is called
the positional map with weighting vectorw.

The arbitrary form of the three candidate positional map is given by the follow-
ing matrix where 0≤ s≤ 1.  1 1 s 0 s 0

s 0 1 1 0 s
0 s 0 s 1 1


Throughout the thesis, whenever aρ or τ is used, it will always indicate a

particular element of the profile space. Defineρ to be the cycle(1 2 . . . n) and
τ to be the product of transpositions(1 n)(2 n− 1) . . . (n

2
n
2 + 1) if n is even or

τ = (1 n)(2 n−1) . . . (n−1
2

n+3
2 ) if n is odd. To denote the cyclic group generated

by ρ, P is used.

3.2 New Definitions

Within Ωn there exists anSn-invariant subspaceT, determined by a weighting vec-
tor such that for every votep in T, Mw p is a complete tie among then candidates.
ThusT can be decomposed intoNS(Mw)⊕1n!, where1n! is the space spanned by
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the profile containing exactly one vote per candidate andNS(A) is the null space
of the matrixA.

Definition 3.2.1. A Latin square, denoted byλi is a profile inT with n votes
distributed such that any candidate in any position in a ranking can be found in that
profile exactly once. The coefficients on the group elements must be either 0 or 1.

ThusABCDE+BADEC+CDEBA+DEACB+ECBADis a Latin square. Be-
cause this method of transcription is relatively tedious and gives little insight, this
example is recopied below into the form of a typical looking Latin square:

Latin Square
ABCDE
BADEC
CDEBA
DEACB
ECBAD

A space,Λ, can be formed by taking the span of the collection of the Latin
squares. An interesting combinatorial question at this point is to ask the dimension
of Λ.

Saari indirectly uses Latin squares of a rather restricted type to form what he
calls the Condorcet space. Here, these will be called picky Latin squares and will
be generable from a single vote. The definition is for the sake of formality; the
following example may prove more helpful. RecallP = 〈ρ〉.

Definition 3.2.2. A picky Latin square is a profile inT generated by a given
ranking. The picky Latin square generated byXσ(1) � Xσ(2) � . . . � Xσ(n) is
`σ = [`1 `2 . . . `n!] where`i = 1 if σi ∈ σP or else 0.

The example of the previous Latin square was not picky, but this example is.
Pick σ to be the cycle(2 4 5) in S5, making

`σ = (2 4 5)+ (1 4 2 3 5)+ (1 3 2 5 4)+ (1 5 3)+ (1 2)(3 4).

In the more convenient box notation:

`(2 4 5)
ADCEB
DCEBA
CEBAD
EBADC
BADCE
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In talking about invariant spaces, and generating sets,〈S〉 denotes the smallest
Sn-invariant space containing the setS.

We now define the Condorcet Space as:

C = 〈{`σ − `στ}〉 .

The algebraic proof ofdim C= 1
2(n−1)! is found in Proposition 4.1.3, in contrast

to the more geometric proof of Saari. In [Saari (1999)], Saari proved that within
the Condorcet Space is a subspace responsible for all intransitivity paradoxes. This
sort of paradox occurs in pairwise voting, which is not covered in this paper. The
proof of the dimensionality of the Condorcet Space is included, however, because
it represents a translation of an economic theory into algebra.

ContainingC is a larger space related to Latin squares.

D =
〈
{λi −λ j}

〉
.

Another space of great use toward decomposition ofΩn is the space of profiles
which are annihilated by any positional map. A more precise way to write that is

E =
⋂
w

NS(Mw).

Again, this means that for any profilep ∈ E and any weighting vectorw, then
Mw p = 0. This has applications to economists and others, since the projection of a
profile onto this space may be neglected when tallying positional elections.

Now that the definitions, new and old, have been established, one can look at
some containment, generalizations, and decompositions of spaces.





Chapter 4

Application of Representation
Theory

4.1 Early Work and Theorems

Ultimately it is a goal to show that the space of linear combinations of Latin squares
is the entire space of profiles which will be ties under any positional map. The first
step is to show that the combinations of Latin squares is the same as the direct sum
of the trivial representation and differences of Latin squares. Recall it is already
known thatD⊕1n! ≤ Λ by virtue of the definitions of all the terms involved.

Examining the interchangeability of labels of candidates, the following remark
needs no proof.

Remark.∑λi is a scalar multiple of1n!.

With that said, one is naturally led to the question of double containment ofΛ
andD⊕1n!.

Lemma 4.1.1. Λ ≤ D⊕1n!.

Proof: It suffices to show that any Latin square is an element ofD⊕1n!, as their
span is all ofΛ. Let λ j be a Latin square and setα to be intrinsically defined
as∑i λi = α1n!. It should be fairly easy to notice that there areα

n distinct Latin
squares. Call this numberm. Then

mλ j = mλ j −α1n! + α1n! = mλ j −∑
i

λi + α1n! = ∑
i

λ j −λi + α1n!.

Now it is seen thatλ j is in D⊕1n!, soΛ ≤ D⊕1n!.2
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Corollary. Λ = D⊕1n!.

Now the tools are in place to show that the Latin squares are in the complete
tie space.

Proposition 4.1.2. D≤ E.

Proof: Let ∑αi j (λi − λ j) be an arbitrary element ofD. Now map this element
by Mw ∑αi j (λi − λ j). This equalsMw ∑αi j λi −Mw ∑αi j λ j which in turn equals
∑αi j Mwλi −∑αi j Mwλ j . Knowing that the multiplication of the map by a Latin
square gives us

∑αi j (w ·1n)1n−∑αi j (w ·1n)1n = 0

for anyw. Hence for alld ∈ D, d ∈ E, soD≤ E.2

The next paragraph can potentially begin the proof of the following corollary.
In this way, it motivates further research into Latin squares and their connections
with representation theory.

Let wi = [1 1. . .1 0. . .0] where there arei 1’s ande is a non-zero element in
E. Then sincee∈ Nw for any weight vectorw, Mwi e= 0 for everyi. Rewriting as

e= ∑ασ (Xσ(1) � . . .� Xσ(n)),

it should be noticed thatMw1e= 0 implies every candidate gets first place the same
number of times, which is zero total. Continuing this process yields the fact that
every candidate getsith place the same number of times, zero total. This property
is shared by everything inD, so this might lead one to conjecture the following
statement.

Conjecture 4.1.1. E⊕1n! = Λ.

As a side note, bothΩ3 and Ω4 are evidence for the conjecture. The cal-
culations to determine the number of linearly independent Latin squares on five
candidates require finding the rank of a matrix with 120 columns.

To get even more of a handle on the complete tie space, the elementρ is used to
provide information about the Condorcet space and the alternating representation,
S(1,1,...,1), denotedA for simplicity.

Recall once again that〈ρ〉= P. With σi ∈ Sn, let Πi = σiP∪σiτP such that⊎
σiP∪σiτP = Sn

where
⊎

is the disjoint union. LetBC = {(σi −σiτ)∑ρ j} This means that|BC|
is the number ofΠi = |Sn|

2|P| = 1
2(n−1)!. SinceBC is a basis forC, the Condorcet

space has dimension12(n−1)!.
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The next two propositions concern the location of the alternating representation
in relation to the Condorcet space. First, note that when the number of candidates
is divisible by 4 thenA is not a subspace of the Condorcet space.

Proposition 4.1.3. If n≡ 0 (mod4) then A� C.

Proof: Recallτ = (1 n)(2 n−1) . . . (n
2

n
2 + 1) sosgnτ = 1 whenn≡ 0 (mod4).

Similarly ρ = (1 2. . .n) givessgnρ = 1. Let a ∈ A. Now suppose thata ∈ C.
Then (Without loss of generality, eachασ can be positive, so let it be as such.)

a = ∑ασ (`σ − `στ) = ∑ασ`σ −∑ασ`στ

= ασ

(
∑(σ −στ)

)(
∑ρ

i)= ασ

(
∑σ

)
(1− τ)

(
∑ρ

i)= ae−ao

Here,ae is comprised of only the even component ofa and similarly,ao is the
odd component.

This meansασ (∑σ)(∑ρ i) = ae. This in turn implies that eachσ in the index-
ing set must be even sincesgnρ i = 1 for everyi. But thenασ (∑σ)τ(∑ρ i) = ao

implies that eachσ must have odd sign. This is a contradiction, thus completing
the proof.2

This proposition guarantees that the alternating representation is a subspace of
C whenever the number of candidates is equivalent to 2 modulo 4.

Proposition 4.1.4. If n≡ 2 (mod4) then A≤C.

Proof: If n≡ 2 (mod4) thensgnτ = −1. Consider

∑
σ∈An

(`σ − `στ) =

(
∑

σ∈An

(σ −στ)

)(
∑ρ

i)
= a∑ρ i = aρ + · · ·+aρn = na∈ A. ThusA≤C.2

With such a large chunk ofΩn occupied by the complete tie space, Saari proves
that there is an(n−1)-dimensional space determining the first place winner in the
outcome of an election [Saari (2000b)]. This space, which Saari termed, “Basic,”
can be generalized to say that a Basic spaceB is any (except1n!) for whichMwb 6= 0
for all b∈ B.

Any Basic space corresponds to the tableau withλ = (n−1,1), which dom-
inates all but the trivial representation, so by Schur’s Lemma all the remaining
spaces are sent to0.

Saari’s Basic space is given by:

B = span

{
∑

σ(1)=i

σ − ∑
σ(n)=i

σ

}n−1

i=1

.
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All Basic Spaces, naturally including Saari’s, are isomorphic. This fact will be
shown in Section 3 of this chapter. A Basic Space can be found for any weighting
vector by finding the orthogonal complement of a null space corresponding to a
weighting vector. If{ ˚ i} is a basis for the null space ofMw then the corresponding
Basic, Bw is NS([1n! ν1 . . .νn!−n]T). This works because of the Specht Module
reasoning below.

Using Specht Modules it is known thatMw : M(1,1,...,1) → M(n−1,1) which in
conjunction with Schur’s Lemma means that onlyS(n) andS(n−1,1) can be mapped
to be orthogonal to the null space. Of course,Mw1n! = (1n ·w)(n−1)!1n which is
not 0. Sincerank Mw = n, there aren−1 more dimensions to fill in the domain
such thatMw is onto. Thus there is a unique moduleS(n−1,1) such thatMwb = 0
impliesb = 0 for all b∈ S(n−1,1).

4.2 Profile Decomposition ofΩ3

To analyze a profile, the simplest method is to project onto intuitive orthogonal
spaces. This allows one to see each piece that affects the election then sum them
up to find the overall profile again. Each of these orthogonal spaces should beSn-
invariant, again because the “naming” of candidates is irrelevant in economics. The
orthogonal spaces being invariant leads to them being representations of the group.
For the case ofS3, there should be four irreducible spaces, two 1-dimensional, and
two 2-dimensional.

Recall from Chapter 3 that the arbitrary positional mapMw looks like this, with
respect to the lexicographic order, where 0≤ s≤ 1: 1 1 s 0 s 0

s 0 1 1 0 s
0 s 0 s 1 1


Since the matrix,Mw, has nullity 3 andMw16 = 2(13 ·w)13, there must be a

one dimensional space and a two dimensional space comprising theNS(Mw).
In the 3-candidate race, the space of complete ties,E is the one dimensional

alternating representation. That is

E = A = span

{
∑

σ∈Sn

sgn(σ)σ

}

or alternatively

E = A = span

{
∑

σ∈An

σ − ∑
σ∈(1 2)An

σ

}
,
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whereAn is the alternating group. For anyn-dimensional case, the alternating
representation will always be a subspace ofE.

The remaining two 2-dimensional spaces are given in the form of Saari’s Basic
space, and the orthogonal complement of the direct sum of the other spaces.

B = span

{
∑

σ(3)=1

σ − ∑
σ(3)=2

σ , ∑
σ(3) 6=3

σ −2 ∑
σ(3)=3

σ

}

F = span{2(1)−2(1 2)+(2 3)−(1 3 2)+(1 2 3)−(1 3),(1 2 3)+(1 3 2)−(1 3)−(2 3)}.

Saari callsF the Reversal Space, but that terminology is avoided here, as it
stems from geometrical reasoning, and from an algebraic standpoint,F is also a
Basic Space.

4.3 New Generalizations

We will now define a more generalized notion of Saari’s basic space. The gener-
alization will carry the same intuition with it, so we may decompose the isotypic
component of Basic spaces with great ease.

Definition 4.3.1. The basic vector for candidateXi and positionj is given by

bi, j = ∑
σ( j)=i

σ − ∑
σ(n)=i

σ

wherei and j are restricted by 1≤ i, j ≤ n−1.

The basic space corresponding to positionj is given asB j =
〈
{bi, j}n−1

i=1

〉
. Set-

ting j = 1 gives Saari’s basic space, with thebi,1 vectors as Saari’s “Borda Profiles”
[Saari (2000b)].

Proposition 4.3.1. B j is a Sn-invariant space.

To see this, we examine the action of an arbitrary element ofSn on a basis vec-
tor, bi, j , of the basic spaceB j . Before showing this fact, note that every candidate,
exceptXn has a basic vector corresponding to it. It is convenient to the proof that
bn, j is defined to be linearly dependent on the others in the following way:

bn, j = −
n−1

∑
i=1

bi, j .
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Since any element ofSn can be written as a product of transpositions, it is
enough to show thatB j is closed under the action of any transposition. So long as
i 6= l andi 6= k,

(l k) ·bi, j = bi, j .

If, howeverl = i then we have

(i k) ·bi, j = bk, j .

This leads naturally to the identity

σ ·bi, j = bσ(i), j

which is inB j . It is now necessary to show that eachB j is actually an irreducible
invariant module. Using the standard technique of creating a matrix representation
with thebi, j as basis vectors, the character ofB j becomes obvious.

Theorem 4.3.2.The character of any basic space is given byχB j (σ) = k−1 where
σ fixes k letters. This character is irreducible.

There are two proofs to this theorem provided in Appendix A. Both are left
there because they are technical and provide little insight. The first proof uses the
notions of Specht Modules, while the second is combinatorial in nature, which may
be more pleasing to an audience not as familiar with Specht Modules and Young
Tableaux.

Remark.With χB j (1) = n−1, the dimension of the space isn−1.

Because the character of the space is irreducible, the space itself is irreducible.
Given then−1 isomorphic irreducible invariant spaces, it remains to be shown

that they are in fact distinct. In the proof of this, we will need to create the weight-
ing vectorq = [1 1 . . . 1 0] (all 1’s with a final 0), which leads to the next statement.

Proposition 4.3.3. For any candidate Xi and position j, the following identity
holds:

Mqbi, j = (n−2)!(nei −1n)

where ei is the ith standard basis vector.

Proof: Note thatMqbi, j gives the same number of votes to all candidates notXi .
This should be evident by the symmetry ofbi, j on all candidates notXi . By elemen-
tary counting arguments, one can see thatMqbi, j awardsXi exactly(n−1)! points
in the tally. So far,Mqbi, j can be written as(n−1)!ei +∑k6=i αek whereα is some
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number depending only onn. Because there were zero total votes cast inbi, j , there
must be zero total points awarded, giving the equation:

(n−1)α +(n−1)! = 0.

Solving forα, this givesα = −(n−2)!. Now this gives

Mqbi, j = (n−1)!ei − (n−2)! ∑
k6=i

ek

which can be simplified (by adding zero in the form of(n−2)ei − (n−2)ei) to
arrive at

(n−2)!(nei −1n)

thus completing the identity.2
The most recent proposition is sufficient to show that nobi, j is in E.

Theorem 4.3.4.For any j1 6= j2, the basic spaces Bj1 and Bj2 coincide only at0.

Proof: SupposeB j1∩B j2 6= 0 for j1 6= j2. Then because the spaces are irreducible,
B j1 = B j2. A basis vector forB j2 can thus be written as a linear combination of basis
vectors forB j1. Secondly,Mqbi, j2 = Mqbi, j1 follows from the proposition above.
Naturally it follows thatMq(bi, j2 − bi, j1) = 0. Thus

〈
{bi, j2−bi, j1}

〉
≤ NS(Mq).

But
〈
{bi, j2−bi, j1}

〉
≤ B j1 also. Thus we find that anything in this space must be0

or thatB j ≤NS(Mq). From the remark,Mqbi, j 6= 0, sobi, j2−bi, j1 = 0. This would
imply that the following equation be true:

∑
σ( j1)=i

σ = ∑
σ( j2)=i

σ .

But that is clearly a contradiction so long asj1 6= j2. Becausej1, j2, andi were
arbitrary, all theB j are distinct.2

With theB j distinct, we can now say that the isotypic component, known to be
of dimension(n−1)2 by the theorems of Chapter 2, does not intersectE, except
trivially, the space of annihilation under anyMw. Another way of saying this is that
every profile can be projected onto the Basic component in a way which does not
lose any information vital to positional voting.

The last theorem of this section merely states the dimensionality ofE.

Theorem 4.3.5.The dimension of E= ∩NS(Mw) is exactly n!− (n−1)2−1.

Proof: As already seen,dim E= n!−1−α(n−1) whereα is the number of Basic
spaces which are not subspaces ofE. Given now that there aren−1 distinct Basic
spaces, none of which are subspaces ofE, and the fact that there are exactlyn−1
isomorphic copies of the Basic space,α must ben−1. 2
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4.4 Profile Decomposition ofΩn

The profile spaceΩn decomposes much the same way asΩ3, but the pieces being
accounted for are larger. According to positional voting, the space will decompose
as

Ωn = 1n!⊕E⊕B.

Again1n! is the trivial representation in thisn!-dimensional case,E is the intersec-
tion of null spaces for allMw andB is the isotypic component of Basic spaces.

Whenn = 4, the dimensions of each space are 1 for the trivial representation,
14 for E, and 9 forB. Although there are infinitely many bases forB, the most
appropriate basis, considering positional voting, uses the general positional Basic
space basis given above.



Chapter 5

Conclusion

5.1 Results
p

∑
k=1

(
k
p
)ε

k =
√

p

This thesis provided a decomposition of the profile space ofn voters according
to the positional voting method. Closed forms for the dimensions of all spaces
involved are deduced, and the bases for the Basic spaces in particular are concise
and intuitive. The Basic space corresponding to first place matches with Saari’s,
and the others are isomorphic with similar descriptions. Each Basic space carries
with it the information to declare who won the position corresponding to the space.
Thus, to find out who received second place in an election, one needs only to to
examineB1 andB2.

In terms of combinatorics, a connection is made between Latin squares and
voting theory. Moreover, bringing the symmetric group into the mix raises ques-
tions about partitions of natural numbers. Nowhere before has anyone recorded this
particular equivalence class of Latin squares, which means that the vector spaces
spanned by them is novel.

5.2 Impact

Clearly voting theory has impact in political science and economics, but also in and
around any social organization. Voting has become a staple of daily life in modern
society, and it is important to realize the possibilities for paradoxes when deciding
who will stay at what hotel or who the next math chair will be. Computation of
large candidate voting can be tedious if done using a positional scheme, but with
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the knowledge that the result is the same having projected onto the Basic space,
smaller and fewer numbers may be used to tally these votes.

Representation theory itself lends itself the study of groups, as well as areas of
physical chemistry. Working with Latin squares may provide additional contribu-
tions to these fields in addition to combinatorics.

The decomposition of pairwise schemes is a start to the general decomposition
of CSn and aids in understanding the breakdown of the space under different vot-
ing methods. Condorcet’s method carries with it a subspace ofE which survives
the pairwise map, to influence the vote and potentially cause paradoxes or other
interesting outcomes.

With more decompositions, it is foreseeable that there is a space in which para-
doxes are fewest in some sense. Using algebraic methods can quickly sift through
much of the valueless data and cut straight to the underlying problematic areas.

5.3 Open Questions

Naturally there are many questions left about voting theory. Some of these include
investigating properties of the pairwise map, specifically the portion of Saari’s Con-
dorcet space that actually survives the mapping. Other questions involve the proba-
bility of paradox given a number of voters, or examining other voting mechanisms.

A conjecture of this paper was the dimensionality ofΛ, the space of Latin
square combinations. Ifdim Λ = n!− (n−1)2, then it is the case that there is an
interesting categorization for any vote which tallies to a complete tie, no matter the
weight. Such a vote is comprised of exactly Latin squares.

Still in question is an extension of Saari’s bold claim that his Basic space is
the only to matter to positional schemes. This is true when considering only first
place, but to know who received second, third, ornth is left to the other Basic
spaces, defined here. It is suspected that the projection of a vector ontoB j carries
all the information necessary to declare who receivedj th place.

Regardless or any new breakthroughs or further decompositions, as long as Ar-
row’s axioms are accepted, voting will never be paradox free, so there will remain
questions so long as people vote.
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This appendix contains two proofs of the irreducibility of an arbitrary Basic Space.
The first is due to Sagan. The second is an original work by the author and E.
Segarra.

As in the case of a Basic Space, the tableau corresponding to the surviving
module is that ofλ = (n−1,1). Any one tabloid of this can be written as:

[t] = i · · · j
k

thus [t] can be identified by onlyk. This tabloid haset = k− i,

and the span of such vectors is given by

S(n−1,1) = {c11+ · · ·+ cnn|c1 + · · ·+ cn = 0}.

A basis ofS(n−1,1) is chosen as

{2−1,3−1,. . . ,n−1}.

Computing the action of a permutation on the basis, gives the character to beχB j .

Knowing thatS(n−1,1) is irreducible and has the appropriate character means that
the Basic Space, which shares the same character, is also irreducible.2

Here is the combinatorial approach to the problem.
Let χ be the character in question, namely

χ(σ) = k−1

whereσ fixesk elements of the symmetric group.
This proof requires four lemmas to directly compute the inner product of this

character with itself.

Lemma .0.1. For anyα greater than n, the following identity holds:

n

∑
k=0

kα

(
n
k

)
(−1)n−k = 0.
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Proof: Base Case ofα = 0 is proved by the binomial theorem. Suppose the identity
is true for someα. Then

n

∑
k=0

kα+1
(

n
k

)
(−1)n−k =

n

∑
k=0

kαn

(
n−1
k−1

)
(−1)n−k

by the common identity:k(n
k) = n(n−1

k−1). This in turn equals

n

[
n

∑
k=0

kα

(
n
k

)
(−1)n−k−

n

∑
k=0

kα

(
n−1

k

)
(−1)n−k

]
.

By the induction hypothesis this is

−n
n

∑
k=0

kα

(
n−1

k

)
(−1)n−k.

Splitting the sum wherek = n and removing a−1, this is

n

[
n−1

∑
k=0

kα

(
n−1

k

)
(−1)n−k−1 +0

]
.

This equals zero by the induction hypothesis again.2

Lemma .0.2. For any n the following identity holds:

n2 =
n

∑
k=0

(k−1)2
(

n
k−1

)
(−1)n−k.

Proof: Consider ann by n grid. How many ways are there to pick a square? Clearly
there aren2. Now consider counting the squares one can choose after restricting
choices in certain columns and rows. For example, how many ways can you choose
a spot that is not in the first row or first column? There aren−1 choices for both
row and column, so there are(n− 1)2. There are(n

1) = ( n
n−1) rows/columns to

restrict. But this leads to over counting. One must subtract out the cases where
both row/column 2 and row/column 3 are restricted. Now there are(n−2)2 places
left to choose and(n

2) = ( n
n−2) pairs of rows/columns to restrict. Continue this for

the triples, and so on. Eventually the following equation is obtained.

(n−1)2
(

n
n−1

)
− (n−2)2

(
n

n−2

)
+ · · ·±22

(
n
2

)
∓12

(
n
1

)
=

n

∑
k=2

(k−1)2
(

n
k−1

)
(−1)n−k.

Whenk = 0 ork = 1 then the product comes out to zero, so this can be extended to
∑n

k=0(k−1)2( n
k−1)(−1)n−k. Since these two formulas count the same thing, they

must be equal.2
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Lemma .0.3. The following identity holds:

n2 =
n

∑
k=0

(k−1)2
(

n+1
k

)
(−1)n−k.

Proof: From the previous lemma,

n2 =
n

∑
k=0

(k−1)2
(

n
k−1

)
(−1)n−k.

By Pascal’s identity, this sum is the same as:

n

∑
k=0

(k−1)2[
(

n+1
k

)
−
(

n
k

)
](−1)n−k.

Splitting up the sum yields:

n

∑
k=0

(k−1)2
(

n+1
k

)
(−1)n−k +

n

∑
k=0

(k−1)2
(

n
k

)
(−1)n−k.

By an obvious extension of the first lemma, the second sum is zero. Arriving at

n2 =
n

∑
k=0

(k−1)2
(

n+1
k

)
(−1)n−k

concludes the proof.2

Lemma .0.4. The next identity holds for any n and Dm denotes the number of
derangements on m items:

n! =
n

∑
k=0

(k−1)2
(

n
k

)
Dn−k.

Proof: Base case ofn = 2 is done by simple arithmetic. Now suppose the identity
is true for somen. Consider

n+1

∑
k=0

(k−1)2
(

n+1
k

)
Dn+1−k

which by separating out the final term is

n

∑
k=0

(k−1)2
(

n+1
k

)
Dn+1−k +n2

(
n+1
n+1

)
D0.
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Replacing by the single step recursive identity ofDm yields:
n

∑
k=0

(k−1)2 (n+1)!
k!(n+1−k)!

[(n−k+1)Dn−k +(−1)n−k+1]+n2.

Further simplification gives the expression:

(n+1)
n

∑
k=0

(k−1)2
(

n
k

)
Dn−k−

n

∑
k=0

(k−1)2
(

n+1
k

)
(−1)n−k +n2.

Then using the induction hypothesis and the previous lemma:

(n+1)n!−n2 +n2 = (n+1)!.

Thus by induction, the claim of the lemma is proved.2

Theorem .0.5. Let χ(σ) = k−1 whereσ ∈ Sn fixes exactly k letters. Thenχ is
irreducible.

Proof: Recall character inner products and examine that ofχ with itself.

< χ,χ >=
1
|Sn| ∑

σ∈Sn

χ(σ)χ(σ).

Becauseχ is real valued, this simplifies to

1
n! ∑

σ∈Sn

χ(σ)2.

The second sum in the next line is over theσ which fix exactlyk letters. So it
should be clear that the inner product equals

1
n!

n

∑
k=0

(
∑χ(σ)2)=

1
n!

n

∑
k=0

(
∑(k−1)2) .

Becauseχ is constant over those sigma, letαk be the number ofσ ∈ Sn such that
σ fixes exactlyk letters. Now it is the case that

1
n!

n

∑
k=0

(k−1)2
αk.

Now it is easy to see thatαk = (n
k)Dn−k. This is seen by pickingk of then elements

to fix. Three are(n
k) ways of doing this. Then derange the rest. There areDn−k

ways of doing that. Finally, one has that

< χ,χ >=
1
n!

n

∑
k=0

(k−1)2
(

n
k

)
Dn−k = 1

by the previous lemma. The inner product being 1 means thatχ is irreducible.2
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