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Abstract

Paul Erdős’s Empty Hexagon Problem asks if there exists a number H(6)
such that for all sets of n ≥ H points in general position on the plane six of
the points form the vertices of an empty convex hexagon. This problem is
open.
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Chapter 1

Preface

I looked at the book on my table that had stared at me like
enemies a little while before. They were again the life of my
life. Ach! Nothing was so beautiful as to learn, to know, to
master by the sheer force of my will even the dead squares
and triangles of geometry. I seized my books and hugged
them to my breast as though they were living things.

Anzia Yezierska

The Erdős problem which concerns us in this paper first came to my
attention one day when I was searching the Internet for a thesis problem.
It had been contributed by Pavel Valtr to a set of problems for undergrad-
uates. The problem’s overt simplicity attracted me. I love to tell people
about my work, so I wanted a problem that anyone could understand.
I also knew when I chose the problem that like other plainly formulated
open problems (Goldbach’s conjecture comes to mind), the problem has a
stubborn intractability which will seize the attention of anyone to whom I
communicate it. Privately, as I have worked with it, I have learned to revel
in its complex subtleties as well.

In addition to gaining knowledge about the problem and all of the ar-
eas of mathematics that it touches, I feel as if I have become familiar with
the formulator of the problem to some extent. The original “Happy End”
problem was formulated in 1935 by Esther Klein. Later, when the political
situation in Hungary became hostile, the Szekeres couple moved to Aus-
tralia where, I think, Erdős visited them in 1978. Seeing his friends again
perhaps brought about the revisiting of the Happy End Problem and the
creation of the Empty n-gons Problem.

The Empty n-gons Problem is the one I address in this paper. The ques-
tion is asked, “For any natural number n does there exist a number H(n)



2 Preface

such that in any set of points in the plane such that no three are on a line
with H(n) or more points there will be an empty, convex n-gon?”

Although the requirement of emptiness was the next logical constraint
on the problem, I am tempted to suggest its allegorical significance. Szek-
eres himself has remarked that Erdős may have also had an eye for Klein. It
may be impertinent of me to draw this conclusion, but I believe that Erdős,
in formulating this problem, was feeling his loneliness more sharply than
usual. The emptiness of the convex n-gons seems to echo an emptiness in
the heart.

When I originally began to work on the Erdős empty hexagons problem
I fully intended to wield the battle ax of Gröbner bases at it, but after sev-
eral weeks of trying to reformulate the geometric properties of a set with-
out empty hexagons as polynomials, I came to my senses. The solution to
this problem involves Gröbner bases about as much as the acquisition of a
hummingbird involves a sledgehammer.

Thus, my progress has been slow. A lemma here, a conjecture there, and
lots of observations, thanks to Mark Overmars’s program “empty6.” At this
point, mid-way through the year, I am now approaching the problem as I
would an onion: Literally peeling away the layers and often breaking out
in tears.

Someone has asked why I chose a problem which has been so intractable
for so many mathematicians. Frankly, I figured that everyone would agree
that I could survey the work previously done on the problem and that they
would expect not much more of me; I hope to surprise everyone. Morris
and Soltan wrote in [19] that the Empty Hexagons Problem

. . . remains a large gap that probably will require some new paradigms
to be bridged.

Perhaps by the time this thesis is done I will have found their new “paradigms”,
but that is being optimistic–very optimistic.



Chapter 2

Problem Statement

Problems worthy of attack
Prove their worth by fighting back.

Paul Erdős

One day, in 1935, Esther Klein, a young Hungarian mathematics stu-
dent, sat by a window in her parents’ apartment doodling sets of points on
a piece of paper. Eventually there formed in her mind a problem to this
effect [19]:

Problem 2.1 Erdős-Szekeres Problem. For any positive integer n ≥ 3, deter-
mine the smallest positive integer N(n) such that any set of at least N(n) points
in general position in the plane (that is, with no three points on a line) contains n
points which are the vertices of a convex n-gon.

On her own Klein found N(3) = 3 trivially. Then, by considering the
cases where the convex hull of the set is a triangle, quadrilateral, or pen-
tagon, proved to herself that no matter where the remaining points lie in-
side the convex hull, there would always be a convex quadrilateral (see
Figure 2.1). Thus, the 4-gon conclusion is that N(4) = 5.
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Figure 2.1: Pictorial proof that N(4) = 5.
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The next day Klein was eager to share this new problem with her friends.
George Szekeres, who would later admit that his enthusiasm for the prob-
lem was motivated to some extent by his interest in its creator [23], and Paul
Erdős, on whom Szekeres projected the same motivation, went to work on
it. Later that year Erdős and Szekeres published [12], which proved that
the number N(n) exists for every n and gave two proofs, one of which was
founded on a theorem of Ramsey, the other being a combination of geome-
try and combinatorics. Not long after the publication of the paper Szekeres
and Klein married, prompting Erős to dub the problem the “Happy End
Problem.”

It appears that Erdős visited the Szekereses and revisited the “Happy
End Problem” in 1978. At the time, George and Esther were living in Syd-
ney and the following problem appeared in the gazette of the Australian
Mathematical Society [9].

Problem 2.2 Erdős Problem of Empty n-gons. For any positive integer n ≥ 3,
determine the smallest positive integer H(n), if it exists, such that any set x of at
least H(n) points in general position in the plane contains n points which are the
vertices of a n-hole, that is, an empty convex polygon whose interior does not
contain any point in X.

The proof for the fact that H(3) = 3 is trivial and that H(4) = 5 can also
be obtained from Figure 2.1. Later that year Harborth [15] proved that
H(5) = 10, then five years passed until Horton proved that H(n) does not
exist for n ≥ 7. These proofs and the techniques involved will be detailed
in the next chapter. Although much work has been done by Valtr, Over-
mars, and many others to resolve the case n = 6, the question of even the
existence of H(6) remains open. It is my wish that the problem will be less
open by the end of this thesis.



Chapter 3

Background Literature

So long as a man remains a gregarious and sociable
being, he cannot cut himself off from the gratifica-
tion of the instinct of imparting what he is learn-
ing . . .

J.J. Sylvester

Not long after Erdős posed the problem, mathematicians began to work
on the Empty n-gons Problem. Erdős noted that Esther Klein’s original
proof for N(4) = 5 also suffices to prove that H(4) = 5. The proof is
analogous to the proof of the fact that N(4) = 5 (see Figure 2.1).

3.1 The Erdős-Szekeres Theorem

Although the fact that a strict equality for N(n) has not yet been found
has not put a damper on the search for H(n) for n 6= 6, it is useful to
take note of the current bounds. The current tightest lower bound remains
from Erdős and Szekeres’s original 1939 paper, reprinted in [12], while the
upper bound has been improved in a flurry of activity and seems to remain
stubbornly where Tóth and Vlatr [24] left it. Thus, the current best bounds
for the general case are

2n−2 + 1 ≤ N(n) ≤
(

2n − 5
n − 3

)
+ 2.

These bounds are not to be confused with the Erdős-Szekeres theorem which
states that the number N(n) must exist for all n. Szekeres has conjectured
that the lower bound is actually an equality. As noted before, the equality
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N(4) = 5 is known from Esther Klein’s proof and it is noted by Erdős [12]
that Endre Makai proved the equality N(5) = 9, by creating the only coun-
terexample of eight points (see figure 3.1). With this arrangement of eight
points it is impossible to place a ninth in general position without creating
a convex pentagon.

s

s
s
s

s
s

s

s
H

HH

�
��

�
��

H
HH

Figure 3.1: Makai’s eight-point counterexample which leads to the conclu-
sion that N(5) = 9.

3.2 Harborth and H(5)

In [15], Harborth proved that H(5) = 10. Comprehension of Harborth’s
proof relies heavily on the reader’s abilities to visualize the point set at
hand and to read German.1 However, the proof can be summarized easily.

First, Figure 3.2 shows that if H(5) exists, then it is certainly greater
than 9. Then Harborth uses Makai’s Erdős-Szekeres theorem-related result
to say that since N(5) = 9 then for every set of points Xn for n ≥ 10 there
must be at least one convex pentagon which is not necessarily empty. If
the pentagon is non-empty, then Harborth considers several cases which
systematically narrow the margin in which H(5) lies. First, if there are m ≥
2 points inside the pentagon, then we know that two of the m points and
three of the points on the pentagon form another pentagon. If the smaller
pentagon is non-empty, we find another two points inside that one, form
another pentagon, and so on. Eventually we will find a convex pentagon P
with either zero or one point inside it.

In the case where there is one point inside the convex pentagon, that
one point forms quadrilaterals with the vertices of the pentagons. Only
if all these quadrilaterals are convex is there an empty convex pentagon
within the convex pentagon. Otherwise, Harborth dissects the plane into
regions and shows that if there are points in any of those regions then there
must be an empty convex pentagon in Xn. In the end, H(5) = 10.

1A literal, word-by-word translation can be found in my thesis notebook.
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Figure 3.2: Heiko Harborth’s set of nine points with no empty convex pen-
tagons.

3.3 Horton’s Construction for n ≥ 7

In [17], J.D. Horton proved that for every n ≥ 7, H(n) does not exist by
constructing arbitrarily large sets with no empty convex n-gons. This el-
egant work has proven to be very important to generalizations to higher
dimensions.

In building his arbitrarily large sets, Horton created a set of points Sk
such that |Sk| = 2k. The x-coordinates of the points of the set are integers
i such that 0 ≤ i < 2k. The y-coordinates of the points are defined as
d(i) = ∑k

j=1 ajcj−1 where c = 2k + 1 and aj is the jth digit in the binary
representation of i such that i = a0a1 . . . ak including leading zeros.

Horton then goes on to observe several useful properties of the set Sk
and uses those and the “caps and cups” method to show that any empty
convex n-gon in the set has n ≤ 6 points. Since the set Sk can be constructed
to be as big as we like, H(n) does not exist for n ≥ 7.

3.4 Higher Dimensional Work

In attempting to get a bird’s eye view on the Empty n-gons Problem, Vlatr,
Harborth, and Bisztriczky have extended their thoughts to higher dimen-
sions. As successful as these mathematicians were in their work, the exis-
tence and value of H(6) still remains elusive.

3.4.1 Valtr’s Generalization for Rd

In [27] Valtr made a sweeping statement for higher dimensions. By extend-
ing both the Erdős-Szekeres theorem and Horton’s construction to higher
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dimensions, Valtr shows that we can make bounds on the value of a num-
ber n(d) such that n(d) is the maximum number such that any sufficiently
large set of points in Rd in strongly general position (no k + 1 points de-
termine a k-dimensional subspace for k = 1, . . . , d − 1) contains an empty
convex polytope with n(d) points for vertices. For n ≥ 2 the bounds Valtr
finds are

2d + 1 ≤ n(d) ≤ 2d−1

[(
d−1

∏
i=1

pi

)
+ 1

]
where pi is the ith prime.

Unfortunately, these bounds are not so kind as to give us an answer as
to whether H(6) exists or not: 5 ≤ n(2) ≤ 6. Therefore, for a sufficiently
large set of points, the largest empty convex n-gon we can be assured will
exist in the set has either n = 5 or n = 6. We already know from Harborth’s
proof that we can guarantee that there will be an empty convex pentagon in
the plane, but Valtr’s bounds do not rule out the possibility that we might
be able to promise the existence of an empty hexagon in sufficiently large
sets of points in general position.

3.4.2 Harborth Returns

Four years after Valtr’s success with creating bounds on n(d), Harborth
returned (in English, this time) to the scene with Bisztriczky [3]. Wielding
Valtr’s results, Gale’s evenness condition (that a set of points Vd defines
one of the facets of a cyclic d-dimensional polytope if and only if every
two points of the polytope not in Vd are separated on the moment curve,
x(s) = (s, s2, . . . , sd), by an even number of points on Vd ), Radon’s theorem
(if V is a set of d + 2 points in general position in d-dimensional space, then
there exist unique disjoint subsets V ′ and V ′′ such that the intersection of
their convex hulls is empty), and many other ideas, some of which were
decidedly not of combinatorial nature, the two mathematicians announced
that for a dimension d and integer n, the smallest integer h(n, d), such that
for any set of h(n, d) points in general position in Rd there will be n points
which form the vertices of an empty convex d-dimensional polytope, has
the value

h(n, d) = d + 2k − 1

where k = n − d for 1 ≤ k ≤ bd/2c+ 1.
Unfortunately, this relation flails impotently at the empty hexagons prob-

lem since in the case for n = 6 and d = 2, 6 − 2 = 4 > 2 and the neces-
sary conditions on k are not satisfied. Therefore, we cannot even apply
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Bisztriczky and Harborth’s work to ascertain a bound on H(6), if it does
exist.

3.5 Algorithmic Methods and H(6)

Although it is a provable mathematical fact that ∞ − n = ∞ for finite n,
mathematicians have rejoiced at every new largest set of n points without
empty convex hexagons.

Since it can be very difficult for human beings to look at a set of points
and tell whether or not there is a subset which is an empty convex hexagon,
several computer scientists have taken up the challenge of creating algo-
rithms which will detect empty hexagons.

Avis and Rappaport [1] were among the first to ply their art on the
problem and implemented an algorithm which found a set of points in
general position with |Xn| = 20 and no empty convex hexagons. Their
algorithm used some preprocessing but was primarily based on a modifi-
cation of an algorithm of Chvátal and Klincsek [7] which involves defining
a convex polygon in terms of a “fan” within a visibility graph. The question
the Avis and Rappaport algorithm answers is, “What is the largest empty
convex subset of the the set Xn?” The runtime complexity of Avis and Rap-
paport’s algorithm is O(n2) where n is the number of points in the set in
question.

Another computer scientist who has employed the idea of a visibility
graph is Mark Overmars. In [21] Overmars, Scholten, and Vincent created
an algorithm which answers the question, “Given a set V of points in gen-
eral position with no empty convex hexagons and a point u, does the set
V ∪ u contain empty convex hexagons?” The algorithm is O(n2) where n is
the number of points in the set in question, but it should be noted that their
algorithm in practice runs faster than the algorithm of Avis and Rappaport.
The largest set of points generated by this algorithm when random points
were chosen was 18, but when an incremental “backtracking” approach
was used, this was improved to 26 points. Unfortunately, [21] was never
accepted for publication, but Overmars has had the foresight to supply the
interested reader with a copy on his website.

The proof of the algorithm in [21] contains some useful Harborth-type
observations concerning the set V with no empty convex hexagons and a
point u such that V ∪ u has empty convex hexagons. These observations
will be introduced as they become useful in the proofs section.

In [20] Overmars revisited the algorithm from [21] and made some
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improvements which included using Brownian motion and backtracking
as heuristic methods for choosing the additional point u. With these im-
provements and a state of the art computer, Overmars found an empty
convex hexagon-free set with 29 points, implying that if H(6) exists, then
H(6) ≥ 30.

Overmars’s 29-point set is currently the largest found yet and may be
seen in Figure 3.3.
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Figure 3.3: Mark Overmars’s set of 29 points with no empty hexagons.

Besides announcing the largest 6-hole-free set in [20], Overmars an-
nounced some intriguing conjectures. Let the set points Cn on the convex
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hull of a set X be the points that a rubber band would touch if we were to
stretch it around the whole set tightly. Overmars conjectured that any set of
points on the plane in general position, X, with no empty convex hexagons
would have |Cn| < 8. Although this would have been an exciting and use-
ful conjecture to prove, I wasted the three weeks I spent trying to prove
it. In this thesis I provide a counterexample to this conjecture. It is a set
of points with no empty convex hexagons and has a convex hull of eight
points (see Figure 3.4).
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Figure 3.4: A set of points in general position with no empty hexagons and
a convex hull of eight points.

If Overmars’s conjecture had been true, it would have had several in-
teresting implications. First, let a layer of a set Xn be the set of points which
lie on the convex hull of the set Xn \ Cn. In other words, if we had our rub-
ber band stretched around the set Xn and then simultaneously removed all
the points it touched, the new points around which the rubber band would
tighten is the second layer L2 (Cn = L1, as with an onion).

Now, if we consider Overmars’s conjecture more closely, we will see
that if it were true, then the number of layers in any set of points in general
position with no empty convex hexagons would be linear in the number
of points. It is also trivial to prove that the number of layers in such a set
would be bounded below by log n where n is the number of points in the
set. Overmars’s conjecture also has some other interesting implications, but
I will elucidate those when an altered conjecture is introduced in the next
chapter.
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3.5.1 Valtr’s Construction

In the same year that Harborth and Bisztriczky published their results,
Valtr improved the upper bounds of some results of Bárány and Füredi [2]
which had to do with the minimum numbers of empty polygons in planar
sets.

To give the upper bounds he reports, Valtr constructs a set of points
related to Horton’s Sk. Among other bounds for the numbers of n-gons
where n = 3, 4, 5, this n-point set has fewer than n2

3 . Of course, no lower
bound is given because such a lower bound would involve H(6), which we
do not know.

3.6 Summary

The easiest way to summarize the work done to ascertain H(n) is to say
“valiant.” However, in spite of all the efforts to chip away at the problem,
H(6) remains as elusive as ever.



Chapter 4

Protoproof

A mathematician is a machine for turning coffee into theo-
rems.

Alfréd Rényi

Weak coffee is only fit for lemmas.

Paul Turàn

Over the past few months I have been toying with a revision of Over-
mar’s conjecture that there can be no more than 7 points on the bound-
ary of the convex hull of a set of points in general position with no empty
hexagons. In short, the revised conjecture insists that there can be no more
than 8 points that define the convex hull of a general-position point set with
no 6-holes. In the first section of this chapter I will give a general outline
of the proposed proof to motivate the introduction of some very, very new
concepts. Later in the chapter, after the essential concepts have been thor-
oughly explained, detailed proofs will be presented of each of the essential
lemmas.

4.1 Proposed Proof Outline

Conjecture 4.1 (Existence and Bound on H(6)) There exists a number H(6)
such that a set of points in general position with H(6) or more points will cer-
tainly contain a 6− hole. Additionally, H(6) ≤ 1718.

Proof. The proof of this conjecture follows immediately from Valtr and
Tóth’s bounds [24] on N(9) if the following nested lemmas are true.
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Before the first lemma is introduced, it must be prefaced with the defi-
nition of a concept which will allow us to think about where were cannot
place additional points when we are aiming to avoid creating 6-holes.

A word on notation: From this point on, vertices of polygons will be la-
belled counterclockwise. Also, a half-plane will be defined by an ordered
pair (pi, pj) and will consist of the open half-plane that would lie to one’s
left if one were walking from point pi to pj along the line segment connect-
ing them. In this way, (pi, pj) ∪ (pj, pi) is the whole plane without the line
going through pi and pj.

Definition 4.2 Let P = {p1, p2, p3, p4, p5} be a 5-hole. The forbidden areas of
P is

F =
⋃

i∈[5]

((pi−1, pi) ∩ (pi+1, pi+2) ∩ (pi+1, pi)). (4.1.1)

To get a more visual idea of where the forbidden areas of a 5-hole are,
refer to Figure 4.1.

The idea of forbidden areas is important because it allows us to check
ourselves from setting an additional point which may cause a 6-hole in a
pointset that previously had none. In particular, we use the idea in our first
lemma to conclude that we cannot add a point to a set with a convex hull
defined by eight points such that the enclosing 8-gon becomes a 9-gon.

Lemma 4.3 (Unproven) For every set of points in general position with a convex
8-gon, the forbidden areas of the 5-holes within the convex 8-gon will cover the
areas in which one could place a point to make the 8-gon into a 9-gon.

This lemma was inspired by Figures 4.2 and 4.3 where the forbidden ar-
eas (in black) of the 5-holes in the pointsets cover the areas in which points
could be added so that the convex hull is defined by nine points rather
than eight. These figures were generated using Mark Overmars’ empty6
program.

This lemma depends heavily on the lemma which follows. Given the
next lemma, however, the proof is still not trivial. It will still require a new
concept which will be introduced in Section 4.2.2.

The next lemma is the wobbly table upon which this house of cards
is built. However, as with the previous lemma, its introduction must be
preceded by the definition of a layer and what it means for a point set to be
unique up to taking layers.

Definition 4.4 Let X be a set of points on the plane. The first layer of X is the set
of points L1 ⊆ X such that L1 ⊆ ∂conv(X).
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Figure 4.1: A 5-hole and its forbidden areas.
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Figure 4.2: A set of points with 8 points defining the convex hull.
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Figure 4.3: Another set of points with 8 points defining the convex hull.
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That is, the first convex layer of a pointset X are the points in X which lie
on the boundary of the convex hull of X: A rubber band tightened around
X will touch the first convex layer and nothing else. Subsequent convex
layers are defined recursively.

Definition 4.5 Let X be a set of points on the plane. The kth convex layer of X
is the set of points Lk ⊆ X such that Lk ⊆ ∂conv(X (∪k−1

i=1 Lk)).

Figures 4.2 and 4.3 illustrate layers. The cyan, yellow, and magenta
connected points are the first, second, and third layers respectively.

The definition of layers now allows us to create equivalency classes
among sets of points with a fixed number of points defining their convex
hulls.

Definition 4.6 Two point sets, X and Y whose first layers possess the same num-
ber of points are of the same layer equivalency class if

1. the number of layers, `, in X is equal to the number of layers in Y, and

2. |Lk,X| = |Lk,Y| for all k ∈ [`].

We can consider a representative of such a layer equivalency class as
unique up to taking layers. For example, the pointsets in Figures 4.2 and 4.3
are representatives of the {8, 7, 4} and {8, 6, 2} layer equivalency classes,
respectively. This conjecture arose after I logged many hours just watch-
ing Overmars’ program generate sets of points in general position with
no empty hexagons, and these are the only two equivalency classes which
have appeared with 8 points on a layer. This concept allows us to develop
the following lemma.

Lemma 4.7 (Unproven) There are a finitely many arrangements of points in gen-
eral position with eight points in the first layer and no 6-holes. In fact, there are
two which are unique up to taking layers.

Since the proof of this lemma also requires some very new, very com-
plicated ideas, I will put it off until those ideas have been fully explained.
Specifically, this lemma is proven using ideas in Section 4.2.1.
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4.2 New Concepts

Although I have loved geometry dearly since I received my first stencil
set of geometric figures for my sixth birthday, I have found that thinking
about things in terms of graphs comes most naturally to me. Thus, I have
chosen to translate the problems at hand into problems of Graph Theory
and Ramsey Theory. I do not know if the techniques set forth here are
original, but they are new to me. If it does turn out that they are original, I
can only hope that for the trouble they have been to write down, they will
be of use to others.

4.2.1 Half-Plane Intersection Graphs

Wishing to prove Lemma 4.7, I have attempted to devise a device for trans-
planting the problem into graph theory.

When we are given a set of points X, we can labels the points [|X|] and,
given the definition of a half-plane (pi, pj) as the half-plane to one’s left
as one walks from point pi to point pj, we can then put the half-planes in
lexicographical order:

(pi1 , pj1) ≺ (pi2 , pj2) iff
{

i1 < i2
i1 = i2, j1 < j2

(4.2.1)

Using this ordering, we can easily enumerate the half-planes. For a set
of |X| points, the half-plane (pi, pj) will be labelled

H(i−1)|X|+j. (4.2.2)

The astute reader might note that this enumeration assigns labels to a few
apparently superfluous half-planes. For example, the plane (p1, p1) is counted
as H1. Although this particular degenerate half-plane is completely useless,
it makes programming significantly less complicated if we simply abide its
presence. In the future it may also turn out that these degenerate half-
planes are of some use–although the use deftly escapes me at this time.

Definition 4.8 Given a point-set X, let I be the half-plane intersection matrix
such that if the half-planes Ha = (pia , pja) and Hb = (pib , pjb) intersect to form a
convex area, then Ia,b = 1 and otherwise Ia,b = 0

At this point the reader may be asking just what I mean by two half-
planes enclosing a convex area–surely the intersection of two convex bodies
is also convex?
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Recall, however, that my proof requires a severely restricted world-
view. First of all, we are concerned only with intersections inside our n-
gon. Second, we require that if the two segments defining Ha and Hb cross,
then their intersection is not considered convex. Table ?? is a summary of
cases of

4.2.2 Forbidden Graphs



Chapter 5

Conclusions

A conclusion is the place where you got tired of
thinking.

Anonymous

My latest conjecture, that the upper bound of N(9) serves also as an
upper bound for H(6), is extremely promising. A proof for this conjecture
will probably vaguely resemble Harborth’s H(5) proof. If I can succeed in
proving even just that conjecture, I will have made a fairly large contribu-
tion to the work on the problem.

I am very happy with the progress I am making. I wish I could dedicate
all of my time to my thesis.





Appendix A

Appendices

A mathematician’s work is mostly a
tangle of guesswork, analogy, wishful
thinking, and frustration, and proof, far
from being the core of discovery, is wore
often than not a way of making sure that
our minds are not playing tricks.

–Gian-Carlo Rota

Insert notes and trivial things which might ruin the flow of the paper.
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