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Abstract

We develop noncommutative field theory, starting from a very basic back-
ground and explore recent and important results in classical noncommu-
tative field theory. The background section is of interest because it presents
mathematical and physical interpretations of differential geometry together
in a coherent way, not seen in most of the literature. We present several in-
teresting examples that resulted from recent research in the field.
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Chapter 1

Introduction

Noncommutativity is a central notion in both mathematics and physics.
There are many important mathematical structures, which don’t commute:
most abstractly, nonabelian groups, which have numerous applications. In
quantum mechanics, noncommutative algebras are one of the most impor-
tant features. If two Hermitian operators do not commute, then there is an
uncertainty relation between their corresponding observables. In quantum
mechanics, linear position and momentum along the same direction do not
commute giving the famous Heisenberg uncertainty relation. In certain sit-
uations, it is possible to have linear momentum along different directions
not commute.

Noncommutative geometry is a generalization from these examples of
noncommutativity in quantum mechanics where we consider the possibil-
ity that two spatial dimensions, like x and y, do not commute (x · y 6=
y ·x). This implies an uncertainty relation between the two directions on the
quantum level, resulting in so-called “fuzzy space-time” and the abandon-
ment of the concept of things being located at points (Szabo, 2003; Sykora,
2004). While noncommutative geometry was first studied before 1947, only
recently has it become an active area of research in physics (Szabo, 2003).

In the 1980’s, noncommutative geometry was considered as a way of
extending the standard model in a number of different ways (Douglas and
Nekrasov, 2001; Szabo, 2003). In condensed matter, noncommutative geom-
etry arises naturally. For example, noncommutative geometry describes
electrons in a magnetic field at lowest energy level which is related to the
quantum Hall effect (Sykora, 2004). Recent interest in noncommutative
geometry is strongly motivated by the discovery that string theory leads to
noncommutative geometry in certain limits. In matrix models of M-theory
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(the theory encapsulating all six string theories), for example, compactifica-
tion leads to noncommutative tori; open strings in magnetic fields are de-
scribed by a noncommutative geometry with the Moyal product; and when
considering Dp-branes interacting, the coordinates associate with noncom-
muting matrices (Gracia-Bondı́a et al., 2002). Fuzzy space-time also seems
a natural way of limiting the ability to measure at the Planck length (Dou-
glas and Nekrasov, 2001).

Despite all of these recent motivations, noncommutative geometry re-
mains a nontrivial subject approached from numerous angles and allow-
ing for numerous generalizations from the simplest, most well understood
cases. On a fundamental level, the interest in noncommutative geometry
results from the fact that it is a nonlocal theory and the theory of quantum
gravity seems to require nonlocality. One of the potential problems with
noncommutative field theory is that it breaks Lorentz invariance, which at
least on macroscopic scales is believed to be a fundamental symmetry of
the universe (Sykora, 2004; Douglas and Nekrasov, 2001).

This paper develops and examines some of the results in classical non-
commutative field theory. We do not go into quantum field theory or the
resulting fuzziness of space-time. Furthermore, we will not discuss time-
space noncommutativity at a sustained level, since it is problematic and
less well understood.

We begin by introducing basic mathematical and physical background
material necessary to discuss noncommutative field theory on any level in
Chapter 2. This chapter may be of interest even to those familiar with the
material since it attempts to present the mathematics and physics in a more
unified way than is usually done.

Chapter 3 gives a motivational example of noncommutative geometry
arising in string theory when considering N D0-branes. Chapter 4 finally
introduces noncommutative field theory and gives an example. Chapter 5
introduces the Seiberg-Witten map, which can map a noncommutative field
theory to a commutative field theory. In this chapter, we demonstrate that
this map may come at the expense of introducing non-flat curvature cor-
responding to gravitation. This, then, is another connection between non-
commutative geometry and gravity. Chapter 6 presents a generalization of
the Seiberg-Witten map that is a symmetry of noncommutative field theo-
ries. The symmetry is interesting because it leads to a conserved current in
the space of noncommutative planes.



Chapter 2

Background Material

This section introduces the mathematics and physics that underlie the the-
ory and notation the rest of the paper uses. We begin by introducing ten-
sor fields on Riemannian manifolds as the mathematical background that
frames the following discussion of classical field theory and the basic con-
cepts of general relativity in the physics background section.

2.1 Mathematics Background

The following discussion mostly develops the concept of a tensor field on
a manifold, which is an integral part of general relativity and clarifies the
notation describing classical field theory.

2.1.1 Tensors: An Algebraic Approach

We begin by introducing the concept of a tensor. One can think of tensors as
generalizations of vectors and matrices to higher dimensionality; however,
before we can rigorously define a tensor, it is necessary to introduce and
review several key concepts. To begin, we will assume familiarity with
basic linear algebra.

Recall that a vector space over a field F is a set V that is closed for the
operations of vector addition and multiplication by scalars, defined over
it. Elements of V are the vectors and elements of the field, F (typically the
reals or complex numbers), are the scalars. Vector addition is a mapping
from V ×V onto V and the multiplication is a mapping from F ×V onto V .
We will denote vector addition with + and scalar multiplication implicitly,
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as usual. In addition to being closed over V , the operations must satisfy
the following properties for all v1,v2,v3 ∈ V and a, b ∈ F (Lay, 2000):

1. Commutativity: v1 + v2 = v2 + v1.

2. Associativity: (v1 + v2) + v3 = v1 + (v2 + v3).

3. Identity: There exists a vector 0 such that v1 + 0 = 0 + v1 = v1.

4. Inverse: There exists a vector −v1 such that v1 +−v1 = 0.

5. Distributivity: a(v1 + v2) = av1 + av2.

6. Distributivity: (a + b)v1 = av1 + bv1.

7. Associativity: (ab)v1 = a(bv1).

8. Identity: There exists a scalar 1 such that 1v1 = v11 = v1.

The most familiar examples of vector spaces are Rn or C (which is isomor-
phic to R2). Additionally, the field F will always be a vector space over
itself. Often we talk about a vector space V omitting the field and/or ex-
plicit definitions of the operations (for this paper, one may assume that the
field is the reals) if they are clear from the context. Furthermore, we will
frequently refer to V as both the set of vectors and as the vector space (in-
cluding the two operations). This language, however, should not lead to
confusion in most cases. Vector spaces, as every physicist and mathemati-
cian knows, have many useful and interesting properties that are beyond
the scope of this paper to consider; however, we will review a few ideas
used later in the paper.

Recall that a set of vectors {vi} is linearly independent if the set of all
linear combinations c1v1 + c2v2 + · · · has only the trivial zero, ci ≡ 0 for all
i (Lay, 2000). Further, remember that a basis for V is a linearly independent
set of vectors whose set of all linear combination is V . In fact, for any given
vector, there is precisely one linear combination of the basis vectors that
equals it. The number of vectors in the basis is the dimension of V (Lay,
2000).

Vector spaces being defined, we introduce a linear function from vector
space V to vector space W , that is, a function f : V → W with the addi-
tional property that for all v1,v2 ∈ V and for all scalars a, b (Bishop and
Goldberg, 1980),

f(v1 + v2) = f(v1) + f(v2), (2.1a)
f(av1) = af(v1). (2.1b)
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If f is bijective then we say that f is an isomorphism and we say that the two
vector spaces are isomorphic. If two vector spaces are isomorphic, then they
have the same structure and can be thought of as the same vector space;
that is, we can get from V to W by relabeling all of the elements of V .

As one might expect, there are many linear functions possible from
any one vector space V to another W , the set of which we will denote
by L(V,W ). Surprisingly enough, L(V,W ) is a vector space in of itself.
For f, g ∈ L(V,W ) and for all v ∈ V , we define addition as (f + g)(v) =
f(v) + g(v) and multiplication by a scalar a as (af)(v) = af(v), as is nat-
ural. It is fairly easy to show that L(V,W ) is a vector space using these
definitions; all of the properties derive directly from the fact that V and W
are vector spaces and from f and g’s linearity. The dimension of L(V,W )
is simply the product of the dimensions of V and W , assuming both are
finite-dimensional (Dummit and Foote, 1999).

We can now define the concept of the dual vector space of V , written
V ∗ = L(V, F ), as the set of all linear functions from the set V to vector
space V ’s field, F (Bishop and Goldberg, 1980). Note the dimension of V
is the same as the dimension of V ∗, if the dimension of V is finite, since
the dimension of F as a vector space over F as a field is 1. Only finite
dimensional vector spaces are of interest here, so this paper will assume
our vector spaces are finite-dimensional.

We call the dual of the dual vector space the double dual, written V ∗∗.
The double dual is naturally isomorphic (the isomorphism is natural be-
cause it can be defined without specifying a basis) to the original vector
space. This means that we can think of elements of V as linear functions
from V ∗ to F , while at the same time elements of V ∗ are linear functions
from V to F . To see how this works, consider v ∈ V and w̄ ∈ V ∗. Now, a
specific w̄ is a linear function from V to F , and so w̄(v) ∈ F for all v ∈ V .
Alternatively, we can fix v, and let w̄ run over all of V ∗, then we have a
linear function(al) gv(w̄) = w̄(v) ∈ F for all w̄ ∈ V ∗. Notice that gv is not
an actual element of V ; this is what we mean when we say that V is iso-
morphic with V ∗∗, that to get from V to V ∗∗ we can simply replace v with
gv, and vice versa.

At this point, we may finally introduce the concept of a tensor as a scalar-
valued multilinear function with variables from vector space V and its dual
V ∗. By multilinear, we simply mean that a function f is linear in each of its
variables,

f(v1,v2, . . . , avi+bwi, . . . ) = af(v1,v2, . . . ,vi, . . . )+bf(v1,v2, . . . ,wi, . . . )
(2.2)
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for all i from 1 to the number of variables of f (Bishop and Goldberg, 1980).
The number of variables from V ∗ is called the contravariant degree and the
number of variables from V is called the covariant degree. For example, a
tensor on V ∗× V × V × V has contravariant degree 1 and covariant degree
3, or, in short, is said to be of type (1, 3). A tensor of type (0, 0) is defined to
be a scalar.

2.1.2 Tensors: A Physics Approach

The definition of a tensor given above is very general, which we would like
to restrict to the case of interest to the physicist in this section. Before we
proceed, we introduce manifolds and some associated objects.

For our purposes, a manifold is a space which is locally isomorphic to
Rn and has smooth, well-defined mappings between coordinate patches
that cover the manifold completely. For a more sophisticated definition
and treatment of manifolds, see Carroll (1997), Bishop and Goldberg (1980),
Eguchi et al. (1980), or a differential geometry text. The important idea
behind a manifold is that it is not embedded in any other space (like Rn)
and allows for the most general geometry that we can do physics on. We
allow an arbitrary number of coordinate patches because frequently just
one coordinate system will not work over the whole manifold: eg. the unit
circle, S1. If we try to describe a circle with just one coordinate system, then
there will be a point that is not well-defined or is not smooth. S1 is a one-
dimensional manifold since it is locally isomorphic to R and so position in
the manifold may be described by one coordinate.

If we take a point p on a manifold M , we can imagine a curve on the
manifold passing through p. At p, let us suppose that the coordinates of
the coordinate patch containing p are xµ, where the µ is a coordinate label
and not an exponent. For example, x0 is typically time, x1 the first spatial
dimension of the manifold (not that there is any particular ordering), and
so on. The use of this notation is clarified below. Our curve, returning to
the point at hand, can be described by xµ = xµ(λ), where λ parameterizes
the position along the curve. Without loss of generality, we assume that
xµ(0) = p. The curve, then, defines a directional derivative on the space of
smooth scalar (we only consider real manifolds for the rest of this paper)
functions on M . More specifically, for a smooth function f : M → R, the
directional derivative is

∂f(xµ(λ))
∂λ

∣∣
λ=0

.

We can now define the tangent space of M at p, Tp(M), as the space of all
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directional derivatives arising from possible curves passing through p. The
tangent space is a vector space (from the linearity of the derivative) of di-
mension equal to that of the manifold; its dual T ∗

p is called the cotangent
space (Carroll, 1997).

In physics, the tensors of interest are those whose vector space (V in
section 2.1.1) is Tp(M), that is multilinear real functions on T ∗

p ×T ∗
p ×Tp×Tp,

for example. Notice that because for each point on the manifold there is a
new vector space associated with it, we also have a different tensor defined
for each point of M . We call this a tensor field, in exactly the same way we
talk about a vector field, where we assign a vector to each point in a space.
To avoid possible confusion, note that frequently, we say “tensor” when
we really mean a tensor field.

In order to work effectively with these tensor fields, it is necessary to
specify a basis for Tp and T ∗

p . While an orthonormal basis is possible and
may seem convenient, this would mean that the basis would be differently
defined for every point on the manifold since each point has a different
vector space V . In physical applications, we almost exclusively use the di-
rectional derivative along the coordinate axes, ∂µ ≡ ∂

∂xµ , as the basis for
the tangent space. For the cotangent space, we use dxµ as a basis. Car-
roll (1997) makes a point of distinguishing dxµ, a totally anti-symmetric
covariant tensor formed by taking the exterior derivative of xµ, from dxµ,
the familiar unrigorous notion of an infinitesimal displacement; however,
for our purposes it suffices to think of it as simply the infinitesimal (Car-
roll, 1997; Eguchi et al., 1980). Although it may be somewhat intuitive, the
reader will have to seek sources already mentioned for proof that these are
elements of Tp and T ∗

p , and are, in fact, bases. Furthermore, these bases
obey the dual basis relationship

dxµ(∂ν) =
∂xµ

∂xν
= δµ

ν , (2.3)

where δµ
ν is the Kronecker delta, which is 0 if µ 6= ν and 1 if µ = ν (Carroll,

1997; Bishop and Goldberg, 1980). These bases are useful because they de-
rive directly from the coordinate system and make a change of coordinates
very easy as shown below.

Now that we have most of the necessary concepts to work with tensors
it is necessary to introduce the notation that is used (and has started to
be used without explanation). We begin by demonstrating with tensors of
degree one first, and then generalize to a tensor of type (k, l) later. We can
write a tensor V of type (1, 0) as

V = V µ∂µ = V 0∂0 + V 1∂1 + V 2∂2 + · · ·+ V n∂n, (2.4)
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and a tensor W of type (0, 1) as

W = Wµdxµ = W0dx0 + W1dx1 + W2dx2 + · · ·+ Wndxn, (2.5)

where our manifold is n-dimensional and we have introduced Einstein
summation notation—repeated indices in the same term are summed over.
We follow the convention given in Carroll (1997) and most other physics
papers, where Greek indices sum from 0 up to the last coordinate (includes
time) and Latin indices sum from 1 (does not include time). Note that the
contravariant vector has superscript indices and the covariant vector has
subscript indices. Also note that a tensor of type (1, 0) is simply an element
of Tp, which is dual to T ∗

p , so that it takes an element of T ∗
p and maps it to

R, and vice versa. Explicitly, this works as

V W = V µWνdxν(∂µ) = V µWνδ
µ
ν = V µWµ, (2.6)

which is an element of the reals since the weights on the bases are necessar-
ily scalars as well. This type of product is called a contraction (Bishop and
Goldberg, 1980). Contractions are physically significant because they are
manifestly invariant, that is they do not depend on the choice of coordinate
system. Measurable physical quantities obviously should not change when
we change coordinates or bases.

Because one coordinate system will not necessarily cover the entire man-
ifold, it is necessary to see how tensors undergo coordinate transformation.
So, suppose that there are two coordinates xµ and xµ′

(note the prime goes
on the index). Our contravariant vector V must be the same tensor in either
coordinate system, but we are undergoing a change of basis from ∂µ to ∂µ′ ,
that is, by the chain rule of differentiation,

V µ∂µ = V µ′
∂µ′ = V µ′ ∂xµ

∂xµ′ ∂µ, (2.7)

and similarly

Wµdxµ = Wµ′dxµ′
= Wµ′

∂xµ′

∂xµ
dxµ. (2.8)

We see, then, that when we change coordinate a contravariant vector trans-
forms as

V µ = V µ′ ∂xµ

∂xµ′ or V µ′
= V µ ∂xµ′

∂xµ
, (2.9)

and a covariant vector transforms as

Wµ = Wµ′
∂xµ′

∂xµ
or Wµ′ = Wµ

∂xµ

∂xµ′ . (2.10)
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Frequently in the literature, these transformations are the starting point for
an introduction to tensors, and the emphasis of the discussion is on manip-
ulation of indices and notation (Lovelock and Rund, 1989). Because we al-
ways use the same bases, the basis vectors ∂µ and dxµ are dropped and we
only write the scalar weights on the bases, V µ and Wµ. This is analogous to
the notation sometimes used where the vector (in R3) ax̂+bŷ+cẑ is written
as (a, b, c), dropping the basis vectors x̂, ŷ, and ẑ. Using the transformation
rules, we see why the contraction of tensors is manifestly invariant since

V µWµ = V µ′ ∂xµ

∂xµ′ Wµ′
∂xµ′

∂xµ
= V µ′

Wµ′ , (2.11)

so that it does not matter whether we do the contraction in xµ or xµ′
. Notice

that this is exactly analogous to taking the dot product of two vectors in R3,
which gives an invariant, the cosine of the angle between the vectors.

We can now generalize our notation to a general tensor T of type (k, l),
which is written as

Tµ1···µk
ν1···νl

, (2.12)

where the contravariant components are written superscripted and the co-
variant components are written subscripted and are kept in order for clarity
(the subscripts are not directly below the superscripts). The tensor trans-
forms under a change of coordinates as

T
µ′

1···µ
′
k

ν′
1···ν

′
l

= Tµ1···µk
ν1···νl

∂xµ′
1

∂xµ1
· · · ∂xx′

k

∂xµk

∂xν1

∂xν′
1
· · · ∂xνl

∂xν′
l

, (2.13)

where the contravariant components each transform as the contravariant
vector did and covariant components each transform as the covariant vec-
tor did (Carroll, 1997; Bishop and Goldberg, 1980; Lovelock and Rund,
1989). Contractions fall out naturally from Einstein summation notation;
however, it is important to note that Einstein summation is only used be-
tween a contravariant index and a covariant index (anything else is short-
hand notation or erroneous).

Before we proceed to the physics background, We need to introduce
the metric tensor. In general relativity, the metric tensor, denoted by gµν ,
gives all of the physically significant quantities. A general manifold does
not necessarily have a metric tensor on it; when we define a metric on a
manifold, we say it is a Riemannian manifolds. We will only do physics on
Riemannian manifolds, because the metric tensor allows physically use-
ful concepts such as distance, angle, geodesics (shortest distance between
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points on the manifold), and the concepts of “past” and “future” (Carroll,
1997). In general the metric tensor is a symmetric (0, 2) tensor that we
take to have non-zero determinant; there are no further restrictions that
are placed on gµν (Carroll, 1997). By symmetric, we mean that the tensor
is the same after exchanging indices, i.e. gµν = gνµ. Not all tensors are
symmetric; some are antisymmetric or have no particular symmetry—this
is one of the reasons that the ordering of indices matters. Note that when
we take the determinant of a tensor of degree 2, we treat the tensor as the
matrix g00 g01 · · ·

g10 g11 · · ·
...

...
. . .

 .

Requiring that the determinant be non-zero means that the metric tensor
has an inverse satisfying

gµνgνλ = δµ
λ . (2.14)

The principal utility of the metric tensor is in its ability to raise and lower
indices. For a more comprehensive investigation of the metric tensor and
Riemannian geometry, see (Carroll, 1997; Lovelock and Rund, 1989; Bishop
and Goldberg, 1980). Raising indices works by contracting indices as fol-
lows

gµνtσµ = t ν
σ , (2.15)

and lowering works analogously. So, the metric allows us to exchange con-
travariant and covariant components. The ability to raise and lower indices
is the second reason for the ordering and “extra” spaces when placing in-
dices on a tensor. Raising and lowering of indices allows us to make sense
of the shorthand where we write a contraction between two contravariant
indices or two covariant indices, since we can write

sµνtσµ = gτµsτνtσµ. (2.16)

In general relativity, the metric determines the curvature of space-time,
which responds to mass and energy. For most of the paper, however, we
do not be work in gravitational fields. We work in flat 3 + 1 dimensional
space-time, with constant metric

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .



Physics Background 11

Note that some authors have η with opposite sign, but it does not change
the physics. The minus sign for the time component makes η consistent
with special relativity. We can see this by writing the contraction

ηµνx
µxν = −t2 + x2 + y2 + z2, (2.17)

where we have labeled the spatial and temporal indices in the traditional
manner. At this point, we should mention the fact that this paper is us-
ing units such that the speed of light, c, and Planck’s constant over 2π, ~,
are both unity, c = ~ = 1. Theorists use these units to more clearly eluci-
date the mathematical structure of physical equations; however, the units
are pretty inconvenient for experimentalists (who wants to measure every-
thing in meters?). Now, bearing in mind the units, equation (2.17) should be
recognized as the space-time interval in special relativity, which is invariant
for all inertial reference frames. Since we have a total contraction, it is man-
ifestly invariant, and therefore, we are working in Minkowski space-time,
the geometry described by special relativity (Carroll, 1997). If the diagonal
were all ones, then we would be working in familiar Euclidean geometry.

2.2 Physics Background

This section introduces Lagrangian mechanics and the action principle to
develop classical field theory. We further discuss some of the important
features of classical field theory, including Noether’s Theorem and gauge
fields. Initially, this section seems divorced from the previous; however,
the notation and concepts we introduce in Section 2.1 become useful. We
then conclude with a brief discussion of general relativity.

2.2.1 Classical Gauge Field Theory

Principle of Stationary Action

Recall that the basic equation of classical mechanics is Newton’s second
law

F =
dp
dt

, (2.18)

where F is the force on a mass m with momentum p, t being time. This
equation may be reformulated by introducing the action functional

S =
∫ x2,t2

x1,t1
Ldt =

∫ x2,t2

x1,t1
(T − U)dt. (2.19)
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Here S is called the action and L, the Lagrangian. T is the kinetic energy, U
is the potential energy, and our integral ranges from an initial position and
time to a final position and time. It turns out that, for conservative forces,
solving Equation (2.18) for the path that a particle takes through space-time
from event (t1,x1) to event (t2,x2), assuming that such a path exists, is
equivalent to finding the path that extremizes (almost always minimizes)
the action. This powerful mathematical reformulation of Newtonian me-
chanics is called Lagrangian mechanics.

The calculus of variations, originally developed by Euler, was developed
to find functions (or paths) that minimize functionals. The basic concept,
is to suppose that a extremizing path exists, express a general function as
a sum of the extremizing path and an arbitrary variation that is zero at the
endpoints, and finding a partial differential equation that the minimizing
function must satisfy as a result. In this process, we neglect all orders of the
variation and its derivatives higher than linear order. This means that the
function found makes the functional stationary (locally) to linear order. For
a thorough development of the calculus of variations, see Hand and Finch
(1998) or Bolza (1904).

Applying the calculus of variations to the general action in Equation (2.19),
we can confirm that the path that makes the action stationary is equiva-
lent to Newton’s Second Law. This reformulation of mechanics is called
the principle of stationary (sometimes least) action, Hamilton’s Principle, or
the “action principle.” If we apply the calculus of variations to a general
action describing a particle, we find the Euler-Lagrange Equations (Hand
and Finch, 1998)

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
≡ 0 (for all i). (2.20)

where, qi is the ith generalized coordinate. While the principle of stationary
action is equivalent to Newton’s second law, action formulations are prefer-
able for theoretical purposes since they are more naturally quantized into
a quantum mechanical theory (Sahakian, 2004; Kaku, 1993). Even in classi-
cal mechanics, Lagrangian mechanics is preferred for certain problems be-
cause we can easily use generalized coordinates that are more natural and
there are only as many as there are degrees of freedom (Hand and Finch,
1998). For example, if we imagine trying to find the motion of a marble
in a frictionless hemispherical bowl, we can use two generalized coordi-
nates θ and φ, whereas we might use three in Newtonian mechanics. Before
moving on, one should make a final note that while Lagrangian mechanics
only describes conservative forces, all forces are conservative on the most
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Figure 2.1: A diagram showing masses connected by springs in one dimen-
sion. Each mass m is the same and each spring has the same spring con-
stant, k. When all the springs are at equilibrium, the masses are separated
by a distance l and the coordinate of the ith mass qi is 0, for all i.

fundamental level. These facts conspire to make action formulations the
theoretical physicist’s preferred tool.

The Principle of Least Action applied to Tensor Fields on Manifolds

Frequently, we wish to describe a physical tensor field and not a particle.
Field theories are used in strong-electroweak unification, string theories,
and theories describing phase transitions. Below, we see a succinct for-
mulation of electrodynamics using field theory and Noether’s theorem as
reasons to be interested in field theories; however, before proceeding, we
begin by motivating classical field theory with a more mechanical and in-
tuitive example from continuum mechanics.

Consider a large number of particles each of mass m connected by iden-
tical springs, with spring constant k, in a line as shown in Figure 2.1. We
restrict the motion of the particles to the one dimension along the line, so
that only compression may occur. We denote the displacement of the ith
particle’s position from equilibrium by qi(t). Using the formulation of me-
chanics developed above, we describe the system’s motion by specifying
the Lagrangian

L = T − U =
N∑

i=1

m

2
q̇2
k −

N∑
i=1

k

2
(qi+1 − qi)2, (2.21)

where q̇i = ∂qi
∂t and there are a total of N particles. We might use this system

to model linear compression or stretching of a beam, but perhaps we feel
that we could more accurately model the beam as a continuum rather than
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a large number of discrete particles. To accomplish this, we might take the
limit as l goes to 0, while holding λ = m/l and Y = kl fixed. So as l gets
smaller the mass of each particle decreases and the spring constant of each
spring increases. Rewriting Equation (2.21), we formally see that as l → 0
in this way

L −→
∫

dx

(
λ

2
q̇2 − Y

2
q′

2
)

, (2.22)

where λ is the mass density of our beam, Y is its Young’s Modulus, and
q(x, t) is a new scalar field replacing the qi(t). We use q′ to mean ∂q(x,t)

∂x and
note that the extra l term became the differential line element dx. We now
have a scalar field being used to describe the local distortion of the beam
from equilibrium at position x along the beam’s length at time t.

Now that we have a physical quantity described by a tensor field, it be-
comes necessary to find the equations of motion of the field, and so we ap-
ply our action principle for tensor fields as well as for particles. We mostly
are interested in scalar fields or tensor fields of type (0, 0); however, the
concept can be generalized. To this end, we introduce the Lagrangian den-
sity

L =
∫

L (ϕ, ∂µϕ)dτ, (2.23)

where L is the Lagrangian density and the integral is over all space. This
definition is specific to flat space-time; in Section 5, the definition is gen-
eralized to non-flat space-times. If our Lagrangian density is a function
of several scalar fields ϕa (a enumerates different fields, not indexes the
space-time coordinates), then applying the action principle and the calcu-
lus of variations gives us the fields’ equations of motion, a reformulation of
the Euler-Lagrange Equations,

∂L

∂ϕa
= ∂µ

(
∂L

∂(∂µϕa)

)
, (2.24)

where µ is summed over by the Einstein Summation convention and a is
not (the two a’s are in separate terms). We now have an equation of motion
for each field ϕa as a result (Sahakian, 2004; Kaku, 1993). Note that one of
the consequences of moving to a noncommutative geometry is that there
are no longer general equations of motion like Equation (2.24).

This framework of Lagrangian mechanics with tensor fields is called
classical field theory and has been extremely successful at describing a
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plethora of physical phenomena as mentioned previously. A typical ex-
ample of a classical field theory with two fields might be

L = ηµν∂µϕa∂νϕ
a +

m2

2
ϕaϕa + V (ϕa). (2.25)

The first term is called the kinetic term, which is required for dynamics. The
coefficient of the first term ηµν is our Lorentz metric, so we are working in
Minkowski space. The second term is a mass term that gives the fields ϕa

mass m. The last term is a potential term that would have higher powers
of ϕa, to put the field ϕ in a potential energy distribution. Recall that using
the Einstein summation notation, µ, ν, and a are summed over in the first
term and a is summed over in the second term. If we are describing two
massive fields with no potential energy then a = 1, 2 and V = 0 (Sahakian,
2004; Rubakov, 1999).

Noether’s Theorem

Noether’s theorem, proved by Emmy Noether in 1918, is one of the most
important theorems in physics demonstrating the importance of symme-
try. Verbally, Noether’s Theorem states that for every continuous symme-
try of a Lagrangian density L , there exists a conserved current, called the
Noether current (Hand and Finch, 1998; Kaku, 1993).

In order to understand this theorem mathematically, we need to define
a transformation of our Lagrangian density. We write our transformation
as {δxµ, δϕa}, which corresponds to

xµ′ = xµ + δxµ(x) (2.26)
ϕa′(x) = ϕa(x) + δ̄ϕa = ϕa(x) + δϕa − δxµ∂µϕa, (2.27)

where we replace the ϕa and xµ with their primed versions in the action.
Note that δϕa = ϕa′(x′) − ϕa(x), while δ̄ϕa = ϕa′(x) − ϕa(x). To get
Equation (2.27), we Taylor expand ϕa′(x′) = ϕa(x + δx) about x and drop
quadratic and higher terms since the transformation is continuous and there-
fore δx can be made arbitrarily small.

If the transformation is a symmetry of the action, then the equations of
motion given in Equation (2.24) are unchanged by the transformation. If
transformation {δxµ, δϕa} is a symmetry of the action, then the associated
Noether current is given by

jµ =
∂L

∂∂µϕa
δ̄ϕa + L δxµ. (2.28)
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To say that jµ is conserved means that the divergence of j is zero, ∂µjµ = 0.
Noether’s theorem is now fairly easily proved through manipulation of
tensor indices; however, the original proof did not rely on this modern no-
tation and was much more involved (Sahakian, 2004; Kaku, 1993; Lovelock
and Rund, 1989).

As an example of applying Noether’s Theorem, consider the Lagrangian
density in Equation (2.25), two massive scalar fields with no potential en-
ergy, we can find a Noether current (actually, we can find several, but
the example is a particularly interesting one). We begin by defining φ =
ϕ1 + iϕ2, and rewriting the Lagrangian as

L =
1
2
ηµν∂µφ†∂νφ +

m2

2
φ†φ. (2.29)

We may now see an interesting symmetry. Namely, φ′ = e−iαφ is a symme-
try of the action. This transformation is interesting because the two fields
are “mixed.” The associated Noether current, then, is

jµ = φ∂µφ† − φ†∂µφ, (2.30)

which exhibits a similar mixing. Another example of mixing occurs when
considering electrodynamics with special relativity and the electric and
magnetic fields become mixed during Lorentz transformations (switching
inertial reference frames). Some other typical results easily derived from
Noether’s theorem are that translational symmetry implies conservation
of linear momentum, rotational symmetry implies conservation of angular
momentum, and temporal symmetry implies conservation of energy (Kaku,
1993).

Gauge Fields

Gauge theory is part of what makes classical field theory so effective. The
standard model of particle physics describing electromagnetism, the weak
force, and the strong force, is gauged by SU(2)L⊗U(1)⊗SU(3)C , where U
is the unitary group and SU is the special unitary group. For more details
about how this works, see Kaku (1993); Griffiths (1987). A gauge field is a
field with respect to which a symmetry is implemented The gauge group
is the symmetry group of the gauge field; in modern gauge theory physics,
we require that all physically measurable quantities, the action, and the
equations of motion are invariant under a gauge transformation (an ele-
ment of the symmetry group) (Rubakov, 1999). Generally this added sym-
metry leads to the conservation of some charge through Noether’s theorem
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(in electrodynamics, electric charge). As an example of a classical gauge
field theory, we will consider the classic example of electromagnetism, a
field theory gauged by U(1), the unitary group (Kaku, 1993; Schüker, 2004).

We begin by letting Aµ be the potential field, containing both the scalar
electric potential, V (E = ∇V ), and the magnetic vector potential, A (B =
∇ × A); and jµ (no longer a generic Noether current) to contain both the
electric charge density, ρ, and the electric current density, j, as

Aµ = (V,A) (2.31)
jµ = (ρ, j). (2.32)

We may write the conservation of charge simply as ∂µjµ = 0 and Maxwell’s
equations become

∂µFµν = jν , (2.33)

where we define Fµν = ∂µAν − ∂νAµ (Griffiths, 1999). To see the relation-
ship between this formulation of electromagnetism and the usual one, we
should comment that if we write Fµν as a matrix we find

Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 , (2.34)

where the electric field is E = (E1, E2, E3) and the magnetic field is B =
(B1, B2, B3) (Sahakian, 2004; Kaku, 1993).

The Lagrangian density that gives Maxwell’s equations in Equation (2.33)
is

L = − 1
16π

FµνF
µν − jµAµ, (2.35)

where c = 1, as mentioned above. Now, there is local symmetry of the
gauge field, Aµ, that is, we can add the gradient of any function δAµ =
∂µΛ(x) to Aµ and the equations of motion will be unchanged. It is a local
symmetry because our transformation may depend on position and time. If
we examine the definition of Fµν , we can see that Fµν will be invariant un-
der this symmetry. For the second term, we use integration by parts to get a
∂µjµ, which we know to be 0, and the fact that the remaining integral van-
ishes for Λ that decrease rapidly enough as

√
|xµxµ| → ∞. We now have a

lot of gauge freedom since for any Aµ, there is a family of equivalent gauge
fields differing by the gradient of an arbitrary function. These gauge trans-
formations form a group isomorphic to U(1) for any fixed point, where the
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group operation is addition (Rubakov, 1999). The group properties follow
naturally:

• Closure ∂µΛ1 + ∂µΛ2 = ∂µ(Λ1 + Λ2) = ∂µΛ3.

• Associativity (∂µΛ1 + ∂µΛ2) + ∂µΛ3 = ∂µΛ1 + (∂µΛ2 + ∂µΛ3).

• Identity ∂µΛ + ∂µk = ∂µΛ + 0 = ∂µΛ, where k is a constant.

• Inverse ∂µΛ + ∂µ(−Λ) = ∂µΛ− ∂µΛ = 0.

To see that this group is isomorphic to U(1) for a fixed x, recall that any
element of U(1) can be written as eiα for some α ∈ R, since U(1) is the
group of all 1 × 1 unitary matrices. The group operation is multiplication.
The isomorphism is the map f : ∂µΛ 7→ eiΛ(x). Some more work is required
to make this map well-defined, but eventually one sees that the two groups
are isomorphic (Rubakov, 1999). The U(1) in the standard model gauge
group comes from electrodynamics.

One of the consequences of having a local gauge group is that the ki-
netic term ηµν∂µϕ∂νϕ may not be invariant under gauge transformations.
For example, consider a complex scalar field Lagrangian density like Equa-
tion (2.29) interacting with Aµ, the electrodynamics gauge field

L =
1
2
ηµν∂µφ†∂νφ +

m2

2
ϕ†ϕ− 1

16π
FµνF

µν − jµ′Aµ, (2.36)

where jµ′ = −i(φ†∂µφ − ∂µφ†φ). If we allow local gauge transformations
of the form Aµ

′ 7→ Aµ + ∂µα(x) simultaneously with φ′ 7→ eiα(x)φ and
φ†

′ 7→ e−iα(x)φ†, then ∂µφ′ = eiα(∂µα + ∂µφ) and then ∂µφ is not invariant.
The solution is to replace ∂µ with a covariant derivative Dµ that is invariant
for gauge transformations and reduces to ∂µ when there is no gauge field.
Typically, this means adding a constant term with the gauge field to ∂µ. For
this example, we define Dµ = ∂µ − Aµ and then our new Lagrangian den-
sity will be gauge invariant. Note that the other two parts of the standard
model, SU(2) and SU(3), are both nonabelian groups, which complicate
the covariant derivative beyond this example (Rubakov, 1999).

2.2.2 General Relativity

In this subsection, we very briefly review general relativity. For those inter-
ested in a more thorough discussion, see Carroll (1997) or any introductory
general relativity text.
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In general relativity, we allow for non-flat metrics, as mentioned above.
Roughly, this means that the metric depends on position on the manifold,
leading to curvature. Einstein’s equations relate the intrinsic curvature of
the space-time manifold to the distribution of energy and matter on the
manifold. Intrinsic curvature is very different from extrinsic curvature. For
example, there is no intrinsic curvature of S1, or any other one dimensional
manifold (Carroll, 1997). Intrinsic curvature measures among other things
how rapidly parallel geodesics converge. Geodesics are the shortest distance
between two points on a manifold, or the path that light travels in general
relativity, e.g.: straight lines in Euclidean space and great circles on S2. In
order to write Einstein’s equations, then, we need to have some rigorous
notion of intrinsic curvature.

Before we can develop intrinsic curvature, we must first add additional
structure to the manifold, a “connection”. We begin by consider the partial
derivative operator ∂µ acting on a general tensor. As it turns out, for ten-
sors of degree greater than one, Tµν for example, ∂µTµν is not a tensor. This
is revealed when checking the transformation laws for tensor components
in Equation (2.13). It becomes necessary, then, to introduce another covari-
ant derivative, ∇µ of a general tensor T , which is still a tensor. Note the
difference between this covariant derivative and the covariant derivative
for gauge theory (in fact, they are related since coordinate transformations
in general relativity correspond to gauge transformations). We require this
covariant derivative, ∇µ, to be linear and satisfy the Leibnitz product rule.
As it turns out, then, our covariant derivative is of the form

∇µV ν = ∂µV ν + Γν
µλV λ, (2.37)

or for a general tensor T

∇σTµ1µ2···µk
ν1ν2···νl

= ∂σTµ1µ2···µk
ν1ν2···νl

+ Γµ1

σλT λµ2···µk
ν1ν2···νl

+ Γµ2

σλTµ1λ···µk
ν1ν2···νl

+ · · ·
− Γλ

σν1
Tµ1µ2···µk

λν2···νl
− Γλ

σν2
Tµ1µ2···µk

ν1λ···νl
− · · · , (2.38)

where Γν
µλ is a linear correction to the partial derivative, called the con-

nection coefficients (Carroll, 1997). It is important to know that the connec-
tion coefficients are not tensors, hence the index placement. Now there
are many possible covariant derivatives and many possible connections
that can be defined on our manifold, but in general relativity, we are in-
terested in the uniquely defined connection induced by the metric called
the Christoffel connection. This is the connection that gives the covariant
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derivative some other nice properties, like being able to raise and lower in-
dices without effecting the derivative. Carroll (1997) derives the Christoffel
symbols and defines them as

Γν
µλ =

gνρ

2
(∂µgλρ + ∂λgρµ − ∂ρgµν) , (2.39)

where we can clearly see that if we are in a flat space-time with metric ηµν ,
the covariant derivative reduces to the partial derivative. This suggests that
the Christoffel connection is related to the intrinsic curvature. To proceed
quickly, then, we define the Riemann or curvature tensor as

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ, (2.40)

without motivation or derivation. From here we may define the Ricci tensor,
as the contraction

Rµν = Rλ
µλν , (2.41)

and the Ricci scalar, as the further contraction

R = Rµ
µ = gµνRµν , (2.42)

noting that R is only disambiguated by the number of indices. Now, we
may finally write Einstein’s Equations, the equations of motion for the met-
ric in general relativity,

Gµν = Rµν − 1
2
Rgµν = 8πGNTµν , (2.43)

where Gµν is called the Einstein tensor, GN is Newton’s gravitational con-
stant, and Tµν is the energy-momentum tensor. The energy-momentum
tensor describes the energy and momentum on the manifold completely, in
such a way that ∇µTµ

ν = 0 is the conservation of energy and momentum
in curved space-time (Carroll, 1997).

Before we leave general relativity, we should note that Equation (2.43)
can be derived from a field theory, using the Hilbert Action SH ,

Ltotal =
1

8πGN
LH + LM , (2.44)

where LH =
√
−gR (g denoting the determinant of the metric) and SM will

depend on the kind and distribution of matter and energy.



Chapter 3

Noncommutative Geometry in
String Theory

While noncommutative geometry in physics has been around since before
1947, only recently has significant interest developed because of connec-
tions with string theory. In 1998, several authors demonstrated that certain
situations in string theory directly engender noncommutative field theo-
ries (Douglas and Nekrasov, 2001). While there are many motivations for
studying noncommutative geometry in the context of string theory, this
chapter presents one example where noncommutative geometry arises nat-
urally from string theory.

3.1 A Brief Introduction to String Theory

String theory is an evolving theory; however, the original premise of string
theory is to replace particles in the standard model of physics with vibra-
tional modes of one-dimensional strings in 9 + 1 dimensions (nine spatial
dimensions and one temporal dimension). There can be both closed strings
and open strings with free ends. Closed strings have all of the properties of
the graviton, which is why string theory is a candidate theory for quantum
gravitation. Within this framework, there are six different types of string
theory, which were found to be different perturbative expansions of one
10 + 1 dimensional theory called “M theory” (Gauntlett, 1998).

Working in M theory proves difficult, so for our example we work in
“Type IIA” string theory. This string theory has both open strings and Dp-
branes. Dp-branes arise in string theory as a consequence of considering
the boundary conditions of the ends of open strings. Dp-branes, in partic-
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ular, are p-dimensional solitonic, extended solutions (strings are perturba-
tive solutions) of string theory, which open strings’ ends may have Dirichlet
boundary conditions on (the “D” stands for Dirichlet). Two D-branes in-
teract with each other when open strings connect them. The strings are di-
rected and come in pairs of opposing directionality (Gauntlett, 1998; Zwiebach,
2004).

3.2 Noncommutative Geometry from String Theory:
An Example

Our example is of N D0-branes interacting. We define N × N Hermitian
matrices Xi corresponding to each of the nine spatial dimensions such that
the jth diagonal element is the position of the D0-brane along the ith spatial
direction. The off diagonal elements are interaction terms between two D0-
branes. Writing Xi out, then,

Xi =


x1 c12 c13 · · ·
c∗12 x2 c23 · · ·
c∗13 c∗23 x3 · · ·

...
...

...
. . .

 ,

where xj is the position of the jth D0-brane along the ith direction (not to be
confused with xi, the spatial coordinates) and ckl is the interaction between
the kth and the lth D0-branes. The complex conjugate is the interaction
from the open string with the opposite orientation connecting them. Since
these are arbitrary Hermitian matrices, they will not necessarily commute.
Here, then, we have a noncommutative geometry since the coordinate di-
rections have become matrices.

More explicitly, the Lagrangian density for N D0-branes interacting
is (Myers, 1999)

L = −T0Tr

(
1− λ2

2
ẊiẊi − λ2

4
[Xi, Xj ][Xi, Xj ] +O(λ3)

)
, (3.1)

where Tr indicates the trace, Ẋi is the covariant derivative of Xi with re-
spect to time, λ is a parameter related to fundamental constants in string
theory, and T0 is the tension in a D0-brane. We use the variational principle
or the Euler-Lagrange equations to find that the equations of motion are

Ẍi = [Xj , [Xi, Xj ]], (3.2)
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where we immediately can see the noncommutative nature of these non-
linear equations of motion.

An interesting static solution to Equation (3.2) occurs if all but two of
the spatial dimensions commute and we take N to approach infinity. The
solution, in this case, is given by the Heisenberg algebra

[Xi, Xj ] = θijIN×N , (3.3)

where if i = j or either i or j is greater than 2 then θij = 0, otherwise θij

is constant and antisymmetric. IN×N is the N by N identity matrix. This
solution is an infinite noncommuting plane of D0-branes all interacting. An
interesting result of considering this solution is that it appears to describe
a D2-brane (Myers, 1999). This suggests the possibility that all D-branes
can be built up from D0-branes, where the branes form a noncommutative
geometry by the nature of their interactions. The noncommutative space
resulting from the matrix description of Dp-branes can be reformulated
through a noncommutative product on a space of functions on the com-
mutative plane. In this case, the noncommutative space is called the Moyal
plane which has an associated Moyal product, all of which is explored more
in the next chapter.





Chapter 4

Noncommutative Field
Theories

In this section, we take the classical field theory developed in Section 2.2
and put it on a noncommutative geometry. We then examine some of the
effects.

4.1 Star Product

The simplest way to study field theories on noncommutative geometry is
to introduce a noncommutative product and replace ordinary multiplica-
tion with it. Field theories of this kind will be called noncommutative field
theories, which should not be confused with nonabelian field theories (non-
abelian refers to the gauge group here). Although we want our product to
be noncommutative, we still require some basic properties:

• Associativity is preserved: (f ? g) ? h = f ? (g ? h).

• Bilinearity or distributivity: af ? bg = abf ? g, where a, b ∈ C and f, g
are functions of xµ.

• The Leibnitz product rule is preserved: ∂µ(f ? g) = ∂µf ? g + f ? ∂µg,

where ? denotes the noncommutative “star product”. Additionally, we
want our product to be continuously noncommutative with some parame-
ter θ, so that when θ = 0 our star product reduces to ordinary commutative
multiplication.

There are many possible candidate star products (infinitely many, in
fact) that can be implemented. Gracia-Bondı́a et al. (2002) suggest that
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some of the more complicated star products and their associated noncom-
mutative geometries should be explored; however, we are most interested
in the simplest products motivated by three algebras from physics. Star
products, in general, use an infinite number of derivatives to create non-
commutativity as we see in the three most commonly used ?-products (Vacaru,
2000)

f?g =


exp[ i

2
∂

∂ui θ
ij ∂

∂u′j ]f(u)g(u′)|u′→u, canonical structure;
exp[ i

2ukgk(i ∂
∂u′ , i

∂
∂u′′ )]f(u′)g(u′′)|u′→u′′ , Lie structure;

q
1
2
(−u′ ∂

∂u′ v ∂
∂v

+u ∂
∂u

v′ ∂
∂v′ )f(u, v)g(u′, v′)|(u′,v′)→(u,v), quantum structure.

(4.1)
The first product, called the Moyal product, is the simplest and most com-
monly used in the literature, but notice that the general structure of the
three star products is the same. Here the ui are coordinates and θij is the
noncommutative parameter. Note that in order for this to make sense,
the exponential must be expanded as a Taylor series, leading to an in-
finite number of derivatives. In fact, it is sufficient to specify the alge-
bra or the commutation relations to determine the general star product.
For example, the Moyal product corresponds with the Heisenberg algebra,
[xi, xj ]? = iθij , where [A,B]? = A ? B − B ? A is the commutator. When
Gracia-Bondı́a et al. (2002) suggest generalizations of the Moyal product,
they consider star products of the form [xi, xj ]? = icij

k xk, for constant c’s
for three or more spatial dimensions. Most treatments only use two non-
commuting spatial dimensions, as will we, because it illuminates the effects
of noncommutative geometry while adding as few complications as is pos-
sible. Making time a noncommutative variable will also not be considered
since it leads to effects that are not of interest. For a very thorough develop-
ment of different ?-products, see Sykora (2004). Additionally, we will focus
on the Moyal product for the same reason and because the Seiberg-Witten
Map is defined for the Moyal product (Seiberg and Witten, 1999). There
is another way to generalize the ?-product: we can allow θ to depend on
position θ(x) (Fosco and Torroba, 2004).

We can use the above examples of ?-products to illustrate some general
properties of the noncommutative parameter:

• If θµν = 0, f ? g = fg, exactly as required.

• If θij is symmetric, f ?g = g ?f . We will consider only anti-symmetric
θ with zero on the diagonal.

• x1 ? x2 = x1x2 + iθ12/2, and therefore [x1, x2]? = i
2(θ12 − θ21) = iθ,
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where in the last line, we introduce notation frequently used in the liter-
ature when there are only two noncommuting spatial dimensions (Pinzul
and Stern, 2004).

4.2 Effects of Applying the Star Product to Classical
Field Theories

At this point, we return to the classical field theory developed in section 2.2,
but replace ordinary multiplication with noncommutative ?-products. This
will have very significant consequences, the first is that we have to gener-
alize the calculus of variations to allow for an infinite number of deriva-
tives; standard treatments only consider functionals of up to one derivative.
Furthermore, the Euler-Lagrange Equations will no longer hold because
commutativity and only single derivatives are used in the derivation. The
derivation of Noether’s theorem similarly fails. Therefore, we must return
to the action principle to make any progress.

For example, we can take our two field system in Equation (2.25) intro-
duced in Section 2.2 and put it on a noncommutative geometry. Our new
Lagrangian density then is

L =
1
2
ηµν∂µϕa ? ∂νϕ

a +
m2

2
ϕa ? ϕa + kϕa ? ϕa ? ϕb ? ϕb, (4.2)

where we have introduced a quartic interaction term. If we complexify the
field as we did before, letting φ = ϕ1 + iϕ2 we already begin to see some of
the nontrivial effects of noncommutative geometry. The Lagrangian then
becomes

L =
1
2
ηµν(∂µφ†∂νφ +

1
2
[∂µφ, ∂νφ

†]) +
m2

2
(φ†φ +

1
2
[φ, φ†])

+
k

4
((φφ†)2 + (φ†φ)2 + φ(φ†)2φ + φ†(φ)2φ†),

(4.3)

where we have suppressed the ?’s for compactness and ease of notation.
Note that we still have the same symmetry φ′ = e−iαφ; however, Noether’s
theorem no longer applies, so it is no longer clear what the conserved cur-
rent is if there is one. In order to find the equations of motion, we must
return to the action principle δS = 0 for a variation φ′ = φ + δφ and
φ†

′ = φ† + δφ†. Assuming that we are using the Moyal product, then the
effect of the star product is null for quadratic terms (including the commu-
tator terms): we plug in with the definition of the Moyal star product, and
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then repeatedly integrate by parts, recalling that overall derivative terms
do not effect the action.

Applying the variation, we find terms in the perturbed action of the
form

φ ? φ† ? δφ ? φ†,

where the δφ or δφ† is not on the left or right side. In order to find the
equations of motion, it is necessary to factor out δφ and δφ†. If we use a
specific definition of the star product, the resolution is to Fourier transform
ϕ and vary the Fourier transformed action. At the end, one can inverse
transform back to get the equations of motion.

Other more fundamental issues arise when considering noncommu-
tative field theories. As a result of the infinite number of derivatives in
the action, the equations of motion are non-local. By non-local, we mean
that distant points affect each other directly. This is precisely the aspect of
noncommutative field theories that make them good for studying quantum
gravity, since quantum gravity seems to require non-locality. Additionally,
gauge transformations and global translations in a noncommutative direc-
tion are equivalent, which is similar to general relativity (Rivelles, 2004). As
we see in Chapter 5, there are other intriguing connections between non-
commutative field theories and gravity that arise when considering gauge
fields.



Chapter 5

The Seiberg-Witten Map

The Seiberg-Witten map is one of the most important transformations of
noncommutative geometries. It is a map from a noncommutative theory
with parameter θ to an equivalent field theory with a different noncommu-
tative parameter θ̄. Since commutative gauge theories are fairly well un-
derstood, the Seiberg-Witten map from noncommutative theories to com-
mutative theories with θ = 0 is an important tool to understanding non-
commutative geometry.

To begin, consider a noncommutative gauge theory with a scalar field
ϕ coupled to the electrodynamics gauge field in 3 + 1 dimensions. We can
write the total action as the sum

Stotal = SA + Sϕ = −1
4

∫
d4x F̂µν ? F̂µν +

1
2

∫
d4x D̂µϕ̂ ? D̂µϕ̂, (5.1)

where we are using ˆ to indicate the original noncommutative fields. The
field strength generalizes from the commutative field strength in Section 2.2
to F̂µν = ∂µÂν − ∂νÂµ − i[Âµ, Âν ]? and the covariant derivative becomes
D̂µϕ̂ = ∂µϕ̂− i[Âµ, ϕ̂]?, with gauge field Âµ. We let λ̂ be the gauge parame-
ter, that is, λ̂ generates the gauge transformation. This means we write the
gauge transformations as

δÂµ = D̂µλ̂, and δϕ̂ = −i[ϕ̂, λ̂]?. (5.2)

Given this example, we write the differential equations for the general
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Seiberg-Witten map without confusion,

δÂi(θ) = δθkl ∂Âi(θ)
∂θkl

= −1
4
δθkl{Âk, (∂lÂi + F̂li)}?, (5.3a)

δλ̂(θ) = δθkl ∂λ̂(θ)
∂θkl

=
1
4
δθkl{∂kλ, Al}?, (5.3b)

δF̂ij(θ) = δθkl ∂F̂ij(θ)
∂θkl

=
1
4
δθkl

[
2{F̂ik, F̂jl}? − {Âk, (D̂lF̂ij + ∂lF̂ij)}?

]
,

(5.3c)

where {A,B}? = A ? B + B ? A is the ?-product anti-commutator and
the variables without hats are the equivalent commutative field theory’s
variables (Seiberg and Witten, 1999; Rivelles, 2004). The second equalities
can be solved in principle to give the map, assuming the map exists; there
will be some theories which do not have a map to a commutative field
theory. Note that the differential equation and the map are both highly
nonlinear and so exact maps are rare. Seiberg and Witten (1999), however,
show that for a gauge field of degree one with constant F̂ the explicit map
for Equation (5.3c) is

F̂ =
1

1 + Fθ
F, (5.4)

where Fθ is the matrix product of F and θ.
For the noncommutative electrodynamics action, for example,

S = −1
4

∫
d4xF̂µν ? F̂µν ,

it is possible to use the exact Seiberg-Witten map to find that (Banerjee,
2004)

− 1
4

∫
d4x F̂µν ? F̂µν =

1
4

∫
d4x

√
det(1 + Fθ)

(
1

1 + Fθ
F

1
1 + Fθ

F

)
; (5.5)

however, this is a special case. Generally the Seiberg-Witten map will be
expanded in θ.

Returning to the action in Equation (5.1), we write the Seiberg-Witten
map to the equivalent commutative theory as an expansion in θ by apply-
ing the Moyal product definition of the star product (Rivelles, 2004; Seiberg
and Witten, 1999; Rivelles, 2003):

Âµ = Aµ −
1
2
θαβAα(∂βAµ + Fβµ) +O(θ2), (5.6a)

ϕ̂ = ϕ− θαβAα∂βϕ +O(θ2). (5.6b)
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The Seiberg-Witten map in Equation (5.6) makes our commutative field the-
ory have the conventional gauge transformation δAµ = ∂µΛ and δϕ = 0.
Applying Equation (5.6) to the action, we find the equivalent commutative
theory has actions, to first order in θ,

Sϕ =
1
2

∫
d4x

[
ηµν∂µϕ∂νϕ + 2ητνθµαFατ

(
−∂µϕ∂νϕ +

1
4
ηµνη

σρ∂σϕ∂ρϕ

)]
,

(5.7)
and

SA = −1
4

∫
d4x

[
FµνFµν + 2θµρF ν

ρ

(
F σ

µ Fσν +
1
4
ηµνF

αβFαβ

)]
, (5.8)

where indices are raised and lowered with the flat metric η and θ = 0 col-
lapses all of the ?’s to ordinary multiplication.

The action for a field theory on a curved manifold, with a gravitational
background, is of the form

Sg,ϕ =
∫

dτ
√
−gL (gµν , ϕ, ∂µϕ),

where g is the determinant of the metric gµν . If we consider ϕ coupled to
the gravitational background with only a kinetic term, then

Sg,ϕ =
1
2

∫
d4x

√
−ggµν∂µϕ∂νϕ, (5.9)

where we add 1/2 in the front with the effect of changing the metric slightly
and put the action in four dimensions explicitly. Comparing Equation (5.9)
and Equation (5.7), it may not be obvious that it is possible to find a metric
gµν such that the two describe the same action; however, Rivelles (2004)
demonstrates that this is possible. We begin by considering a perturbation
from the flat metric gµν = ηµν(1 + h) + hµν for some traceless, symmetric
hµν . Plugging into Equation (5.9), after some work we find

Sg,ϕ =
1
2

∫
d4x(ηµν − hµν + hηµν)∂µϕ∂νϕ. (5.10)

In this form, with care, we can find hµν that will make Sg,ϕ = Sϕ:

hµν = θµαF ν
α + θναF µ

α +
1
2
ηµνθαβFαβ , (5.11)

with h = 0, so we do not need the third term in the definition of gµν . Note
that the new metric is a function of the noncommutative parameter and the
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field strength. For θ = 0 the metric becomes appropriately flat, whereas the
metric is an explicit function of the field strength, so we say that the gauge
field is coupled to the gravitational background for the scalar field ϕ.

It would be nice if we could express the action in Equation (5.8) entirely
in terms of the metric gµν , but unfortunately this is not possible (Rivelles,
2004). It is still possible, however, to write it in the form

SA = −1
4

∫
d4x (FµνFµν + hµνF ρ

µ Fρν), (5.12)

so that Aµ, the gauge field, both couples to the gravitational background
and the scalar field ϕ (Rivelles, 2004, 2003).

To confirm that this metric actually describes gravity and is not simply
on some flat, nondynamical, or other manifold, we need to calculate the
Riemann and Ricci tensors and the Ricci scalar. The calculations proceed
mechanically to produce (Rivelles, 2003)

Rµνρσ =
1
2

[
−θα ∂[µ ν]∂

αFσρ + θρα∂α∂ F[µ ν]σ + θσα∂ρ∂ F α
[µ ν]

+θαβ
(
ησ ∂[µ ν]∂ρFαβ − ηρ ∂[µ ν]∂σFαβ

)]
, (5.13)

and

Rµν =
1
4

(
θ α
µ ∂α∂βFβν + θ α

ν ∂α∂βFβµ +
1
2
ηµνθ

αβ�Fαβ

)
, (5.14)

and
R =

1
4
θαβ�Fαβ . (5.15)

In Equations (5.13), (5.14), and (5.15), some new notation has been intro-
duced. The brackets around the indices [] (not to be confused with the com-
mutator) mean the antisymmetrization of the expression with respect to the
indices in the brackets. We can rewrite the first term of Equation (5.13), for
example, as

θα ∂[µ ν]∂
αFσρ =

1
2

(θαµ∂ν∂
αFσρ − θαν∂µ∂αFσρ) . (5.16)

The second new notation is the D’Alembertian � = ∇µ∇µ, which in this
case is ∂µ∂µ since we are still using the Minkowski metric (Carroll, 1997). It
can be shown that the Ricci tensor and scalar are both zero, but the Riemann
curvature tensor is non-zero, meaning that the metric does not describe a
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flat space-time. Furthermore, since the Riemann tensor and the metric de-
pend on the field strength Fµν , which is a dynamical variable, the curvature
is dynamical. In particular, the metric describes a gravitational plane wave.
Consider a solution in the absence of matter in the form Fµν = k F[µ ν] ,
where kµ is a null tensor (kµkµ = 0) and kµFµ = 0. In this case, the Rie-
mann tensor satisfies the plane wave equation ∂αRµνρσ = kαRµνρσ (Riv-
elles, 2003, 2004). This exciting result that some noncommutative field theo-
ries are equivalent to commutative field theories with a gravitational back-
ground coupled to the gauge field, is derived only to first order in θ. One
may doubt that this result will hold for expansions to higher orders in θ,
but Rivelles (2004) confirms that one can still rewrite the commutative the-
ory in terms of a non-flat metric to quadratic order in θ and that it seems
the same procedure should work to all orders in θ. In fact, Banerjee (2004)
uses the exact Seiberg-Witten map to rewrite the noncommutative electro-
dynamics action (with and without source terms) as a commutative field
theory on a new nontrivial metric.





Chapter 6

More General Transformations
in Noncommutative Field
Theory

In addition to the Seiberg-Witten map, on the noncommutative plane an-
other interesting transformation exists. If we consider a noncommutative
field theory with parameter θ, then we can reformulate the noncommu-
tative plane algebraically as R3 ((x1, x2, θ), where xi are noncommuting
operators which generate the plane) modded out by the equivalence re-
lation

[xi, xj ]− iθεij = 0, (6.1)

where εij is the Levi-Civita symbol which is 1 if its indices are exchanged an
even number of times and −1 if its indices are exchanged an odd number
of times and so is totally anti-symmetric. Examining Equation (6.1), we see
that while dilation of the coordinates and rescaling of θ on their own do not
leave the commutation relation unchanged, a simultaneous dilation of the
coordinates and rescaling of θ that leaves Equation (6.1) unchanged should
exist (this is an automorphism of the algebra). Such a transformation, then,
is a symmetry of the algebra and it is possible to make the transformation
such that it is a symmetry of all gauge invariant (physical) quantities. This
mapping is distinct from the Seiberg-Witten map: the Seiberg-Witten map
is a rescaling of θ and a simultaneous transformation of the gauge field and
gauge parameter, with no dilation of the coordinates. In particular we are
considering a mapping of the form

ϕ(x, θ) 7→ ρϕ̇(x, θ) = ϕ(ρx, ρ2θ). (6.2)
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The generator of the transformation is given by

D = xi∂i + 2θ∂θ, (6.3)

where ∂θ = ∂
∂θ analogously to ∂i. We can confirm this by applying D to

the left hand side of Equation (6.1) and finding that it does indeed leave
the commutation relation invariant. We choose this D because it obeys the
Leibnitz rule as well (Pinzul and Stern, 2004).

With a transformation of this form we have a symmetry of the action.
We might imagine a noncommutative parameter that depends on time,
θ(t), which in string theory corresponds to time varying magnetic fields.
Assuming that the dynamics of θ(t) are specified, we can write an action of
the form

S =
∫

dtd2x L (x, t) =
∫

dtd2x

∣∣∣∣dθ

dt

∣∣∣∣L (x, θ) =
∫

dθd2x L (x, θ), (6.4)

where we have performed a change of variables. If we suppose a massless
quartic potential scalar field theory,

L =
1
2
∂iϕ∂iϕ +

g

4!
ϕ4, (6.5)

then we can use Noether’s Theorem to find the conserved current associ-
ated with the transformation’s symmetry. Note that we can apply Noether’s
Theorem because of the algebraic reformulation; we are no longer using
a noncommutative product on a space of functions on the commutative
plane. For this Lagrangian density, the conserved current is

ji = −ηij∂jϕ(1 + D)ϕ +
1
2
xi∂jϕ∂jϕ +

g

4!
xiϕ4, (6.6)

jθ = 2θ

(
1
2
∂jϕ∂jϕ +

g

4!
ϕ4
)

,

with conservation law ∂ij
i + ∂θj

θ = 0 (Pinzul and Stern, 2004). The con-
served current is not on the noncommutative plane but on R3, the space
of noncommutative planes parameterized by θ. Pinzul and Stern (2004)
demonstrate that this conservation law does not correspond to a conserva-
tion law in the commutative plane by looking at the limit as θ approaches
zero.



Chapter 7

Discussion

We can generalize classical field theory to noncommutative geometries where
the coordinates do not commute. The consequences of moving from a com-
mutative field theory to an analogous noncommutative field theories, while
not fully understood, include: there is no longer a general formula for the
equations of motion of the fields, the connection between symmetry and
conservation laws is no longer clear, and it seems that, at least sometimes,
moving to a noncommutative field theory is equivalent to moving to a
commutative field theory with a gravitational background. In particular,
we found that the noncommutative electrodynamics action is equivalent to
a commutative theory on a Riemannian manifold with metric describing
gravitational plane waves. Finally, we saw a more algebraic approach to
noncommutative geometry where instead of using noncommutative prod-
ucts formed by infinite series of derivatives, we considered R3 modded out
by an equivalence relation corresponding to a commutation relation. This
meant that Noether’s theorem could still be used to find the conserved cur-
rent associated with symmetries.

At this time, it seems research into noncommutative geometry could
benefit from a noncommutative analog of Noether’s theorem that relates
general symmetries of noncommutative field theories to conservation laws.
Such a result may depend on the noncommutative algebra considered and
a more abstract approach such as the approach taken in Sykora (2004) or
Pinzul and Stern (2004). Another potential avenue of research would be
to investgate how general the connection between noncommutative field
theories and commutative theories on gravitational backgrounds is: per-
haps, finding the form noncommutative theories may take which will lead
to commutative analogs that can be expressed in terms of a non-flat metric,
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or finding the range of possible gravitational backgrounds that can arise
from the Seiberg-Witten map of classical field theories. Another related
issue is whether such a mapping is possible with nonabelian noncommu-
tative gauge theories, a topic that was not explored in this paper.
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