
Claremont Colleges Claremont Colleges

Scholarship @ Claremont Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2005

Permutation Routing in the Hypercube and Grid Topologies Permutation Routing in the Hypercube and Grid Topologies

Tim Alan Carnes
Harvey Mudd College

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses

Recommended Citation Recommended Citation
Carnes, Tim Alan, "Permutation Routing in the Hypercube and Grid Topologies" (2005). HMC Senior
Theses. 168.
https://scholarship.claremont.edu/hmc_theses/168

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator
of Scholarship @ Claremont. For more information, please contact scholarship@claremont.edu.

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/168?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@claremont.edu

Permutation Routing in the Hypercube and
Grid Topologies

Timothy Alan Carnes

Ran Libeskind-Hadas, Advisor

Francis Edward Su, Reader

May 6, 2005

Department of Mathematics

Abstract

The problem of edge-disjoint path routing arises from applications in dis-
tributed memory parallel computing. We examine this problem in both
the directed hypercube and two-dimensional grid topologies. Complexity
results are obtained for these problems where the routing must consist en-
tirely of shortest-length paths. Additionally, approximation algorithms are
presented for the case when the routing request is of a special form known
as a permutation. Permutations simply require that no vertex in the graph
may be used more than once as either a source or target for a routing re-
quest. Szymanski conjectured that permutations are always routable in the
directed hypercube, and this remains an open problem.

Contents

Abstract iii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Known Results . 3

2 NP-Completeness 5
2.1 The Class P . 5
2.2 The Class NP . 6
2.3 NP-completeness . 7

3 The Complexity of Hypercube Routing 9
3.1 L3-SAT . 9
3.2 Reduction to Hypercube . 10
3.3 Convey Apparatus . 12
3.4 Embedding . 12
3.5 Extension of Reduction . 16

4 The Complexity of Grid Routing 19
4.1 The Graph . 19
4.2 The Reduction . 19

5 Approximation Algorithms 23
5.1 Binary Representation . 23
5.2 Multistage Interconnection Network 24
5.3 Routing Two Permutations . 26
5.4 Routing One Permutation . 27
5.5 A 2-Approximation Algorithm 29

6 Future Work 31

vi Contents

Bibliography 33

List of Figures

2.1 Abstract sketch of NP-completeness reduction 7

3.1 The variable-setting gadget for the hypercube reduction . . . 11
3.2 The clause-checker gadget for the hypercube reduction . . . 12
3.3 The basic convey apparatus construction 13
3.4 Convey apparatus linking variable-setter to clause-checker . 14
3.5 How paths may be swapped so that unit length requests can

block edges . 16

4.1 Setup for blocked edges in the grid reduction 21
4.2 Attempted routings for unsatisfiable instance of grid problem 21

5.1 The MIN induced from the three-dimensional hypercube. . . 25
5.2 Edges used in the created MIN to route a single permutation 28

Chapter 1

Introduction

Distributed memory parallel computers comprise a collection of proces-
sors which are interconnected via some network topology. Processors fre-
quently need to send messages to each other through this network. Al-
though a complete graph is a theoretically ideal topology, since it permits
direct communication between all nodes, the construction of such a topol-
ogy is impractical due to physical constraints on the degree of each node
and the number of connections (edges). Consequently other topologies are
generally used and messages must now be routed from one node to another
via a path.

One method of passing information is to divide the messages up into
small packets, which then travel through the processor network. Some-
times a packet will get stalled at an intermediary processor while waiting
for a particular connection link to become free. This approach does not
work so well, however, when there is a need to transmit great quantities of
information between processors. At this point it becomes necessary to ac-
tually establish a communication path between two processors, and gives
rise to the edge-disjoint routing problem.

1.1 Problem Statement

The edge-disjoint routing problem is given a graph G = (V,E), and p re-
quest pairs with elements in V , find disjoint paths connecting each pair
such that no edge is used by more than one path. For a given request pair,
we generally refer to the first element as the source, and the second element
as the target. Note that this problem has many related variants, which arise
from constraining the parameters of the problem more tightly. In partic-

2 Introduction

ular we can specify more precisely what type of graph we are working
on, whether it is directed or undirected, what types of request pairs are
allowed, and what kinds of paths we can use to connect them.

1.1.1 Type of Graph

One particular type of graph that is studied in this problem is the hyper-
cube, which is motivated by the practical applications. The hypercube is
often used as the topology of a parallel computer due to many nice prop-
erties that it possesses. For example, the maximum distance between two
vertices is fairly small as is the degree of each vertex, both being equal to
the dimension of the cube. Another topology that can be considered is the
two-dimensional grid, which has a constant maximum degree of four. This
type of graph is also useful when considering VLSI routing problems.

1.1.2 Directed vs. Undirected Graphs

We can consider both directed and undirected graphs. Note that we can
easily transform any undirected graph into a similar directed one, by sim-
ply replacing each undirected edge with two oppositely-oriented directed
edges. In particular, this is what will be done when considering the directed
hypercube.

1.1.3 Specifying Request Pairs

We may also specify more precisely what kinds of request pairs are al-
lowed. A partial permutation is a set of request pairs where a vertex ap-
pears at most once as a source and at most once as a target. When each
vertex appears exactly once as source and once as target then we have a
permutation. Note that for a permutation there must be exactly p = |V |
request pairs. More generally, when each vertex appears at most h times as
source and at most k times as target, we refer to the request pairs as an h-k
request. In addition we can constrain the request pairs to be within some
maximum distance in the graph.

1.1.4 Types of Paths Allowed

One final possibility is to only allow certain types of paths to connect the re-
quest pairs. We may define the length of a path as the number of edges that
it contains, and we consider the set of all paths connecting a given request

Known Results 3

pair. In this set we can find the smallest length of any path, say m. Then
in the solution to the problem we may specify that the path connecting this
request pair must have length m. By doing this for all the request pairs we
can enforce the minimality of all the paths. This constraint can be relaxed
so that each path is allowed to be within some constant factor of minimal.
More specifically, for some constant c a given path will be allowed to be of
length cm or less.

1.2 Known Results

Szymanski conjectured that there is always a routing for any permutation
on a directed hypercube, where each path is of minimal length. This was
shown to be false in the 4-dimensional hypercube when a counterexample
was found by Lubiw (1990). However, the weaker conjecture, being that
any permutation can be routed in a hypercube where the path lengths are
not constrained, remains open. It was shown by Gu and Tamaki (1997)
that permutations can always be routed if each directed edge is duplicated.
More specifically, if we allowed each edge to be used by up to two paths,
instead of just one, then we could always route permutations.

Due to the practical origins of these problems, it is important to consider
the speed of finding edge-disjoint paths, not just considering if they exist
or not. Several NP-completeness proofs have been established to this end.
On the directed hypercube the problem of finding minimal edge-disjoint
paths is NP-complete, even when all the pairs are constrained to be at most
distance 4 from each other. The undirected case is also NP-complete, even
when the pairs are made to be at most distance 3 from each other Gonzalez
and Serena (2002). In both the undirected and directed cases if we relax
the minimal path constraint the problems remain open. However, if the
distance between each pair of vertices is at most 2, then the problem can
be solved in polynomial time if every path is forced to be minimal. If the
paths are not forced to be minimal, then even this problem is open.

Chapter 2

NP-Completeness

Before we can discuss proving the complexity of the problems we are con-
cerned with, we must first introduce the concept of NP-completeness. In
this chapter we will give a brief explanation of several complexity classes of
problems, leading up to NP-completeness. Readers interested in learning
more may look at Garey and Johnson (1990) or Sipser (1996).

2.1 The Class P

There are many ways in which one can categorize the difficulty of a prob-
lem. One natural approach is to classify a problem by how much time it
takes to solve. Of course, we must also take into account the size of the
problem instance. Take for example the problem PATH, in which we are
given a directed graph as well as two vertices in that graph, s and t. The
objective is to decide whether or not there is a path from s to t. Naturally
when determining how much time it takes to solve, we must consider that
a graph with three vertices will take much less time to solve than a graph
with 100 vertices.

To this end, we treat the amount of time it takes to solve a problem as a
function of the input size. This notion is a little ambiguous as different com-
puters have different processing speeds, which is why computer scientists
use the concept of a Turing machine. A Turing machine is a very simplis-
tic computer that operates by reading and writing symbols off of a single
tape, that nevertheless is capable of performing any computable task. Time
is more precisely defined as the number of steps a Turing machine will take
to solve a given problem instance. However, regarding the amount of time
an algorithm takes as the number of steps it has ends up being equivalent

6 NP-Completeness

to this definition. The class P is simply all problems that have algorithms
which will solve them, such that the running time is bounded by some
polynomial of the input size.

Let us go back to our example of the PATH problem. We can solve
this with a breadth-first search algorithm that works as follows. First we
mark the vertex s. Now on each subsequent step we examine all edges
leaving marked vertices, and if any of them connect to unmarked vertices
we will mark them. We keep doing this until we can no longer mark any
additional vertices. Once we stop, we simply check to see whether or not t
is marked. The number of times this algorithm scans the edges is bounded
by the number of vertices, since each time one vertex is marked at least. The
time it takes to scan the edges is bounded by the number of edges, so this
problem takes a polynomial amount of time to solve. Thus PATH ∈ P. The
reason that the class P is important is because the problems that it contains
approximately corresponds with the problems that can be efficiently solved
on a computer.

2.2 The Class NP

There are many interesting problems for which polynomial-time algorithms
have not been discovered. This could be because the solution is still wait-
ing to be found, or it could be because these problems just are that diffi-
cult. The class NP contains a multitude of these interesting problems. The
name stands for nondeterministic polynomial time, which is because all
problems in this class can be solved by a nondetermistic Turing machine
in polynomial time. The concept of nondeterminism is subtle, and takes a
fair amount of space to adequately explain. For the sake of conciseness, we
will instead use a simpler, equivalent definition. The problems in NP are
those which can be verified in polynomial time. That is, given a solution
“certificate” there is an algorithm that can check its validity in polynomial
time. Note that here we are still measuring polynomial time with respect
to the input size, not the certificate size.

As all the problems in P can be solved in polynomial time, they can
clearly be verified as well, so we know P ⊆ NP . However, it is not know
whether or not P = NP , and this is actually one of the most important
open questions in computer science to this day. An example of a problem in
NP is 3SAT. For this problem we are given a boolean formula in conjunctive
normal form where each clause has exactly three literals. Recall that a literal
is just a boolean variable or its negation. A clause is a group of literals

NP-completeness 7

Figure 2.1: Reducing problem A to problem B

connected with ORs. Conjunctive normal form refers to a group of clauses
connected with ANDs. The objective of this problem is simply to see if there
is a truth assignment to the variables such that the formula is satisfied. We
could simply have a solution certificate that gives a truth assignment to the
variables. Then in polynomial time we can easily check to see that each
clause has been satisfied. Thus 3SAT ∈ NP.

2.3 NP-completeness

We are nearly ready to define what it means for a problem to be NP-comp-
lete, but before we do we must discuss the notion of reducibility. Suppose
we have two decision problems A and B, which are both contained in NP.
By decision problem, we simply mean that the answer to every problem in-
stance is either “yes” or “no”. Now, we can reduce problem A to problem
B if we can transform every problem instance of A to a problem instance
of B, such that the transformation remains faithful. That is to say the an-
swer to the instance of A will match the transformed instance of B, as in
Figure 2.1. Moreover, we would like to be able to reduce problems in a
polynomial amount of time. Notice that if we can do this, then we have

8 NP-Completeness

shown that problem B is at least as hard as problem A. This is because
if we obtain a polynomial-time solution to B, then we can also solve A in
polynomial-time by first reducing to B and then solving.

A problem is NP-complete if it satisfies two conditions. First, it must
be contained in NP. Secondly, every single problem in NP must be poly-
nomial time reducible to it. While at first it may seem impossible to prove
that any problem satisfies this definition, a breakthrough was made when
3SAT was proven to be NP-complete by Cook (1971). After this thousands
of problems were found to be NP-complete every year. Notice that once
we have a problem that is NP-complete, it becomes much simpler to show
a given problem, X , is also NP-complete. Now we just need to show a
polynomial-time reduction from an NP-complete problem to X . Once we
do this, we can reduce every problem in NP to X by first reducing it to the
NP-complete problem, which we know we can do. Once we do this, we just
use the reduction we found between that problem in X , and we’re done.
Thus Cook’s proof laid the foundation work for all future NP-completeness
results.

Observe now that if we could find a polynomial-time solution to even
one NP-complete problem, then that would show that every problem in
NP has a polynomial-time solution. Thus showing a given problem is NP-
complete is nearly equivalent to showing that there is no fast way to solve
it. By relating it to an entire class of problems, we can demonstrate that this
problem is at least as hard as a great number of problems that very smart
people have been unable to solve for centuries.

Chapter 3

The Complexity of Hypercube
Routing

In this chapter, we will demonstrate that the problem of edge-disjoint per-
mutation routing on a hypercube where all paths are of minimal length is
NP-complete. To do this, we will show a reduction from L3-SAT, a variant
of 3SAT, which was defined in Chapter 2. In addition, we will also show
how to generalize this reduction so that it will work for the problem where
the paths can be of arbitrary length. One drawback to this generalization
is that it no longer allows us to restrict our routing requests to be permuta-
tions.

3.1 L3-SAT

We begin by defining L3-SAT. For a given instance of L3-SAT, we are given a
boolean formula in conjuctive normal form, just as in 3SAT. Here however,
each clause may consist of either two or three literals. Furthermore, each
literal can only appear twice in the entire expression. Note, this means that
each variable can appear up to four times: twice in its original form, and
twice in its negated form.

We will now quickly demonstrate that L3-SAT is equivalent to 3SAT,
namely that it is also NP-complete. First, it is clearly in NP, since we can
request a solution certificate that is simply the valuation of the boolean
variables, and check to see that it satisfies all of the clauses in polynomial
time.

Now, for a given instance of 3SAT, we check to see if there are any liter-
als that appear more than twice in the expression. If there are, we pick one,

10 The Complexity of Hypercube Routing

and call the corresponding variable u. We then take the maximum of the
number of times that u appears, and the number of times that u appears,
and call that `, where ` ≥ 3. Next, we introduce ` new variables, which we
will denote a1, a2, . . . , a` and add in the ` additional clauses

{a1, a2}, {a2, a3}, . . . , {a`−1, a`}, {a`, a1}.

Notice here that if a1 is set to true, then so must all of the other new vari-
ables in order to satisfy the clauses above. Similarly, if a1 is set to false, then
all of the ai must be set to false. Also observe that each literal in the above
set of clauses appears exactly once. Now we can replace each occurence of
the variable u with one of the ai. The first time that u appears we replace
it with a1, or with a1 if it is u. In the same way we replace all the other
occurences of u with the variables a2 through a`.

After repeating this process for all literals that appear in three or more
clauses, we end up with an instance of L3-SAT. This instance is satisfiable if
and only if the original 3SAT instance was satisfiable, since we only replace
a variable with a set of variables that all must evaluate to the same value.
Therefore L3-SAT is NP-complete.

3.2 Reduction to Hypercube

Having established the NP-completeness of L3-SAT, we are now ready to
show the reduction found by Gonzalez and Serena (2002) for the prob-
lem of permutation routing in the hypercube with minimal-length paths.
This reduction uses three principle constructions, or gadgets. These are
the variable-setter, clause-checker and convey apparatus. Each of these gad-
gets will be discussed independently, and then we will show how they are
connected and embedded within the hypercube.

3.2.1 Variable-Setter

For each variable in the L3-SAT instance, we will create a variable-setter
gadget as shown in Figure 3.1. We see that the gadget simply consists of
a request pair, (s, t) that has distance two. Notice that there are only two
possible shortest paths for this request pair. On each possible shortest path
from s to t, we will associate the two edges with one valuation of the vari-
able. Thus, if one path is chosen, we can consider the variable set to true,
and if the other is chosen we will consider it set to false.

Reduction to Hypercube 11

Figure 3.1: A variable-setting gadget with only two possible shortest paths
from s to t.

3.2.2 Clause-Checker

The clause checker is as shown in Figure 3.2, and consists solely of one
request pair of either distance two or three, depending on whether there
are two or three literals in the clause. Each of the edges, (bi, t), where i ∈
{1, 2, 3}, will be associated with one of the literals in that clause. For the
literal corresponding to (bi, t), we will find the edge in the variable-setting
gadget that corresponds to the negation of that literal. This edge will then
be linked to (bi, t) by the convey apparatus, which will be discussed in the
following section. The convey apparatus simply ensures that if the edge
in the variable-setting gadget is used, which means that this literal will not
satisfy the clause, then the edge (bi, t) will also be used. This means that
to connect s to t in the clause checker gadget, we will no longer be able to
use the (bi, t) edge. Notice then that if all the (bi, t) edges are used up, there
is no way to route s to t anymore using a shortest-length path. Thus the
clause checker is only routable if at least one literal in the clause is satisfied.
Observe that the two edges per literal in the variable-setting gadget suffice,
since we are working with L3-SAT, which does not permit any literal to
appear more than twice.

12 The Complexity of Hypercube Routing

Figure 3.2: The clause-checker gadget consisting only of the request pair
(s, t).

3.3 Convey Apparatus

The convey apparatus consists simply of a chain of requests that each have
distance two. These are designed to link an edge A to an edge B, in such a
way as to force B to be used if A is used. The basic construction can be seen
in Figure 3.3. As can been seen in the figure, there are two possible shortest
paths from s1 to t1. However, if A is already being used, then this path must
go through t2 instead. Likewise the path from s2 to t2 must go through t3.
This continues even through the bends until eventually the path from sk to
tk is forced to use edge B.

3.4 Embedding

The only thing that remains to be done is to somehow embed all of these
gadgets in the hypercube. In order to make this simpler, we will be refer-
ring to the binary representation of the hypercube. That is, we will think of
each vertex in the n-dimensional hypercube as a binary number of length
n. The vertex set will simply be all possibly binary numbers of length n.
Finally, two vertices will have two oppositely-oriented directed edges be-

Embedding 13

Figure 3.3: The basic convey apparatus construction. If edge A is being
used, then the series of requests will force edge B to be used as well.

tween them if and only if their two binary representations only differ in
one place.

For an L3-SAT instance with v variables and k clauses, we will work in
a hypercube of dimension dlog2(v + 1)e + dlog2(k + 1)e + 12. Notice that
the number of vertices in this hypercube is of order O(vk) so this remains a
polynomial transformation. Now we will label the bits of the binary repre-
sentations for the vertices as follows

D0D1 . . . Ddlog2(v+1)e E0E1 . . . Edlog2(k+1)e FG α0α1α2α3 IJK β0β1β2

The bits D0D1 . . . Ddlog2(v+1)e will represent the binary value of the variable
index, counting from one instead of zero. The bits FG will be used to indi-
cate the position within a variable gadget. The αi bits will be used to indi-
cate which edge in the variable-setting gadget we are linking. Similarly, the
bits E0E1 . . . Edlog2(k+1)e will denote the binary value of the clause index,
counting from one. The bits IJK are used to represent the position within
the clause-checker gadget, which may be either two- or three-dimensional.
Finally, the βi bits will be used to indicate which edge in the clause-checker
we are linking to.

The main consideration in the construction of the convey apparatus is
ensuring that no two convey apparatuses intersect. To accomplish this, we

14 The Complexity of Hypercube Routing

ensure that every vertex in the apparatus contains a unique identification
of either the edge in the variable-setting gadget being linked, or the edge
in the clause-checker gadget being linked. Since neither of these two edges
will be linked by any other convey apparatus, this will suffice. To see how
this works, we will show how an edge in the variable-setting gadget for the
ith variable will be connected to an edge in the clause-checker gadget for
the jth clause.

An illustration of how the convey apparatus links the variable-setter
to the clause-checker can be seen in Figure 3.4. Note that by labelling the

Figure 3.4: The convey apparatus linking edge 0 in the ith variable-setting
gadget to edge 0 in the jth clause-checker gadget.

edges in the variable-setter, we can use the αi bits to indicate what edge we
are linking by simply changing αi to a one, where i is the number of the
edge in question. Thus our path begins with the following binary repre-
sentations of vertices. Note that by bitrep(i) we are referring to the binary
representation of the integer i, and by bitrep(v) we are referring to the bi-

Embedding 15

nary representation of vertex v within its respective gadget. Finally, by (B),
we simply mean that the bit B is a one, and any bits that are not explicitly
mentioned are assumed to be set to zero. Using this notation we have

s = bitrep(i) . . . bitrep(s) . . .

t1 = bitrep(i) . . . bitrep(t1) . . .

s1 = bitrep(i) . . . bitrep(s)(α0) . . .

t2 = bitrep(i) . . . bitrep(t1)(α0)

As this beginning allows for unique identification of the edge we are link-
ing in the variable-setter, we may now begin adding ones as needed until
the vertices also uniquely identify the edge in the clause-checker. This hap-
pens when we reach the vertices

s`−1 = bitrep(i)bitrep(j)bitrep(s)(α0) . . . bitrep(b1)(β0) . . .

t` = bitrep(i)bitrep(j)bitrep(t1)(α0) . . . bitrep(b1)(β0) . . .

s` = bitrep(i)bitrep(j)bitrep(s) . . . bitrep(b1)(β0) . . .

s`+1 = bitrep(i)bitrep(j)bitrep(t1) . . . bitrep(b1)(β0)

Note that we are now able to remove the α0 bit because the vertices are
now referencing the edge in the clause-checker. Now we would like to
begin changing the bits we no longer want to zero, but there is a slight
complication. We know bitrep(s) and bitrep(t1) are going to have different
numbers of ones, so we cannot reduce them both to zero at the same time.
However, by changing the direction of the convey apparatus we can effec-
tively change the discrepancy from the representations of the vertices in the
variable-setter to the representations of the vertices in the clause-checker.
Thus we can arrive at the vertices

tm−1 = bitrep(i)bitrep(j) . . . (α0) . . . bitrep(b1)(β0) . . .

sm = bitrep(i)bitrep(j) . . . bitrep(b1)(β0) . . .

tm = bitrep(i)bitrep(j) . . . (α0) . . . bitrep(t)(β0) . . .

tm+1 = bitrep(i)bitrep(j) . . . bitrep(t)(β0)

Now we can change direction once again, and all that remains is to remove
all the remaining ones that are not part of the binary representation of b1 or
t. The only consideration we must make is to remove the β0 bit last, as we
need this to uniquely identify the edge in the clause-checker. This brings

16 The Complexity of Hypercube Routing

us to the end with the vertices

sr−1 = bitrep(j) . . . bitrep(b1)(β0) . . .

tr = bitrep(j) . . . bitrep(t)(β0) . . .

b1 = sr = bitrep(j) . . . bitrep(b1)

Thus we have linked edge (s, t1) to edge (b1, t) in the manner desired, and
every vertex in the convey apparatus identifies at least one of these edges,
and so is guaranteed to be unique.

3.5 Extension of Reduction

This reduction can be extended to the problem that allows paths to be of
arbitrary length quite simply. The main observation to be made is that for
a routing request, (s, t), of distance one, we can assume that the routing
satisfies this request using the single edge connecting source to sink. If
there is a routing where this is not the case, then we can show how we
can transform it into a routing in which it is. If the edge connecting the
source to the target is not being used at all, then we can simply remove
whatever path is currently connecting (s, t) and replace it with that edge.
The only remaining possibility is that some other path is making use of this
edge, which is forcing the path p connecting (s, t) to go around some other
way. In this case we may simply swap the paths, as is demonstrated in
Figure 3.5. Whatever path was previously using the edge, (s, t), will now

Figure 3.5: Paths may be swapped so that routing requests of distance one
are satisfied by paths of length one.

when reaching s, follow the path p to get to t, and then continue on as

Extension of Reduction 17

before. This frees up the edge, (s, t), so that it may be used to satisfy the
unit distance routing request.

This idea allows one to effectively block edges my making routing re-
quests over the edges that are desired to be blocked. So to reduce L3-SAT
to routing on the hypercube such that arbitrary length paths are allowed,
we can use the same reduction as above. Now we simply block the neces-
sary edges such that all of the paths are forced to be shortest length. The
downside to this approach is that it requires us to make vertices be the
sources and targets of more than one request, and so we no longer retain
the permutation constraint.

Chapter 4

The Complexity of Grid
Routing

As was mentioned in Chapter 1, another important topology to consider
for these routing problems is the two-dimensional grid. The grid can be
thought of simply as a rectangular lattice over the cartesian coordinate
plane. This graph has the nice property of having a constant maximum
degree, namely four, while maintaining a fairly small diameter.

We will show that the edge-disjoint routing problem with shortest paths
is NP-complete on the grid using the reduction from Gonzalez and Serena
(2002). It is also true that the problem when relaxed to arbitrary-length
paths is also NP-complete, as can be seen from Kramer and van Leeuwen
(1984), though a few slight modifications to their logic are needed.

4.1 The Graph

First we need a more formal definition of the grid, in order to describe the
reduction more easily. In general, a grid with dimensions nx by ny is a
graph, G = (V,E) where each vertex is labelled by a pair of integers, and
(x, y) ∈ V if 0 ≤ x ≤ nx and 0 ≤ y ≤ ny. The grid is undirected, and there
is an edge {(x1, y1), (x2, y2)} ∈ E provided |x1 − x2|+ |y1 − y2| = 1.

4.2 The Reduction

We will be reducing from SAT, which was described in Chapter 2. Given an
instance of SAT with v variables, x1, x2, . . . , xv and k clauses, we will create

20 The Complexity of Grid Routing

a nx by ny grid, where nx = 4v and ny = 3k + 1. For each variable, xi, we
will create a request pair from vertex (4i − 3, 0) to vertex (4i − 1, ny − 1).
For the jth clause, where 1 ≤ j ≤ k, we will create two request pairs. One
from vertex (0, 3j − 2) to vertex (vx − 1, 3j) and another from vertex (0, 3j)
to vertex (vx − 1, 3j − 2).

In addition to these requests we will also block out certain edges within
the grid. We can do so by adding adjacent pair requests, just as we did in
Chapter 3, Section 3.5. Note that now our graph is undirected, but the same
logic still applies.

The main idea in this reduction is that the paths connecting the two re-
quest pairs for each clause need to cross once. Edges will be blocked so
that the only place where these paths may cross will correspond to a vari-
able that satisfies the clause. This is accomplished by blocking sufficient
edges such that there are only two possible shortest paths for each variable
pair request. Either it moves all the way down the graph and then over,
which will correspond to setting it false, or it moves to the right and all
the way down, which will correspond to setting it true. Thus the actual
edges that are blocked will depend on how each variable appears in each
clause, and there are three possibilities. Either the variable appears uncom-
plemented (if it is set to true the clause will be satisfied), complemented (if
it is set to false the clause will be satsified), or else it does not appear at all
(the valuation of this variable will not affect the satisfiability of the clause).
An example showing both the request pairs as well as the blocked edges
can be seen in Figure 4.1.

In Figure 4.2, a specific grid routing instance is created for the L3-SAT
instance {x1, x2}, {x1, x2}, {x1, x2}, and {x1, x2} As this instance of L3-SAT
is not actually satisfiable, there should be no routing possible if this reduc-
tion is faithful. Indeed, no matter how the variable paths are connected,
there remains at least one clause whose pairs are unable to cross.

By this construction, the paths for all of the variable pair requests deter-
mine the valuation of the variables. If a variable is set to satisfy a particular
clause, then the two pair requests for that clause may cross at that point,
and thus be satisfied. Therefore if the original SAT instance was satisfiable,
then the grid routing instance will be satisfiable. This is because we can set
all the variable pair request paths to correspond to a satisfying valuation,
and then each clause may have its two pair request cross where one of its
literals is satisfied.

Alternatively, if the grid routing instance is satisfiable, then we can use
the valuation of the variables corresponding to the variable pair request
paths. Every clause must have the paths for its two pair requests cross at

The Reduction 21

Figure 4.1: The blocked edges and pair requests in the grid routing instance,
where in the SAT intance: (a) variable xi appears uncomplemented in the
jth clause; (b) variable x′

i appears complemented in the jth clause; and (c)
variable x′′

i does not appear at all in the jth clause.

Figure 4.2: Grid routing instance created from {x1, x2}, {x1, x2}, {x1, x2},
and {x1, x2}. All four possible truth assignments to x1 and x2 are shown,
but since this instance is not satisfiable in each case there is one clause that
cannot be routed, which is indicated by a ‘×’.

22 The Complexity of Grid Routing

some point, which implies that each clause has at least one literal satisfied.
Therefore this valuation will be satisfying for the original SAT instance.

Now we verify that shortest-path permutation routing in the grid is NP-
complete. This is clearly true, since given a solution we can in polynomial
time verify that the paths connect every source to its target, and that no
edge is used twice. Thus, this problem is NP-complete.

Chapter 5

Approximation Algorithms

In this chapter we will present several approximation algorithms for the
edge-disjoint permutation routing problem on the directed hypercube. The
algorithms are for the unrestricted path length version of the problem,
which has not yet been shown to be NP-complete. This means that it is still
possible that there does exist a polynomial-time algorithm which will solve
this problem exactly, but here we will show how to obtain solutions that are
close to optimal in polynomial-time. The results presented below are pri-
marily the work of Choi and Somani (1993) and Gu and Tamaki (1997).

It is useful in these sections to refer to the binary representation of the
hypercube, which will be explained in the following section. In addition,
we will demonstrate how routing in the hypercube can be seen as switch-
ing messages in what is known as a Multistage Interconnection Network.
Using this model, the first algorithm presented will show that we can do
twice as much if we have twice as many resources. That is, if we double
every directed egde, then we can route two permutations, which is simply
a 2-2 routing request.

5.1 Binary Representation

Each vertex will correspond to a binary number, and the vertex set of the n-
dimensional hypercube will simply consist of all 2n n-bit binary numbers.
Vertices will be connected if their binary representations only differ in one
bit. Edges connecting vertices differing in the kth bit will be referred to as k-
dimensional edges. Also, the 0-subcube will be used to refer to all vertices
with a 0 as the first bit, as well as the edges connecting them. We similarly
define the 1-subcube. Note that both the 0-subcube and the 1-subcube are

24 Approximation Algorithms

isomorphic to the (n − 1)-dimensional hypercube. Finally, for a vertex v,
the mapping πi(v) is the vertex that is identical to v, except the first bit is
now i, where i ∈ {0, 1}. Note that if the first bit of v is i, then πi(v) = v.

5.2 Multistage Interconnection Network

We now show how we can view routing in the hypercube as passing mes-
sages in a dynamic network. Here we will view each request pair as be-
ginning at the source node, and then being transferred to other nodes over
a series of “stages”. At each stage, each pair request will have the option
of staying at the same node or being transferred to one other specific node.
This dynamic network is known as a Multistage Interconnection Network,
or MIN. An example of the MIN constructed from the three-dimensional
hypercube is shown in Figure 5.1. Note that each stage consists of all of the
vertices, and there are just two edges leading out of every node.

In Choi and Somani (1993), the following transformation is given from
the hypercube to the MIN. For an n-dimensional hypercube, we simply
create 2n+1 copies of the vertex set, V0, V1, . . . , V2n. We will have V0 and V1

comprise a directed bipartite graph, where all of the edges leading from V0

are the 1-dimensional edges. Similarly, vertex sets Vi−1 and Vi will comprise
a directed bipartite graph where all of the edges leading from Vi−1 are the
i-dimensional edges, where 1 ≤ i ≤ n. For the remaining vertex sets, we
will also treat Vj and Vj+1 as a directed bipartite graph, where we use every
(2n − j)-dimensional edges, where n ≤ j ≤ 2n − 1. The entire graph will
be symmetric about Vn. Finally, we add an edge from every vertex in Vk to
its corresponding copy in Vk+1, where 0 ≤ k ≤ 2n− 1.

The MINs that are created from hypercubes in this fashion are part of a
special class of MINs known as Beneš networks. The advantage to convert-
ing a hypercube into a MIN, is that MINs have been studied extensively
and we can apply the known results. Notice that in our construction, we
actually use every edge of the hypercube exactly twice. Once in the first
half, and once in the second half. Note also that routings in the MIN di-
rectly correspond to routings in the hypercube. We may simply use the
same edges, and just ignore any of the edges used that connect a vertex to
itself.

Multistage Interconnection Network 25

Figure 5.1: The MIN induced from the three-dimensional hypercube.

26 Approximation Algorithms

5.3 Routing Two Permutations

An algorithm to route two permutations given twice as many edges on the
directed hypercube (or Beneš network) is obtained from Benes (1965). We
will explain how this routing algorithm works here in an inductive fashion.
First, suppose we have a 0-dimensional hypercube, which is simply one
point. The only possible request we can have is for two requests from that
node to that node. These can be satisfied quite easily with two paths of zero
length.

Now, suppose that we are able to route any two permutations on an n-
dimensional hypercube. We will now demonstrate that we can in fact route
any two permutations on an (n+1)-dimensional hypercube. The main idea
behind this algorithm relies on splitting the request into two separate per-
mutations. Note that we can do this even for a general 2-2 routing request.
This can be seen by representing the request as a bipartite graph, where
both the left and the right node sets are copies of the vertex set of the hy-
percube. For each source-target pair, we create an edge from the source
on the left to the target on the right. We can find one permutation simply
by finding a perfect matching on this bipartite graph, which can be done
using a network flow algorithm. After removing this permutation, what
is left must be another permutation. So we have demonstrated that a 2-2
routing request really is equivalent to two permutations.

Now, we can take one permutation, and map it down to the 0-subcube
as follows. For each source-target pair, (s, t), we simply map it to the
source-target pair, (π0(s), π0(t)). Note that since every vertex was used as
a source once and as a target once, every vertex in the 0-subcube is now
used as a source twice and a vertex twice. This means we now have a 2-
2 routing request in the 0-subcube, which is a n-dimensional hypercube,
so by the induction hypothesis we know how to route it. Thus, the path
for a given source-target pair, (s, t), within the permutation is found as
follows. If s 6= π0(s), then we begin with the edge from s to π0(s). We
then use the edge-disjoint path that we know must exist between π0(s) and
π0(t). Finally, if π0(t) 6= t then we finish with the edge from π0(t) to t.
In this manner we route the first permutation, and we’ve used all of our
1-dimensional edges exactly once. Next, we route the other permutation
in the same manner, except we map it down to the 1-subcube. By follow-
ing the same procedure, we know use each 1-dimensional edge one more
time, and so each edge is used at most twice. We know that all of the other
dimensional edges are used no more than twice by the inductive hypothe-
sis, so we have now found a routing algorithm for the (n + 1)-dimensional

Routing One Permutation 27

hypercube.

5.4 Routing One Permutation

To route one permutation, we may simply follow the same procedure as
described in the previous section. Note that this will simply map the per-
mutation into the 0-subcube using the 1-dimensional edges, while all of
the edges in the 1-subcube remain unused. Once we obtain this routing,
we can make a modification discovered by Choi and Somani (1993), that
will take advantage of the unused edges in order to reduce the number of
edges we must double. To do this we notice when the paths reach the Vn

stage each vertex has two requests, and no edge has been used more than
once. We will transfer these requests to the portion of the Vn stage in the
1-subcube using a “bridge” of the 1-dimensional edges. Now we will com-
plete the routing just as we did in the 0-dimensional subcube, except now
we will not be reusing the same edges, because none of the edges within the
1-subcube have been used yet. See Figure 5.2 for an illustration of which
edges will be used in this routing scheme. Using this routing method, we
do not have to double any of the edges, except for the 1-dimensional ones,
which are each used exactly twice, at the beginning and end of the paths,
as well as at the bridge.

So we now have shown that by simply doubling the edges in a sin-
gle dimension, we may route an arbitrary permutation. While this result is
great, it does not fit into the context of the motivation for this problem. That
is, within the parallel computing framework, we cannot simply add edges
into our network when we want to perform a routing. So we could either
change the original network structure, or we could break up our routing
request. That is, we could partition our routing request into several pieces
such that each piece is routable on the directed hypercube. In this way rout-
ing is performed in several rounds; if messages cannot all be passed at the
same time, we will at least pass them within a small number of communi-
cation rounds.

We will now show that the algorithm described above for routing a per-
mutation by doubling the 1-dimensional edges transforms readily into a 4-
approximation algorithm. That is, we can divide the permutation into four
pieces such that each piece is routable by that algorithm using each edge of
the directed hypercube once. To begin with, we can partition the permuta-
tion routing request into those request with sources in the 0-subcube which
we will denote, R0, and those with sources in the 1-subcube, R1. Note that

28 Approximation Algorithms

Figure 5.2: The bolded edges in this graph will be used to route a single
permutation in Choi and Somani’s routing scheme. All the dashed edges
are not used, and it is only the 1-dimensional edges that are used twice.

A 2-Approximation Algorithm 29

by keeping R0 in the 0-subcube, we avoid having to use any 1-dimensional
edges at the start of the path. The problem though is that when we get to
the bridge, there may be two requests at a node, so we will simply divide
up R0 so that we do not need to double up any edges on the bridge. We
can do the same for R1 by keeping it the 1-subcube and using a bridge to
bring it into the 0-subcube. Since both R0 and R1 need to be divided into
at most two pieces each, we have a 4-approximation.

5.5 A 2-Approximation Algorithm

As is shown by Gu and Tamaki (1997), we can actually achieve a 2-approx-
imation using only a slight modification on Choi and Somani’s algorithm.
We will again split up the permutation into R0 and R1, but this time we
will be a little more careful in routing so that we do not have to subdivide
them. The reason we had to subdivide those request groups before is that
we could end up with more than one request per vertex at the Vn stage,
which meant that our bridge would require doubled edges. Now we will
show how we can avoid placing more than one request on a vertex.

Observe that when we map R0 down to the 0-subcube, we end up with
each vertex serving as only one source. It is possible though that a vertex
will end up serving as more than one target, since there could be two tar-
gets connected by a 1-dimensional edge. This means that we are dealing
with a 1-2 routing request, whereas our routing algorithm was treating it
like a 2-2 routing request. We were splitting this request into two 1-1 rout-
ing requests, and then mapping one to the 0-subcube and the other to the
1-subcube. The problem is that when we map a 1-1 request down to a sub-
cube, it can become a 2-2 request. What we would like to do is split the 1-2
request into two pieces, such that when each piece is mapped down to a
subcube, it remains a 1-2 request.

To determine how to split up the 1-2 request, we will observe what hap-
pens when we map the sources down to a subcube, but leave the targets
alone. Since each vertex is at most one source, we will end up with a 2-2
routing request. Now we can split this up into two 1-1 routing requests,
just as before, and this will be the split we will use for the 1-2 routing re-
quest. Note that now when we map each piece down to a subcube, each
vertex must be at most one source, and again each vertex may serve as up
to two targets. Thus we obtain another 1-2 routing request, and this pro-
cess may be repeated. So now when we reach the Vn stage, each vertex will
comprise only one request, so our bridge will require no doubled edges. In

30 Approximation Algorithms

this manner we can route each of R0 and R1 without doubling any edges
in the directed hypercube. Therefore, we have a 2-approximation.

Chapter 6

Future Work

Although some complexity results have been established for routing on
the hypercube, Szymanski’s conjecture still remains open. Determining
whether or not permutations are always routable in the hypercube when
the connecting paths may be of arbitrary length is still a valid question.
Furthermore, we have only shown the shortest-path version of the prob-
lem to be NP-complete. In order to relax the path length restriction, we
also had to remove the permutation constraint. Is routing a permutation
on the hypercube with arbitrary length paths NP-complete, or does there
exist a polynomial time algorithm for it?

One direction in trying to establish an NP-completeness result for this
problem is to modify the reduction given by Gonzalez and Serena (2002).
Perhaps there is some way to modify it so that it may apply to arbitrary
length paths and still deal with permutations. It is also possible that a sim-
pler NP-completeness proof can be found by reducing from a different NP-
complete problem. Theoretically, if a problem is NP-complete then one can
reduce any problem in NP to it, but some reductions are much more natural
than others.

The best approximation algorithm presented was a 2-approximation,
meaning that we could split any permutation into two pieces, such that
each piece is routable on the directed hypercube. Can we find any better
approximation than this? Alternatively, we could find a special subclass
of the permutations which we could prove is always routable. As Gu and
Tamaki (1997) suggest, another approach would be to try and find some
upper bound f on the size of a 1-1 routing request such that any 1-1 routing
request with f or fewer request pairs is provably routable.

Bibliography

Barden, B., Libeskind-Hadas, R., Davis, J., and WIlliams, W. (1999). On
edge-disjoint spanning trees in hypercubes. Information Processing Letters,
70:13–16.

Baudon, O., Fertin, G., and Havel, I. M. (2001). Routing permutations
and 2-1 routing requests in the hypercube. Discrete Applied Mathematics,
113(1):43–58.

Benes, V. E. (1965). Mathematical Theory of Connecting Networks and Telephone
Traffic. Academic Press.

Boppana and Raghavendra (1990). Optimal self-routing of linear-
complement permutations in hypercubes. In DISTMEMCC: 5th Dis-
tributed Memory Computing Conference. IEEE Computer Society Press.

Chekuri, C. and Khanna, S. (2003). Edge disjoint paths revisited.

Choi, S. B. and Somani, A. K. (1993). Rearrangeable circuit-switched hyper-
cube architectures for routing permutations. J. of Parallel and Distributed
Computing, 19:125–130.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In
STOC ’71: Proceedings of the third annual ACM symposium on Theory of com-
puting, pages 151–158, New York, NY, USA. ACM Press.

Frank, A. (1990). Packing paths, circuits, and cuts – a survey. In Paths, Flows
and VLSI-Layouts, pages 47–100.

Frieze and Zhao (1999). Optimal construction of edge-disjoint paths in ran-
dom regular graphs. In SODA: ACM-SIAM Symposium on Discrete Al-
gorithms (A Conference on Theoretical and Experimental Analysis of Discrete
Algorithms).

34 Bibliography

Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA.

Gonzalez, T. F. and Serena, F. D. (2002). Complexity of k-pairwise disjoint
shortest paths in the hypercube and grid networks.

Gu, Q.-P. and Tamaki, H. (1997). Routing a permutation in the hypercube
by two sets of edge disjoint paths. Journal of Parallel and Distributed Com-
puting, 44(2):147–152.

Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., and Yannakakis,
M. (1999). Near-optimal hardness results and approximation algorithms
for edge-disjoint paths and related problems. pages 19–28.

Hwang, F. K., Yao, Y. C., and Dasgupta, B. (2002). Some permutation rout-
ing algorithms for low-dimensional hypercubes. Theoretical Computer Sci-
ence, 270(1–2):111–124.

Kleinberg, J. and Tardos, É. (1995a). Approximations for the disjoint paths
problem in high-diameter planar networks. pages 26–35.

Kleinberg, J. M. and Tardos, E. (1995b). Disjoint paths in densely embedded
graphs. In IEEE Symposium on Foundations of Computer Science, pages 52–
61.

Kolliopoulos, S. G. and Stein, C. (1998). Approximating disjoint-path prob-
lems using greedy algorithms and packing integer programs. Lecture
Notes in Computer Science, 1412:153–??

Kramer, M. R. and van Leeuwen, J. (1984). The complexity of wirerouting
and finding minimum area layouts for arbitrary vlsi circuits. Advances in
Computing Research, 2:129–146.

Lubiw, A. (1990). Counterexample to a conjecture of Szymanski on hyper-
cube routing. Inf. Process. Lett., 35(2):57–61.

Sipser, M. (1996). Introduction to the Theory of Computation. International
Thomson Publishing.

Sprague, A. P. and Tamaki, H. (1994). Routings for involutions of a hyper-
cube. Discrete Applied Mathematics, 48:175–186.

Bibliography 35

Varvarigos, E. A. and Bertsekas, D. P. (1994). Performance of hypercube
routing schemes with or without buffering. IEEE/ACM Transactions on
Networking, 2(3):299–311.

	Permutation Routing in the Hypercube and Grid Topologies
	Recommended Citation

	Abstract
	Introduction
	Problem Statement
	Known Results

	NP-Completeness
	The Class P
	The Class NP
	NP-completeness

	The Complexity of Hypercube Routing
	L3-SAT
	Reduction to Hypercube
	Convey Apparatus
	Embedding
	Extension of Reduction

	The Complexity of Grid Routing
	The Graph
	The Reduction

	Approximation Algorithms
	Binary Representation
	Multistage Interconnection Network
	Routing Two Permutations
	Routing One Permutation
	A 2-Approximation Algorithm

	Future Work
	Bibliography

