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Abstract

Phylogenetic trees represent theoretical evolutionary relationships among
various species. Mathematically they can be described as weighted binary
trees and the leaves represent the taxa being compared. One major prob-
lem in mathematical biology is the reconstruction of these trees. We already
know that trees on the leaf set X can be uniquely constructed from splits,
which are bipartitions of X. The question I explore in this thesis is whether
reconstruction of a tree is possible from subsplits, or partial split informa-
tion. The major result of this work is a constructive algorithm which allows
us to determine whether a given set of subsplits will realize a tree and, if
so, what the tree looks like.
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Chapter 1

Introduction

Phylogenetic trees represent evolutionary relationships among various taxa.
Mathematically they can be described as weighted binary trees and the
leaves represent the taxa being compared. When drawn, these trees are
usually rooted, that is, there is a node that every species seems to evolve
from. However, because the placing of this root is almost arbitrary, we will
only be considering unrooted trees in this research.

Although biologists have used phylogenetic trees for some time, the
problem of reconstructing these trees is still one of the major issues in math-
ematical biology (14). There are two main issues with reconstructing trees.
First the number of trees increases rapidly with that number of leaves, mak-
ing it computationally infeasible to try all of them. Secondly, there is a sta-
tistical issue with trying to decide which tree is better than another. This
thesis will focus on the first problem of minimizing the number of trees that
need to be considered as plausible trees.

There already exists several methods for constructing phylogenetic trees,
each with its own drawback or limitation. One theoretical method for con-
structing phylogenetic trees is via splits of the leaf set. A split of a leaf set X
is a pair of nonempty, complementary subsets of X.

In 1971, Peter Buneman showed that each split represents the edge of
some tree and proved that a labeled tree T is uniquely defined by its splits
(8). Since the leaves of phylogenetic trees are taxa, splits reveal which taxa
are more closely related; those in the same subset are share a more recent
common ancestor than with the taxa in the other subset. So a natural ques-
tion to ask is whether a tree can be constructed from knowing splits of some
of the species. Mathematically we are asking if a given set of splits of sub-
sets of X can construct a phylogenetic tree.
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One would imagine that the answer to this question would be some
what straightforward, following from Buneman’s work. However, as we
will demonstrate, there are instances where a tree cannot be reconstructed
from subsplits even if Buneman’s conditions are satisfied. Focusing on the
question of reconstruction from subsplits, I have developed a constructive
algorithm that allows us to determine whether a tree can be reconstructed
from a set of subsplits and, if so, what this tree looks like and if it is unique.

1.1 Literature Review

1.1.1 Phylogenetic Trees

Determining phylogenetic trees is one of the fundamental goals of evolu-
tionary biology. There is an ongoing project called the “Tree of Life” where
many biologists are working on bringing their knowledge of different parts
of the tree together to form one all-encompassing tree (1). Phylogenetic
trees are very useful to biologists; they represent a hypothesis about the ge-
neological relationships among organisms derived from data such as DNA
sequences. As we can see in Figure 1.1, end points of the tree are the organ-
isms data was taken from and the points where branches diverge are the
common ancestor of the resulting organisms. Edges of phylogenetic trees
are assigned numbers called weights or branch lengths that represent some
distance between the endpoints of that edge. This distance are generally
the number of difference between the species such as the number of places
their DNA sequences are different. In our example tree, the numbers asso-
ciated with each edge are the certainties of the existence of that edge in the
actual tree.

The primary use of phylogenetic trees is to summarize the evolution-
ary relationships among existing organisms. Among its various other uses,
phylogenetic trees are used to determine how many times a particular trait
has occurred in evolution and to assess when lineages split. Such informa-
tion is interesting because even if two organisms have similar traits, they
did not necessarily evolve from the same ancestor. Such traits are called
homoplasic traits. There are three major evolutionary processes that lead to
homoplasic traits: convergent evolution, parallel evolution and evolutionary re-
versal. Convergent evolution involves the independent evolution of similar
features evolved independently in different species under similar environ-
mental conditions, such as the wing structure of bats and birds. When there
is a similar evolutionary trend in distantly related organisms, that is called
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Figure 1.1: Phylogenetic relationship of species in the soft coral genus Alcy-
onium inferred from DNA sequences of the mitochondrial msh1 gene. Tree
constructed using maximum parsimony. (19).

parallel evolution. And, evolutionary reversals are those where a trait may
revert from a derived state back to an ancestral one. For example, most
salamanders have lungs but there are a couple species who have under-
gone an evolutionary reversal and are lungless.

It is also interesting to note that tree-like representations apply to all
evolutionary settings, such as representing the evolution of languages or
the copying of a manuscript (7). In fact, the study of these trees is not
limited to reconstruction. There papers can be found in economic journals
that discuss the diversity represented in evolutionary or phylogenetic trees
(see (5), (20), (25), (26)).

For the reasons mentioned above and others, it is very important that
phylogenetic (evolutionary) trees can be reconstructed from various types
of data.

Construction Methods

There are three basic categories of methods for constructing phylogenetic
trees: parsimony methods, maximum likelihood and distance methods.

The parsimony method requires that several trees be constructed using
the same set of organisms but not necessarily the same sources of data (13).
Then a new tree is constructed by keeping all of the branchings that appear
in all of the given trees.

The maximum likelihood method is usually implemented by a com-
puter program that uses molecular data (14). This method takes into ac-
count that mutations arise from changes in the DNA sequence and assume
that the frequency of such changes can be estimated independently of other
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factors.
There are computer programs such as “Splits Tree” (Huson) and “PHYLIP”

(Felsenstein) that take in data and return a phylogenetic tree. Some of these
programs accomplish this by searching through a “neighborhood” of an
initial tree to find one that best fits the data. However, if one was to run the
same data through several different programs based on this construction
method, it is likely that they will all return different trees. One of the rea-
sons this is the absence of a standard distance metric on the space of trees,
which is extremely complex (2).

A third example of a reconstruction method is called distance methods.
Typically, these distances are based on genetic data, such as the number of
base pairs that differ for a particular gene. In this method, one is simply
given the pairwise distances of the taxa and constructs a possible tree that
satisfies these distances. Thus a notion of distance d(i, j) needs to be defined
between every pair of species i and j. A very helpful tool in determining
whether a tree can be reconstructed from a set of pairwise distances is the
four-point condition.

Definition 1.1. A metric d satisfies the four-point condition if for any four
species i, j, k, l, the maximum of

{d(i, j) + d(k, l), d(i, k) + d(j, l), d(i, l) + d(j, k)}

is achieved at least twice.

We can gain some intuition for his definition by considering the follow-
ing: Suppose i, j, k, l do construct a tree. There is only one unrooted tree
topology with four species (see Figure 1.2). Then we define the distance d
to be the sum of the weights of the edges that connect i and j, i.e.,

d(i, j) = ∑
e∈P

w(e)

where P is the set of edges that connect i and j and w(e) is the weight of
edge e. Then

d(i, j) + d(k, l) = (α + β) + (γ + δ),

d(i, k) + d(j, l) = (α + µ + γ) + (β + µ + δ),

d(i, l) + d(j, k) = (α + µ + δ) + (β + µ + γ).

Since each of the weights is a positive number, the last two sums are the
maximum and equal so the four-point condition is satisfied. In fact, we
know that the four-point condition is a necessary and sufficient condition
for a reconstructing a tree from the pairwise distances.
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Figure 1.2: Unrooted tree on four species i, j, k, l.

Theorem 1.2. (Buneman, 1971) A metric d satisfies the four-point condition if
and only if d is realizable by some weighted tree.

Thus we can use this result to determine whether a set of pairwise dis-
tances can be realized as a tree. To see how this method works, see Exam-
ple 1.3

Example 1.3. Let X = {A, B, C, D} be our set of species with the distance
metric d(i, j) defined as

d(A, B) = 2, d(A, C) = 5, d(A, D) = 4,

d(B, C) = 4, d(B, D) = 3, d(C, D) = 4.

We can easily check to see if these pairwise distances satisfy the four-point
condition:

d(A, B) + d(C, D) = 6, d(A, C) + d(B, D) = 8, d(A, D) + d(B, C) = 8.

Since 8 is the maximum and it is achieved twice, the four-point condition
is satisfied and we know there exists a weighted (phylogenetic) tree that
satisfies these constraints. We can verify that tree in Figure 1.3 satisfies
these distance constraints.

1.1.2 Splits and Partial Splits

As mentioned, Peter Buneman considered abstractly representing trees in
terms of their splits (8). This abstract representation of a tree is useful to
consider because it speeds up the reconstruction process through a “divide
and conquer” strategy. Given a set of leaves X, we can represent a tree by a
set of splits A|B where A, B are nonempty, A ∪ B = X and A ∩ B = ∅. Each
of these splits can be associated to an edge e of the tree by letting A and
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Figure 1.3: One possible phylogenetic tree that satisfies the distance con-
straints in Example 1.3. (Notice that this tree would be unique if we did
not arbitrarily add a root to it.)

B be the leaves of the two subtrees resulting from deleting e from the tree.
Since the splits are associated with the edges of the tree, Buneman was able
to define the nodes with respect to the splits and showed that this repre-
sentation was consistent with the definition of graph theoretic trees. Other
information about the tree, such as the graph-theoretic degree of a node,
could also be extracted from the splits. (Recall that the degree of a node is
the number of edges for which it is an endpoint.) More importantly, Bune-
man associated a nonnegative number which we think of as the weight of
an edge to each split and proved that there exists a unique tree that satisfies
these constraints. Thus we know that to every unrooted tree there is asso-
ciated a unique set of splits which represents the edges of the tree and can
reconstruct it. Because the splits are associated with edges, the splits divide
the leaves so each subset can be treated as another connected component
(with tree structure) justifying the quicker computation.

Working closely with splits, David Bryant wrote an article that consid-
ered the properties of neighborhoods of trees using splits with various tree
metrics (6). One of the metrics he considers is the Robinson-Foulds distance,
denoted dRF which is just the number of different splits between two trees.
We will discuss this metric further in Section 2.3 where I worked on extend-
ing it to trees with different numbers of leaves. He was also a co-author of
a paper using splits to construct other types of graphs such as networks (7).
This paper was also interesting in that is revealed the broader applications
of these techniques to the evolution of languages. One can imagine that
these methods, as well as my results, can be used on any type of binary
tree where splits of the leaves are known.

Several articles have been written on the reconstruction of trees via its
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subtrees and the splits corresponding to these subtrees. One is purely
axiomatic, considering the properties one might wish the reconstruction
method would satisfy and proving that all desirable properties cannot be
simultaneously satisfied (4). The other paper considers reconstruction of a
unique tree from four-leaf subsplits (3). Although it seems that my research
focusing on reconstruction from (n− 1)-leaf subsplits could be represented
by inducting from the four-leaf case, it is not a trivial matter.

Buneman published another article that gives a constructive algorithm
for reconstructing the trees from raw data (9). His method relies on the
possibility of finding a rigid circuit graph from the intersection graph of the
raw data (e.g. difference in the positions of genome sequence data). From
there his algorithm indicated that every node of the tree would represent a
clique of the rigid circuit graph and each subtree corresponded to a node
of the graph. That is, a node of the graph corresponds to each subtree
such that the set of nodes in the subtree correspond to cliques of which the
graph node is a member. Because Buneman’s algorithm depends on the
raw data, there is no clear way to generalize his work to construct trees
from subsplits. That reason being is that his algorithm relies on the fact
that each node of the intersection graph only corresponds to one of the taxa
under consideration. In order to use his construction method on a set of
subsplits, each node of the intersection graph would have to be one side of
the subsplit so the nodes of the resulting tree would correspond to the sides
of the subsplits (which is a collection of the taxa) rather than the individual
taxa.

Semple and Steel wrote a paper closely related to my research (22). In
their paper they consider partial partitions of an X-tree which is a tree with
all nodes of degree two or less labeled. The focus of their paper is recon-
struction from partial partitions which is a collection of non intersecting sub-
sets of the labeled nodes that separate them in the tree. These partial par-
titions can be thought of as generalized subsplits. Using graph theoretical
results on chordations of graphs, they prove that a unique phylogenetic tree
can be reconstructed from a set of subsplits if the set satisfies three proper-
ties. The first of these conditions stipulates that there must exist a tree that
satisfy the constraints of the partial partitions. Their work does not suggest
any way of knowing if a set of partial partitions satisfies this requirement
without checking all possible trees on the given set of labeled nodes. My re-
search precisely answers this question in the case we are given (n − 1)-leaf
subsplits. And, whereas Semple and Steel prove the existence of a unique
trees, my work provides a constructive algorithm which allows us to both
reconstruct the actual tree and to see the different possible trees if there is
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not a unique one.

1.1.3 Related Work

Due to the recent surge of integrating mathematics and biology, there are
many other investigations of phylogenetic trees involving different disci-
plines of mathematics. Mike Hendy has been considering the application
of Hadamard matrices in computing phylogenies (Hendy). Patrinos and
Hakimi’s paper provides necessary and sufficient conditions for an n × n
distance matrix to yield an n-leaf tree (21). And Bruno Leclerc and Vladimir
Makarenkov consider tree metrics and their relationship with other types
of trees (18). Although none of these papers are related to my thesis, they
provide a sample of the various interests in this field and the many other
mathematical applications that can be considered.

1.2 Motivation for Thesis

Over summer 2004, I worked on a related project with Professor Francis Su
and Professor Claus-Jochen Haake of University of Bielefeld, Germany. We
explored the relationship of the Shapley value with games induced by phylo-
genetic trees. Introduced by Lloyd Shapley in 1953, the Shapley value of a co-
operative game is a well studied concept that is one of the most important
in game theory. Shapley showed that this Shapley value is characterized by
four axioms that uniquely determine it. Let N be a set of players. Then to
every weighted (phylogenetic) tree, we showed that there is an associated
cooperative game v : 2N → R. We presented a biological interpretation
for the Shapley value and proved that the Shapley value of a phylogenetic
tree game is characterized by five axioms, analogous to Shapley’s earlier
theorem. Moreover, we hope that these methods may give new ways to re-
construct a phylogenetic tree from data. I presented a poster on this work
at the annual Harvey Mudd College mathematics conference in October
2004 and presented this work in both a Special Session and undergraduate
poster session at the 2005 Joint AMS-MAA-SIAM meeting in Atlanta. We
are planning to submit our paper for publication in early 2005 so I spent
the beginning of the semester refining this paper. (See Appendix A.)

One surprising pattern in our work with the Shapley value on phyloge-
netic tree games was that every result depended on the size of the partitions
in each split. This work led to the question of whether or not another ab-
stract representation of trees would yield another method for reconstruct-
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ing trees. Since reconstruction from splits has already been investigated,
for my thesis I decided to consider the the possibilities of constructing trees
from partial split data; that is, splits of subsets of the leaves. My hope is to
combine these subsplit results with my Shapley value work to formulate a
new method for constructing phylogenetic trees.





Chapter 2

Trees and their Splits

Mathematically, phylogenetic trees are binary trees with weighted edges.
In this case, the leaves are the species currently in existence, the internal
nodes are the ancestor species that current organisms evolved from, and
the weights are the measure of distance between the species. In this chapter
we will begin with the quick review of graph theoretic terms, then discuss
splits.

2.1 Graph Theory Terminology

Throughout this thesis we will be considering n-leaf trees which are just con-
nected, acyclic graphs with n nodes of degree one called leaves. All of the
trees we will be working with are binary which means that all nodes other
than the leaves have degree three. Recall an n-leaf tree has 2n − 3 edges,
n − 3 of which are internal edges, and that two leaves that are connected
by a single node form a cherry. See Figure 2.1 for an example of a six-leaf
binary tree.

2.2 Splits

For the rest of the work discussed we will let X be a set of n leaves.

Definition 2.1. A split of X is a pair of nonempty unordered complementary
subsets A and B. We denote such splits by A|B. (By unordered we just
mean A|B and B|A represent the same split.)

As we noted earlier, every split corresponds to an edge in the tree. So
using the tree in Figure 2.1, we see that the splits of this tree are all of the
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Figure 2.1: Here is a six-leaf binary tree with leaves 1, 2, 3, 4, 5, 6 and internal
edges I1, I2, I3. Note that {1, 2} form a cherry because they are connected
by a single node where as {5, 6} is not a cherry.

trivial splits defined to be those with only one leaf on one side, i.e., a|(X \ a)
where a is a single leaf and the non-trivial splits:

12|3456, 125|346, 1256|34

which correspond to I1, I2, I3 respectively. The trivial splits correspond to
the edges adjacent to the leaves.

Definition 2.2. Two splits A|B and C|D are compatible if at least one of

A ∩ C, A ∩ D, B ∩ C, B ∩ D

is empty.

Lemma 2.3. Any trivial split a|(X \ a) and any other split C|D will be compati-
ble.

Proof. Without loss of generality, let a ∈ C. Then a 6∈ D so a ∩ D = ∅ thus
a|(X \ a) is compatible with C|D.

In fact all splits induced by a tree are compatible (8). For example, again
consider the splits of the six-leaf tree in Figure 2.1. By Lemma 2.3 we know
that the trivial splits are pairwise compatible with all of the splits. For the
nontrivial splits, between the first and second split 12 ∩ 346 = ∅, the first
and third 12 ∩ 24 = ∅, and second and third 125 ∩ 34 = ∅ so these splits
are compatible.

We stated earlier that Buneman proved that trees can be constructed
from their splits and by his construction, concluded that this construction
was unique. Furthermore, he proved in Theorem 1 that a weighted tree
can be uniquely constructed given a set of compatible 2n − 3 splits (cor-
responding to the 2n − 3 edges of an n-leaf tree) and a metric on the tree
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defined by a weighted sum of the weights of the edges. (8) To see this con-
sider the splits 12|3456, 125|346, 1256|34 with the six trivial splits. We just
showed that these splits were pairwise compatible so we know they con-
struct a tree. However, it is easily verified that it cannot construct any tree
other than the one in Figure 2.1.

Now that we know that the set of splits representing all edges defines a
tree, we can make a stronger statement.

Theorem 2.4. Any set of n − 3 compatible nontrivial splits will uniquely con-
struct a binary tree (unrooted).

Proof. From Buneman (8), we know that a tree can be uniquely constructed
from 2n − 3 compatible splits that correspond to each of the edges. Since
every tree with n leaves will have edges adjacent to the leaves, the corre-
sponding splits of every tree will contain the trivial splits. Thus the trivial
splits cannot add any information to the construction of the tree so it must
be the case that the tree is uniquely constructed from the n− 3 splits corre-
sponding to the internal edges. Since those edges have at least two leaves
on each side of the split, we know that n − 3 compatible nontrivial splits
will uniquely construct a tree.

Now we have the necessary background to consider partial split data
or subsplits.

2.3 Robinson-Foulds Metric

As Bryant discusses in (6), the Robinson-Foulds distance metric (also called
the partition metric) can be used to define a neighborhood of a tree. Recall
that a neighborhood of a tree is just the set of trees that resemble the given
tree within a certain threshold and that these neighborhoods are important
for some reconstruction methods discussed earlier. Before we define the
Robinson-Foulds metric, we need to define the symmetric difference between
two sets.

Definition 2.5. The symmetric difference between two sets A and B, denoted
A	 B is the set of elements belonging to one but not both of A and B. That
is,

A	 B = (A \ B) ∪ (B \ A).

Example 2.6. If A = {1, 2, 3, 4} and B = {2, 4, 6} then A	 B = {1, 3, 6} since
1, 3, 6 are in one set but not both.



14 Trees and their Splits

Let Σ(T) denote the set of splits associated with tree T. We define the
Robinson-Foulds metric dRF to be

dRF(T1, T2) =
1
2
|Σ(T1)	 Σ(T2)|.

Because we know that these splits correspond to edges of the tree, we can
associate a weight to each split. So, for each split A|B ∈ Σ(Ti) for i = 1, 2
let wi(A|B) denote the weight of that split with respect to tree Ti. If A|B 6∈
Σ(Ti) then wi(A|B) = 0. Now we can define the weighted Robinson-Foulds
distance dω by

dω(T1, T2) = ∑
A|B∈Σ(T1)∪Σ(T2)

|w1(A|B)− w2(A|B)|.

2.3.1 Extending dRF

The original Robinson-Foulds metric was only defined for trees with the
same leaves. Early in my exploration of splits of a tree, I worked on ex-
tending the definition to find the distance between trees with a different
number of leaves or different sets of leaves.

The same definition of dRF holds for trees with different numbers or
sets of leaves but we need to redefine dω. In order to do this extension,
we have to define more symbols. Let T1 and T2 be the trees that we want
to find the distance between and let the corresponding leaf sets be L1 and
L2 where |L1| 6= |L2|. Let L = L1 ∩ L2, M1 = L1 \ L2, and M2 = L2 \ L1.
Now define Σ0(L) to be set of all possible splits of L allowing ∅ to be on
one side of the split and define Σ00(L) to be the set of ordered splits of L
allowing ∅ to be on one side of the split. Then we define the extended
Robinson-Foulds metric, temporarily denoted ωRFKS for Robinson-Fould-
Kashiwada-Su metric, to be

ωRFKS(T1, T2)

= ∑
A|B∈Σ(L)

| ∑
C|D∈Σ00(M1)

w1(AC|BD)− ∑
E|F∈Σ00(M2)

w2(AE|BF)|

+ ∑
C|D∈Σ00(M1)

w1(C|DL) + ∑
E|F∈Σ00(M2)

w1(E|FL).

Thus we are defining our distance measure to be the sum of (1) the
difference in weight of the “subtrees” spanned by L and (2) the weight of
the “subtrees” spanned by M1 and M2. (Subtrees is in quotes because they
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could include internal edges that are not in a formal subtree.) Because this
equation is complicated, it’s easier to see what is happening through an
example.

Example 2.7. Let T1 and T2 be the trees in Figure 2.2 with leaf sets L1 =
{1, 2, 3, 4} and L2 = {1, 2, 7, 8}, respectively. Also let all weights be 1. Then
L = {1, 2}, M1 = {3, 4} and M2 = {7, 8}.
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Figure 2.2: The tree on the left is T1 and the tree on the right is T2.

To simplify the computations we are going enumerate all of the splits:

Σ(L) = 1|2,

Σ00(M1) = ∅|34, 3|4, 4|3, 34|∅,

Σ00(M2) = ∅|78, 7|8, 8|7, 78|∅.

Again, to simply the computation we are going to break the equation into
parts.

∑
C|D∈Σ00(M1)

w1(1C|2D) = w1(1|234) + w1(2|134) = 2

∑
C|D∈Σ00(M1)

w1(C|12D) = w1(3|124) + w1(4|123) + w1(34|12) = 3

Similarly, ∑E|F∈Σ00(M2) w2(1E|2F) = 2 and ∑E|F∈Σ00(M2) w2(E|12F) = 3. There-
fore ωRFKS(T1, T2) = |2− 2|+ 3 + 3 = 6. This makes sense because we are
just calculating the weight of the “subtrees” spanned by M1 and M2 since
the subtrees spanned by L are identical.

Notice that when L = ∅ which means that there are no common leaves
between T1 and T2, then

ωRFKS(T1, T2) = ∑
C|D∈Σ00(M1)

w1(C|D) + ∑
E|F∈Σ00(M2)

w1(E|F)
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which is also reasonable because we just want the distance to be the weights
of the trees.

Because we did not see a usefulness for such a distance, we ended our
study of the extended Robinson-Foulds metric here and went on to con-
sider reconstructing trees from partial split data.



Chapter 3

Subsplits

Again, let X be a set of leaves.

Definition 3.1. We define an m-leaf subsplit of X to be a split S = SL|SR of
Y ⊆ X where |Y| = m.

Note that the ordering of the subsplit does not matter. That is, SL|SR

is the same as SR|SL but for convenience we call SL the left-side of S and
SR the right-side of S. Using Definition 2.2, we can talk about compatible
subsplits.

Example 3.2. Consider the following 5-leaf subsplits of a 6-leaf tree

123|45, 456|23, 234|16.

These subsplits are compatible because between the first and second sub-
splits 123 ∩ 456 = ∅, between the first and third 45 ∩ 16 = ∅, and between
the second and third 23 ∩ 16 = ∅.

It is interesting to note that although a set of compatible splits will re-
construct a tree, not every set of compatible subsplits realizes a tree. I claim
that the following set of subsplits do not realize a tree.

Counter Example 3.3. For the same set of 6 leaves, consider the subsplits

12|345, 16|234, 15|346.

These subsplits are compatible because between the first and second sub-
splits 345 ∩ 16 = ∅, between the first and third 345 ∩ 15 = ∅, and between
the second and third 234 ∩ 15 = ∅. In Section 3.5 we will see why these
subsplits do not realize a tree.
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Similar to the case with splits, a subsplit indicates the existence of an
edge that separates the leaves on each side of the subsplit.

Definition 3.4. A tree T displays a set of subsplits if for each subsplit A|B
there exists an edge e of T such that A are B are subsets of the leaves in the
separate components of T − e.

Unlike the case with splits, this edge is not unique. For example, in
Figure 2.1, given the subsplit 12|46, the edges I2 and I2 both separate 12
and 46. It is also true that two distinct subsplits can correspond to the
same edge. Again looking at Figure 2.1 the subsplits 12|56 and 12|35 both
correspond to I1.

The first half of this chapter presents some helpful results when con-
sidering reconstruction of a tree from nontrivial four-leaf subsplits. Some
four-leaf subsplits of the tree in Figure 2.1 are

12|56, 15|34, 12|46.

I formulated several conjectures about the uniqueness of a tree being re-
lated to the number of empty intersections between subsplits and the num-
ber of different halves of subsplits all of which were unfruitful. In the fol-
lowing sections I document some results and counterexamples that helped
develop some intuition for the problems arising from considering recon-
struction from subsplits. In Section 3.5 we begin considering only (n − 1)-
leaf subsplits and present our main result in Section 3.5.1.

3.1 Compatibility of Four-leaf Subsplits

The following two lemmas are helpful observations related to the compat-
ibility of subsplits.

Lemma 3.5. Two different four-leaf subsplits A|B and C|D are compatible if and
only if (A ∪ B)	 (C ∪ D) 6= ∅.

Proof. Let A|B and C|D are compatible. Suppose A ∩ C = ∅ while all
other intersections are nonempty. Without loss of generality, we can say
that forces one element of B to be in C and the other in D and one ele-
ment of A to be in D. However, the other element of A, call it x, cannot be
in C; otherwise the intersection would be nonempty. Thus x 6∈ C ∪ D so
(A ∪ B)	 (C ∪ D) 6= ∅. If more than one intersection is empty, then clearly
there must be elements in A|B that are not in C|D.
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Conversely, suppose (A∪ B)	 (C ∪D) 6= ∅. Let x ∈ (A∪ B)	 (C ∪D).
Then without loss of generality, let A = xy. Then either A ∩ C or A ∩ D is
empty. If A ∩ C is empty, then we are done. If it is nonempty that means
y ∈ C since x ∈ (A ∪ B)	 (C ∪ D). But if y ∈ C then y 6∈ D so A ∩ D = ∅.
Therefore, A|B and C|D are compatible.

Another way of stating this result is two four-leaf subsplits are com-
patible if and only if there is at least one leaf in one split that is not in the
other.

Lemma 3.6. Let A|B and C|D be compatible four-leaf subsplits. Then n, the
number of empty intersections

A ∩ C, A ∩ D, B ∩ C, B ∩ D

is greater than or equal to d = |(A ∪ B) 	 (C ∪ D)|/2 (half of the number of
different leaves between the subsplits). So,

4 ≥ n ≥ d.

Proof. Clearly, the maximum of d = 4 which is the only case there n =
4 since no leaves are common between A|B and C|D. If d = 1 then by
Lemma 3.5 we know that n ≥ 1 = d. Thus we only need to consider the
cases when d = 2 and d = 3.

When d = 2 then we know x, y ∈ A ∪ B and x′, y′ ∈ C ∪ D where
x 6= x′ 6= y 6= y′ 6= x. Without loss of generality we can prove this lemma
for the case xy = A and x ∈ A and y ∈ B. If xy = A, then clearly A ∩ C =
A∩D = ∅ since x, y 6∈ C∪D. If x ∈ A and y ∈ B then we can write xa = A.
If we let a ∈ C then we know a 6∈ D so A ∩ D = ∅. Similarly if yb = B then
without loss of generality b ∈ C so B ∩ D = ∅. Thus n ≥ d.

Finally when d = 3 we can apply the first case of d = 2 because xy = A
where x, y 6∈ C ∪ D which gives us two empty intersections. Then zb =
B where z 6∈ C ∪ D so if b ∈ C then B ∩ D = ∅ giving us three empty
intersections.

Therefore, 4 ≥ n ≥ d.

Even though it is not obvious from the proof that n can be strictly greater
than d, it is possible. Consider the following example.

Example 3.7. Consider 12|34 and 12|35. By Lemma 3.5 we know these sub-
splits are compatible and d = 1. Now to find n we just need to examine the
four intersections:

12 ∩ 12, 12 ∩ 35, 34 ∩ 12, 34 ∩ 35.
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We have two empty intersections (the second and third) so n = 2 > 1 = d.

3.2 Constructing a Unique Tree from Four-leaf Sub-
splits

The first natural question to ask is: which sets of subsplits construct a
unique tree? It seems that this question should have an answer since we
know compatible splits construct unique trees. In researching this ques-
tion, I considered the effects of having different partitions in each subsplit.

Conjecture 3.8. A set of four-leaf subsplits will uniquely construct a five-leaf tree
if there are at least four different partitions in the subsplits.

However, this conjecture is false as demonstrated in Example 3.9.
Counter Example 3.9. Consider the set of four-leaf splits

12|34, 12|35, 12|45.

We begin constructing this tree by labeling a four-leaf tree with 1, 2, 3, 4 in
such a way that satisfies the first subsplit. For example, see Figure 3.1.
Then using the second and third splits, we want to add the leaf 5 to our
tree. Because we know there is an edge between 1, 2 and 3, 5 and 4, 5, there
are three possible places we can add the leaf 5: along the branch adjacent
to 3, along the branch adjacent to 4, or on the internal edge. Thus, even
though we have four different partitions in this set of subsplits, namely 12,
34, 35, and 45, we do not get a unique tree.
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Figure 3.1: Example tree(s) for Counter Example 3.9. First we label the four
leaves 1, 2, 3, 4 then there are three possible locations we can add 5 (where
5, 5′, 5′′ are) that would be consistent with the set of given subsplits.

Thus I decided to explore what properties of sets of subsplits would
construct a tree. My hope was that this work would lead to insights on the
necessary criteria for constructing unique trees from subsplits.
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3.3 Smallest Set of Unrealizable Four-leaf Subsplits

In the case of splits of X, we knew a set of splits would not construct a
tree, or were unrealizable, if they were not compatible. This is still true with
subsplits but we can also have sets of compatible subsplits that are unreal-
izable.

Theorem 3.10. For n ≥ 5, the size of the smallest set of compatible four-leaf
subsplits that is unrealizable is n − 2.

Proof. Suppose we want {1, 2} ⊂ X to be a cherry. Then we choose another
leaf, say 3, and construct a set of n− 3 subsplits by

12|3x

where x ∈ X \ {1, 2, 3}. This forces a cherry with {1, 2} because it indicates
that there is an edge between {1, 2} and every other leaf in the tree. Then
take two leaves in X \ {1, 2, 3}, say 4, 5 and add the subsplit 14|25. Clearly
this is compatible with the first n− 3 subsplits because 3 does not appear in
it. However, these subsplits are not realizable because it is trying to place
an edge between 1 and 2 which we already said could not exist. Therefore,
this set of compatible subsplits is unrealizable.

3.4 n− 3 Four-leaf Subsplits

Now Theorem 3.10 naturally leads us to question whether every set of n− 3
subsplits construct a tree. As we discussed in Section 2.2, any set of n − 3
compatible nontrivial splits of X construct a unique tree. Thus it seems
reasonable that this should be the case.

Conjecture 3.11. Every set of n − 3 compatible four-leaf subsplits constructs a
tree.

My first idea was induction on the number of leaves. We know from
graph theory that trees are preserved under addition and subtraction of
leaves so the idea was to find a way of adding the appropriate number of
subsplits. This lead to a problem of having too many cases to consider.
However, from this investigation we learned the following lemma.

Lemma 3.12. Let x be the leaf that appears in the least number of subsplits. If n
is the number of times x appears in the set of subsplits, then max n = 3.
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Proof. Suppose that the leaf x appears n = 4 times. Since there are 4(n −
3) = 4n− 12 positions for leaves to occupy in the n− 3 subsplits and every
leaf appears at least 4 times,

4n ≤ 4n− 12

which is a contradiction.

From this lemma we also see that every leaf can appear at least three
times only when n ≥ 12 and every leaf appears at least twice when n ≥ 6.

The next idea to prove Conjecture 3.11 was to define a mapping from
the set of n − 3 subsplits to a subequivalent set of n − 3 subsplits where at
least one leaf appears in only one subsplit. (By subequivalent we mean that
the set of trees constructible by the new set of subsplits is a subset of the
trees constructible by the original set of subsplits.) If we could do this,
then induction would be easy. To accomplish this, we considered choosing
a leaf that appeared in two subsplits, left one of the subsplits alone and
modified the other so it contains information from both splits. To get a
better understanding of this process, see Example 3.13

Example 3.13. For the leaf set X = {1, 2, 3, 4, 5, 6} consider the subsplits

12|34, 14|56, 25|36.

Since 6 appears in the second and third subsplit, let us remove it from the
second subsplit. Because 6 appears with 3 in the third split and 3 is not
already in the second split, we can just replace 6 in the second split with 3
resulting in the subsplits

12|34, 14|35, 25|36.

It is easy to verify that the trees constructed from the latter set of subsplits
is a subset of trees constructed from the original set of subsplits.

However, some of the subsplits encode more information so this method
does not always work.

Counter Example 3.14. Given the same leaf set as in Example 3.13, consider
the subsplits

12|34, 15|46, 25|36.

This time, let us replace the third subsplits while removing the 6. Following
the same procedure as in Example 3.13, we get the subsplits

12|34, 15|46, 25|34.
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This set of subsplits allows 6 to form a cherry with 1 which was not possible
through the original set of subsplits.

Since this method did not work, another idea is to systematically add in
the missing leaves to each subsplit. Then we would know what splits we
have which in turn could tell us what tree can be constructed. One idea for
adding the missing leaves is the following:

Choose a subsplit A|B and choose a leaf x not in that subsplit. In the rest
of the subsplits that x appears, compare the relationship of x with every
other leaf in A|B as it appears in those subsplits. That is, tally how many
times x is opposite elements in A and with elements in B and compare that
to the number of times x is opposite elements in B and with elements in A.
If the first tally wins, add x to B resulting in the (sub)split A|Bx, otherwise
add it to A resulting in the (sub)split Ax|B.

However, this method also does not work completely as revealed by the
following counterexample.

Counter Example 3.15. Consider the subsplits of X = {1, 2, 3, 4, 5, 6}:

12|34, 15|24, 26|13.

This set of subsplits happens to uniquely construct the tree in Figure 3.2
with splits 12|3456, 1256|34, 1234|56.
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Figure 3.2: Six-leaf tree constructed by the subsplits in Counter Exam-
ple 3.15

Now we want to add 5, 6 to the first split. Since 5 appears with 1 and
opposite 2, 4 in the second subsplit, we want to add 5 to the left side. Sim-
ilarly with 6, so we have the split 1256|34. When we add 3, 6 to the second
subsplit we end up with the split 135|246. Clearly this is not consistent with
the tree in Figure 3.2 but even worse, it is not compatible with the first split.
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Then, when we add 4, 5 to the last split, we again get 135|246 so it would
seem that this split more likely defines the tree on the other possible six-leaf
tree topology which is not the case.

Thus, in order to better understand the problem, I considered adding
in the missing leaf to (n − 1)-leaf subsplits in order to construct splits. As
mentioned this would allow me to construct the tree and determine the
uniqueness of the tree encoded by the subsplits.

3.5 Reconstruction from (n− 1)-leaf Subsplits

For the rest of this paper, we will only be considering reconstruction from
(n− 1)-leaf subsplits. Because we are no longer dealing with four-leaf sub-
splits (except when we are considering five-leaf trees), our compatibility
rules presented in Section 3.1 and our minimum set of unrealizable sub-
splits no longer apply. However, the following results are true for (n − 1)-
leaf subsplits.

Lemma 3.16. For n ≥ 6, every pair of compatible (n− 1)-leaf subsplits shares at
least n − 2 leaves.

Proof. Let A|B and C|D be compatible (n− 1)-leaf subsplits. Since they are
compatible, we know there exists at least one empty intersection among the
sides of both splits. Without loss of generality, say A ∩ C = ∅. Then either
C ⊂ B or the leaf x missing from A|B is in C. If C ⊂ B, then D ⊂ X \ C =
A ∪ (B \ C) ∪ {x}. At the most, D will contain one element not in the first
subsplit, namely x, so the two subsplits will share n − 2 leaves. Otherwise,
if x ∈ C, then the rest of the leaves in C|D must be a subset of the leaves in
A|B (because those are the only leaves left to choose from) so A|B and C|D
share n− 2 leaves.

We can see how two compatible (n − 1)-leaf subsplits could actually
share all n − 1 leaves by considering the following. Let A|B be an (n − 1)-
leaf subsplit. Since we are only considering nontrivial subsplits and n− 1 ≥
5, without loss of generality we can say |B| > 2. Let b ∈ B so A ∪ b|B − b
has all of the same leaves as A|B and A ∩ (B− b) = ∅ so these subsplits are
compatible.

As was mentioned earlier, not every set of compatible subsplits realizes
a tree. In fact we can show that there is a minimum size set that will not
reconstruct a tree.



Reconstruction from (n− 1)-leaf Subsplits 25

Theorem 3.17. The smallest set of compatible (n − 1)-leaf subsplits that do not
realize a tree is three.

Proof. Let L be a set of leaves. Let a, b ∈ L and X = L \ {a, b}. Then for some
y, z ∈ X, the subsplits ab|X \ {y} and az|X \ {z} are compatible because
ab ∩ X \ {z} = ∅. These subsplits also force ab to be a cherry since there is
an edge between az and X \ {z} and an edge between ab and X \ {y} (i.e.
ab|X). Now introduce the subsplit ay|b(X \ {y, z} which is compatible with
the previous two subsplits since ay ∩ X \ {y} = ∅ and az ∩ bX \ {y, z} = ∅.
But this subsplit requires us to place an edge between a and b which is not
possible since we know ab is a cherry. Therefore this set of three subsplits
does not produce an n-leaf tree.

3.5.1 Reconstruction Algorithm

Now we will introduce our algorithm for reconstructing trees from sub-
split information. The motivation for this process comes from the fact that
compatible splits constructs at least one tree. Thus, our goal is to “add”
the missing leaf of every (n− 1)-leaf subsplit in such a way to maintain the
compatibility of the splits, if at all possible. (We know there are sets of com-
patible subsplits that are not realizable as an n-leaf tree.) Before we present
our algorithm, we need to define a couple of terms.

Definition 3.18. A connection between two compatible subsplits is a pair
{Sh

i , Sh′
j } where Sh

i and Sh′
j are the sides of Si and Sj that have an empty

intersection.

Because every (n− 1)-leaf subsplit is missing one leaf, we need an idea
of which connection is more important or crucial for the compatibility of
the subsplits.

Definition 3.19. Let x be the missing leaf of subsplit Si. A connection {Sh
i , Sh′

j }
is called constraining for Si if x ∈ Sh′

j . We will denote this constraining con-

nection as {Sh
i , Sh′

j }.

To get a better understanding of these concepts, consider the compatible
subsplits 12|356 and 12|345. The connections between the two subsplits
are {12, 345} and {356, 12}. Since 12|356 is missing leaf 4 which is in 345,
the first connection is constraining for 12|356. Thus we rewrite the first
connection as {12, 345}. Similarly, the second connection is constraining
for 12|345 so we write that one as {356, 12}.

The following are important lemmas that we will use in proving our
main result Theorem 3.23.
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Lemma 3.20. Given a set of compatible (n − 1)-leaf subsplits {Si}i∈λ, there is at
most one connection between Sh

i and Sj for i, j ∈ λ and h ∈ {L, R}.

Proof. Let A|B be one of our subsplits. Suppose A had more than one con-
nection with the subsplit C|D. That is, A ∩ C = ∅ and A ∩ D = ∅ so the
leaves in A cannot be in C|D. Notice that |A| ≥ 2 so there are less than n− 3
leaves with which to construct C|D. This is a contradiction because C|D is
an (n − 1)-leaf subsplit. Hence there is at most one connection between A
and the subsplit C|D.

Lemma 3.21. If n ≥ 6, every pair of compatible (n − 1)-leaf subsplits does not
necessarily have a constraining connection between them.

Proof. If the two subsplits share n− 1 leaves then any connection cannot be
constraining. Otherwise consider the subsplit A|B with |B| > 2. Let x be
the missing leaf from A|B, a ∈ A, and b ∈ B. Then the (n − 1)-leaf subsplit
(A − a)bx|B − b only has a connection between A and B − b which is not
constraining. Hence all compatible (n− 1)-leaf subsplits do not necessarily
to have a constraining connection between them.

Now we are ready to present our n-leaf tree reconstruction algorithm.
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Tree Reconstruction Algorithm using (n− 1)-leaf Subsplits

Let {S1, . . . , Sk} be a set of (n− 1)-leaf compatible subsplits.

1. Let C be the set of connections between every pair of subsplits with
the constraining connections indicated.

2. We will start by adding missing leaves to all subsplits with at least
one constraining connection. Suppose Si has at least one constraining
connection. Then we are left with several cases in which we can add
the missing leaf to Si:

(a) If all constraining connections of Si are associated with the same
side of Si then add the missing leaf to the opposite side. That is,
if all constraining connections of Si are of the form {SL

i , Sh′
j }, then

add the missing leaf to SR
i . Repeat Step 2 with the next subsplit.

(b) If the constraining connections are associated with both sides of
Si, then

i. If {Sj}j∈λ is the set of all subsplits with a constraining con-
nection associated with SL

i and there exists another connec-
tion {SR

i , Sh
j } for all j ∈ λ then

• add the missing leaf to SL
i

• remove all of the constraining connections of the form
{SL

i , Sh
j }

• add the constraint to any connections as necessary.
• Repeat Step 2 with the next subsplit.

ii. If {Sj}j∈λ is the set of all subsplits with a constraining con-
nection associated with SR

i and there exists another connec-
tion {SL

i , Sh
j } for all j ∈ λ then

• add the missing leaf to SL
i

• remove all of the constraining connections of the form
{SL

i , Sh
j }

• add the constraint to any connections as necessary.
• Repeat Step 2 with the next subsplit.

iii. We cannot add in the missing leaf and this set of subsplits is
unrealizable as an n-leaf tree. End the algorithm.

3. If there are any other subsplits left with no constraining connections,
then add the missing leaf to either side.
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To ease the proof of Theorem 3.23, we will first prove a helpful lemma
that will eliminate some potential problems with adding the missing leaf
to a subsplit that is missing the same leaf as another subsplit.

Lemma 3.22. If more than one subsplit is missing leaf x, then adding the missing
leaf to one of the subsplits will not cause a problem in adding the missing leaf to
the others.

Proof. Let A|B and C|D be compatible subsplits both missing leaf x. From
Lemma 3.16, without loss of generality, A ⊂ C and B ⊃ D which means
the only connection between the subsplits is {A, D}. Now consider a third
compatible subsplit X|Y such that x ∈ X. Then we need to consider the
cases when we have the connection {C, X} or {B, X}. (If the connections
are only associated with Y, then there are no constraining connections and
adding the missing leaf is trivial.)

Suppose {C, X} is a constraining connection of C|D. Then the algo-
rithm specifies that we add the missing leaf to D. This will introduce the
constraining connection {A, D} which could potentially lead to problems.
However, notice that since A ⊂ C, there exists the constraining connec-
tion {A, X} so A|B already had a constraining connection with A|B, which
means we would have still added x to B if {A, D} were not constraining.

Suppose {B, X} is a constraining connection of A|B. Since D ⊂ B we
know there also exists the constraining connection {D, X}. Now suppose
we were in the situation where we had to add x to D (before we add x to
A|B) so {A, D} is now constraining. We claim this is still not a problem due
to the following. If we were able to add x to D, that means there existed
a connection {C, Y} that allowed us to break the constraining connection
{D, X} without destroying all connections with X|Y. Since A ⊂ C, {A, Y}
also exists so we could add x to B and still maintain a connection between
A|B and X|Y.

Therefore we can still add the missing leaf to subsplits that are miss-
ing the same leaf without concern over the introduction of a constraining
connection ending the algorithm unnecessarily.

Now we are ready to prove our main theorem.

Theorem 3.23. The algorithm terminates after all of the compatible (n − 1)-leaf
subsplits have been transformed into compatible splits if and only if there exists an
n-leaf tree that displays the subsplits.

Proof. First suppose that the algorithm terminates after all of the subsplits
have been transformed into compatible splits. We know that n− 3 nontriv-
ial compatible splits uniquely define an n-leaf tree so any set of compatible
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set of splits will define at least one tree. Hence our set of splits will corre-
spond to at least one tree that will display the subsplits.

Now suppose that there exists an n-leaf tree that displays the compati-
ble (n− 1)-leaf subsplits {Si}i∈N . We want to show that our algorithm will
yield a set of compatible splits that corresponds to this tree. Let C be the set
of connections between the subsplits and let Si be a subsplit with at least
one constraining connection.

If all of the constraining connections are on one side of Si, we are to add
the missing leaf to the opposite side. Notice that in this situation we are
maintaining all connections (empty intersections) because all constraining
connections are still intact and any connections on the opposite side were
not constraining so adding the missing leaf to that side did not affect the
connections.

If the constraining connections are associated with both sides of Si then
we need to consider all of the subsplits {Sj}j∈λ that are constraining with
one side of Si. Choose SL

i . If Si has another connection with Sj for all j ∈ λ,
we know this connection (1) cannot be associated with SL

i by Theorem 3.20
and (2) cannot be constraining for Si because the missing leaf cannot appear
on both sides of the subsplit. Thus, if we add the missing leaf to SL

i , we
have destroyed all of its constraining connections with Sj but still maintain
a connection with each Sj through the other one {SR

i , Sh
j } where h is the side

of Sj that does not contain the missing leaf of Si.
Notice that we do not need to worry about the introduction of con-

straining connections because that will only occur if two or more subsplits
are missing the same leaf and by Lemma 3.22 we know that no matter what
order we add the missing leaf, we will not encounter any unnecessary prob-
lems.

If there are any other subsplits left with no constraining connections,
then we can add the missing leaf to either side of the subsplit and still
maintain all connections.

Notice that since we already know there exists a tree that displays the
subsplits, there are associated splits with that tree. Hence if the algorithm
were to stop before adding all of the leaves to the subsplits then that would
indicate there is not a set of compatible splits that correspond to the tree.
Since this is a contradiction, we know that the algorithm will not terminate
until all of the subsplits have been transformed into n-leaf splits.

Therefore, we have either added the missing leaf into all of the subsplits
constructing a set of compatible splits that we know will reconstruction at
least one tree or we have shown that the set of subsplits is unrealizable as
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an n-leaf tree.

To get a better understanding of how this algorithm works, consider the
following examples.

Example 3.24. Consider the 5-leaf subsplits given in Example 3.2:

123|45, 456|23, 234|16.

We will call these splits S1, S2, S3, respectfully.
The connections are

{123, 456}, {45, 23}, {45, 16}, {23, 16}

as illustrated in Figure 3.3.

Figure 3.3: The lines in this figure represent the connections between all of
the subsplits. The arrows indicate constraining connections for each sub-
split with the arrow pointing to the side causing the constraint.

Since each subsplit has a constraining connection, we start by adding 6
to S1. Notice that 6 is connected to both sides of S1 but S1 has two connec-
tions with S2. Since we need to maintain the connection with S3, we need
to add 6 to the left-side of S1. This will destroy the connection {123, 456}
but the connection {45, 23} is still intact. Now to add 1 to S2 we just need to
take into consideration the constraining connection {23, 16} so 1 is forced
to be on the left-side. Finally, 5 goes on the left-side of S3 resulting in the
splits

1236|45, 1456|23, 2345|16.

Thus this set of subsplits uniquely constructs the 6-leaf tree in Figure 3.4.

Figure 3.3 was a helpful visual aid in determining which subsplits had
constraining connections with each other but this type of diagram gets a
lot messier with the presence of more subsplits. In these cases, it would
be more helpful to the user of the algorithm to use what we shall call a
connection table.



Reconstruction from (n− 1)-leaf Subsplits 31

q qq4

5

�
��

q
q@@ ��

q q
H

HHq qq
3

2

1 6

Figure 3.4: The 6-leaf tree that the subsplits in Example 3.24 uniquely con-
structs.

Definition 3.25. Given a set of compatible subsplits {Si}i∈N , we can con-
struct a N × 3 connection table as follows: Let the ith row of the table corre-
spond to SL

i and SR
i and the missing leaf of Si, respectfully. In each entry of

the table we indicate which subsplit sides the cell of the table has a connec-
tion. We indicate the constraining connections with a bar over the subsplit
side.

The following example will use this notion of a connection table to aid
in the implementation of the algorithm.

Example 3.26. Let the following be our collection of subsplits with which
we want to construct an eight-leaf tree:

128|3456, 357|2468, 37|12468, 57|12368, 126|3457.

We will refer to these subsplits as A, B, C, D, E, respectfully. As the algo-
rithm specifies, we first need to consider all of the connections. To help us
with this task, we will use a connection table.

L R Missing leaf

A BL CL DL ER 7

B AL CR EL CL DL 1

C AL BR EL BL DL 5

D AL BR CR EL 4

E BL CL DL AL 8

Since all of these subsplits have at least one constraining connection, we
will add the missing leaves in order (from A to E). Notice that in the first
row of our connection table all of the constraining connections are on the
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left side of A so we will add the missing leaf to the right side. Similarly for
the rest of the subsplits, all of the constraining connections are on one side
of the subsplit so we can add the missing leaf to the opposite side. This
leaves us with the splits

128|34567, 357|12468, 357|12468, 57|123468, 1268|3457.

These splits correspond to the tree in Figure 3.5. Notice that on the far right
of the tree there is some ambiguity in the relationship between leaves 1,
2, and 8. This is because the second and third subsplits were transformed
into the same split so we could not uniquely construct a tree from this set
of subsplits.
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Figure 3.5: This is the eight-leaf tree that displays the subsplits in Exam-
ple 3.26. Notice that the right side of the tree where 1, 2, and 8 branch is
still ambiguous because the second and third subsplits correspond to the
same edge I2.

Now that we have seen how this algorithm indicates when a set of com-
patible (n− 1)-leaf subsplits will reconstruct a tree, it would be beneficial to
look at a set of compatible subsplits that are unrealizable as an n-leaf tree.
Counter Example 3.27. Now consider the splits in Counter Example 3.3.

The connections for these subsplits are

{345, 16}, {12, 346}, {234, 15}

each of which is constraining for both subsplits involved. Let us start by
trying to add the leaf 6 to the first subsplit. Notice that the left-side 12
is connected to 6 with the third subsplit (in the second connection) and
the right-side 345 is connected to a 6 with the second subsplit (in the first
connection). Since the first subsplit has no other connections with either
subsplit, then there is no way we can add 6 and maintain compatibility
between all of the subsplits. Thus, this set of compatible subsplits is unre-
alizable as a six-leaf tree.
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Without using the algorithm, we can also see how this set of subsplits is
not displayed by a tree. The first subsplit 12|345 indicates that there exists
an edge between 12 and 345. Similarly the second subsplit 16|234 indicates
an edge between 16 and 234 so these conditions force 16 to be a cherry of
any tree that displays these subsplits. However, the last subsplit 15|346 is
trying to place an edge between 1 and 6 which we know to be impossible
if 16 is a cherry. Hence this set of subsplits do not realize a six-leaf tree.

As we mentioned in the literature review, Semple and Steel’s condi-
tions for uniquely constructing a tree from partial partitions requires that
we know if the given set of partial partitions is consistent with any tree.
(22) The algorithm presented in this section precisely answers this question
in the case that the partial partitions are subsplits of size n − 1. Thus this
work can be thought of as a tool to use Semple and Steel’s existence of a
unique tree theorem. From the algorithm we can tell if the tree is unique
because our use of constraining connections is precisely the chordation idea
presented in Semple and Steel’s work (the constraining connections can be
thought of as a modified inverse of the minimum restricted chordal com-
pletion of Semple and Steel’s partial partition intersection graph). So not
only is our work helpful for applying Semple and Steel’s work allowing
us to construct the tree and check for uniqueness, but also tells us if there
are multiple trees that satisfy the subsplit constraints where as Semple and
Steel only consider the existence of a unique tree.





Chapter 4

Conclusion

All of the research presented in this paper has been conducted in the hopes
of aiding the reconstruction of phylogenetic trees and to gain a better un-
derstanding of the mathematics needed to build such results. We first con-
sidered reconstruction from four-leaf subsplits and proved some helpful
facts about these subsplits. From there we adjusted our focus to reconstruc-
tion from (n− 1)-leaf subsplits. The algorithm presented in Section 3.5.1 al-
lows us to determine when a set of subsplits can reconstruct a unique tree
or set of trees. (Recall that a set of n − 3 nontrivial compatible splits will
uniquely reconstruct an n-leaf tree.) We can use this algorithm to develop a
constructive proof of other subsplit results such as the minimum number of
compatible (n − 1)-leaf subsplits that is unrealizable as an n-leaf tree. This
algorithm also can be used as a construction method for the first criteria
necessary in Semple and Steel’s unique reconstruction of trees from partial
partitions of the leaves.

Further questions to explore include: can this method be generalized to
(n − m)-leaf subsplits? In the case that the topology of the tree is unique,
can we use this method to construct unique weighted trees? Is this work
applicable to reconstruction of phylogenetic trees, i.e., is it easier for biolo-
gist to collect subsplit data rather than split data?





Appendix A

Paper: “The Shapley Value of
Phylogenetic Trees”



38 Paper: “The Shapley Value of Phylogenetic Trees”

The Shapley Value of Phylogenetic Trees
Draft 2/23/2005
Claus-Jochen Haake]Claus-Jochen Haake: Institute of Mathematical Eco-

nomics, Bielefeld University, PO Box 10 01 31, 33501 Bielefeld, Germany,
chaake@wiwi.uni-bielefeld.de

Akemi Kashiwada: Research partially supported by a Howard Hughes
Medical Institute Undergraduate Science Education Program grant to Har-
vey Mudd College.

Francis Su:Research partially supported by NSF Grant DMS-0301129.
Department of Mathematics, Harvey Mudd College, Claremont, CA

91711, U.S.A., akashiwada@hmc.edu, su@math.hmc.edu

Abstract: Every weighted tree corresponds naturally to a cooperative
game that we call a tree game; it assigns to each subset of leaves the sum of
the weights of the minimal subtree spanned by those leaves. In the context
of phylogenetic trees, the leaves are species and this assignment captures
the diversity present in the coalition of species considered. We consider the
Shapley value of tree games and suggest a biological intepretation. We
determine the linear transformation M that shows the dependence of the
Shapley value on the edge weights of the tree, and we also compute a null
space basis of M. Finally, we characterize the Shapley value on tree games
by five axioms, a counterpart to Shapley’s original theorem on the larger
class of cooperative games. We also include a brief discussion of the core of
tree games.

A.1 Introduction

The Shapley value is arguably the most important solution concept for n-
player cooperative games. Given a set of players N in a cooperative game
v, the Shapley value ϕ(N, v) is the unique imputation vector that satisfies
four “fairness” criteria (the Shapley axioms) that we shall discuss later. In
this paper we consider the game vT induced by an unrooted n-leaf tree T
in which each edge is assigned a positive number called an edge weight. In
this context, the players are represented by the leaves of the tree and the
value of any coalition S is the total weight of the subtree spanned by the
members of S.

In a more applied context, we consider games induced by a phyloge-
netic tree in which players are species and the tree represents a proposed
evolutionary relationship among the species. We suggest that a biological



Phylogenetic Trees and the Shapley Value 39

interpretation for the Shapley value is a notion of the average marginal di-
versity that a species brings to any group, and we study how the Shapley
value depends on the edge weights and topology of the tree.

One possible application of the Shapley value of a phylogenetic tree is
the economic theory of biodiversity preservation (20; 25). The Noah’s ark
problem (26) asks how to prioritize species in a population if only some
limited number can be saved; we suggest that Shapley value provides a
natural ranking criterion.

The literature applying game-theoretic solution concepts to an analysis
of trees appears to be limited. One closely related example is Kar (17), who
studies cost-sharing in a network structure and characterizes the Shapley
value of the minimum cost spanning tree game of an arbitrary graph. How-
ever, his work differs from ours because he considers each node of a graph
as a player in the game, whereas we specifically study tree games and al-
low only leaves as players. Day and McMorris (11) propose suitable axioms
for a consensus rule that will aggregate several phylogenetic trees into one
consensus tree; this differs from the thrust of our work, which is to consider
one tree and explore the interpretation and properties of the Shapley value
of the associated tree game.

In the next section we provide a biological interpretation for the Shapley
value of phylogenetic trees. Then we discuss the mathematics of calculat-
ing the Shapley value on tree games, starting with some examples on small
trees. In the subsequent section we present several theorems demonstrat-
ing how the Shapley value of an n-player game can be calculated from its
n − m player subgames. We also examine the null space of the Shapley
value with respect to the tree topology. In Section A.6, we take a brief look
at the core of tree games. We conclude this paper by developing an ana-
logue of Shapley’s theorem that characterizes the Shapley value on games
by four axioms. We show that on the smaller class of tree games, the Shap-
ley value is characterized by those four axioms plus an additional axiom.

A.2 Phylogenetic Trees and the Shapley Value

A.2.1 Phylogenetic trees

Evolutionary relationships between species are frequently represented by
a phylogenetic tree. Evidence for such relationships can come from a variety
of sources, such as genomic data or morphological comparisons, and much
work has been done to develop methods for constructing a phylogenetic
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tree from such data (for surveys, see Felsenstein (14) and Semple-Steel (23)).
Phylogenetic trees are usually binary trees in which each internal node

represents a bifurcation in some characteristic and the leaves are the species
for which we have data. Each edge has a weight that represents some unit
of distance between the nodes at its endpoints (for instance, it could be the
time between speciation events). Figure A.1 gives a small example of what
a (rooted) phylogenetic tree could look like. However, in this paper we
shall not be concerned with the location of the root of a tree, so all our trees
will be unrooted.
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Figure A.1: Example of a phylogenetic tree with species A-E with edge
weights labeled.

Formally, we shall think of a phylogenetic tree T as an unrooted tree
with leaf set N := {1, . . . , n} (representing the species in the population),
edge set E, and and an edge weight αk for each edge k in E.

A.2.2 The Shapley value

In cooperative game theory, a cooperative game is a pair (N, v) consisting
of a set of players N = {1, 2, ..., n} and a characteristic function v that takes
every subset of N (called a coalition) to a real number (called the worth of the
coalition). The subset consisting of all players is called the grand coalition.
Formally, if 2N is the set of all subsets of N, then v : 2N → R.

For instance, N could be a set of companies and v could describe the
profit that each coalition of companies could make if the members of that
coalition worked together. Usually, game theorists are interested in super-
additive games in which v(S ∪ T) ≥ V(S) + V(T) for any two coalitions
S and T. In such games, there is incentive for players to cooperate when
the inequality is strict. One of the basic questions in cooperative game the-
ory is: if players work together to achieve some total worth (in our exam-
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ple, profit), how should players then distribute their worth (profit) among
themselves?

As all (Pareto efficient) solution concepts from cooperative game theory
do, the value introduced by Shapley (24) suggests a “fair” distribution of the
total worth of the entire set of players N among the members of N. Given
a cooperative game (N, v), the Shapley value is a vector ϕ = (ϕi) defined
by the formula

ϕi(N, v) =
1
n! ∑

S⊆N
i∈S

(s− 1)!(n− s)!(v(S)− v(S− i)) (A.1)

where s = |S| is the size of the coalition S and n = |N| is the total number
of players.

The formula above has a sensible interpretation that suggests a ratio-
nale for the Shapley value to obtain a “fair” distribution. For a player i ∈ N
and a coalition S ⊆ N that contains i, the quantity v(S)− v(S− i) describes
i’s marginal contribution to the worth of S. If we choose a random order-
ing of the players, and consider the growing coalition that forms when the
players are added one-by-one from that ordering, then the combinatorial
form of (A.1) reflects the Shapley value’s interpretation as an average of the
marginal contributions that i makes to a randomly chosen coalition.

A.2.3 The Phylogenetic Tree Game

Given a phylogenetic tree T , we can define an associated cooperative game
(N, vT ) that we call a phylogenetic tree game. Let N be the set of leaves of
the tree (species). For any subset S ⊆ N of species, consider the unique
spanning subtree containing the members in S, and let vT (S) be the sum
of the edge weights of that spanning tree. Thus for each set S we may
think of vT (S) a measure of the diversity within S. This forms a cooperative
game (N, vT ) in a natural way, and it is evident from our definition that the
phylogenetic tree game is superadditive.

Although species can hardly be compared with rationally acting agents
(as usually assumed in theory of cooperative games), we may still ask for
a meaningful re-interpretation of game-theoretic solution concepts such as
the Shapley value in the context of phylogenetic trees.

Given a phylogenetic tree game (N, vT ), equation (A.1) suggests that
the Shapley value of a given species may be thought of as its average marginal
diversity, i.e., the average diversity the species can be expected to add to a
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group that it joins. So if ϕi > ϕj, then species i can be thought to contribute
a greater diversity to a group than species j might.

A.2.4 The Shapley Value Axioms

Besides the interpretation of the Shapley value as an average expected marginal
contribution, there is an axiomatization of the Shapley value (see (24)) that
uniquely characterizes it by a set of (desirable) properties. We review the
axioms presented by Shapley and discuss their plausibility in the present
setting as properties of phylogenetic trees. Let therefore V :=

{
v : 2N → R | v(∅) = 0

}
be the set of all cooperative games with n players.

1. (Pareto Efficiency Axiom) The Shapley value is Pareto efficient, i.e.,
∑i∈N ϕi(N, v) = v(N) for all v ∈ V .

This axiom just states that the total diversity present within a phy-
logenetic tree will be distributed and ascribed to the species within
it. This is a reasonable axiom, given that the purpose of a solution
concept for a cooperative game is to distribute the worth of the grand
coalition among its members. In this context, the natural interpreta-
tion is that the Shapley value answers the question of how much a
specific species is responsible for the total diversity, or, put another
way, what is its share of vT (N).

2. (Symmetry Axiom) For any permutation of players π : N → N the
Shapley value satisfies ϕ(πv) = πϕ(v), where πv is the permuted
game given by πv(S) := v(π−1(S)) for all S ⊆ N and πϕ(v) is the
permuted solution vector, i.e., (πϕ(v))i := ϕπ−1(i)(v).

The symmetry axiom states that a player’s allocation should not be
based on her name. Another consequence of the symmetry axiom
is if exchanging two players causes no difference in the worth that
each adds to any coalition, then they should have the same Shapley
value. Biologically speaking, if two species play the same role within
a tree then they should be ascribed the same responsibility for diver-
sity, which seems to be a plausible requirement.

3. (Dummy Axiom) A dummy player is one that does not add worth
to the value of any coalition. This axiom says that dummy players
should have a Shapley value of zero.

This axiom is vacuously satisfied in the case of a phylogenetic tree
game because there are no dummy species. To see this, note that
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every species i adds worth to the coalition that consists of a single
species j 6= i, because the weight of the subtree containing i and j
is the sum of the edge weights between i and j and is therefore non-
zero, but the weight of the subtree consisting of the singleton j is zero.
(Even though there are no dummy species, this is still a reasonable
axiom here, since any species that does not diversify any coalition
should get value zero.)1

4. (Additivity Axiom) Given two games (N, v) and (N, w) in V with the
same set of players N, define the sum game (N, v + w) with charac-
teristic function (v + w)(S) = v(S) + w(S) for every coalition S. This
axiom stipulates that the Shapley value of the sum game should be
the sum of the Shapley values of the individual games: ϕ(N, v + w) =
ϕ(N, v) + ϕ(N, w).

As an example, suppose we are given genome sequences for a set
of species N, and each sequence has length 200. For each pair of
species i, j consider the (rather crude) measure of distance d(i, j) to
be the number of positions in which the sequences differ. The pair-
wise distance data can be used to construct a tree (using any standard
method) and consequently, a tree game. Thus the first 100 positions
of the sequences can be used to construct a tree game (N, v1), and the
second 100 positions a tree game (N, v2). Then the Shapley value of
the sum game (N, v1 + v2) is the sum of the Shapley values for each
game. This seems plausible in this context, since if the pairwise dis-
tances d(i, j) from both sets of 100 positions actually arise from a tree
metrics on the same tree, then the sum game will arise from the tree
reconstructed from all 200 positions.

A.3 Examples and Motivation: the Shapley Value for
Small Trees

As can be seen from (A.1), the Shapley value of a tree game is a linear func-
tion of the edge weights of the tree. We call that linear transformation the
Shapley transformation. Before deriving a general formula for this transfor-
mation in the subsequent section, we study the Shapley transformation for
games induced by unrooted three-, four-, five- and six-leaf trees.

1In Section A.5 we will replace the dummy axiom by a different one to characterize the
Shapley value on the class of games that actually come from trees.
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We will refer to the weights of edges incident to leaves as leaf weights
and other edge weights as internal edge weights. Note that for an unrooted
n-leaf tree, there are n − 2 internal nodes and n − 3 internal edges in E. In
what follows, the superscript T denotes the transpose.

Definition A.1. Let T be an n-leaf tree with leaves N = {1, . . . , n}, associ-
ated leaf weights α1, . . . , αn and internal edges I1, . . . , In−3 with associated
internal edge weights αI1 , . . . , αIn−3 . Let ~E be a vector consisting of the edge
weights in this order: (α1, ..., αn, αI1 , ..., αIn−3)

T. Define M = M(N, vT) to be
the n × (2n − 3) matrix that represents the Shapley transformation, so that
the Shapley value of the game vT is

ϕ(N, vT ) = (ϕ1, ϕ2, . . . , ϕn)T = M~E

where ϕi is the Shapley value associated with leaf i. Note that M depends
on the topology of the n-leaf tree.

Later we will determine a formula for M[i, k], which is the coefficient of
edge weight k in the calculation of the Shapley value of i. But first, we give
a few examples.

A.3.1 Three-Leaf Trees

Topologically, there is only one unrooted three-leaf tree T . Let the leaves
represent players A, B, and C with corresponding leaf weights α, β, and γ
as seen in Figure A.2.
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Figure A.2: The topology of an unrooted three-leaf tree T where the players
are A, B, and C with corresponding leaf weights α, β, and γ.

The characteristic function vT for this game is

vT (A) = vT (B) = vT (C) = 0,

vT (AB) = α + β, vT (AC) = α + γ, vT (BC) = β + γ,
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vT (ABC) = α + β + γ.

Using Definition A.1, we can calculate the Shapley value by ϕ = (ϕA, ϕB, ϕC) =
M~̀ where~̀ is the vector of leaf weights (α, β, γ)T and

M =
1
6

 4 1 1
1 4 1
1 1 4

 .

It is apparent that we can solve for α, β, and γ in terms of ϕ by inverting
M:

~̀ =
1
3

 5 −1 −1
−1 5 −1
−1 −1 5

 ϕA
ϕB
ϕC

 .

This means the Shapley value of a 3-leaf tree uniquely determines the tree
representing the game.

A.3.2 Four- and Five-Leaf Trees

Using the same procedure as in the three-leaf tree case, we can calculate
the Shapley value for each player in the four- and five-leaf case. There is a
unique tree topology for each case as shown in figure A.3.
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Figure A.3: (left)The topology for an unrooted four-leaf tree where the play-
ers are A, B, C, and D. (right) The unrooted five-leaf tree with players A, B,
C, D, and E.

The Shapley value for the general four-leaf tree game is

1
24


18 2 2 2 6
2 18 2 2 6
2 2 18 2 6
2 2 2 18 6




α
β
γ
δ
µ

 .
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Similarly for the five-leaf tree game, the Shapley value is

1
120


96 6 6 6 6 36 16
6 96 6 6 6 36 16
6 6 96 6 6 16 36
6 6 6 96 6 16 36
6 6 6 6 96 16 16





α
β
γ
δ
ε
µ
ρ


.

It is apparent from the fact that there are more variables (edge weights)
than equations that there is not a unique set of (possibly negative) edge
weights for a given Shapley value. That is, there is not a unique tree corre-
sponding to a given Shapley value. The null space of M will therefore help
us determine which weighted trees have the same Shapley value. A basis
for the null space of M for the four-leaf tree is


−1/4
−1/4
−1/4
−1/4

1




This means that given a tree T , we can produce other trees with the same
Shapley value by reducing the leaf weights by 1/4 for each unit increase in
the internal edge weight.

Similarly, a null space basis for the five-leaf tree is



−1/3
−1/3
−1/9
−1/9
−1/9

1
0


,



−1/9
−1/9
−1/3
−1/3
−1/9

0
1




.

A.3.3 Six-Leaf Trees

For our last direct calculation, let us consider the games represented by six-
leaf trees. In this case there are two topologies for unrooted trees with six
leaves (see figure A.4).
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Figure A.4: (left)The first topology for an unrooted six-leaf tree T where the
players are A, B, C, D, E and F. (right) The second unrooted six-leaf tree T ′.

The Shapley value for the first and second six-leaf trees are, respectively,

ϕ(N, vT ) =
1

720



600 24 24 24 24 24 240 60 120
24 600 24 24 24 24 240 60 120
24 24 600 24 24 24 60 240 120
24 24 24 600 24 24 60 240 120
24 24 24 24 600 24 60 60 120
24 24 24 24 24 600 60 60 120





α
β
γ
δ
ε
π
µ
ρ
η


,

ϕ(N, vT ′) =
1

720



600 24 24 24 24 24 240 60 60
24 600 24 24 24 24 240 60 60
24 24 600 24 24 24 60 240 60
24 24 24 600 24 24 60 240 60
24 24 24 24 600 24 60 60 240
24 24 24 24 24 600 60 60 240





α
β
γ
δ
ε
π
µ
ρ
η


.

As with the four and five leaf cases, both topologies of the six leaf tree
allow for many trees to possess the same Shapley value. The basis for the
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null space of the first six-leaf tree is



−3/8
−3/8
−1/16
−1/16
−1/16
−1/16

1
0
0


,



−1/16
−1/16
−3/8
−3/8
−1/16
−1/16

0
1
0


,



−1/6
−1/6
−1/6
−1/6
−1/6
−1/6

0
0
1




and for the second six-leaf tree is



−3/8
−3/8
−1/16
−1/16
−1/16
−1/16

1
0
0


,



−1/16
−1/16
−3/8
−3/8
−1/16
−1/16

0
1
0


,



−1/16
−1/16
−1/16
−1/16
−3/8
−3/8

0
0
1




.

A.3.4 Notes on Relationship between Trees and Shapley Values

¿From these examples, we make a few observations.

1. Any Shapley value n-vector can be realized by adjusting the edge
weights of an n-leaf tree. This may involve positive as well as non-
positive edge weights. However, the positive hull of the column vec-
tors of the matrix M can be realized as the Shapley value of some tree
with nonnegative edge weights.

2. When n ≥ 4, there is not a unique n-leaf tree corresponding to a given
Shapley value because the null space is nontrivial.

3. The null space bases for the two six-leaf trees are different; hence
enough to determine the topology of the tree. As we shall see in the
next section, this phenomenon is true in general.

4. Under close inspection, one notices a relationship between the num-
bers of leaves on each side of an internal edge and quantities such
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as the entries of the Shapley transformation matrix and the null space
basis vectors. We exhibit their explicit dependence in the next section.

A.4 Calculating the Shapley Value from Subtrees

In this section, we shall prove that the Shapley value for an n-leaf tree
game can be calculated from the Shapley value of all its (n − m)-leaf sub-
tree games. First we will show that given a tree game with n players, the
Shapley values can be calculated from the Shapley value for all (n − 1)-
leaf subtrees. This kind of “reconstruction” result stands in stark contrast
to a result of Pachter-Speyer (Pachter and Speyer) for trees; they show that
an n-leaf tree cannot necessarily be reconstructed from the weights of its
(n− 1)-leaf subtrees.

We first show the contribution of each edge weight to the Shapley value;
these are the entries of the matrix representing the Shapley transformation.

A.4.1 Entries in Shapley Value Matrix

The following theorem gives us a quick way of finding the (i, k)th entry of
the Shapley value matrix of an n-leaf tree game. Before we state and prove
the theorem, we need to present a definition that is instumental throughout
the rest of this paper.

Definition A.2. Let T be an n-leaf tree with leaves N and edges E. For i ∈ N
and k ∈ E, the removal of edge k splits T into two subtrees. Let C(i, k)
denote the subtree that contains i (the “containing” subtree) and let F (i, k)
denote the subtree that is “far” from i. We then denote the number of leaves
of C(i, k) and F (i, k) as c(i, k) and f (i, k), respectfully.

If it is obvious what leaf i and edge k we are referring to, we will simply
write c, f instead of c(i, k), f (i, k). Note that n = c + f . We call c, f the split
counts associated with leaf i and edge k. As we shall see, the split counts
will arise frequently in our results on the Shapley transformation.

Theorem A.3. Let T be an n-leaf tree. The (i, k)th entry of the Shapley transfor-
mation matrix M is given by

M[i, k] =
f (i, k)

n c(i, k)
.

Proof. It is sufficient to show this theorem is true in calculating the Shapley
value of a single leaf in the n-leaf tree game. Fix leaf i. To count the number
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of times a given edge weight contributes to i’s Shapley value, we need to
know how many times it is in the marginal contribution of i for coalitions of
size s. Edge weight αk will be part of i’s marginal contribution if the other
s − 1 members of the coalition are from the opposite side of the edge from
i. So

M[i, k] =
1
n!

n

∑
s=2

(s− 1)!(n− s)!
(

f (i, k)
s− 1

)
=

1
n!

n

∑
s=2

(n− s)! f (i, k)!
( f (i, k)− s + 1)!

.

Using the fact f = n− c, the above expression can be rewritten:

1
n!

n

∑
s=2

(n− c)!(c− 1)!
(

n− s
c− 1

)
=

(n− c)!(c− 1)!
n!

n−1

∑
j=1

(
j− 1
c− 1

)
.

We use the identity

n

∑
j=1

(
j− 1
c− 1

)
=
(

n
c

)
=
(

n− 1
c− 1

)
f
c

+
(

n− 1
c− 1

)
to obtain

M[i, k] =
(n− c)!(c− 1)!

n!

(
n− 1
c− 1

)
f
c

=
f

nc
.

This result is particularly nice because it shows how the Shapley value’s
dependence on any edge weight only depends on the number of leaves on
either side of that edge. Consider the following example.

Example A.4. Using Theorem A.3 we will calculate the coefficient of µ in
player A’s Shapley value for a five-leaf tree. Let the edge with edge weight
µ be I1. There are three leaves in F (A, I1) and two leaves in C(A, I1). Thus,

M[1, 6] =
3

5 · 2

which is the same as the (A, µ) entry 36/120 in the Shapley transformation
of the five-leaf tree given in section A.3.2.

With the above result we can calculate the Shapley value of an n-leaf
tree game from the Shapley value of subtree games.
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A.4.2 Shapley Value from (n− 1)-leaf Subtrees

In this section we want to show how the Shapley value of an n-leaf tree
game can be calculated from the Shapley value of its (n − 1)-leaf subtrees.
Before we can do that we need the following definition and lemma.

Definition A.5. Let T be an n-leaf tree with leaves N. For any subset of
leaves S ⊆ N, the Shapley value of N with respect to the subtree spanned
by S is ϕ(N, vS,T ) ∈ Rn where for any coalition U ⊆ N, vS,T (U) = vT (S ∩
U). Put another way, ϕ(N, vS,T ) = ϕ(S, vS,T )× {0}N\S.

In other words, this Shapley value will assign zero to any player not in
S and the usual Shapley value of the tree game spanned by S to players in
S.

Lemma A.6. Let T be an n-leaf tree with leaves N = {1, . . . , n} and internal
edges I1, . . . , In−3 with corresponding edge weights αI1 , . . . , αIn−3 . Fix i ∈ N.
Then

∑
i∈S⊂N
|S|=n−1

n−3

∑
k=1

fS(i, k)
cS(i, k)

αIk = (n− 1)
n−3

∑
k=1

fN(i, k)
cN(i, k)

αIk

where fU , cU are determined with respect to leaf i in the tree spanned by U ⊆ N.

Proof. Fix k ∈ {1, . . . , n− 3}. Notice that each subset S is obtained by delet-
ing one leaf j 6= i either from F (i, Ik) or from C(i, Ik). Since |F (i, Ik)| = fN
and |C(i, Ik)| = cN − 1,

∑
i∈S⊂N
|S|=n−1

fS

cS
αIk =

(
fN

fN − 1
cN

+ (cN − 1)
fN

cN − 1

)
αIk = (n− 1)

fN

cN
αIk .

Thus, summing over all k, we obtain

∑
i∈S⊂N
|S|=n−1

n−3

∑
k=1

fS

cS
αIk = (n− 1)

n−3

∑
k=1

fN

cN
αIk .

Now we are ready to show how we can calculate the Shapley value of
an n-leaf tree from the Shapley values for all its (n− 1)-leaf subtrees.

Theorem A.7. Let T be an unrooted n-leaf tree with leaves N = {1, . . . , n}
and corresponding leaf weights α1, . . . , αn. Similarly, label the internal edges
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I1, . . . , In−3 with edge weights αI1 , . . . , αIn−3 . If the Shapley values for all (n− 1)-
leaf subtrees are known, then the Shapley value for N is

ϕ(N, vT ) =
1
n

~̀ + ∑
S⊆N

|S|=n−1

ϕ(N, vS,T )

 , (A.2)

where~̀ is the vector of leaf weights

 α1
...

αn

.

Proof. First we will show this theorem is true when calculating the Shapley
value for one leaf. Fix i ∈ {1, . . . , n}. Using Theorem A.3,

ϕi(N, vT ) =
1
n

(n− 1)αi + ∑
j∈{1,...,n}

i 6=j

1
n− 1

αj +
n−3

∑
k=1

fN(i, k)
cN(i, k)

αIk



=
1
n

αi +
1

n− 1

(n− 1)(n− 2)αi + ∑
j∈{1,...,n}

i 6=j

n− 2
n− 2

αj + (n− 1)
n−3

∑
k=1

fN(i, k)
cN(i, k)

αIk




(A.3)
where fN , cN are determined with respect to T .

Let T′ be the subtree of T spanned by N \ {x}where x 6= i. Again, using
Theorem A.3,

ϕi(N \ {x}, vT′) =
1

n− 1

(n− 2)αi + ∑
j∈{1,...,n}

i 6=j 6=x

1
n− 2

αj +
n−3

∑
k=1

fN\{x}(i, k)
cN\{x}(i, k)

αIk


where fN\{x}, cN\{x} are determined with respect to T′.

We can see that i is a member of n− 1 of the (n− 1)-leaf subtrees and ev-
ery other leaf is in n− 2 of those subtrees. Using these facts and Lemma A.6,
we can rewrite (A.3) as

1
n

αi + ∑
i∈S⊂N
|S|=n−1

ϕi(N, vS)

 .
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Therefore,

ϕ(N, vT ) =
1
n

~̀ + ∑
S⊆N

|S|=n−1

ϕ(N, vS)

 .

Example A.8. Consider the five-leaf tree T in figure A.5. From direct calcu-
lations we see that

ϕ({A, B, C, D, E}, vT ) = (5.28, 6.78, 4.2, 4.95, 2.78).
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Figure A.5: Example of calculating the Shapley value of a five-leaf tree from
all 4-leaf subtrees.

The Shapley value for each four-leaf subtree is

ϕ(N, v{A,B,C,D}) = (5.58, 6.92, 4.92, 5.58, 0),

ϕ(N, v{A,B,C,E}) = (4.75, 6.08, 6.75, 0, 3.42),

ϕ(N, v{A,B,D,E}) = (4.83, 6.17, 0, 7.5, 3.5),

ϕ(N, v{A,C,D,E}) = (8.25, 0, 3.58, 4, 25, 2.92),

ϕ(N, v{B,C,D,E}) = (0, 9.75, 3.75, 4.42, 3.08).
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Using (A.2), we get

ϕ({A, B, C, D, E}, vT ) =
1
5




3
5
2
3
1

+ ∑
S⊆N

|S|=n−1

ϕ(N, vS)



=
1
5




3
5
2
3
1

+


23.41
28.92

19
21.75
12.92




= (5.28, 6.78, 4.2, 4.95, 2.78).

A.4.3 Generalizing Theorem A.7

Now that we have looked at calculating the Shapley value from the (n− 1)-
leaf subtrees of a game tree, it would be nice to generalize the formula so we
can use any size subtrees. Although it looks as if it would be easy to induct
on (A.2), it is a bit tricky when it comes to figuring out what the entries
of ~̀ should be. In some cases, the ith entry of ~̀ will be a sum of internal
edge weights with i’s leaf weight. The following example illustrates this
situation.

Example A.9. In the case of a five-leaf tree, we can calculate the Shapley
value for A from (A.2) by

ϕA(N, vT ) =
1
5
(α + ∑

S⊆N
|S|=4

ϕA(N, vS)).

If we want to calculate the Shapley value for A from the three-leaf subtrees
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we obtain

ϕA(N, vT ) =
1
5

α + ∑
S⊆N
|S|=4

1
4
(α′ + ∑

U⊆S
|U|=3

ϕA(N, vU))



=
1
5

α +
1
4

4α + µ + 2 ∑
U⊆S
|U|=3

ϕA(N, vU)




=
1
5

2α +
1
4

µ + 2 ∑
U⊆S
|U|=3

ϕA(N, vU)


 .

The summand 1
4 µ came from the factor of~̀ from the subtree ACDE. See

figure A.6. In this case, the leaf weight α′ of A is α + µ.
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Figure A.6: (left) The five-leaf tree where the players are A, B, C, D, and E.
(right) The four-leaf subtree ACDE. Notice that the leaf weight of A is now
α + µ instead of just α.

Taking the internal edge weights into account, we get an equation for
the Shapley value from (n−m)-leaf subtrees.

Theorem A.10. Let N = {1, . . . , n} be the leaves of tree T and label the in-
ternal edges {n + 1, . . . , 2n − 3}. Let the associated edge weights be αk for k ∈
{1, . . . , 2n − 3}. If all of the Shapley values for the (n − m)-leaf subtrees are
known, then the Shapley value of T is

ϕ(N, vT ) =
1
n!

~L(m) + (n−m)!m! ∑
S⊆N

|S|=n−m

ϕ(N, vS)

 (A.4)



56 Paper: “The Shapley Value of Phylogenetic Trees”

where

~Li(m) =
2n−3

∑
k=1

m

∑
j=c(i,k)

(n− j)!(j− 1)!
(

f (i, k)
n− j

)
αk. (A.5)

Proof. We will prove this by induction on m. It suffices to prove this for a
single leaf so fix i ∈ N.

Base case: When m = 1, we have

1
n!

~Li(1) + (n− 1)!1! ∑
i∈S⊆N
|S|=n−1

ϕi(N, vS)



=
1
n!

(n− 1)!(1− 1)!
(

1
n− 1

)
αi + (n− 1)! ∑

i∈S⊆N
|S|=n−1

ϕi(N, vS)



=
1
n

αi + ∑
i∈S⊆N
|S|=n−1

ϕi(N, vS)

 .

By theorem A.7 this is ϕi(N, vT ).
Induction Hypothesis:

ϕi(N, vT ) =
1
n!

~Li(m− 1) + (n−m + 1)!(m− 1)! ∑
i∈S⊆N

|S|=n−m+1

ϕi(N, vS)

 .

Inductive Step: We can apply theorem A.7 to the induction hypothesis
to get

ϕi(N, vT ) =
1
n!

~Li(m− 1) + (n−m)!(m− 1)! ∑
S⊆N

|S|=n−m+1

α′i + ∑
i∈U⊆N
|U|=n−m

ϕi(N, vU)




(A.6)
where α′i is the leaf weight of i in the subtree spanned by U. Notice that any
edge weight is in α′i if U \ {i} is from the opposite side of that edge from i.
Thus

(n−m)!(m− 1)! ∑
S⊆N

|S|=n−m+1

α′i =
2n−3

∑
k=1

(n−m)!(m− 1)!
(

f (i, k)
n−m

)
αk.
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If we add this to ~Li(m − 1) we get ~Li(m). Also note that every (n − m)-
leaf subtree comes from m (n−m + 1)-leaf trees so plugging that into (A.6)
yields

ϕi(N, vT ) =
1
n!

~Li(m) + (n−m)!m! ∑
i∈U⊂N
|U|=n−m

ϕi(N, vU)

 .

It is interesting to note that (A.4) does not seem to depend on the topol-
ogy of the tree so we can theoretically induct on the size of the subtrees.
However, with the addition of (A.5) we lose the ability to induct since we
need to know the topology of the tree or the split counts. Equation (A.4) is
helpful in seeing how the Shapley value depends on the each of the edge
weights. We can see this from the following corollary.

Corollary A.11. If N is the set of leaves in tree T with edge weights αk for k =
1, . . . , 2n− 3, then for i ∈ N,

ϕi(N, vT ) =
1
n!

(
2n−3

∑
k=1

n−2

∑
j=c(i,k)

(n− j)!(j− 1)!
(

f (i, k)
n− j

)
αk

)
.

Proof. Use theorem A.10 when m = n− 2 and

∑
S⊂N
|S|=2

ϕi(S, vT ) =
2n−3

∑
k=1

1
2

αk f (i, k).

A.4.4 Examining the Null Space

As we have seen, Theorem A.3 has been instrumental in showing how the
Shapley value can be calculated from the Shapley value of any size sub-
trees. Now we will also use this theorem to understand the dependence of
the null space on the split counts, as mentioned in section A.3.4.

The following theorem exhibits the null spaces basis of M in terms of
the split counts.
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Theorem A.12. Let T be an n-leaf tree with leaves N = {1, . . . , n} and internal
edges I1, . . . , In−3. For each internal edge Ik, there corresponds a vector wIk ∈
R2n−3 in a basis of the null space of the Shapley transformation of T :

(wIk)i =


− f (i,k)−1

(n−2)c(i,k) if 1 ≤ i ≤ n

1 if i = n + k
0 otherwise

(A.7)

for all k ∈ {1, . . . , n− 3} and entries i ∈ {1, . . . , 2n− 3}, where the first n entries
correspond to leaves and the last n − 3 entries corresponds to internal edges.

Before proving the theorem, we give an example.

Example A.13. Consider the five-leaf tree in Figure A.3. Label the internal
edges I1, I2 such that the corresponding edge weights are µ, ρ, respectively.
Using Theorem A.12, let us calculate the null space vector wI1 . We know
that the 5 + 1 = 6th entry of wI1 is 1 and all entries after that are zero. To find
the first five entries of the vector, we consider the two subtrees obtained by
removing I1 from the tree. In that case, we’ll get the subtrees AB and CDE.
Then using (A.7), the first two entries of the matrix corresponding to A and
B will be

− 3− 1
(5− 2)2

= −1
3

and the next three entries corresponding to C, D, and E are

− 2− 1
(5− 2)3

= −1
9

.

These values correspond to the first vector in the null space basis we pre-
sented in Section A.3.2. We may obtain the other basis vector in a similar
fashion, by considering edge I2 instead of I1.

Now we will prove Theorem A.12.

Proof. Let T be an n-leaf tree. Consider the ith leaf. If we let M be the
matrix of Shapley value coefficients for T then we want to show

2n−3

∑
j=1

M[i, j](wIk)j = 0. (A.8)

Fix k ∈ {1, . . . , n− 3}. There are a couple of notes to point out that make
this proof easier. First using Theorem A.3, for all leaves j 6= i,

M[i, j] = (n− 2)!
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and
M[i, i] = (n− 1)(n− 1)!

for j ∈ {1, . . . , n} (not including the factor of 1
n! ). The only other entry of

the matrix we need to consider is M[i, n + k] since our construction of wIk

has zeros for the rest of the entries. Thus

M[i, n + k] = (n− 1)!
f (i, n + k)
c(i, n + k)

.

Plugging all of this into (A.8) yields

2n−3

∑
j=1

M[i, j](wIk)j = − f (n− 2)!
c− 1

(n− 2) f
− (c− 1)(n− 2)!

f − 1
(n− 2)c

− (n− 1)(n− 1)!
f − 1

(n− 2)c
+ (n− 1)!

f
c

.

To show this is the same as showing

(n− 1)!
f
c

=

f (n− 2)!
c− 1

(n− 2) f
+ (c− 1)(n− 2)!

f − 1
(n− 2)c

+ (n− 1)(n− 1)!
f − 1

(n− 2)c
.

(A.9)

The right side of the equation (A.9) is

f (n− 2)!
c− 1

(n− 2) f
+ (c− 1)(n− 2)!

f − 1
(n− 2)c

+ (n− 1)(n− 1)!
f − 1

(n− 2)c

= (n− 2)!
(

c− 1 + f − 1
n− 2

)
+ (n− 1)(n− 1)!

f − 1
(n− 2)c

− (n− 2)!
f − 1

(n− 2)c

= (n− 2)!
(

(c− 1)(n− 1)
(n− 2)c

)
+ (n− 1)(n− 1)!

f − 1
(n− 2)c

=
(n− 1)!
(n− 2)c

( f (n− 2))

= (n− 1)!
f
c

.

Thus wIk is in the null space of the Shapley value. It is apparent that
the null space has dimension n − 3 and the wIk are linearly independent.
Therefore the wIk form a basis of the null space of M.
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This theorem suggests that one may determine the topology of the tree
from the null space Null(M) of its Shapley transformation M. Because ev-
ery different n-leaf tree topology divides the leaves differently with respect
to at least one leaf (hence producing a different split count), the null space
bases will differ in at least one vector. Thus Null(M) will distinguish the
correct tree topology.

An immediate corollary is that Null(M) reveals the location of cher-
ries. A pair of leaves (i, j) is called a cherry if they have a common parent.
This is the case if and only if the tree spanned by i and j does not include
an internal edge. Therefore, removing the internal edge that contains the
common parent splits T into a 2-leaf and an (n − 2)-leaf subtree. Using
Theorem A.12 which determines a specific basis for the nullspace, we may
detect which edges include the parent of a cherry. This may be verified in
the previous examples.

Corollary A.14. Let T be an unrooted tree with leaves set N and edge set E.
Let wk := wIk = (wk

1, . . . , wk
n, wk

n+1, . . . , wk
2n−3) denote the basis vectors of the

nullspace of ϕ(vT ). Then there is a tree T ′ with same leaf set ϕ(vT ) = ϕ(vT ′) in
which the pair (i, j) of leaves form a cherry if and only if there exists k′ such that

wk′
i = wk′

j = − n− 3
2(n− 2)

. (A.10)

Proof. Inspecting (A.7) in Theorem A.12 reveals the equivalence, since in
case (and only in case) that deletion of Ik′ splits the tree into one with two
and one with n− 2 leaves, the above stated entries in wk′ prevail.

A.5 Characterization of the Shapley Value of Tree Games

The axioms presented in Section 2 uniquely characterize the Shapley value
on the class of all n-person games. However, the class of n-person games
that are derived from a tree is much smaller. By VN,E we denote the class
of games arising from some tree with set of leaves N and edge set E. For
games in VN,E we will allow positive as well as non-positive edge weights.
Thus, VN,E is a linear space and we ask for its dimension.

For a fixed pair (N, E) define games vk (k ∈ E) in the following way:
vk corresponds to the tree in which edge k is weighted 1 and all other
edges are weighted zero. We call such a game a basis game. It is readily
checked that the game v associated with the tree that exhibits edge weights
α1, . . . , αn, αI1 , . . . , αIn−3 is the linear combination v = ∑k∈E αkvk. Moreover,
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the family (vk)k∈E is linearly independent. Therefore these games form a
basis of VN,E and dimVN,E = 2n− 3.

Next, we examine a basis game vk and ask for a “reasonable” distribu-
tion ψ(vk) ∈ Rn. The total diversity is vk(N) = 1. We may interpret zero
edge weights on either side of the edge k as having two groups of species,
each one being homogeneous. So a natural property would be that the
degree of diversity that we assign to one group does only depend on the
fraction of this group (and hence of the fraction of the other group) relative
to the whole population. It seems plausible that a group on one side of the
edge (relatively) diversifies the population more, the more species there are
on the other side of the edge. Thus, we may assume that ψi(vk) is described
by a function that is increasing in the fraction f (i, k)/n. We formulate these
considerations as an additional axiom.

Axiom (group proportionality on basis games): For fixed N and E, a
mapping ψ : VN,E is said to satisfy group proportionality on basis games, if
there is some constant d ∈ R such that ψ satisfies ∑i∈C(i,k) ψi(vk) = d f (i,k)

n
for all i ∈ N, k ∈ E.

Thus, with ψ satisfying this axiom, a groups assigned diversity linearly
changes with the other group’s fraction of the whole population. Using the
new axiom, we get a characterization result on VN,E.

Theorem A.15. For each pair (N, E) (consisting of leaf set N and edge set E)
there is one and only one mapping ψ : V → Rn that satisfies Pareto efficiency,
symmetry, additivity and group proportionality. This mapping coincides with the
Shapley value, i.e., ψ = ϕ.

Proof. It is immediately verified that the Shapley value satisfies all the ax-
ioms (for group proportionality use A.3).
Now, let (N, E) be fixed and ψ satisfy the axioms. First, we take a basis
game vk and determine ψ. By symmetry, we may conclude ∑i∈C(i,k) ψi(vk) =
c(i, k) ψi(k) = c(j, k) ψj(vk) for i, j ∈ C(i, k) = C(j, k). Pareto efficiency
implies vk(N) = 1 = ∑j∈N ψj(vk) = ∑j∈C(i,k) ψj(vk) + ∑j∈F (i,k) ψj(vk) =

d ( f (i,k)
f (i,k)+c(i,k) + c(i,k)

f (i,k)+c(i,k) ) = d. Hence, we obtain ψi(vk) = f (i,k)
n c(i,k) for any

i ∈ N and k ∈ E. Analogously, we get ψi(λvk) = λ ψi(vk) for λ ∈ R.
Using additivity and Theorem A.3, ψ coincides with the Shapley value on
VN,E.

We close this section with two remarks. First, note that any game aris-
ing from a tree with nonnegative edge weights is representable as a linear
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combination of basis games using nonnegative coefficients. Hence, we may
derive a version of Theorem A.15 for classes of games that actually arise
from phylogenetic trees.

Second, Theorem A.15 provides further justification for the use of the
Shapley value to analyze phylogenetic trees. If one wants to distribute
the total diversity of a population on its species and the distribution rule
should satisfy the above (reasonable) axioms, then the Shapley value is the
only possible choice. As symmetry, Pareto efficiency and additivity are
rather “obligatory” requirements for a plausible rule, it is the proportional-
ity axiom that provides further insight in the rationale behind the Shapley
value. Of course, modification of the group proportionality axiom eventu-
ally leads to a different distribution rule based on a different rationale.

A.6 The Core of Tree Games

Thus far we have been using the Shapley value to solve tree games. How-
ever, another solution concept for n-player cooperative games that is fre-
quently studied is the core of a game, which is the set of all imputations
~x ∈ Rn such that for all coalitions S ⊆ N, ∑i∈S xi ≥ v(S). In this section we
examine the core of phylogenetic tree games.

It is apparent that the core for a single player game is 0 and the core
of the two player game is {(x1, x2) ∈ R2|x1 + x2 = α, x1 ≥ 0, x2 ≥ 0} so
we will derive the core for the three- and four-leaf tree games to gain some
intuition about what the core looks like.

Example A.16. The characteristic function of the three-leaf tree is given in
section A.3.1. From this we get the following system of inequalities:

xA + xB + xC = α + β + γ

xA + xB ≥ α + β

xA + xC ≥ α + γ

xB + xC ≥ β + γ

It is apparent that the core consists of the single element~̀ which is the leaf

weights

 α
β
γ

.

So we see that the three-leaf tree has only one element in its core, namely
the vector of leaf weights. Now we will look at the four-leaf tree game
which will help us see how internal edges affect the core.
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Example A.17. It is easy enough to derive the characteristic function of the
four-leaf tree game given in figure A.3 so we will not write it here. This
game yields the following system of inequalities:

xA + xB + xC + xD = α + β + µ + γ + δ

xA + xC ≥ α + µ + γ (A.11)
xB + xD ≥ β + µ + δ (A.12)

...

From (A.11) and (A.12) we see that

α + µ + γ ≤ xA + xC ≤ α + γ.

So either µ = 0 in which case we have a degenerate tree and the core is~̀ or
the core has to be empty since the inequality cannot be satisfied.

From these two examples we obtain the following theorem.

Theorem A.18. Let T be an n-leaf game tree T where n ≥ 3. If the tree is
degenerate, then the core consists of the leaf weight vector ~̀ . Otherwise the core is
empty.

Proof. Let T be an n-leaf tree with edge weights αi for i ∈ {1, . . . , 2n − 3}.
Every tree has at least two cherries, where a cherry is a set of two leaves
with a common parent. Label the two leaves on one cherry 1 and 2 and
label the two leaves on the other cherry 3 and 4 each with corresponding
leaf weights α1, α2, α3 and α4. We know from the properties of the core that
for the set of leaves N,

∑
j∈N

xj = ∑
i∈{1,...,2n−3}

αi (A.13)

x1 + x3 ≥ ∑
k∈P

αk (A.14)

∑
j∈N\{1,3}

xj = ∑
i∈T\P

αi (A.15)

where P is the set of edges in the subtree spanned by A and C. From (A.13)
and (A.15) we get

x1 + x3 ≤ α1 + α3. (A.16)

We know there are no other edge weights included in (A.16) because the
subtree spanned by 2 and 4 (which is included in T \ P) will have the same
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edges as P except for the leaf weights. Thus from (A.14) and (A.16) we
must have

∑
k∈P

αk ≤ x1 + x3 ≤ α1 + α3.

However this cannot be satisfied and the core is empty unless all of the
internal edge weights are zero (i.e., the tree is degenerate), in which case the
core is the element~̀ .

Notice that for n = 3, T is always degenerate, and thus the core will
never be empty.

Because the core of tree games is empty in most cases, the Shapley value
is a far more interesting solution concept to consider. However, the core has
the potential to find (or rule out) degenerate trees easily, unlike the Shapley
value.

Suppose we are given the pairwise distances for n leaves of a tree. If
any four leaf subset has an empty core, then the tree is definitely not de-
generate. But if any of the inequalities hold then the subtree spanned by
the four leaves in the subset contains a degeneracy. To illustrate this point,
see example A.19.

Example A.19. Consider the 5-leaf tree given in figure A.3. Let µ > 0 and
ρ = 0. Then the four-leaf subtree ACDE has a nonempty core, namely

α + µ
0
γ
δ
ε

. Thus there is a degeneracy among the leaves ACDE which

we can see (C, D, E all have a common parent). However, in the four leaf
subtree ABCE, we have

α + µ + γ ≤ xA + xC ≤ α + γ

so the core is empty. Thus the tree is not totally degenerate but it contains
a degenerate subtree CDE.

A.7 Conclusion

In this paper we have presented a biological interpretation of the Shapley
value on games derived from phylogenetic trees. From a mathematical per-
spective, we showed how the Shapley value of tree games can be calculated
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from the Shapley value of the subtrees even if the tree itself cannot be con-
structed from those subtrees. It is worth noting again the dependence many
of our results have on the split counts, the division of leaves with respect to
a given edge. We have also proved some results about the null space of the
Shapley transformation on tree games, as well as the emptiness of the core.

Our work suggests several directions for further research. For instance:

• Can our results be used in some way to assist with reconstruction of
trees from data?

• Is there a way to determine split counts from raw data, and can this
assist in determining the correct tree topology?

• If there were a way to estimate the Shapley value from data, this
would be enough to determine edge weights of a degenerate tree.
Do the leaf weights of this tree have any significance?

• If we use the Shapley value to rank the species in the Noah’s ark prob-
lem for preservation, to what extent can we guarantee that the diver-
sity of the top k species (i.e., the weight of the subtree spanning them)
approximates the total diversity of all n species? Determine a bound
that depends on k and n.





Appendix B

Poster: “The Shapley Value of
Phylogenetic Trees”

This is a copy of the poster I presented at the sixth annual Harvey Mudd
College mathematics conference titled “Algebra, Geometry, and Phyloge-
netic Trees” held on October 23, 2004. I also used this poster at the AMS-
MAA-SIAM Joint conference at Atlanta in January 2005.
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Appendix C

Poster: “Reconstructing
Phylogenetic Trees from
Subsplits”

This is a copy of the poster I made for Harvey Mudd College’s 2005 Pre-
sentation Days on my thesis work.
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[3] Böcker, S., Dress, A. W., and Steel, M. (1999). Patching up x-trees. An-
nals of Combinatorics, 3:1 – 12. This paper focuses on the unique recon-
struction of trees from four-leaf subsplits. Although they claim that it is
a simple matter to induct on this work to reproduce results for all other
subsplits, I have not found a way to do this without a thorough case
analysis.
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