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Abstract

We derive the rational generating function that enumerates the angels and devils
in M. C. Escher’s Circle Limit IV according to their combinatorial distance from
the six creatures whose feet meet at the center of the disk. This result shows
that the base of the exponential rate of growth is 1.582 . . . (the largest root of
the polynomial 1− z2 − 2z3 − z4 + z6).

Keywords: tessellations; enumerative combinatorics

1. Introduction

M. C. Escher’s Circle Limit IV (1960) is one of the artist’s most fa-
mous works. It can be viewed at http://www.mcescher.com/gallery/

mathematical/circle-limit-iv/. Its mathematical aspects have already
been studied by Coxeter [3], Bennett [1], and Dunham [4]. In it, white angels
and black devils alternate to form a tessellation of the hyperbolic plane by
triangular faces. Each creature (angel or devil) is represented by a face, with
one vertex at the feet and two vertices at the wing tips, and with one edge
at the head and two edges at the legs. Each edge separates an angel from a
devil. At each vertex of the tessellation, six pairs of feet (three of angels and
three of devils) or eight wing tips (four of angels and four of devils) meet.

Journal of Humanistic Mathematics Vol 5, No 2, July 2015

http://www.mcescher.com/gallery/mathematical/circle-limit-iv/
http://www.mcescher.com/gallery/mathematical/circle-limit-iv/
http://scholarship.claremont.edu/jhm/


52 Counting the Angels and Devils in Escher’s Circle Limit IV

The tessellation is displayed with six pairs of feet meeting at the center of
a Poincaré disk model of the hyperbolic plane. The tessellation is isohedral
(the symmetry group acts transitively on the faces, if one ignores the dis-
tinction between angles and devils), but not isogonal (some vertices have
degree six, while others have degree eight) and not isotoxal (some edges join
two vertices of degree eight, while others join a vertex of degree eight with a
vertex of degree six).

Choi [2] refers to this tessellation as {3, [6, 8, 8]} (a tessellation by faces of
degree three, in which each triangle meets one vertex of degree six, and two
vertices of degree eight). The vertices may be partitioned into generations,
with the n-th generation comprising the vertices at distance n from the single
vertex of degree six at the center (where the distance between two vertices
is the length of a shortest path between them, and the length of a path is
the number of edges it contains). Choi [2] gives the generating function that
enumerates vertices of this tessellation according to their generation (that is,
in which the coefficient of zn is the number of vertices in generation n). This
generating function is (1 + 4z + 10z2 + 4z3 + z4)/(1− 2z− 2z2− 2z3 + z4) =
1 + 6z + 24z2 + 66z3 + 192z4 + · · · , where the sequence of coefficients of the
series is sequence A234271 in the OEIS (the On-Line Encyclopedia of Integer
Sequences, at http://oeis.org). Since this generating function is rational
with simple poles, the coefficients grow exponentially at a rate given by the
reciprocal of the pole closest to the origin (which, since the denominator
polynomial 1− 2z− 2z2− 2z3 + z4 is self-reciprocal, is the pole furthest from
the origin). This rate (that is, the base of the exponential) is

1/2 +
√

5/2 +

√
1/2 +

√
5/2 = 2.890 . . . .

It is natural to expect that this growth rate is intermediate between that of
the regular tessellation {3, 6} (with six triangles meeting at every vertex) and
that of {3, 8} (with eight triangles meeting at every vertex). The former is a
tessellation of the Euclidean plane, and therefore has linear growth (exponen-
tial rate 1 < 2.890 . . . , as expected). Paul and Pippenger [5] have determined
the generating functions for all regular tessellations of the hyperbolic plane;
for {3, 8} the generating function is

(1 + 4z + z2)/(1− 4z + z2)

and the exponential rate is 2 +
√

3 = 3.732 . . . > 2.890 . . . as expected.

http://oeis.org
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Our goal in this paper is to conduct an analogous enumeration of the faces
of the tessellation {3, [6, 8, 8]} (so that we are counting the angels and devils
themselves, rather than the meeting places of their feet and wing tips). To
do this we consider the dual tessellation {[6, 8, 8], 3}, constructed by taking
a vertex corresponding to each face in {3, [6, 8, 8]} and a face corresponding
to each vertex in {3, [6, 8, 8]}, with an edge joining each pair of vertices in
{[6, 8, 8], 3} that correspond to adjacent faces in {3, [6, 8, 8]}. In this dual
tessellation, every vertex has degree three, and every vertex is the meeting
place of one hexagon (face of degree six) and two octagons (faces of degree
eight). This tessellation is isogonal, but not isohedral and not isotoxal. We
are interested in enumerating the vertices of this dual tessellation. We again
partition the vertices into generations, now according to the length of their
shortest path to any of the six vertices of the central hexagon (corresponding
to the six creatures whose feet meet at the center of the original tessellation).
Generations 0, 1, and 2 of this tessellation are shown in Figure 1 below.

• •

• • •

• • • • •

• •

• •

• • • • •

• • •

• •

Figure 1: The first three generations of the tessellation {3, [6, 8, 8]}.
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We shall show that the generating function for this dual tessellation is
6(1 + z + z2 + z3)/(1 − z2 − 2z3 − z4 + z6) = 6(1 + z + 2z2 + 4z3 + 5z4 +
9z5 + 14z6 + 22z7 + · · · ), where the sequence of coefficients of the series
in parentheses is sequence A234273 in the OEIS ).) The exponential growth
rate is 1.582 . . . . It is natural to expect that this growth rate is intermediate
between that of the regular tessellation {6, 3} (with three hexagons meeting
at every vertex) and that of {8, 3} (with three octagons meeting at every
vertex). The former is a tessellation of the Euclidean plane, and therefore
has linear growth (exponential rate 1 < 1.582 . . . , as expected). Paul and
Pippenger [5] have shown that for {8, 3} the generating function is (1+z)(1+
z + z2 + z3 + z4)/(1− 6z − 6z2 − 6z3 + z4) and the exponential rate is

1/4 +
√

13/4 +

√√
13/8− 1/8 = 1.722 . . . > 1.582 . . .

as expected.

The polynomial 1− z2− 2z3− z4 + z6 that determines the growth rate of
vertices in {[6, 8, 8], 3} is solvable (because it is self-reciprocal, and reduces
to a cubic). The growth rate is the larger root of z + 1/z = y, where

y =
(9 + i

√
111)1/3

32/3
+

4

31/3 (9 + i
√

111)1/3

is the largest of the three real roots of the polynomial y3 − 4y − 2. (The
other two roots of y3 − 4y − 2 give rise to conjugate pairs of complex roots
of 1− z2 − 2z3 − z4 + z6.)

The theme of alternating angels and devils was clearly a favorite of Es-
cher’s; almost twenty years earlier he had constructed analogous tessellations
of the Euclidean plane (1941) and the sphere (1942) (see Coxeter [3] and Dun-
ham [4]). The analogous enumerations for these tessellations are much easier
than those done for Circle Limit IV by Choi [2] and here, and we merely sum-
marize them here. The tessellation of the Euclidean plane may be described
as {3, [4, 8, 8]} (four pairs of feet or eight wing tips meet at each vertex); the
generating function enumerating its vertices (with the origin at a meeting of
feet, as for Circle Limit IV ) is (1+2z+9z2−4z3)/(1−z)2 = 1+4z+16z2 +
24z3 + 32z4 + · · · ; the growth rate is of course linear. (This sequence is se-
quence A234275 in the OEIS.) The creatures, corresponding to the vertices of
the dual tessellation {[4, 8, 8], 3} are enumerated by the generating function
4(1+z2)/(1+z+z2)(1−z)2 = 4(1+z+2z2+3z3+3z4+4z5+5z6+5z7+ · · · ;
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all the roots of the denominator are of absolute value unity, so the growth
rate is again linear. (The sequence of coefficients of the series in parentheses
is A004396 in the the OEIS.) The tessellation of the sphere is {3, [4, 6, 6]}
(four pairs of feet or six wing tips meet at each vertex), with vertices enu-
merated by the polynomial 1 + 4z + 8z+z3; the vertices of the dual {[4, 6, 6]}
are enumerated by 4(1 + z + 2z2 + z3 + z4).

2. Enumeration

From this point onward, all references to vertices, edges and faces refer
to the dual tessellation {[6, 8, 8], 3}. We begin by classifying the edges and
defining some relations among vertices. An edge that joins a vertex v in
generation n and a vertex w in generation n+ 1 will be called a filial edge; v
will be called a parent of w, and w will be called a child of v. An edge that
joins two vertices in the same generation will be called a fraternal edge, and
the joined vertices will be called siblings of each other.

Each of the six vertices in generation zero has two siblings and one child.
We shall call these G-vertices. The G-vertices are shown in at the center of
Figure 1. The vertices in subsequent generations are of three types. Those
that have one parent and two children will be called type-I vertices; those
with two parents and one child will be called type-II vertices; and those with
one parent, one sibling and one child will be called type-III vertices. Type-I,
-II, and -III vertices are shown (as ◦s) in Figure 2.

n + 1 • • • • •

n ◦ ◦ ◦ ◦

n− 1 • • • • •

Generation I II III

Figure 2: Type-I, -II, and -III vertices.
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A hexagon (or octagon) that has two type-III sibling vertices in generation
n and two type-III sibling vertices in generation n+2 (or n+3) will be called
a flat hexagon (or octagon). The vertices in generation n will be called the
floor of the face, and those in generation n + 2 (or n + 3) will be called
the roof. Type-III sibling vertices that form the roof of a hexagon and the
floor of an octagon will be called E-vertices (uless they are G-vertices); those
that form the roof of an octagon and the floor of a hexagon will be called
F -vertices. Flat hexagons and octagons, and E- and F -vertices are shown in
Figure 3.

n + 3 F F

n + 2 E E • •

n + 1 • • • •

n F F E E

Generation Flat Hexagon Flat Octagon

Figure 3: Flat hexagons and octagons, and E- and F -vertices.

Our terminology regarding E- and F -vertices assumes that above the roof
of a flat hexagon there lies a flat octagon, and above the roof of a flat octagon
there lies a flat hexagon. The first assumption is justified by the fact that
one hexagon and two octagons meet at every vertex; thus the six polygons
surrounding each hexagon are all octagons, so the polygon above the roof
of a flat hexagon must be a flat octagon. To justify the second assumption,
we observe that the eight polygons that surround an octagon must alternate
between hexagons and octagons, so that the polygon above the roof of a flat
octagon must be of the same type as the polygon below its floor. Since all
flat polygons trace their ancestry to the central hexagon of G-vertices, they
must alternate between hexagons and octagons, so the polygon above the
roof of a flat octagon must be a flat hexagon.
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A hexagon (or octagon) that has a type-I vertex in generation n and a
type-II vertex in generation n+3 (or n+4) will be called a sharp hexagon (or
octagon). The vertex in generation n will be called the floor of the face, and
that in generation n + 3 (or n + 4) will be called the roof. Type-II vertices
that form the roof of a hexagon will be called C-vertices; those that form the
roof of an octagon will be called D-vertices. Type-I vertices that form the
floor of a hexagon will be called A-vertices; those that form the floor of an
octagon will be called B-vertices. Sharp hexagons and octagons, and A-, B-,
C- and D-vertices are shown in Figure 4 below.

Let G(z) denote the generating function for G-vertices. We have

G(z) = 6. (1)

Let E(z) and F (z) denote the generating functions for E- and F -vertices,
respectively. Each of the six pairs of consecutive G-vertices in generation 0
gives rise to a pair of F -vertices across the flat octagon in generation 3. Each
pair of F -vertices in generation n gives rise to a pair of E-vertices across the
flat hexagon in generation n + 2. Each pair of E-vertices in generation n

n + 4 D

n + 3 C • •

n + 2 • • • •

n + 1 • • • •

n A B

Generation Sharp Hexagon Sharp Octagon

Figure 4: Sharp hexagons and octagons, and A-, B-, C- and D-vertices.
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gives rise to a pair of F -vertices across the flat octagon in generation n + 3.
These are all the E- and F -vertices, so we have

E(z) =
12z5

1− z5
; (2)

F (z) =
12z3

1− z5
. (3)

Let A(z), B(z), C(z), and D(z) denote the generating functions for A-,
B-, C-, and D-vertices, respectively. Each A-vertex in generation n gives rise
across the sharp hexagon to a C-vertex in generation n+3. Each B-vertex in
generation n gives rise across the sharp octagon to a D-vertex in generation
n + 4. These are all the C-vertices and D-vertices, so we have

C(z) = z3A(z); (4)

D(z) = z4B(z). (5)

It remains to derive equations for the generating functions A(z) and B(z).
The one child of each G-, E-, and C-vertex is an A-vertex. The one child
of each F - and D-vertex is a B-vertex. One of the two children of each
B-vertex is an A-vertex (unless it is a D-vertex or an F -vertex). One of
the two children of each B-vertex, and each of the two children of an A-
vertex, is a B-vertex (unless it is a C-vertex, a D-vertex or an E-vertex).
These observations allow us to write equations for A(z) and B(z) (where the
negative terms correspond to the “unless” clauses in the observations):

A(z) = z B(z) + z C(z)−D(z) + z E(z)− F (z) + z G(z);

B(z) = 2z A(z) + z B(z)− 2C(z) + z D(z)−D(z)− E(z) + z F (z).

Substituting Equations (1)-(5) and solving the resulting equations for
A(z) and B(z) yields

A(z) =
6z (1− z2 + 2z4 + z5 − z7)

(1− z) (1 + z + z2 + z3 + z4) (1− z2 − 2z3 − z4 + z6)
;

B(z) =
12z2 (1 + z − z3)

(1− z) (1 + z + z2 + z3 + z4) (1− z2 − 2z3 − z4 + z6)
.

Summing over the seven kinds of vertices yields

V (z) =
6(1 + z + z2 + z3)

1− z2 − 2z3 − z4 + z6
,

as claimed.
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3. Conclusion

We have found the generating function that enumerates angels and dev-
ils in Escher’s Circle Limit IV. We did this by considering seven different
types of vertices, together with their seven enumerating functions. The final
generating function is strikingly simple as compared with those that appear
intermediately in the derivation, and this of course raises the question of
whether there might be some much simpler derivation of this final result.
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