
Claremont Colleges Claremont Colleges

Scholarship @ Claremont Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2005

Decimation-in-Frequency Fast Fourier Transforms for the Decimation-in-Frequency Fast Fourier Transforms for the

Symmetric Group Symmetric Group

Eric Malm
Harvey Mudd College

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses

Recommended Citation Recommended Citation
Malm, Eric, "Decimation-in-Frequency Fast Fourier Transforms for the Symmetric Group" (2005). HMC
Senior Theses. 173.
https://scholarship.claremont.edu/hmc_theses/173

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator
of Scholarship @ Claremont. For more information, please contact scholarship@claremont.edu.

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/173?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@claremont.edu

Decimation-in-frequency Fast Fourier
Transforms for the Symmetric Group

Eric J. Malm

Michael Orrison, Advisor

Shahriar Shahriari, Reader

April 27, 2005

Department of Mathematics

Abstract

In this thesis, we present a new class of algorithms that determine fast
Fourier transforms for a given finite group G. These algorithms use eigen-
space projections determined by a chain of subgroups of G, and rely on a
path-algebraic approach to the representation theory of finite groups devel-
oped by Ram (26). Applying this framework to the symmetric group, Sn,
yields a class of fast Fourier transforms that we conjecture to run in O(n2n!)
time. We also discuss several future directions for this research.

Contents

Abstract iii

Acknowledgments xi

1 Introduction 1
1.1 Introduction . 1
1.2 Group-Theoretical Fourier Transforms 3
1.3 Algorithmic Approaches to FFTs 9
1.4 FFTs for the Symmetric Group 12
1.5 Applications . 13
1.6 Open Questions . 14

2 Character Graphs and Seminormal Representations 17
2.1 Character Graphs . 17
2.2 Path Algebras . 19
2.3 Seminormal Matrix Representations 21
2.4 Applications to MC-Groups 24

3 Representation Theory of the Symmetric Group 27
3.1 Constructions of Irreducible Representations 27
3.2 Reformulation of Path-Algebraic Techniques 31
3.3 Seminormal Matrix Representations 35
3.4 Computation and Examples of Representations 39
3.5 Conclusions and Generalizations 41

4 Decimation-In-Frequency Algorithm Theory 43
4.1 The DFT as a Change of Basis 43
4.2 Path Algebras, DFTs and FFTs 45
4.3 Bimodules and Opposite Algebras 46
4.4 Double-Coset Branchings and Bases 48

vi Contents

4.5 Projections and Minimum Rank Decompositions 52
4.6 Decimation-in-Frequency Algorithms 53
4.7 Bases and Regular Representations 62
4.8 Computation of Double-Coset Projections 66
4.9 Conclusion . 70

5 Fast Fourier Transforms for the Symmetric Group 73
5.1 Computation of Coset Bases 74
5.2 Separating Elements . 76
5.3 Eigenvalue List Completion 77
5.4 Computation of Final Permutation Matrix 80
5.5 Computation of Scaling Matrix 81

6 Initial Implementation and Results 85
6.1 Mathematica Implementation 85
6.2 Precomputation . 86
6.3 Evaluation . 87
6.4 Multiplication and Convolution 90

7 Future Directions and Conclusions 93
7.1 Double-Coset Bases and Module Decompositions 93
7.2 Row Reduction and Choice of Basis 94
7.3 Efficiency of Precomputation 94
7.4 Efficiency of Evaluation . 95
7.5 MATLAB and GAP Implementations 95
7.6 Parallel Implementations . 95

A Computational Examples 97
A.1 CS3 with Idempotents . 98
A.2 CS3 with Jucys-Murphy Elements 105

B Tabulation of Double Coset Irreducibles 109
B.1 Double-Coset Modules in CS3 110
B.2 Double-Coset Modules in CS4 110
B.3 Double-Coset Modules in CS5 111

C Mathematica Code: FFT Generation Algorithm 115

Bibliography 137

List of Figures

2.1 Character Graph for Z/6Z 19
2.2 Character Graph for S3 . 21

4.1 Double-Coset Branching for S3 50

6.1 Graphical Representation of Factorization 89

List of Tables

3.1 Action of Transpositions on (3, 2)-Tableaux 42

5.1 Eigenvalue Completion . 80

6.1 Precomputation times . 86
6.2 FFT Evaluation Operation Counts 88
6.3 FFT Inverse Operation Counts 89
6.4 Convolution Operation Counts 90

A.1 Character Tables for S2, S3. 98

B.1 (S2, S2)-Double Cosets in CS3. 110
B.2 (S2, S2)-Double Cosets in CS4. 110
B.3 (S3, S2)-Double Cosets in CS4. 111
B.4 (S3, S3)-Double Cosets in CS4. 111
B.5 (S2, S2)-Double Cosets in CS5. 112
B.6 (S3, S2)-Double Cosets in CS5. 112
B.7 (S3, S3)-Double Cosets in CS4. 113
B.8 (S4, S3)-Double Cosets in CS4. 113
B.9 (S4, S4)-Double Cosets in CS4. 114

Acknowledgments

I would like to thank my thesis advisor, Michael Orrison, for his insight,
support, and guidance on this project, and my second reader, Shahriar
Shahriari, for his helpful commentary. Additionally, I would like to thank
Lisa Lambeth for her patience and her willingness to endure early drafts of
chapters, Claire Connelly for her excellent thesis class and LATEX assistance,
and my friends and parents for their support and encouragement.

Chapter 1

Introduction

1.1 Introduction

Spectral analysis methods play a crucial role in mathematics today and in
the pure and applied sciences. For example, the study of Fourier series
concerns itself with the decomposition of a periodic function f into a series
of complex exponentials (13):

f (x) =
∞

∑
n=−∞

cneinx. (1.1)

The amplitudes cn of these exponentials then constitute the spectrum of the
function. Such decompositions have applications to linear partial differen-
tial equations, where the exponential functions act as a basis of eigenfunc-
tions of the linear operator associated with the equation. The eigenvalue
spectrum of the operator then determines how the solution to the equation
depends on the initial and boundary conditions (13; 17). This series decom-
position can be extended to nonperiodic functions by allowing a continu-
ous distribution of frequencies for the constituent complex exponentials, so
that a function f (x) decomposes as

f (x) =
∫ ∞

−∞
g(ω)eiωx dω. (1.2)

The spectrum of amplitudes g(ω) is then the Fourier transform of the func-
tion f (x). This terminology also illustrates that the Fourier transform itself
is a map from one space of functions to another space of functions, possibly
over a different domain.

2 Introduction

Spectral methods, and the Fourier transform in particular, have signif-
icant applications in the physical sciences. In quantum mechanics, for in-
stance, the eigenvalue spectrum of a Hermitian operator such as the Hamil-
tonian or the angular momentum operator determines the range of observ-
able values for the physical quantity corresponding to that operator. The
position-space wave function ψ(x) of a particle describes the distribution of
its possible positions states, and can be rewritten in terms of its momentum-
space wave function ψ̂(p) in what is in fact a Fourier transform on R (31):

ψ(x) =
1√
2πh̄

∫ ∞

−∞
ψ̂(p)eipx/h̄ dp.

The physical significance of these transforms arises from the natural duality
between quantities such as position and momentum and energy and time.
This same duality underlies the famous Heisenberg uncertainty relations
∆x∆p ≥ h̄/2 and ∆E∆t ≥ h̄/2.

Spectral methods are also of major significance in engineering and the
applied sciences. For example, much of modern signal processing concerns
determining not only the spectrum of a given input signal, but also how
that spectrum will change when the signal passes through particular sys-
tems and how to design systems that amplify or isolate certain portions of
the spectrum. Of particular importance to signal processing is the Discrete
Fourier Transform (DFT), which converts a function on N evenly spaced
points to N amplitudes associated to certain frequencies. In keeping with
the terminology above, these amplitudes are called the Fourier coefficients
of the function. This transform allows discrete samples of a continuous sig-
nal to yield some information about the spectrum of that signal. Because
computational methods operate primarily on such discrete data, the DFT
has become ubiquitous in modern signal processing.

Naı̈ve implementations of the DFT require O(N) operations for the con-
struction of each coefficient, resulting in an overall O(N2) algorithm for the
DFT. This O(N2) complexity severely limits the application of the DFT to
large data sets and motivates the search for more efficient implementations
of the transform. Any such efficient implementation of the DFT is called
a Fast Fourier Transform (FFT). Such FFTs trace back even to Gauss, who
determined an efficient interpolation of a planetary orbit between n points
from its interpolation on two sets of n/2 points. Modern FFTs are derived
from the algorithm that Cooley and Tukey developed in the 1960s (6; 27),
which computes a DFT on N = pq points first by p transforms of length
q and then by q transforms of length p, for a total of pq(p + q) operations.

Group-Theoretical Fourier Transforms 3

Applied recursively in the case where N = 2n, this algorithm yields a com-
plexity of O(N log N) for the N-point DFT, a significant improvement over
the naı̈ve O(N2) implementation.

1.2 Group-Theoretical Fourier Transforms

As discussed above, given a continuous periodic function f : R → C, we
can determine some of its frequency spectrum by sampling the function at
N points x0, x1, . . . , xN−1 over one of its periods and computing the DFT on
those points. One of the key features of the DFT is that the magnitudes and
relative phases of the coefficients it yields do not depend on the time period
over which the function was sampled. In particular, this indicates that the
DFT is invariant under cyclic shifts of the points X = {x0, x1, . . . , xN−1}.
Such shifts correspond to the action of the group Z/NZ on this set X. We
obtain the same shifting action if we replace the N points of X with the
corresponding elements of Z/NZ, however. Hence, this function f on
the points of X can instead be thought of as a function on the elements
of Z/NZ. Finally, we can treat the function f : Z/NZ → C as an ele-
ment of the group algebra C(Z/NZ), where the coefficient of g ∈ Z/NZ

is f (g). This mapping of the function f : X → C into C(Z/nZ) provides
a representation-theoretic interpretation of the DFT and an avenue for its
generalization to arbitrary groups.

Suppose G is a finite group with h conjugacy classes, and let M be a
CG-module, so that M is a representation for G. Let Ĝ denote the set of h
equivalence classes of irreducible representations of G, and let U1, . . . , Uh
be representatives of these equivalence classes. By Maschke’s Theorem, M
decomposes as

M =
h⊕

i=1

Mi, (1.3)

where each Mi is isomorphic to a direct sum of ni isomorphic copies of Ui,
so that Mi

∼= niUi. These Mi are referred to as the isotypic components of M
and are unique for each CG-module M.

In particular, CG is itself a CG-module by left multiplication, and so it
too decomposes into a direct sum of its isotypic components. The isotypic
components in this decomposition correspond to the minimal two-sided
ideals of CG, while the irreducible representations correspond to its mini-
mal left ideals. Thus, each element f ∈ CG can be written as a unique sum
of elements in the representations constituting this direct sum, and these

4 Introduction

elements provide a generalization of the Fourier coefficients obtained by
the usual DFT.

These coefficients can be written explicitly by considering each irre-
ducible representation Ui as a vector space over C of dimension equal to
the degree di of the representation. Then each component of f ∈ CG corre-
sponds to a vector in Cdi , and each isotypic component of f corresponds to
a matrix in Cdi×di . Moreover, our module isomorphism CG =

⊕h
i=1 Mi

∼=⊕h
i=1 diUi extends to an algebra isomorphism to yield Wedderburn’s Theo-

rem (6; 11):

Theorem 1.1 The group algebra CG of a finite group G is isomorphic to an alge-
bra of block diagonal matrices:

CG ∼=
h⊕

i=1

Cdi×di . (1.4)
�

This isomorphism provides the generalization of the DFT that we seek:

Definition 1.2 Every C-algebra-isomorphism D : CG → ⊕h
i=1 Cdi×di is

called a discrete Fourier transform (DFT) for CG, or simply for G. The co-
efficients of the matrix D(f) are called the Fourier coefficients of f . �

Because we have a choice of basis for each Cdi×di , such isomorphisms
are not unique. Combined with a choice of basis for CG, we can reformu-
late the DFT as a |G| × |G| matrix from the coordinate representation of f ∈
CG to the coordinate representation of its transform D(f) ∈ ⊕h

i=1 Cdi×di .
This matrix form also indicates that the DFT is a linear transformation from
the input function to the coefficients.

A DFT for G is also equivalent to a complete set of inequivalent ir-
reducible matrix representations for G: each block in the matrix algebra
yields such a representation, and given a collection {ρj}h

j=1 of matrix repre-
sentations such that each ρj corresponds to a distinct irreducible type, their
direct sum determines a DFT. Hence, given such a matrix representation ρ
of G associated to the jth irreducible type and an element f = ∑g∈G fgg ∈
CG, we can compute the Fourier coefficients in block j of the matrix algebra
for the corresponding DFT as

f̂ = ∑
g∈G

fgρ(g). (1.5)

We use such matrix representations below to construct a discrete Fourier
transform for the symmetric group.

Group-Theoretical Fourier Transforms 5

1.2.1 Abelian Groups

We now illustrate how this concept of generalized Fourier transforms en-
compasses the familiar cases of spectral analysis discussed in Section 1.1,
all of which then correspond to Fourier transforms on abelian groups. In
the case of a finite abelian group G such as Z/NZ, each irreducible rep-
resentation of G has degree 1, so the isotypic subspaces of CG are all one-
dimensional. Therefore, Wedderburn’s Theorem states that

CG ∼=
|G|⊕
i=1

C1×1 ∼= C|G|, (1.6)

and the Fourier coefficients of f ∈ CG are simply the coordinates in C|G| of
the image of f under this isomorphism.

We can also reformulate the Cooley-Tukey FFT on N = pq points in
terms of a factorization of the group Z/NZ. The analysis presented here
closely follows that presented by Maslen and Rockmore (20). The N irre-
ducible representations of Z/NZ are all one-dimensional and hence are
equal to the irreducible characters of the group. These characters are given
by ζk(j) = ω−jk, where ω is a primitive Nth-root of unity. Thus, by Equa-
tion 1.5, the kth Fourier coefficient of an element f = ∑j f j j ∈ C(Z/NZ) is
given by

Xk =
N−1

∑
j=0

f jζk(j) =
N−1

∑
j=0

f jω
−jk. (1.7)

We can reindex the sum into a double sum by the chain of subgroups 1 <
Z/pZ < Z/NZ. Each j ∈ Z/NZ can be written as an element of a coset of
the subgroup qZ/NZ ∼= Z/pZ, so that j = i1q + i2. Let A be a transversal
of qZ/NZ in Z/NZ. Then the sum above becomes

Xk = ∑
a∈A

∑
b∈qZ/NZ

ζk(a + b) fa+b

= ∑
a∈A

∑
b∈qZ/NZ

ζk(a)ζk(b) fa+b

= ∑
a∈A

ζk(a) ∑
b∈qZ/NZ

ζk(b) fa+b.

We note that, in the inner sum, ζk acts only on elements of the subgroup
qZ/nZ, so we need consider only the restrictions (ζk↓qZ/NZ) of the char-
acters ζk to this subgroup. Since

ζk(i1q) = ω−i1qk = (ωq)−i1k,

6 Introduction

and ωq is a primitive pth-root of unity, these restrictions correspond ex-
actly to the p irreducible characters χm of Z/pZ. Consequently, we need
compute the inner sum only for k ∈ Z/pZ.

We now reformulate the calculation of the Fourier coefficients in two
stages, at the expense of some storage space:

• We compute and store f1(a, k) = ∑b∈qZ/NZ ζk(b) fa+b for all a ∈ A
and for all k ∈ Z/pZ. Each sum requires p operations, for a total of
p2q operations.

• We then compute ∑a∈A ζk(a) f1(a, k) for all k ∈ Z/NZ to obtain the
Fourier coefficients. Each sum requires q operations, for a total of
Nq = pq2 operations.

The final operation count for these two stages is then pq(p + q) operations,
while the total count for the one-stage calculations given by Equation (1.7)
is N2 = p2q2. This algorithm therefore represents a significant improve-
ment in complexity, and ultimately leads to the O(N log N) running time
of the Cooley-Tukey FFT.

Abelian groups other than the cyclic groups afford similar DFTs and
FFTs. We consider an example from Maslen and Rockmore (20), called the
2n-factorial design, which corresponds to functions on (Z/2Z)n. Such a set
of data might arise from the effects of n independent factors on the growth
of a crop of plants, where each factor can assume either a high value or
a low value. The irreducible representations of (Z/2Z)n are, as above,
all one-dimensional, and are given by χv(w) = (−1)〈v,w〉, where v, w ∈
(Z/2Z)n and 〈v, w〉 represents the usual inner product taken mod 2. We
decompose the computation of the Fourier coefficients by Equation (1.5)
into n stages according to the chain of subgroups

1 < Z/2Z < (Z/2Z)2 < · · · < (Z/2Z)n−1 < (Z/2Z)n

in a manner similar to the separation performed in the Cooley-Tukey FFT
to yield a transform in 3 · 2n log 2n operations. The DFT under consider-
ation here is equivalent the well-known Walsh-Hadamard transform, and
the FFT algorithm we generate then represents a sparse factorization of the
DFT matrix associated with the transform.

Much work has already been done on FFTs for abelian groups. The
key result, presented by Clausen and Baum (6), is that the combination
of the methods of Cooley and Tukey and the so-called chirp-z and Rader
transforms yields FFTs for all abelian groups G in fewer than 8|G| log |G|
operations.

Group-Theoretical Fourier Transforms 7

We can even extend this group theoretic formulation to infinite groups,
under certain restrictions detailed below. Consider a function f : R → C

that is 2π-periodic. We reformulate f as a function on the unit circle S1,
which is a compact group. The associated group algebra also has irre-
ducible degree-one representations, although in this case there are an in-
finite number of them, indexed by Z. Representing the elements of S1 by
θ ∈ [0, 2π), the nth irreducible representation is given by χn(θ) = 1

2π e−inθ .
Thus, the Fourier coefficients fn are determined by the integral

fn =
∫ 2π

0
f (θ)χn(θ) dθ =

1
2π

∫ 2π

0
f (θ)e−inθ dθ. (1.8)

In general, this integral exists because S1 is compact and thus has finite
volume under the measure dθ. The inverse transform is as specified in
Equation (1.1). We often require that the function f be band-limited, so that
fn = 0 for |n| > B for some B. This restriction allows us to replace the
infinite sum in Equation (1.1) with a finite sum from −B to B. In this case,
there exists a sampling method that allows the exact computation of the
coefficients from 2B + 1 samples of the function f (27); the finite-case FFT
then makes such computations efficient.

Finally, the Fourier transform over R detailed above in Equation (1.2)
provides an example of a transform over a noncompact abelian group. As
above, the Fourier coefficients are given by an integral, although this time
over R:

f̂ (ω) =
1

2π

∫ ∞

−∞
f (x)e−iωx dx. (1.9)

This result reflects the infinite number of irreducible representations of R,
as in the S1 case, although now they are indexed by R instead of by Z. In
order that these coefficients f̂ (ω) exist, we must place certain restrictions
on f . These include that it be band-limited (27) or that it belong to a special
class of functions that ultimately decay faster than e−x2

(17). In the band-
limited case, the Fourier coefficients have finite support, so as in the S1 case,
there exist sampling methods that then admit judicious use of the FFT to
create efficient transforms.

1.2.2 Nonabelian Groups

We now explore the generalization of these Fourier transforms to the case of
nonabelian groups G. Among the finite groups of particular interest are the
symmetric groups Sn, the dihedral groups D2n, solvable and supersolvable

8 Introduction

groups, and finite groups of Lie type, including several types of matrix
groups over finite fields (16; 20; 27). Such groups have applications that
include the analysis of ranked data and the construction of error-correcting
codes. Section 1.5 discusses potential applications of spectral analysis on
these groups in more detail.

Fourier transforms on finite nonabelian groups are even useful for un-
derstanding or manipulating the corresponding group algebras, as multi-
plication of elements in the group algebra corresponds to multiplication of
the elements in the group (6). Hence, this multiplication can be computed
through two DFTs, a matrix multiplication in the transform space, and an
inverse DFT. Implemented naı̈vely, either approach requires O(|G|2) oper-
ations, but an FFT algorithm can reduce the complexity of the transform
approach to at worst O(|G|3/2) and in some cases O(|G| logc |G|) for some
constant c ≥ 1, depending on the efficiency of the FFT algorithm itself.

Such applications therefore motivate us to determine how efficient the
FFTs for a given group can be. Such questions are usually stated in terms
of the complexity Ls(G) of a group G, which is defined to be the minimum
of the complexities of all the possible DFT matrices associated with G (4;
6; 20). A number of bounds on the complexity of nonabelian FFTs have
already been established. Clausen (4) states that, for a finite group G, the
complexity Ls(G) of a generalized FFT on G is bounded above by

Ls(G) ≤ min
C
{(s(C)− l(C)) · |G|+ 7

√
q(C)|G|3/2},

where the minimum is taken over all possible chains C of subgroups 1 =
G0 < · · · < Gn = G of G, where l(C) is the length n of the chain, and where
q and s are the maximum and sum, respectively, of the indices [Gi+1 : Gi]
determined by the chain. While this is a significant improvement over the
trivial bound of 2|G|2 operations, the existence of O(|G| log |G|) FFTs for
abelian groups demonstrates that this is by no means a sharp bound. Also
of interest are lower bounds on the complexity of an FFT, so that we can
determine when we have an optimal algorithm. Clausen and Baum (6)
state that O(|G|) is the best lower bound that has been proved so far in
computational models that allow arbitrarily large multiplications, although
if limits are placed on those multiplications the lower complexity bound
grows to O(|G| log |G|).

Better complexity bounds have been determined for specific families of
groups. Clausen and Baum (6) prove that if G is a solvable group with a
monomial DFT, then its complexity is less than 8.5|G| log |G|. Since all su-
persolvable groups meet this criterion, this result applies to them as well.

Algorithmic Approaches to FFTs 9

Maslen (18) proves that the symmetric group Sn has an FFT that can be
evaluated in O(|Sn| log2 |Sn|) operations. Further discussion of FFTs for
the symmetric group occurs in Section 1.4. Additonally, Maslen and Rock-
more (20) demonstrate that the complexity of GLn(Fq) is bounded above by
1
2 22qq2n−2|GLn(Fq)|.

As in the commutative case, these Fourier transforms on finite groups
can be extended to a compact group G provided certain constraints ap-
ply (27). In particular, the irreducible representations of G must be finite-
dimensional, and square-integrable functions must have a countable num-
ber of coefficients so that the Fourier decomposition converges. The Fourier
coefficients are then computed as integrals over the group with respect to
the Haar measure. Among the groups that meet these criteria are the clas-
sical compact Lie groups, such as O(n), SO(n), U(n), SU(n), and Sp(n).
Maslen (27) has made progress on bounds for transforms of band-limited
functions on U(n), SU(n), and Sp(n). Driscoll and Healy, Jr. (9), further-
more, treat the 2-sphere S2 as a homogeneous space of SO(3) to construct
an FFT that yields a spherical harmonic decomposition for a band-limited
function on S2.

In the noncompact case, Chirikjian (3) has made some progress with
respect to Fourier transforms for the Euclidean motion group SE(3) =
SO(3) o R3, although a general theory of generalized FFTs on noncompact
nonabelian groups has not yet been developed. Section 1.6 addresses cur-
rent open questions in this and other aspects of FFT research.

1.3 Algorithmic Approaches to FFTs

1.3.1 Decimation-in-Time Algorithms

We now discuss different methods of constructing FFT algorithms. The
majority of current FFT algorithms employ a decimation-in-time or separation
of variables approach, in which the elements of the group G are factored
according to a particular chain of subgroups 1 = G0 < G1 < · · · < Gn = G.
As in the Cooley-Tukey case, the frequencies are then computed through
a series of nested sums. The factorization that the subgroup chain affords
reduces the total number of operations that must be performed to compute
the sums at each stage.

Such algorithms typically produce the DFT corresponding to the semi-
normal matrix representations for G adapted to the chain of subgroups
used to factor the group (6). By Maschke’s Theorem, the restriction of a

10 Introduction

matrix representation ρ of G to a subgroup Gi in this chain will decompose
into a direct sum of representations for Gi. The feature of a seminormal
representation, however, is that the representing matrices are partitioned
into matrix direct sums under these restrictions, eliminating the need for a
further change of basis to bring them into block-diagonal form. We explore
the construction of these seminormal representations in general and for the
symmetric group in Chapters 2 and 3, respectively.

Decimation-in-time algorithms rely upon writing elements of the group
G as elements of the double cosets of Gn−1, where the coset representa-
tives are drawn from some fixed transversal (20). These representatives are
subsequently represented as elements of the double cosets of Gn−2 and so
on until an entire factorization of the group with respect to this chain is
reached. Then, just as in the algebraic approach to the Cooley-Tukey algo-
rithm presented in Section 1.2.1, the computation of the Fourier coefficients
can be approached in stages relating to the chosen chain of subgroups. Fi-
nally, the seminormal basis ensures that the representations in the sum will
restrict to direct sums of representations of subgroups, reducing the num-
ber of terms in each sum.

1.3.2 Decimation-in-Frequency Algorithms

Decimation-in-frequency algorithms present an approach to these FFTs that
is essentially dual to the decimation-in-time approach. In particular, semi-
normal representations of the group adapted to a suitable chain of sub-
groups are still used, but in these algorithms the frequency space is de-
composed systematically according to the irreducible representations of the
chosen chain of subgroups.

We illustrate this approach with an algebraic description of the Gent-
leman-Sande FFT (19; 27). In order to do so, we first discuss the notion
of a separating set for a representation M of a group G. Recall that M de-
composes into isotypic subspaces Mi, as in Equation (1.3). Consider a set
of simultaneously diagonalizable linear transformations {T1, . . . , Tk} on M
such that the eigenspaces of the Tjs are direct sums of the isotypic compo-
nents of M. Then applying each Tj to each Mi yields a list ci = (λi1, . . . , λik)
of the eigenvalues of the Tjs on Mi. If ci = cj implies that Mi = Mj, we
say that the Tis form a separating set for M. In this case, the Tis suffice to
distinguish among the isotypic components of M.

Consider now the case of a group algebra CG acting on itself as a left
CG-module. Then CG is also a representation of G, as discussed in Sec-
tion 1.2, and the elements of CG act as linear transformations of CG. Thus,

Algorithmic Approaches to FFTs 11

we can represent a separating set for CG as a collection of elements of CG.
One such separating set is the collection of centrally primitive idempotents
{e1, . . . , eh} that correspond to the two-sided ideals of CG, as ei has eigen-
value 1 on the ith isotypic component and 0 elsewhere. These idempotents
form a basis for the space of class sums in CG, so any linear combination
of class sums is also a diagonalizable linear transform on CG, and any set
of them can be diagonalized simultaneously (29). This result also indicates
that the set of class sums is a separating set for CG (19).

We now address the DFT from a separating set perspective. We bor-
row the algebraic formulation of the conventional DFT as an isomorphism
of C(Z/NZ) from Section 1.2.1. Since each irreducible representation of
C(Z/NZ) is one-dimensional, so are the isotypic subspaces of C(Z/NZ).
Hence, these isotypics correspond to the Fourier coefficients. The represen-
tations are given by ζ j(i) = ω−ij, where ω is a primitive Nth root of unity.
Furthermore, the conjugacy class sum T1 = 1̄ separates these isotypic com-
ponents, since ζ j(1̄) = ω−j and each of these is distinct for distinct j. Thus,
each isotypic component Vj corresponds to the eigenspace of T1 with eigen-
value ω−j. To isolate the Fourier coefficients of f ∈ C(Z/NZ), we then
compute the projections of f onto these spaces. Doing so by the projection
formula

fi =

(
di

|G| ∑
g∈G

χi(g)∗ρ(g)

)
f (1.10)

given in (19) or (29) requires O(N) operations for each of the N coefficients,
however, which yields an O(N2) algorithm.

The Gentleman-Sande FFT, and decimation-in-frequency algorithms in
general, take advantage of a chain of subgroups of G to compute the Fourier
coefficients in a series of projections, just as the decimation-in-time algo-
rithms construct the coefficients in a series of sums. The idea in the Gentle-
man-Sande FFT is first to consider the effect of the class sum Tq = q̄, which
is a separating set for C(Z/NZ) as a C(qZ/NZ) ∼= C(Z/pZ)-module.
Thus, we first project f ∈ C(Z/NZ) onto the eigenspaces W0, . . . , Wq−1 of
Tq, each of which then consists of a direct sum of q isotypic subspaces of
C(Z/NZ):

Wk = Vk ⊕Vk+p ⊕ · · · ⊕Vk+(q−1)p. (1.11)

Each projection then takes only O(pq) operations to compute, for a total
of O(p2q) operations. Then the projections via T1 onto the N = pq iso-
typics of C(Z/NZ) as a C(Z/NZ)-module take only O(q) operations per
coefficient, for a total of O(pq2) operations (19). The overall complexity is
O(pq(p + q)), the same as for the Cooley-Tukey FFT.

12 Introduction

Decimation-in-frequency algorithms for a finite group G follow a pat-
tern similar to that of the Gentleman-Sande FFT. If G is nonabelian, how-
ever, some of the isotypic subspaces of CG will have dimension greater
than one and will no longer correspond directly to the Fourier coefficients
of CG. Consequently, the class sums of elements from G alone will not suf-
fice to distinguish the Fourier coefficients, as they do in the case of abelian
groups. Nevertheless, just as we use the class sum q̄ in the Gentleman-
Sande FFT above to improve the efficiency of the computation, we can
introduce additional separating elements corresponding to the subgroup
chain to produce the desired efficient decomposition into one-dimensional
Fourier coefficient spaces. We discuss more general formulations of this
approach in Chapter 4.

1.3.3 Convolution Algorithms

Other algorithms have been used in the case of the Cooley-Tukey FFT to
increase the efficiency of transforms on Z/pZ for large prime p. These
groups have no nontrivial subgroups, so they are susceptible to neither the
decimation-in-time nor the decimation-in-frequency approaches described
above. One useful algorithm in this setting is the Rader transform (6; 20),
which relates the DFT on p points to a convolution on (Z/pZ)×, which is
a cyclic group of order p − 1. If p − 1 contains a number of small prime
factors, these convolutions themselves are efficient by the usual Cooley-
Tukey methods and in turn provide an FFT for these p points. Similarly,
the chirp-z transform uses a different change of variables to relate the DFT
to a convolution on a larger cyclic group. If this cyclic group has order
equal to a power of 2, this convolution can again be performed efficiently
by Cooley-Tukey.

1.4 FFTs for the Symmetric Group

The symmetric group presents several features that make it ideal for the
study of its fast Fourier tranforms. First, its representation theory is well
understood and has recently undergone a significant reformulation (23; 26).
We present the relevant features of this theory in Chapters 2 and 3. In
addition, as discussed below in Section 1.5, there are known applications
of DFTs on the symmetric group to frequency analysis of voting data and
other ranked preference information. Moreover, since |Sn| = n!, the size of
the group grows exponentially with increasing n, making efficient DFT al-

Applications 13

gorithms necessary for even moderate values of n. Finally, many common
computation packages such as Mathematica, GAP, and MATLAB present
sophisticated manipulation of permutations and combinatorial objects as-
sociated with them.

To date, significant work has been done on FFTs on the symmetric group
from a decimation-in-time perspective. Clausen and Baum produced the
first promising results in 1989 with a proof that the complexity of Sn is
bounded above by 1

2 (n3 + n2)n! operations (4). In 1993, they provided an
explicit implementation of both a DFT and an inverse DFT for Sn, each re-
quiring that number of operations (7). Their results arise from a sparse
factorization of the DFT matrix based on Young’s seminormal form at each
Si in the chain S1 < S2 < · · · < Sn (7; 20).

Maslen’s 1998 paper (18) improves upon this bound with a decimation-
in-time algorithm yielding a DFT for Sn in fewer than 3

4 n(n − 1)n! oper-
ations. His method relies on a separation of variables at the scalar level,
rather than the matrix separation that Clausen and Baum employ. The
commutativity of these scalars allows more sophisticated rearrangement of
the sums involved in constructing the Fourier coefficients. This rearrange-
ment entails a more complex indexing scheme based on the paths through a
graph of irreducible representations for the subgroup chain (called a char-
acter graph and discussed in detail in Chapter 2) rather than only on the
subgroup chain itself.

1.5 Applications

Applications for generalized Fourier transforms exist in engineering, math-
ematics, and the physical and social sciences. For example, Fourier trans-
forms on the symmetric group have natural applications to the spectral
analysis of ranked data. Each voter effectively creates a permutation in Sn
by ranking their n candidates, so that the final tallies of votes yield a func-
tion on Sn which can be analyzed using the generalized Fourier transforms
described above. Diaconis (8) identifies the decomposition of CSn into its
isotypic components as the key to understanding the effects of candidates
on ranking preferences. Such transforms have been applied to partially
ranked data as well (27).

The symmetric group is not the only finite group on which Fourier
analysis presents applications. The group SL2(Fp) of two-by-two matri-
ces with determinant one over the finite field Fp has applications in cod-
ing theory, particularly with respect to low-density parity check codes, and

14 Introduction

in graph theory (27). Maslen, Orrison, and Rockmore (19) discuss appli-
cations of generalized Fourier analysis to the study of distance-transitive
graphs; while their analysis includes examples that relate primarily to the
symmetric group, other groups could also be used in this context. In ad-
dition, transforms on other finite groups may yield lossy data compression
algorithms with better performance than such standards as JPEG, which is
based on the Discrete Cosine Transform (6). Finally, such transforms have
applications to quantum mechanics and quantum computing. In particu-
lar, Shor’s quantum factoring algorithm relies on transforms on the cyclic
group (Z/nZ)×, and it is conjectured that generalized FFTs may provide
an efficient quantum algorithm for the graph isomorphism problem (27).
0.25pt

Fourier transforms on nonabelian compact groups also have significant
applications. The spherical harmonics are orthogonal functions on the unit
sphere S2 that yield a series decomposition for functions on S2 analogous
to that provided by the Fourier transform on S1. Such decompositions have
applications in physics, where they play a key role in describing the distri-
butions of electrons in atomic orbitals (12; 31). In addition, any frequency
analysis of spherically distributed data rests on these spherical harmonic
functions. Such analysis arises in global circulation modeling, control the-
ory, and computer vision models, for example (20). As mentioned above,
Driscoll and Healy (9) present an efficient algorithm for the computation of
spherical harmonics for band-limited functions on S2 through the analysis
of FFTs on the group SO(3), which acts transitively on S2.

There even exist applications of generalized Fourier transforms for non-
compact groups. Chirikjian and Kyatkin (3) present their analysis of trans-
forms on the Euclidean motion group SE(3) in order to describe the con-
figuration space for certain robotic arms. Such transforms may also ap-
ply to the configuration space of proteins as they fold into their appropri-
ate forms and hence may provide a convenient means of describing these
folded states (27).

1.6 Open Questions

We conclude with a number of open questions and directions for future
development in the fields of generalized FFTs and noncommutative har-
monic analysis. Many of these derive from papers by Maslen and Rock-
more (20; 27).

• Although certain groups present O(|G| log |G|) or O(|G| log2 |G|) FFT

Open Questions 15

algorithms, there exists no universal O(|G| logc |G|) bound on the
complexity of generalized FFTs for finite groups. One approach to
this problem may involve the determination of FFTs for all the groups
in the classification of finite simple groups. In particular, this goal re-
quires better FFTs for finite groups of Lie type and for matrix groups.

• It remains to be seen if decimation-in-frequency algorithms can be
generalized to match the level of progress that has been made with
decimation-in-time algorithms. These decimation-in-frequency for-
mulations are particularly appealing because their theory more close-
ly reflects the module-theoretic underpinnings of group representa-
tion theory.

• Similarly, no noncommutative analogues of the important Rader and
chirp-z transforms are currently known. If they exist, such analogues
may relate transforms between groups that have no nontrivial group-
subgroup relationship.

• FFTs for groups seem to rely mainly on the semisimplicity of the
group algebra CG. Because of this result, it seems likely that there
exist FFTs for band-limited functions on all semisimple Lie groups.

• Much of the theory of generalized Fourier transforms on noncompact
groups such as SE(n) is in its initial stages. Such transforms would
require the development of suitable sampling algorithms for these
groups as a first step.

• The recursive nature of many of the known FFTs algorithms suggests
that there exist effective parallel implementations of these algorithms.
Decimation-in-frequency algorithms in particular would seem to ad-
mit parallel implementations because of their explicit separation of
frequency space.

Chapter 2

Character Graphs and
Seminormal Representations

Fast Fourier transforms for a group G frequently depend on a seminor-
mal matrix representation for the group with respect to a chain 1 = G0 <
G1 < · · · < Gn = G of its subgroups (6). Such seminormal representations
are partitioned (rather than merely decomposed as direct sums) when re-
stricted to subgroups in the chain. We present the concept of a character
graph for such a chain of subgroups and use it to construct these seminor-
mal matrix representations. Much of this follows from Ram (26), although
Okounkov and Vershik (23) use similar techniques to determine seminor-
mal representations for Sn.

2.1 Character Graphs

We first develop the notion of a character graph for a chain of subgroups.

Definition 2.1 Let G be a finite group.

• Let Ĝ denote an index set for the isomorphism classes of irreducible
representations of G.

• For CG-modules M and N, let their intertwining number be given by

i(M, N) = 〈M, N〉 = dimC HomCG(M, N),

the dimension of the space of CG-module homomorphisms from M
to N. �

18 Character Graphs and Seminormal Representations

We note that, by Schur’s Lemma, if M is irreducible, then i(M, N) gives
the multiplicity of M in N.

Let H be a subgroup of G, and let Mλ be an irreducible representation
of G of type λ ∈ Ĝ. Then its restriction to H decomposes as

Mλ↓G
H =

⊕
µ∈Ĥ

cλ
µ Mµ,

where Mµ is an irreducible representation of type µ ∈ Ĥ, and cλ
µ is its mul-

tiplicity i(Mµ, Mλ↓G
H) in Mλ.

Definition 2.2 Let G be a group and C a chain of subgroups 1 = G0 < G1 <
· · · < Gn = G. The character graph Γ = Γ(C) for this chain is a multigraph,
graded by N, such that the vertices at the ith level of Γ correspond to the
elements of Ĝi, there is a unique vertex ∅ for G0, and if ρ ∈ Ĝi and µ ∈ Ĝi−1,
then there exist cρ

µ edges between ρ and µ.
In addition, we define several spaces of paths through this graph:

• Λ(λ → µ) is the set of paths from λ to µ,

• Λ(λ) is the set of paths from ∅ to λ,

• Λ(λ → s) is the set of paths from λ to any µ ∈ Ĝs,

• Λ(m) is the set of paths from ∅ to any µ ∈ Ĝm,

• Λ = Λ(n), where n is the height of the subgroup chain,

• Ω(λ) is the set of pairs (S, T) of paths such that S, T ∈ Λ(λ),

• Ω(m) is the set of pairs (S, T) of paths such that S, T ∈ Λ(λ) for some
λ ∈ Ĝm.

In general, we denote a path L ∈ Λ by (λ(0) e1−→ . . . en−→ λ(n)). We omit the
edge labels on there arrows if the λ(i)s suffice to determine the path or if
they are unimportant for a given application. �

Example 2.3 Consider the subgroup chain 1 < Z/2Z < Z/6Z. As in
Section 1.2.1, we denote the irreducible representations of Z/NZ as ζk
for k = 0, . . . , N − 1. The character graph Γ for this chain is depicted
in Figure 2.1. Some example paths in Γ are S = (∅ → ζ0 → ζ2) and
T = (∅ → ζ1 → ζ5), and the total number of paths in the diagram is
|Λ| = 6. Since exactly one path travels to each irreducible type of Z/6Z,
|Ω(2)| = 6 as well. �

Path Algebras 19

1 Z/2Z Z/6Z

∅

ζ0

ζ1

ζ0

ζ1

ζ2

ζ3

ζ4

ζ5

Figure 2.1: Character graph for 1 < Z/2Z < Z/6Z. The path (∅ → ζ0 →
ζ2) is highlighted. Note that the restrictions of these irreducibles are all
multiplicity free, so we have no multiple edges.

2.2 Path Algebras

These paths in the character graph lead naturally to a series of algebras
over C.

Definition 2.4 Let Γ be a character graph for a subgroup chain 1 = G0 <
G1 < · · · < Gn = G. For 0 ≤ m < n, define the C-algebra Pm with basis EST
for each pair of paths (S, T) ∈ Ω(m), and with a multiplication on these
basis elements given by

ESTEPQ = δTPESQ, (2.1)

for all (S, T), (P, Q) ∈ Ω(m). Here, δij is the Kronecker delta, defined to be
1 if i = j and 0 otherwise.

For each λ ∈ Ĝm, define Vλ to be a C-vector space with basis {vL |
L ∈ Λ(λ)}. With multiplication defined by ESTvL = δTLvS, Vλ is then a
Pm-module. �

These Vλ modules defined above then form a complete set of repre-
sentatives for the classes of inequivalent irreducible representations for the
path algebra Pm. Furthermore, in the basis specified above for the Vλ

spaces, the basis elements of Pm that terminate at λ correspond to the stan-
dard basis of the matrix algebra Cdλ×dλ , where dλ is the degree of the irre-
ducible type λ. Thus,

Pm ∼=
⊕

λ∈Ĝm

Cdλ×dλ .

20 Character Graphs and Seminormal Representations

We also give an inclusion of Pm in Pn for m < n. Given paths T = (λ →
. . . → µ) and S = (µ → . . . → ν), their concatenation is T ∗ S = (λ →
. . . → µ → . . . → ν). Then given an element EPQ ∈ Pm, we define EPQ as
an element of Pn by

EPQ = ∑
T∈Λ(λ→n)

EP∗T,Q∗T.

Furthermore, this inclusion affords a natural restriction mechanism for Pn-
algebras. Suppose that λ ∈ Ĝm and that Vλ is the irreducible Pm-module as
constructed above. Then the restriction of Vλ to Pm−1 decomposes as

Vλ↓Pm
Pm−1

∼=
⊕

µ∈Ĝm−1

⊕
e∈Λ(µ→λ)

Vµ.

Thus, for each edge e that connects a Gm−1 irreducible type µ to λ, Vλ con-
tains an isomorphic copy of Vµ.

Example 2.5 We illustrate some of these concepts with the subgroup chain
S1 < S2 < S3. As discussed in Chapter 3, the irreducible representation
types of Sn correspond to partitions of n. Thus, the character graph is as
depicted in Figure 2.2.

The paths in this diagram are

Λ(3) = {(∅ → (1) → (2) → (3)), (∅ → (1) → (2) → (2, 1)),
(∅ → (1) → (1, 1) → (2, 1)), (∅ → (1) → (1, 1) → (1, 1, 1))},

which we enumerate as T1 through T4. Then a basis for the path algebra P3
is {ET1T1 , ET2T2 , ET2T3 , ET3T2 , ET3T3 , ET4T4}, and we have

P3 ∼= C1×1 ⊕C2×2 ⊕C1×1.

The P3-modules with bases given by {vT1}, {vT2 , vT3}, and {vT4} are then
irreducible representations of P3.

The paths terminating at the second level of the diagram are

Λ(2) = {U1 = (∅ → (1) → (2)), U2 = (∅ → (1) → (1, 1))},

and hence basis elements for P2 are {EU1U1 , EU2U2}. These P2-elements em-
bed in P3 as

EU1U1 = ET1T1 + ET2T2 and EU2U2 = ET3T3 + ET4T4 .

Seminormal Matrix Representations 21

1 S1 S2 S3

∅ (1)

(2)

(1, 1)

(3)

(2, 1)

(1, 1, 1)

Figure 2.2: Character graph for 1 < S1 < S2 < S3, with the path (∅ →
(1) → (1, 1) → (2, 1)) highlighted. As in Figure 2.1, the restrictions here
are all multiplicity free.

The P2-modules with bases given by {vU1} and {vU2} are irreducible rep-
resentations for P2. Finally, observing that there are two edges connecting
the second level of the diagram to (2, 1) in the third level, we have that

V(2,1)↓P3
P2

= V(2) ⊕V(1,1).

In particular, if {vT2 , vT3} is a basis for V(2,1), then {vT2} and {vT3} are bases
for V(2) and V(1,1), respectively. Here, the basis for V(2,1) is partitioned into
bases for these components of the restriction. �

As illustrated in the above example, the basis {vL} for Vλ is partitioned
into bases for the Vµs upon restriction. Because of this partitioning, this
basis is said to be a seminormal basis adapted to the subalgebra chain P0 ⊂
. . . ⊂ Pn. Such bases are also called Gel’fand-Tsetlin bases or adapted bases, the
latter name deriving from the adaptation of the basis to the specified chain
of subgroups (20; 26).

2.3 Seminormal Matrix Representations

We now relate these seminormal representations of path algebras to semi-
normal matrix representations of the CGis. In particular, we see that the
partitioning behavior of the Vλs under restrictions gives a decomposition
of matrix representations for Pm−1 in Pm into direct sums of matrices, and

22 Character Graphs and Seminormal Representations

we seek a similar direct sum decomposition for representations of elements
of CGi−1 in CGi.

Consequently, we wish to determine an algebra-isomorphism Φ : Pn →
CG such that Φ(Pi) = CGi for all i ≤ n. Wedderburn’s Theorem guarantees
that such an isomorphism exists, as both Pn and CG are isomorphic as C-
algebras to

⊕
λ∈Ĝn

Cdλ×dλ . Such an isomorphism then affords an action of
α ∈ CG on the Vλs by

αvL = Φ−1(α)vL.

Given such an isomorphism, we also define eML = Φ(EML) for each (M, L) ∈
Ω(n).

To determine the properties of such an isomorphism, we focus on sets
of central elements in the group algebras. Ram (26) states the following
key lemma, which follows from Schur’s Lemma and the centrality of the
elements under consideration.

Lemma 2.6 (Ram (26: 1.9)) Let zk,j be a central element in CGk, let

L = (λ(0) → . . . → λ(n)) ∈ Λ(n)

be a path in Γ, and let χλ(k)
be the irreducible character of Gk indexed by λ(k) ∈ Ĝk.

Then for any choice of Φ as defined above,

zk,jvL = ck,j(λ(k))vL, where ck,j(λ(k)) =
χλ(k)(zk,j)

χλ(k)(1)
.

�

We note that this scalar ck,j depends only on the irreducible type for Gk
that L contains, and not on the rest of the path. Since zk,j scales vL by ck,j, ck,j

is the eigenvalue of zk,j associated to the irreducible representation type λ(k)

containing vL. Having determined that the central group algebra elements
thus act as scalars on the seminormal basis vectors, we now assign their
eigenvalues as weights to the corresponding paths in the character graph.

Definition 2.7 For each 1 ≤ k ≤ n, let Zk = {zk,j}rk
j=1 be a collection of

central elements of CGk. For each µ ∈ Ĝk, let ck(µ) = (ck,1(µ), . . . , ck,rk(µ)),
so that ck(µ) is a list of the eigenvalues of the zk,js corresponding to µ.

Let L = (λ(0) → . . . → λ(n)) ∈ Λ. Then the weight of L is

wt(L) = (c0(λ(0)), . . . , (cn(λ(n))). �

If these path-weights suffice to distinguish paths in the character graph
Γ, then they constrain the choice of isomorphism significantly.

Seminormal Matrix Representations 23

Proposition 2.8 (Ram (26: 1.12)) Assume that wt is injective on Λ, so that paths
in Γ are distinguished by their weights. Then for each L ∈ Λ, the CG-element
eLL = Φ(ELL) is determined uniquely by the zk,js and by the constants ck,j(µ)
for µ ∈ Ĝk, 0 ≤ k ≤ n. Furthermore, if M and L are distinct paths, then
eML = Φ(EML) is determined up to a constant by these elements.

Proof: Let L = (λ(0), . . . , λ(n)) be a path in Γ, and for each 0 ≤ k ≤ n and
each 1 ≤ j ≤ rk, let

pk,j(λ(k)) = ∏
ck,j(µ) 6=ck,j(λ(k))

zk,j − ck,j(µ)
ck,j(λ(k))− ck,j(µ)

,

where we take the product over all ck,j(µ) with µ ∈ Ĝk such that ck,j(µ) 6=
ck,j(λ(k)). Thus, by Lemma 2.6, if M = (µ(0) → . . . → µ(n)) is a path in Γ,
then for any Φ,

Φ−1(pk,j(λ(k)))vM =

{
vM if ck,j(λ(k)) = ck,j(µ(k)),
0 otherwise.

In essence, these pk,j(λ(k)) elements act as the identity only on the vec-
tors corresponding to paths that pass through nodes at level k with weight
ck,j(λ(k)). Thus, their product, which we define to be

eLL = ∏
k,j

pk,j(λ(k)),

is the identity only on all paths with the same weight as L. We show that
this eLL element coincides with Φ(ELL). By the injectivity of wt, we have
that

Φ−1(eLL)vM = δwt(L) wt(M)vM = δLMvM = δLMvL = ELLvM.

Hence, by the injectivity of Φ, eLL is unique.
Let M and L be distinct paths, and let a ∈ CG be such that eMMaeLL 6= 0.

Then eML must equal a constant times the element eMMaeLL∈CG, so because
eLL and eMM are uniquely determined, so is eML, up to this choice of con-
stant. �

Thus, while we still have some freedom in the choice of the seminormal
matrix representations of G, they are constrained entirely for the idempo-
tents of CG and up to a constant for the remaining elements of CG. In fact,

24 Character Graphs and Seminormal Representations

there are further restrictions on these constants that result from the multi-
plication structure on Pn: if Φ and Φ′ are two isomorphisms from Pn to CG
such that Φ(EML) = eML and Φ′(EML) = e′ML, then eML = κMLe′ML, and
these κML constants must satisfy

κMLκLM = 1 and κMLκLN = κMN

for all M, L, N ∈ Λ as a direct consequence of the multiplication given by
Equation (2.1).

2.4 Applications to MC-Groups

We note that for each group Gi, its centrally primitive idempotents distin-
guish among the irreducible representations of Gi, and hence also distin-
guish among the vertices at level i in the character graph Γ. Other bases
for the center of CGi, such as the set of all conjugacy class sums in Gi, then
provide alternat choices for the set Zk.

In the case in which the restrictions of irreducible representations of Gi
yield multiplicity-free decompositions into irreducibles of Gi−1, the path
weights do suffice to distinguish paths, as each path is uniquely deter-
mined by its list of the eigenvalues of the zk,js at each of its vertices. Fortu-
nately, several classes of groups exhibit such chains of subgroups, includ-
ing many of the Weyl groups. In fact, the branchings for the chains

S1 < S2 < · · · < Sn,
WB1 < WB3 < · · · < WBn,
WB2 < WB3 < WF4,
WD5 < WE6 < WE7

are all multiplicity-free. There also exist such chains for supersolvable
groups (5).

Definition 2.9 Let G be a group which exhibits a chain of subgroups G0 <
G1 < · · · < Gn = G, such that the restriction branching rules at each sub-
group in the chain are multiplicity-free. Then G is said to have a multiplicity-
free character graph and is called an MC-group. �

To conclude, the path-algebraic constructions presented in this chapter
give an explicit construction of seminormal matrix representations for an

Applications to MC-Groups 25

MC-group G adapted to the chain of its subgroups that exhibits multiplicity-
free restrictions. As mentioned above, these seminormal matrix represen-
tations are particularly useful because their blocks decompose into matrix
direct sums upon restriction to subgroups. Thus, this path-algebraic con-
struction also confers an indexing of the matrix coefficients by pairs of
paths through the character graph for the subgroup chain. We develop
these seminormal matrix representations for the MC-group Sn in the next
chapter.

Chapter 3

Representation Theory of the
Symmetric Group

Having developed a general framework for the construction of seminor-
mal matrix representations for a group adapted to a particular chain of
subgroups, we now apply it to the symmetric group Sn with the subgroup
chain S given by S1 < S2 < . . . < Sn. The relation of the irreducible
representations of Sn to partitions of n leads to a compelling combinator-
ial description of the representation theory for Sn. In conjunction with the
framework from Chapter 2, these combinatorics afford an intuitive con-
struction of the seminormal matrix representations for Sn that we require
for FFT algorithms.

3.1 Constructions of Irreducible Representations

Before discussing the application of path-algebraic group representations
to the symmetric group, we give an overview of the classical construc-
tion of the irreducible representations of Sn. Much of the classical work
on the representations of the symmetric group was performed by Alfred
Young in the late 1920s (28). James and Kerber (14) modernizes Young’s
approach significantly and remains a canonical reference on this classical
characterization of these representations. The following material draws on
their analysis.

At the center of Young’s formulation are several combinatorial objects,
the definitions of which we take largely from Sagan (28). While we use
some of these definitions only later in this chapter, we elect to consolidate
them here for convenience. Throughout, let n be a positive integer.

28 Representation Theory of the Symmetric Group

Definition 3.1 A composition λ of n is a sequence λ = (λ1, λ2, . . .) of non-
negative integers such that ∑i λi = n. The λis are called the parts of λ. We
typically truncate compositions at their last positive entry.

A partition of n is a composition λ such that its parts are weakly decreas-
ing, that is, λi+1 ≤ λi for all i = 1, 2, If λ is a partition of n, we write
λ ` n. �

Example 3.2 Let n = 3. Then (2, 1), (0, 1, 2), and (0, 1, 0, 1, 1) are all com-
positions of n, but only (2, 1) is a partition. The partitions of n are given by
(3), (2, 1), and (1, 1, 1). �

Definition 3.3 If λ = (λ1, λ2, . . . , λk) is a composition of n, then the Ferrers
diagram of λ is an array of n boxes in k left-aligned rows, with row i having
λi boxes. If λ ` n, then both it and the corresponding diagram are proper.

If t is the Ferrers diagram of a composition λ, and b is a box in the ith
row and jth column of t, then the content of b is ct(b) = j− i. �

Example 3.4 Let n = 4, and let λ = (3, 1), µ = (2, 1, 1) and ν = (1, 2, 1).
Then the Ferrers diagrams of these compositions are

λ = , µ = , and ν = .

Reading left to right and top to bottom, their boxes have content values
(0, 1, 2;−1), (0, 1;−1;−2), and (0;−1, 0;−2), respectively. �

Definition 3.5 A Young tableau of shape λ is an array t obtained by placing
the numbers 1, 2, . . . , n in the boxes of the Ferrers diagram for the partition
λ. The shape of t, denoted sh t, is the partition λ.

Let ti,j denote the entry in the box in row i and column j of t, and let t[k]
denote the box of t that contains k.

A Young tableau t is standard if the entries in its rows and columns are
strictly increasing. Let Tλ denote the set of all tableaux of shape λ, and let
Tλ

s denote the set of all such standard tableaux. Define f λ = |Tλ
s |. �

Example 3.6 Let n = 3, and let λ = (2, 1). Then the Ferrers diagram of λ is

and we can enumerate the elements of Tλ as

t1 = 1 2
3

, t2 = 1 3
2

, t3 = 2 1
3

, t4 = 2 3
1

, t5 = 1 3
2

, t6 = 2 3
1

.

Constructions of Irreducible Representations 29

Of these, only
1 2
3

and 1 3
2

are standard tableaux.
The other partitions of n = 3 are (3) and (1, 1, 1), which have the stan-

dard tableaux

1 2 3 and
1
2
3

respectively, so we have f (3) = 1, f (2,1) = 2, and f (1,1,1) = 1.
In general, if λ is a composition of n, there are n! distinct λ-tableaux,

since each permutation of {1, 2, . . . , n} uniquely determines a tableau. �

Definition 3.7 If π ∈ Sn and t = (ti,j) is a tableau of shape λ, then we
define πt to be the tableau with ijth entry π(ti,j). This gives an action of
Sn on Tλ that extends by linearity to make the C-vector space CTλ a CSn-
module. �

Example 3.8 Continuing Example 3.6, we see that, for example, if π =
(2 3),

π 1 2
3

= 1 3
2

since π exchanges 2 and 3. Extending by linearity, we see that this gives
CTλ a CSn-module structure, so that, for example,

(1− (1 2 3))
(

3 1 2
3

− 1 3
2

)
= 3 1 2

3
− 3 2 3

1
− 1 3

2
+ 2 1

3
.

�

Definition 3.9 Let λ = (λ1, λ2, . . . , λk) ` n. Then the corresponding Young
subgroup of Sn is

Sλ = S{1,2,...,λ1} × S{λ1+1,...,λ2} × · · · × S{n−λk+1,...,n}. �

We note that, for a general λ = (λ1, λ2, . . . , λk) ` n, we have the group
isomorphism

Sλ
∼= Sλ1 × Sλ2 × · · · × Sλk .

Example 3.10 Let n = 9 and let λ = (3, 3, 2, 1) ` n. Then the Young
subgroup Sλ of Sn is S{1,2,3} × S{4,5,6} × S{7,8} × S{9} and is isomorphic to
S3 × S3 × S2 × S1. �

30 Representation Theory of the Symmetric Group

With this combinatorial machinery in place, we describe (without proof)
Young’s construction of the irreducible representations of Sn. Let α be a par-
tition of n, and let α′ be the complementary partition, such that the ith row
of the Young diagram associated to α′ contains the number of boxes in the
ith column of α. We can construct such a partition graphically by taking the
transpose of the Young diagram associated with α. Let ι denote the trivial
representation of the Young subgroup Sα, and let ε denote the alternating
representation of Sα′ . Inducing these representations to Sn gives ι↑Sn

Sα
and

ε↑Sn
Sα′

. We then have

i(ι↑Sn
Sα

, ε↑Sn
Sα′

) = 1,

where i is the intertwining number defined in Definition 2.1. Since this
quantity equals one, these two induced representations share a single copy
of an irreducible representation of Sn, which we represent by [α]. These
representations in fact determine all such irreducibles up to isomorphism:

Theorem 3.11 (James and Kerber (14: Thm 2.1.11)) {[α] | α ` n} is the com-
plete set of equivalence classes of ordinary irreducible representations of Sn. �

Thus, if α, β ` n are distinct partitions of n, then [α] and [β] are noniso-
morphic representations of Sn. The Specht modules, discussed extensively
in Sagan (28), provide a different complete set of inequivalent irreducible
representations for Sn. The Specht module isomorphic to [λ] is denoted Sλ.
Sagan (28) specifies the effects of the restriction of these modules to Sn−1 or
their induction to Sn+1. Before we state these results, we define two families
of partitions associated to λ ` n.

Definition 3.12 If λ ` n, then denote by λ− the set of all partitions µ of n−
1 such that µ has a part that, when incremented, changes µ to λ. Similarly,
let λ+ denote the set of all partitions µ of n + 1 such that µ has a part that,
when decremented, changes µ to λ. �

We can also formulate these notions in terms of Ferrers diagrams: if
λ ` n, then the set λ− consists of those proper shapes µ corresponding to
the diagrams formed by removing a box from the diagram of shape λ, and
the set λ+ likewise consists of those proper shapes µ corresponding to the
diagrams formed by adding a box to the diagram of shape λ.

Example 3.13 Consider λ = (2, 1, 1) ` 4. Then λ− = {(1, 1, 1), (2, 1)}, and
λ+ = {(3, 1, 1), (2, 2, 1), (2, 1, 1, 1)}. Represented as Ferrers diagrams, these

Reformulation of Path-Algebraic Techniques 31

partitions are

λ = , λ− =

 ,

 , λ+ =

 , ,

 .�

Theorem 3.14 (Sagan (28: Thm 2.8.3)) If λ ` n, then

Sλ↓Sn
Sn−1

=
⊕

µ∈λ−
Sµ and Sλ↑Sn+1

Sn
=
⊕

µ∈λ+

Sµ.
�

This characterization of the Specht module inductions and restrictions
explicitly shows the multiplicity-free branching that the subgroup chain
S1 < S2 < · · · < Sn exhibits.

3.2 Reformulation of Path-Algebraic Techniques

Using the path-algebraic techniques introduced in Chapter 2, we determine
seminormal bases for these irreducible representations of Sn. We first relate
the paths in the character graph Γ = Γ(S) to standard tableaux. From
above, the irreducible types for Sk are in bijective correspondence with the
partitions of k, so we use these partitions as the vertices at level k of Γ (as
we alluded to in Example 2.5).

Proposition 3.15 Let n be a positive integer, and let λ ` n. There is a bijection
from Tλ

s to Λ(λ) given as follows: Given a standard tableau t with sh t = λ, let
λ(0) = ∅, and for 1 ≤ i ≤ n let λ(i) be the shape of the boxes in t that contain the
numbers 1, . . . , i. Then

t 7→ (λ(0) → λ(1) → . . . → λ(n)).

Proof: Since this chain of subgroups affords multiplicity-free restrictions,
there is at most one edge between vertices at adjacent levels of the diagram,
and so an element T ∈ Λ(λ) is specified entirely by the list of partitions
(µ(0), µ(1), . . . , µ(n)) that constitutes the vertices of T.

We now show this map takes a standard tableau t of shape λ to a path
in Λ(λ). First, we show that λ(k) ` k. Consider the position of k in t. Since
t is standard, the boxes above and to the left of the box with k must contain

32 Representation Theory of the Symmetric Group

integers less than k. This property holds for each j < k, too, so considering
only these boxes containing j ≤ k must give a proper shape. Thus, each
λ(k) is a partition of k for each 0 ≤ k ≤ n.

Now consider λ(k) and λ(k−1) for 1 ≤ k ≤ n. Since λ(k) ` k and
λ(k−1) ` (k − 1), and since their shapes differ only by a box, by Theo-
rem 3.14 Sλ(k)↓Sk

Sk−1
contains an isomorphic copy of Sλ(k−1)

. Thus, there is

an edge connecting λ(k) and λ(k−1) in Γ. Lastly, λ(k) = λ since sh t = λ.
Hence, t maps to an element of Λ(λ).

Suppose t, t′ ∈ Tλ
s are distinct. Then there exists some minimal k for

which t[k] 6= t′[k], so their corresponding lists of partitions differ at k. Thus,
this map is injective.

Finally, suppose T ∈ Λ(λ), such that T = (µ(0), µ(1), . . . , µ(n)). By The-
orem 3.14, µ(k) is obtained from µ(k−1) by adding a box to the shape µ(k−1)

such that the shape remains proper. Thus, we construct a standard tableau
t from T by placing k in the box added when moving from µ(k−1) to µ(k).
Then t maps back to T, so this map is surjective. �

By this proposition, we may identify paths through the character graph
Γ terminating in λ with standard tableaux of shape λ. Since λ(0) = ∅ in
all cases, we typically drop it from the list of vertices of Γ. We give some
examples of this identification.

Example 3.16 Consider the standard tableau

t = 1 3 4
2 5

of shape (3, 2). By Proposition 3.15, t corresponds to the path

∅ → → → → → .

As another example, the four paths P1 through P4 through the charac-
ter graph of Example 2.5 correspond to the four standard tableaux of S3
presented in Example 3.6.

Finally, recall from Section 2.2 that, for λ ` n, the set {vL | L ∈ Λ(λ)}
forms a seminormal basis for the irreducible Pn-module Vλ. With this iden-
tification, we can index these seminormal basis vectors with the standard
tableau of shape λ. Since these Vλ are also irreducibles for CSn by any
C-algebra isomorphism Φ, this gives a different proof of the following the-
orem. �

Reformulation of Path-Algebraic Techniques 33

Theorem 3.17 (Sagan (28: 2.5.2)) If λ is a partition for n and Sλ the correspond-
ing irreducible representation for Sn, then the standard tableaux of shape λ corre-
spond to a basis for Sλ, and dimC Sλ = f λ. �

Again following Ram (26) for much of the remaining material in this
section, we define the following elements of CSn:

Definition 3.18 Define s1 = z1 = m1 = 0. For 2 ≤ k ≤ n, define sk =
(k − 1 k),

zk =
n

∑
k=1

k−1

∑
j=1

(j k),

and mk = zk − zk−1. �

We note some significant properties of these elements of CSn:

• The sks are the simple transpositions (1 2), (2 3), . . . and generate Sn.

• The zks are the class sums of transpositions of Sk and hence are central
in CSk.

• The mks are the differences of these class sums and are used exten-
sively in the construction of the seminormal matrix representations
below. Jucys (15) and Murphy (21; 22) independently identified these
elements in their constructions of Young’s seminormal representa-
tions of Sn, and they are now called Jucys-Murphy elements in their
honor (23; 26). The first few such elements for Sn are (1 2), (1 3) +
(2 3), and (1 4) + (2 4) + (3 4). In general, we have

mk =
k−1

∑
j=1

(j k).

The next key result concerns the eigenvalues of zk acting on the irre-
ducible representations of Sk, where our action is taken to be that specified
in Lemma 2.6.

Proposition 3.19 (Ram (26: 3.8)) Let k ≤ n, and let µ ` k. Let χµ be the char-
acter of the irreducible representation Sµ. Then

χµ(zk)
χµ(1)

= ∑
b∈µ

ct(b),

where the sum is over all the boxes in the shape µ. �

34 Representation Theory of the Symmetric Group

This result then specifies the weights ck(µ) for any choice of isomor-
phism Φ from the path algebra Pn on Γ to CSn. Furthermore, this result
allows us to distinguish paths in Γ by the weights assigned by these zks.

Definition 3.20 Recalling the identification of paths in Γ with standard tab-
leaux, we define the weight of a standard tableau L = (λ(1), . . . , λ(n)) for Sn
to be

wt(L) = (c1(λ(1)), . . . , cn(λ(n))).

We define the differential weight of L to be

w̃t(L) = (c1(λ(1)), c2(λ(2))− c1(λ(1)), . . . , cn(λ(n))− cn−1(λ(n−1))). �

We note that the weight and the differential weight of a tableau deter-
mine each other uniquely. By Proposition 3.19, ck(λ(k)) − ck−1(λ(k−1)) =
ct(L[k]), so that

w̃t(L) = (ct(L[1]), ct(L[2]), . . . , ct(L[n])).

Furthermore, for any isomorphism Φ : Pn → CSn, these content values de-
termine the action of zk and mk on the seminormal basis vectors vL, where
L is a standard tableau. In particular, if L = (λ(1), . . . , λ(n)), then

zkvL = ck(λ(k))vL =

(
∑

b∈λ(k)

ct(b)

)
vL (3.1)

and

mkvL = (zk − zk−1)vL = ck(λ(k))vL − ck−1(λ(k−1))vL = ct(L[k])vL. (3.2)

Let eML ∈ CG be as defined in Proposition 2.8. Then, for N a standard
tableau of size n, we have

mkeMLvN = mkδLNvM = ct(M[k])δLNvM = ct(M[k])eMLvN , (3.3)
eMLmkvN = eML ct(N[k])vN = ct(N[k])δLNvM

= ct(L[k])δLNvM = ct(L[k])eMLvN , (3.4)

where ct(N[k])δLN = ct(L[k])δLN . Thus, for mk acting from the left, eML
is an eigenvector with eigenvalue ct(M[k]), while for mk acting from the
right, eML is an eigenvector with eigenvalue ct(L[k]).

Proposition 3.21 (Ram (26: 3.9)) Each standard tableau L = (λ(1), . . . , λ(k)) is
distinguished by its weight.

Seminormal Matrix Representations 35

Proof: Two boxes b and b′ have the same content only if they lie on the same
diagonal. Hence, if λ(k) is a partition, then each of the boxes b that can be
added to λ(k) to obtain a new partition in λ(k)+ has a different content ct(b).
Therefore, the shape λ(k+1) in L is completely determined by ct(b) and λ(k),
so L is completely determinted by w̃t(L), and thus by wt(L). �

Corollary 3.21.1 The space CeML is distinguished by the differential weights
w̃t(M) and w̃t(L), which correspond to the left and right eigenvalues of {mk}n

k=1
on eML, respectively.

Proof: By Equations (3.3) and (3.4), the left and right eigenvalues of {mk}n
k=1

on CeML give w̃t(M) and w̃t(L), which by Proposition 3.21 suffice to dis-
tinguish M and L and hence to identify CeML. �

By this result, the conclusions of Proposition 2.8 apply, and the iso-
morphism Pn → CSn is almost uniquely determined. In the next sec-
tion, we specify such an isomorphism and determine matrix representa-
tions adapted to these for the generators sk of Sn.

3.3 Seminormal Matrix Representations

While we have identified the standard tableaux of shape λ ` n as corre-
sponding to a seminormal basis for the irreducible of type λ, we lack an or-
dering of this basis. Fortunately, there exists one on the standard tableaux
based on the relative positions of the letters in the boxes. Since this order
derives from the placement of the letters in descending order, it is called
the last-letter order on these tableaux (14).

The last-letter order is specified as follows. Suppose that s and t are two
standard tableaux of shape λ ` n, and let k ≤ n be the last letter on which
they differ. Then s < t iff the row index of s[k] is less than that of t[k].

Because two standard tableaux always each contain the numbers 1 to
n and because there exists some box on which distinct tableaux differ, this
procedure introduces a total order onto the tableaux of each shape. Thus,
the last-letter order gives a natural order to the seminormal basis vectors

of each irreducible representation of Sn. We let {tλ
i }

f λ

i=1 denote the standard
tableaux of shape λ, ordered so that tλ

i < tλ
j iff i < j.

Example 3.22 As an example, the five standard tableaux of shape (3, 2) are
ordered as follows:

1 3 5
2 4

< 1 2 5
3 4

< 1 3 4
2 5

< 1 2 4
3 5

< 1 2 3
4 5

. (3.5)

36 Representation Theory of the Symmetric Group

In particular, the tableaux are ordered as they are constructed last letter
first: the “greatest” three tableaux have 5 in a lower row than the “least”
two tableaux, while, among these three greater tableaux, the tableau with
its 4 in the second row is greater than the two that place the 4 in the first
row, and so on. �

We reformulate this last-letter order in terms of the content of boxes in
the tableaux (and hence in terms of their differential weights):

Proposition 3.23 Let λ ` n, and let t, t′ ∈ Tλ
s . Let w̃tr(t) be the reverse of

w̃t(t), so that w̃tr(t) = (ct(t[n]), ct(t[n − 1]), . . . , ct(t[1])). Then t < t′ in the
last-letter order iff w̃tr(t) > w̃tr(t′) in the lexicographic order.

Proof: This result follows from translating the description of the last-letter
sequence given above into one that uses box content.

Suppose t < t′, and let k be the largest integer such that t[k] 6= t′[k].
Since t < t′, k occurs in a higher row in t than it does in t′. Let s and s′ be
the Young tableaux obtained from t and t′ by removing boxes k + 1 through
n. These boxes occur in identical positions in t and t′, so s and s′ have the
same shape, µ. Furthermore, t[k] and t′[k] must be outer corners of µ, as
they are the last boxes to be added to form s and s′. Thus, since the row
index of t[k] is less than that of t′[k], the column index of t[k] is larger than
that of t′[k], and so ct(t[k]) > ct(t′[k]). Since w̃tr(t) and w̃tr(t′) agree up to
the t[k] and t′[k] entries, w̃tr(t) > w̃tr(t′) in the lexicographic order.

Conversely, if w̃tr(t) > w̃tr(t′), let k be the entry in the box correspond-
ing to the first place at which these lists disagree. Then ct(t[k]) > ct(t′[k]),
so by the same outer-corner argument, the row index of t[k] is less than that
of t′[k], and t < t′ in the last-letter order. �

Example 3.24 We illustrate this correspondence with the standard tableaux
of Example 3.22. The reverses of the differential weights for these tableaux
are

w̃tr

(
1 3 5
2 4

)
= (2, 0, 1,−1, 0),

w̃tr

(
1 2 5
3 4

)
= (2, 0,−1, 1, 0),

w̃tr

(
1 3 4
2 5

)
= (0, 2, 1,−1, 0),

w̃tr

(
1 2 4
3 5

)
= (0, 2,−1, 1, 0),

Seminormal Matrix Representations 37

w̃tr

(
1 2 3
4 5

)
= (0,−1, 2, 1, 0),

which are easily seen to be in decreasing lexicographic order. �

We now specify the seminormal matrix representations for the gener-
ators sk of Sn. For a choice of algebra isomorphism Φ : Pn → CSn, and
for standard tableaux L, M of the same shape, let (sk)ML denote the coeffi-
cient of vM in skvL = Φ−1(sk)vL. Since the sks generate CSn, the choice of
these coefficients completely determines Φ, although not all such choices
determine Φ as an algebra isomorphism. One choice of these coefficients is
given below.

Theorem 3.25 (Ram (26: 3.26)) Let L be a standard tableau of shape λ ` n, and
for 2 ≤ k ≤ n define

c(sk, L) =
1

ct(L[k])− ct(L[k − 1])
.

We recall that the sks act on Tλ by interchanging boxes k and k − 1, and note that
even if L is standard, skL may not be. Defining

(sk)ML =

c(sk, L), M = L,
1 + c(sk, L), M = skL,
0, otherwise

for each k and each pair of L, M ∈ Tλ
s gives an action of CSn on Vλ consistent

with the choice of some isomorphism Φ : Pn → CSn.

Proof: For the sake of simplicity, we show this for k = n; the case for k < n
is similar. We show this result in stages: we first show (sn)ML = 0 unless
M = L or M = snL, and then we specify values for (sn)LL and (sn)sn L,L
(should snL be standard).

Let L = (λ(1), . . . , λ(n)) be a standard tableau of shape λ ` n. As in
Proposition 2.8, define for each 1 ≤ k ≤ n

pk(λ(k)) = ∏
ck(λ(k)) 6=ck(µ)

zk − ck(µ)
ck(λ(k))− ck(µ)

,

and define

p∗L =
n−2

∏
k=1

pk(λ(k)).

38 Representation Theory of the Symmetric Group

Suppose M = (µ(1), . . . , µ(n)) ∈ Tλ
s . Then

p∗LvM =

{
vM, µ(k) = λ(k)for 1 ≤ k ≤ n− 2,
0, otherwise.

Since λ(n−2) and λ(n) differ by only two boxes, we have only two choices
for the order in which to add them to λ(n−2) to produce λ(n). Hence, there
are only two tableaux M, L and snL, such that µ(k) = λ(k) for 1 ≤ k ≤ n− 2.
Of these, L is standard, but snL may not be.

Since each pk term in p∗L is an element of CSn−2, p∗L commutes with sn.
Thus, we have that

snvL = sn p∗LvL = p∗LsnvL = p∗L ∑
T∈Ts

λ

(sn)TLvT = ∑
T∈Ts

λ

(sn)TL p∗LvT.

Thus, if snL is standard,

snvL = (sn)LLvL + (sn)sn L,Lvsn L,

and if not, snvL = (sn)LLvL. In this case, we define (sn)sn L,L = 0.
We now specify a value for (sn)LL. It is well-known (Murphy (21: (2.3)),

Ram (26)) and in any case straightforward to verify that

snmn−1 = mnsn − 1.

Rewriting this as 1 = mnsn − snmn−1 and applying this equation to vL with
M = snL yields

vL = (mnsn − snmn−1)vL

= mn((sn)LLvL + (sn)MLvM)− ct(L[n− 1])snvL

= (ct(L[n])− ct(L[n− 1]))(sn)LLvL,

so that
(sn)LL =

1
ct(L[n])− ct(L[n− 1])

= c(sn, L),

as desired.
Suppose that M = snL is standard. We determine a value for (sn)ML

that yields a consistent choice of isomorphism Φ. We note that (sn)MM =
−(sn)LL, since M = snL is formed from L by interchanging boxes n− 1 and

Computation and Examples of Representations 39

n and so c(sn, M) = −c(sn, L). Applying both sides of s2
n = 1 to vL gives

vL = snsnvL

= sn((sn)LLvL + (sn)MLvM)

= (sn)2
LLvL + (sn)ML(sn)LLvM + (sn)MM(sn)MLvM + (sn)LM(sn)MLvL

= ((sn)2
LL + (sn)LM(sn)ML)vL + ((sn)LL + (sn)MM)(sn)MLvM.

Since the coefficient on vL in this last expression must equal 1, we have that

(sn)LM(sn)ML = 1− (sn)2
LL = (1− (sn)LL)(1 + (sn)LL),

and we are free to choose (sn)ML = 1 + (sn)LL and (sn)LM = 1 − (sn)LL.
This choice of coefficient is also consistent with (sn)MM = −(sn)LL, as then
(sn)LM = 1 + (sn)MM = 1− (sn)LL and (sn)ML = 1− (sn)MM = 1 + (sn)LL.

The proof for k < n is similar; the principal change is to omit pk−1 and
pk from the product defining p∗L, rather than pn−1 and pn. �

As a result of this theorem, we can determine matrix representations σλ

for each λ ` n by their values σλ(sk) on the generators sk of Sn. Picking
{tλ

i } as an ordered basis for Vλ gives the coefficients of σλ(sk) to be

(σλ(sk))ij = (sk)tλ
i tλ

j
. (3.6)

Furthermore, since the σλs specify a complete set of matrix representations
for the irreducibles, they afford an algebra-homomorphism D : CSn →⊕

λ`n Cdλ×dλ such that
D(sk) =

⊕
λ`n

σλ(sk).

Hence, D is a DFT for Sn, and it is the one for which we elect to develop
FFTs. Consequently, unless otherwise specified, we take this D to be our
DFT for Sn.

3.4 Computation and Examples of Representations

We give a more algorithmic construction of these σλ based on the action of
sk on Tλ

s . This action gives orbits of size at most 2, since s2
n = 1. For a similar

algorithm yielding a slightly different form of the generating matrices (with
1s below the diagonal), see Clausen and Baum (7: §2) or James and Kerber
(14: 3.2.29).

40 Representation Theory of the Symmetric Group

Algorithm 3.26 Fix λ ` n and sk, and consider the action of sk on the tλ
i .

We observe three important cases of the orbit of tλ
i in Tλ

s :

• If k− 1 and k lie in the same row of tλ
i , then sktλ

i is not standard. Since
ct(tλ

i [k])− ct(tλ
i [k − 1]) = 1, we set σλ

ii = c(sk, tλ
i) = 1.

• If k − 1 and k lie in the same column of tλ
i , then sktλ

i is again not
standard. Since ct(tλ

i [k])− ct(tλ
i [k − 1]) = −1, we set σλ

ii = −1.

• If k − 1 and k lie in separate rows and separate columns, boxes k and
k − 1 may be interchanged freely, so tλ

j = sktλ
i is standard. Without

loss of generality, suppose that tλ
i < tλ

j . Then, since tλ
i and tλ

j differ
only in the positions of k and k − 1, it must be the case that the row
index of k in tλ

i is lower than that of k in tλ
j . Thus, we have ct(tλ

i [k]) >

ct(tλ
i [k − 1]).

Let d = ct(tλ
i [k])− ct(tλ

i [k − 1]); then d > 0, and we set(
σλ

ii σλ
ij

σλ
ji σλ

jj

)
=
(

d−1 1 + d−1

1− d−1 −d−1

)
.

Set all remaining elements of σλ to 0. This procedure completely specifies
σλ(sk). �

Example 3.27 We apply Algorithm 3.26 to the standard tableaux of S3 (listed
in Example 3.6) to construct D(sk) for s2 and s3. In their last-letter orders,
these tableaux are

t(3)
1 = 1 2 3 , t(2,1)

1 = 1 3
2

, t(2,1)
2 = 1 2

3
, t(1,1,1)

1 =
1
2
3

.

Applying the algorithm, we have that

D(s2) = σ(3)(s2)⊕ σ(2,1)(s2)⊕ σ(1,1,1)(s2) =

1

−1 0

0 1

−1

 , (3.7)

D(s3) = σ(3)(s3)⊕ σ(2,1)(s3)⊕ σ(1,1,1)(s3) =

1

1
2

3
2

1
2 − 1

2

−1

 . (3.8)
�

Conclusions and Generalizations 41

Example 3.28 We construct the block σ(3,2) of the seminormal matrix repre-
sentations for the transpositions (1 2), (2 3), (3 4), and (4 5) using the stan-
dard tableaux for α = (3, 2) presented in Equation (3.5). Table 3.1 displays
the effects of this action on these tableaux. Using the algorithm above, we
have that

σ(3,2)((1 2)) =

−1

1

−1

1

1

, σ(3,2)((2 3)) =

1
2

3
2

1
2 − 1

2
1
2

3
2

1
2 − 1

2

1

,

σ(3,2)((3 4)) =

−1

1

1
1
3

4
3

2
3 − 1

3

, σ(3,2)((4 5)) =

1
2

3
2

1
2

3
2

1
2 − 1

2
1
2 − 1

2

1

.

As noted above, these matrices allow the construction of seminormal ma-
trix representations for all f ∈ CS5, as this map σ(3,2) is an algebra homo-
morphism of CS5. �

3.5 Conclusions and Generalizations

To summarize the above results, for f ∈ CSn, the matrix coefficients σλ
ij (f)

are the coefficients of etλ
i ,tλ

j
in f and, by Definition 1.2, are also the Fourier

coefficients of f . Hence, we have the following equivalent ways of identi-
fying the coefficients of the matrix D(f):

• By pairs of paths in the character graph Γ(S),

• By pairs of standard tableaux (tλ
i , tλ

j), where i and j specify the index
of the tableaux in the last-letter order,

• By pairs of lists of eigenvalues corresponding to the left and right
actions of the Jucys-Murphy elements m2, . . . , mn on the spaces CeML.

We will interchange freely between these descriptions of the Fourier spaces.

42 Representation Theory of the Symmetric Group

(3,2)-tableaux in last letter order

σ 1 3 5
2 4

1 2 5
3 4

1 3 4
2 5

1 2 4
3 5

1 2 3
4 5

(1 2) C R C R R

(2 3) 1 2 5
3 4

1 3 5
2 4

1 2 4
3 5

1 3 4
2 5

R

(3 4) C R R 1 2 3
4 5

1 2 4
3 5

(4 5) 1 3 4
2 5

1 2 4
3 5

1 3 5
2 4

1 2 5
3 4

R

Table 3.1: Table of action of transpositions on the standard tableaux of
shape (3, 2). An R denotes that the boxes to be interchanged lie in the same
row, and a C that they lie in the same column.

Finally, this path algebra affords a generalization of the tableaux used
in the construction of the symmetric group to other MC-groups. Ram (26)
explicitly constructs such a system of tableaux for WBn, while Clausen (5)
explores this notion for supersolvable groups as well. In Ram’s formula-
tion, for example, the irreducibles of WBn are indexed by pairs of partitions
whose sizes sum to n. Consequently, similar seminormal matrix represen-
tations can be developed for these groups, as well as the MC-groups noted
in Section 2.4.

Chapter 4

Decimation-In-Frequency
Algorithm Theory

We now discuss general algorithms for the construction of decimation-in-
frequency fast Fourier transform algorithms. As discussed in Section 1.3,
these algorithms differ from earlier, decimation-in-time ones in that they fo-
cus on producing successively finer decompositions of the frequency space,
rather than on a factorization of the group by double-coset representatives
that have sparse seminormal matrix representations. In particular, we de-
velop the idea of the DFT as a change of basis on the group algebra CG, and
then formulate the decimation-in-frequency FFT as a sparse factorization of
the change-of-basis matrix.

4.1 The DFT as a Change of Basis

Suppose G is a finite group, so that by Wedderburn’s Theorem there exists
an isomorphism

D : CG →
⊕
λ∈Ĝ

Cdλ×dλ .

Let Eλ,ij be the usual matrix basis element consisting of the matrix with a
1 in the ith row and jth column of block λ in the matrix algebra, and let
uλ,ij be its preimage D−1(Eλ,ij) in CG. Furthermore, let Uλ,ij = Cuλ,ij be the
space spanned by uk,ij. Then, by this isomorphism D,

CG =
⊕
λ∈Ĝ

dλ⊕
j=1

dλ⊕
i=1

Uλ,ij.

44 Decimation-In-Frequency Algorithm Theory

D maps Uλ,ij onto the space spanned by Eλ,ij, so each of these Uλ,ijs cor-
responds to one of these Fourier coefficient spaces in the matrix algebra.
Thus, CG can be viewed both as a direct sum of the spaces spanned by the
group elements of G and as a direct sum of these Fourier spaces Uλ,ij; the
former corresponds to the time domain of the classical DFT, while the latter
corresponds to the frequency domain. Consequently,

T = {g | g ∈ G} and F = {Eλ,ij | λ ∈ Ĝ, i ≤ i, j,≤ dλ}

are bases for the group algebra and the matrix algebra, respectively, that
correspond to these decompositions of the spaces. We recall from Dum-
mit and Foote (11) the defintion and notation for matrix representations of
linear transformations:

Definition 4.1 If V and W are vector spaces with bases B = {vi} and E =
{wj}, respectively, and if φ ∈ Hom(V, W), then the matrix of φ with respect
to B and E is denoted [φ]E

B. The ijth coefficient of this matrix is the coefficient
of wi in φ(vj). �

Under this formulation, we define the DFT matrix for D to be [D]FT .
This matrix then transforms a coordinate vector in the group-element basis
T to a vector consisting of the Fourier coefficients of D.

Example 4.2 We illustrate this decomposition explicitly for S3. We recall
that S3 has three classes of irreducible representations, two of which are
one-dimensional and the third of which is two-dimensional. Thus,

CS3 ∼= C1×1 ⊕C2×2 ⊕C1×1.

We can then write CS3 as

CS3 = U1,11 ⊕U2,11 ⊕U2,12 ⊕U2,21 ⊕U2,22 ⊕U3,11,

where, for example, the spaces U1,11, U2,11 ⊕ U2,21, U2,12 ⊕ U2,22, and U3,11
form irreducible left CS3-modules, since they correspond to the four dif-
ferent columns of the matrix algebra. Computing the images of the group
elements under the DFT using the algorithm detailed in Section 3.4, the
matrix representation of the seminormal DFT on CS3 is the change of basis

Path Algebras, DFTs and FFTs 45

matrix

D =

1 1 1 1 1 1

1 −1 1
2 − 1

2
1
2 − 1

2

0 0 − 3
2

3
2

3
2 − 3

2

0 0 − 1
2 − 1

2
1
2

1
2

1 1 − 1
2 − 1

2 − 1
2 − 1

2

1 −1 −1 1 −1 1

. (4.1)

Such matrices are precisely the ones we wish to factor in our algorithm. �

4.2 Path Algebras, DFTs and FFTs

We relate this change-of-basis formulation of the DFT to the path algebra
representations of CG developed in Chapter 2. As above, let G have a chain
of subgroups C given by 1 = G0 < G1 < · · · < Gn = G, let Pn be the
associated path algebra, and let Zk = {zk,j}rk

j=1 be sets of central elements
for CGk for each k ≤ n. Let an isomorphism Φ : Pn → CG be fixed.

Suppose (L, M) ∈ Ω(n) is a pair of paths such that L = (λ(0) → . . . →
λ(n)) and M = (µ(0) → . . . → µ(n)). Then, with eML and vN as defined in
Chapter 2, proceeding as in Equations (3.3) and (3.4) yields that

zk,jeML = ck,j(µ(k))eML and eMLzk,j = ck,j(λ(k))eML. (4.2)

Thus, the group elements eML are eigenvectors for the zk,js. Note that zk,j is
central in CGk and not necessarily in CG, so that the left and right eigen-
values ck,j(µ(k)) and ck,j(λ(k)) need not coincide except for k = n (since λ(n)

and µ(n) must be equal).
Since each eML is an eigenvector for the zk,js, CG decomposes into a di-

rect sum of eigenspaces for the zk,js indexed by pairs of path weights. If all
paths in Λ(n) can be distinguished by such weights, then the simultaneous
left and right action of the zk,js decomposes CG into the one-dimensional
spaces spanned by the eML.

As noted in Chapter 2, fixing Φ and selecting {vN}N∈Λ(λ) as bases for
the irreducible representations Vλ of Pn gives a seminormal DFT D for CG,
in which case the eMLs correspond to the uλ,ijs defined above, and the one-
dimensional eigenspaces to the Uλ,ijs. Hence, the Fourier coefficients of
f ∈ CG are given by the coefficients of the eML in f , which are determined
by the projections of f into the eigenspaces of the zk,js and by the choice

46 Decimation-In-Frequency Algorithm Theory

of the eML as eigenbases for these spaces. While the projections of f into
these eigenspaces are determined uniquely, the corresponding coefficients
are not. We can rescale these coefficients so that they are consistent with
the seminormal matrix representations on the generators, however. Such
methods are explored further in Section 4.6.

If the paths in Λ(n) cannot be separated by the zk,js, then much of the
above analysis applies, except that the resulting eigenspaces will not all
be one-dimensional. In that case, checking that these coefficients are con-
sistent with the values of the predetermined seminormal DFT D requires
more complicated linear transformations on the sets of Fourier coefficients
corresponding to the eigenspaces, but is still theoretically feasible. In fact,
for the one-dimensional eigenspaces, these linear transformations reduce to
the scalings discussed above, as these are the only invertible linear trans-
formations on one-dimensional spaces.

Additionally, we note that we can also use the successive differences
mk,j = zk,j − zk−1,j of the central elements to accomplish the same separa-
tion of eigenspaces, as the lists of the eigenvalues of the zk,js and the mk,js
determine each other. When it is not important to distinguish between the
two sets of elements, we use zk,j to refer to either collection, and call them
simply separating elements, in keeping with the terminology of separating
sets introduced in Section 1.3.2. We employ such elements for the symmet-
ric group in Chapter 5 to separate Fourier coefficient spaces.

Finally, this eigenspace approach affords a means of determining a fast
Fourier transform algorithm for G: rather than projecting elements of CG
into these one-dimensional Fourier spaces immediately, we project them
into successively smaller eigenspaces by the left and right action of an ap-
propriate set of zk,j elements or their differences mk,j, with a new set acting
on the left and then the right at each stage of the transform. Because at
each stage we subdivide the eigenspaces of CG into smaller eigenspaces,
this procedure realizes a decimation-in-frequency FFT for G.

4.3 Bimodules and Opposite Algebras

Before we discuss such decimation-in-frequency approaches to fast Fourier
transforms on G, we develop some additional theoretical material. In par-
ticular, we discuss

• opposite algebras and their relation to bimodules,

• an encoding of the double coset structure of G with respect to a chain

Bimodules and Opposite Algebras 47

of its subgroups,

• minimum rank decompositions of matrices.

Much of this material on opposite algebras and tensor products is drawn
from Adkins and Weintraub (1), Drozd and Kirichenko (10), and Sagan (28).
We first define the notion of an opposite algebra.

Definition 4.3 Let A be a C-algebra. Let the opposite algebra of A, denoted
Ao, has the same elements as A, but with the element a ∈ A denoted ao in
Ao and with multiplication defined by aobo = (ba)o. �

As Drozd and Kirichenko (10: §4.2) point out, if A and B are algebras,
any (A, B)-bimodule M becomes a left A⊗Bo-module by setting (a⊗ bo)m =
amb for a ∈ A, b ∈ B, m ∈ M. Furthermore, if M is a left A ⊗ Bo-module,
setting am = (a ⊗ 1)m and mb = (1 ⊗ bo)m for a ∈ A, b ∈ B and m ∈ M
makes M into an (A, B)-bimodule. Hence, the two concepts are equiva-
lent, and the study of such bimodules thus reduces to the study of tensor
products and opposite algebras. Unless otherwise stated, we assume that
all tensor products are over C. We also typically drop the o on opposite
algebra elements in tensor products if it is clear from context.

We note that the usual algebra multiplication on CG makes it into a
(CG, CG)-bimodule, so by this correspondence it is also a left (CG⊗CGo)-
module. Furthermore, if H and K are subgroups of G, then by restriction
CG is also a left (CH ⊗CKo)-module.

We state two results about the irreducible representations of opposite
algebras and tensor products of group algebras.

Proposition 4.4 The isomorphism classes of simple left CG-modules coincide with
those of its opposite algebra CG.

Proof: As noted in Adkins and Weintraub (1: 3.1.2), the antiautomorphism
φ(g) = g−1 on G extends by linearity to an algebra antiautomorphism φ :
CG → CG. Similarly, the opposite map from CG to CGo given by α →
αo for each α ∈ CG gives an antiisomorphism of these algebras. Hence,
their composition σ : CG → CGo given by σ(α) = φ(α)o is an algebra
isomorphism. Since the algebras are isomorphic, their isomorphism classes
of simple left modules must coincide. �

Let A and B be C-algebras, and let M be an A-module and N a B-
module. Their tensor product M ⊗ N over C is a A ⊗ B-module, where
multiplication for simple tensors is given by

(a⊗ b)(m⊗ n) = (am⊗ bn)

48 Decimation-In-Frequency Algorithm Theory

and extends to all tensors by linearity over C.

Proposition 4.5 Let G and H be groups.

1. If X and Y are irreducible representations for G and H, respectively, then
X ⊗Y is an irreducible representation of G × H.

2. If {Xi} and {Yi} are complete lists of inequivalent irreducible representa-
tions for G and H, then {Xi ⊗ Yj}m,n

i=1,j=1 is a complete list of inequivalent
irreducible representations for G × H. �

By the algebra isomorphisms

C(G × H) ∼= CG ⊗CH ∼= CG ⊗CHo

where the first is given by extending (g, h) 7→ g ⊗ h by linearity and the
second by σ : CH → CHo as defined in Proposition 4.4. By this result and
by Proposition 4.5, the irreducible types of CG⊗CHo are the same as those
of C(G× H). Finally, by the semisimplicity of C(G× H), any (CG⊗CHo)-
module decomposes into a direct sum of irreducibles.

Example 4.6 Considered as a (CG ⊗ CGo)-module, CG can be written as
a direct sum of tensor products of its irreducibles. Furthermore, taking
G0 < G1 < · · · < Gn = G to be a chain of subgroups of G, CG considered
as a (CGi ⊗CGo

j)-module decomposes into a direct sum of tensor products
of the irreducibles of Gi and Gj.

The decimation-in-frequency strategy proposed above in Section 4.2
then corresponds to the successive decomposition of CG with respect to
the chain of algebras

CG0 ⊗CGo
0 ⊂ CG1 ⊗CGo

0 ⊂ CG1 ⊗CGo
1 ⊂ CG2 ⊗CGo

1 ⊂ · · · ⊂ CGn ⊗CGo
n

(4.3)
where we alternately increment the indices of the left and right Gis. �

4.4 Double-Coset Branchings and Bases

We can also encode the chains of tensor algebras such as that presented
in Example 4.6 as a chain of pairs of subgroups for G. This motives the
following definition:

Definition 4.7 Let G be a finite group, and let H0 ≤ H1 ≤ · · · ≤ Hn and
K0 ≤ K1 ≤ · · · ≤ Kn be chains of subgroups of G of equal length. Then the
sequence {(Hj, Kj)}n

j=0 is a chain of subgroup pairs for G. �

Double-Coset Branchings and Bases 49

Example 4.8 The chain of group algebra tensor products presented in Equa-
tion (4.3) corresponds to the chain

(G0, G0) < (G1, G0) < (G1, G1) < · · · < (Gn, Gn)

of subgroup pairs for the group G. �

Let P = {(Hj, Kj)} be a chain of subgroup pairs for G. We note that
the action of the corresponding group algebra CHj ⊗ CKo

j on CG makes
CG into a (CHj ⊗CKo

j)-module by restriction, and hence it will decompose
into a direct sum of such modules. Moreover, the (CHj ⊗ CKo

j)-modules
generated by the standard basis for CG (i.e., the elements of G considered
as elements of CG) are precisely those spanned by the double cosets of Hj
and Kj in G. We refer to such modules as (Hj, Kj)-double-coset modules. Fur-
thermore, because Hj−1 ≤ Hj and Kj−1 ≤ Kj, the double cosets of Hj and
Kj are a disjoint union of double cosets of Hj−1 and Kj−1, so these (Hj, Kj)-
double-coset modules decompose into direct sums of (Hj−1, Kj−1)-double-
coset modules.

Example 4.9 Consider the chain P

(S1, S1) < (S2, S1) < (S2, S2) < (S3, S2) < (S3, S3)

of subgroup pairs of S3. Since

D1,1 = {1, (1 2)} and D1,2 = {(1 3), (1 3 2), (2 3), (1 2 3)}

are the two (S2, S2)-double cosets in S3, CS3 decomposes into two double-
coset modules, CD1,1 and CD1,2, which are spanned by these double cosets.

Furthermore, since the (S2, S1)-double cosets in S3 are D2,1 = D1,1,
D2,2 = {(1 3), (1 3 2)}, and D2,3 = {(2 3), (1 2 3)}, as CS2 ⊗ CSo

1-modules,
CD1,1 = CD2,1, while CD1,2 = CD2,2 ⊕CD2,3.

We remark that these double-coset modules, while cyclic, are not nec-
essarily irreducible. They are, however, the smallest subalgebra modules
that can be written with bases consisting of subsets of the standard group-
element basis for CG. �

We encode this branching of double cosets associated to pairs of sub-
groups in a chain of subgroup pairs as follows.

Definition 4.10 Let G be a finite group, and let P be a chain of subgroup
pairs given by {(Hj, Kj)}n

j=0.

50 Decimation-In-Frequency Algorithm Theory

(S1, S1) (S2, S1) (S2, S2) (S3, S2) (S3, S3)

1

(1 2)

(1 3)

(1 3 2)

(2 3)

(1 2 3)

1

(1 3)

(2 3)

1

(1 3)

1 1

Figure 4.1: Graphical depiction of double-coset branching for S3. The in-
dexing sets for the double cosets are taken to be arbitrary choices of repre-
sentatives from the double cosets.

• For each 0 ≤ j ≤ n, let Ij be an index set for the (Hj, Kj)-double cosets
in G.

• For each 1 ≤ j ≤ n, let sj : Ij−1 → Ij be a function such that for
each index i ∈ Ij−1, sj(i) gives the index of the (Hj, Kj)-double coset
containing the ith (Hj−1, Kj−1)-double coset.

We define the double-coset branching associated to P to be the collection of
the Ijs and the sjs, and denote it by B(P). The sj are then called the successor
functions for the branching. �

These successor functions sj are well defined precisely because of this
partitioning behavior of the double cosets for the pairs of subgroups in the
chain.

Example 4.11 The chain of subgroup pairs for S3 in Example 4.9 corre-
sponds to the double-coset branching depicted in Figure 4.1. Here, par-
ticular choices of coset representatives are used to index the double cosets
at each stage. Then, for example, s2((2 3)) = (1 3), since the (S2, S1)-double
coset corresponding to (2 3) is part of the (S2, S2)-double coset correspond-
ing to (1 3). �

Closely associated with such branchings are group-element bases for
CG that respect the branching.

Double-Coset Branchings and Bases 51

Definition 4.12 Let G be a finite group, and consider a chainP of subgroup
pairs for G. A double-coset basis for CG with respect to P is an ordered list
L = (g1, . . . , gk) of the elements of G such that, for each pair (H, K) ∈ P , L
is partitioned into sublists that correspond to the double cosets of H and K
in G. �

Thus, a double-coset basis is one for which this action induces a parti-
tion of the basis into group-element bases for the double cosets in contigu-
ous blocks. The computation of such bases relies in part on the determina-
tion of double-coset transversals for each pair of subgroups in the pairing
chain above. Methods for constructing such transversals are discussed in
Brown et al. (2). When K ≤ H ≤ G and when there is a right transversal
of H in G that consists of orbits of the elements of G under the action of K
by conjugation, the computation of (H, K)-double cosets can be simplified
considerably. We discuss such computation with respect to the symmetric
group in Chapter 5.

Example 4.13 We exhibit a double-coset basis for S3 with respect to the
chain of subgroup pairs

(S1, S1) < (S2, S1) < (S2, S2) < (S3, S2) < (S3, S3).

One such double coset basis is

D = (1, (1 2), (1 3), (1 2 3), (2 3), (1 3 2)),

as S2 = {1, (1 2)} and S2(1 3)S2 = {(1 3), (1 2 3), (2 3), (1 3 2)} are the dou-
ble cosets of S2 and S2 in S3. �

Finally, we note that an order chosen on each of the indexing sets Ij for
a branching B(P) determines a double-coset basis for G. For each g ∈ G,
let pj(g) denote the index of the double coset of Hj and Kj containing g.
Defining

L(g) = (pn(g), pn−1(g), . . . , p1(g), p0(g)),

we see that sorting G by the lexicographic order on the L(g) gives a double-
coset order for G with respect to P . We note that pj(g) = (sj ◦ sj−1 ◦
· · · ◦ s1)(p0(g)), so we can compute such lists, and hence the correspond-
ing double-coset basis, given only the double-coset branching for the chain
and the initial locations of the elements of G in the smallest double cosets
for the chain.

52 Decimation-In-Frequency Algorithm Theory

4.5 Projections and Minimum Rank Decompositions

We now discuss the eigenspace projection operators associated to each of
the separating elements zk,j, and efficient means of constructing and storing
these operators. We note that, for any choice of isomorphism Φ, the eML
form simultaneous left and right eigenbases for CG with respect to each
zk,j. Hence, for any choice of basis B for CG, the matrix representation
[zk,j ⊗ 1]B

B is diagonalizable, and so can be written

[zk,j ⊗ 1]B
B = ∑

λ

λPλ, (4.4)

where λ ranges over the eigenvalues of zk,j, and Pλ is the projection matrix
that projects into the eigenspace Wλ associated to λ. Furthermore, we can
write these projections in a factored form: if Eλ is a eigenbasis for Wλ, then
it is a fact of elementary linear algebra that

Pλ = [Eλ]B(([Eλ]B)T[Eλ]B)−1([Eλ]B)T. (4.5)

The same can be done for the projections associated with the eigenspaces
of 1⊗ zk,j.

We also note that a general m× n matrix A of rank r can be factored into
A = DC, where D is a fully ranked m × r matrix and C is a fully ranked
r × n matrix. The algorithm below gives one means of accomplishing this
using row-reduction.

Algorithm 4.14 Let A be an m × n matrix of rank r. Row reduce the aug-
mented matrix [A | Im] to [B | E] using E. Then

B =

c1
...

cr
0
...
0

and E−1 =

(
d1 d2 · · · dr dr+1 · · · dm

)
,

where the ci are 1× n row vectors and the di are m× 1 column vectors. Set

C =

c1
...

cr

 and D =
(
d1 d2 · · · dr

)
.

Then A = DC, and C and D are fully ranked and of size m × r and r × n,
respectively.

Decimation-in-Frequency Algorithms 53

Proof: By the row reduction, B takes the form above, with r nonzero rows, E
is invertible, and A = E−1B. Expanding this expression by outer products
gives

A = E−1B = d1 · c1 + · · ·+ dr · cr + dr+1 · 0 + · · ·+ dn · 0 = DC. �

4.6 Decimation-in-Frequency Algorithms

With these tools at our disposal, we can now specify a general algorithm for
the precomputation of a decimation-in-frequency fast Fourier transform.
Let G be a finite group.

• Let 1 = G0 < G1 < · · · < Gn = G be a chain of its subgroups,
denoted C.

• Let Zk = {zk,j}rk
j=1 be a set of separating elements for this chain C,

where each Zk ⊂ CGk.

• Let B be a group-element basis for CG.

• Let D be a seminormal DFT for G adapted to C, and let F be the
corresponding Fourier basis for

⊕
λ∈Ĝ Cdλ×dλ . We place the elements

of F in row-major order, treating elements of
⊕

λ∈Ĝ Cdλ×dλ as direct
sums of matrices.

Our decimation-in-frequency FFT algorithm produces a sparse factor-
ization of the matrix that, for f ∈ CG, takes [f]B to its coordinates in an
eigenbasis for the separating elements zk,j. With an additional factor to
transform these eigenspace coordinates into those that are consistent with
a seminormal DFT D for G, this algorithm gives a sparse factorization of
the corresponding DFT matrix [D]FB .

Because we wish to determine the change of basis matrix from the group-
element basis B for CG to these eigenbasis, our principal strategy will be to
focus on the changes of basis induced by the eigenspace projections for the
zk,j. Specifically, for each k ≤ n, we project based on the left action of the
zk,j on CG, then on the right action of the zk,j.

We structure this alternating action as follows.

• Let P be the chain of subgroup pairs

(G0, G0) < (G1, G0) < (G1, G1) < (G2, G1) < · · · < (Gn, Gn).

54 Decimation-In-Frequency Algorithm Theory

• Let B(P) be the double-coset branching associated to P . Let Ij be an
(ordered) index set for the double cosets of the jth pair in P , and let
sj : Ij−1 → Ij be the successor functions that determine the branching.

• Let P0, . . . , P2n denote the elements of P , and let CP0, . . . , CP2n de-
note the corresponding tensor products of group algebras. Thus, for
k between 1 and n, we have P2k−1 = (Gk, Gk−1), and P2k = (Gk, Gk).
Likewise, CP2k−1 = CGk ⊗CGo

k−1, and CP2k = CGk ⊗CGo
k .

• For k between 1 and n, let t2k−1,j denote zk,j ⊗ 1 and t2k,j = 1 ⊗ zk,j.
Let r′2k−1 = r′2k = rk, so that for each m between 1 and 2n r′m gives the
number of tm,j elements.

As discussed above, when treated as a CPm-module, CG decomposes as
a direct sum of the spaces spanned by the Pm-double cosets, each of which
is a CPm-module in its own right. Consequently, we can further subdi-
vide the relevant projection operators and eigenbases into operators and
bases that relate only to a single double-coset module. In fact, since we
start with a group-element basis on CG, and since the double-coset mod-
ules are precisely the cyclic modules generated by these basis elements,
this decomposition of CG by double cosets is the finest decomposition that
gives block-matrix forms for the matrix representations of the projections
and eigenbases with respect to B. Keeping the eigenbases and projections
localized to double-coset submodules also has computational advantages
that we explore below.

If B is a double-coset basis for CG with respect to P , these projection
matrices with respect to B are exactly direct sums of these matrix blocks; if
B is not, these matrices are these direct sums conjugated by the permutation
change of basis taking B to a double-coset basis.

Example 4.15 Consider S3 with the double-coset basis D of Example 4.13.
Let z2 = 1

2 (1 + (1 2)), one of the centrally primitive idempotents for CS2.
With respect to D, we have

[z2 ⊗ 1]D
D =

1
2

1
2 0 0 0 0

1
2

1
2 0 0 0 0

0 0 1
2

1
2 0 0

0 0 1
2

1
2 0 0

0 0 0 0 1
2

1
2

0 0 0 0 1
2

1
2

and [1⊗ z2]D

D =

1
2

1
2 0 0 0 0

1
2

1
2 0 0 0 0

0 0 1
2 0 0 1

2

0 0 0 1
2

1
2 0

0 0 0 1
2

1
2 0

0 0 1
2 0 0 1

2

Decimation-in-Frequency Algorithms 55

We observe that [z2 ⊗ 1]D
D is a matrix direct sum of projection matrices that

act on the (CS2 ⊗ CSo
1)-double-coset submodules of CS3, while [1 ⊗ z2]D

D
is a matrix direct sum of projection matrices that act on the (CS2 ⊗ CSo

2)-
double-coset submodules of CS3. Because of this block decomposition, it
is possible to construct eigenbases for these projections such that their ba-
sis vectors lie in these double-coset submodules. In particular, reasonable
choices for such eigenbases in this case are

1
1
0
0
0
0

 ,

1
−1

0
0
0
0

 ,

0
0
1
1
0
0

 ,

0
0
1

−1
0
0

 ,

0
0
0
0
1
1

 ,

0
0
0
0
1

−1

and

1
1
0
0
0
0

 ,

1
−1

0
0
0
0

 ,

0
0
1
1
1
1

 ,

0
0
1
1

−1
−1

 ,

0
0
1

−1
1

−1

 ,

0
0
1

−1
−1

1

�

As a result of this reducibility of the spaces with respect to double-coset
modules, we introduce two final notational items.

Suppose that T = {t1, . . . , tk} is a set of separating elements for CG,
and that T ⊂ CPm. For each j ≤ k, let λj be an eigenvalue of tj, and let
λ = (λ1, . . . , λk). For i ∈ Im, define Wλ,i to be

Wλ,i = CDi ∩
k⋂

j=1

Wλj ,

where CDi is the double-coset module in CG corresponding to i, and Wλj

is the eigenspace of tj corresponding to λj in CG. Then Wλ,i is the simul-
taneous eigenspace of the tj for these eigenvalues λj in this double-coset
module.

Consider CPm for m ≤ 2n. Let λ be one of the eigenvalues of the sepa-
rating element tm,j ∈ CPm, with corresponding eigenspace W in CG. Since
W =

⊕
i∈Im

W i, where W i is contained in the ith Pm-double-coset module,

56 Decimation-In-Frequency Algorithm Theory

there exist bases Eλ,i
m,j for the W i that also reside in these double-coset mod-

ules. Hence, a basis Eλ
m,j for W is given by

Eλ
m,j =

⋃
i∈Im

Eλ,i
m,j.

We call the Eλ,i
m,j double-coset adapted eigenbases for the eigenspace projec-

tions of the tk,j.
With this framework in mind, we describe a collection of algorithms for

the computation of a sparse factorization of the DFT matrix associated with
the seminormal DFT D. Our first algorithm transforms bases for simulta-
neous eigenspaces of a set of separating elements T into those that are also
eigenbases for the next separating element, t, and hence provides the main
step in the precomputation algorithm.

Algorithm 4.16 Fix m ≤ 2n, and let the algebra CPm and group-element
basis B for CG be as above. Let T be a set of separating elements in CPm,
and let t be a new separating element of CPm. Suppose we have the follow-
ing:

• Let S = (Sj)r
j=1 be a list of lists Sj such that each list Sj = (ij, λj),

where ij ∈ Im and λj is a list of the eigenvalues of the elements of T.
Moreover, let each entry in S be unique, and let each list (ij, λj) such
that Wλj,ij is nontrivial be included in S, so that S is complete.

• Let D = (Dj)r
j=1, where Dj is a matrix whose columns are the B-

coordinates of a basis for Wλj,ij as defined above.

• For each eigenvalue µ of t and each double-coset index i ∈ Im, let Wµ,i

be the eigenspace for µ in the ith double-coset module of CG. Let Eµ,i

be the coordinates with respect to B of an eigenbasis for Wµ,i.

Let D′ and S′ be empty lists.

1. For each Eλ,i, compute and store (ET
λ,iEλ,i)−1 (these can also be pre-

computed and provided to the algorithm).

2. For each j = 1 to r,

2.1. Set i to be the double-coset index ij of Dj, as determined by the
list Sj = (ij, λj).

2.2. For each eigenvalue µ of t,

Decimation-in-Frequency Algorithms 57

2.2.1. Compute the matrix ET
µ,iDj.

2.2.2. Decompose ET
µ,iDj into D̃µj and Cµj according to a minimum-

rank decomposition algorithm such as Algorithm 4.14.
2.2.3. Compute Dµj = Eµ,i(ET

µ,iEµ,i)−1D̃µj.

2.2.4. Append Dµj to D′.
2.2.5. Append (ij, λj,µ) to S′, where λj,µ is λj with µ appended.

2.3. Concatenate the columns of the Cµjs in order to form the matrix
C̄j.

3. Set the matrix F to be the direct sum
⊕r

j=1 C̄j of the C̄j matrices.

Return F, D′, S′. �

Theorem 4.17 In Algorithm 4.16 above, S′ = (S′j)
r′
j=1 is a complete list of lists of

double-coset indices for Pm-double cosets and eigenvalues for each of the elements
in T ∪ {t}. Writing S′j = (i′j, λ′j), each D′

j in D′ = (D′
j)

r′
j=1 consists of the

coordinates with respect to B of a basis for Wλ′j,i
′
j . Finally, F is the change of basis

matrix [1]D′
D that changes coordinates from D to D′.

Proof: Since t and the elements of T are separating elements of CPm as de-
fined above, there exists a basis of CG that diagonalizes all of these ele-
ments simultaneously. The eigenbases in D already diagonalize the ele-
ments of T by hypothesis. This algorithm changes the basis of each Dj into
one that partitions into eigenbases for both T and t.

We note that Pµ,i = Eµ,i(ET
µ,iEµ,i)−1ET

µ,i projects CG onto Wµ,i. Since
the sum ∑µ Pµ,i of these projections is the identity on the ith double-coset
module of CG, we then have

Dj = ∑
µ

Eµ,i(ET
µ,iEµ,i)−1ET

µ,iDj

= ∑
µ

Eµ,i(ET
µ,iEµ,i)−1D̃µjCµj

= ∑
µ

DµjCµj,

where Cµj, D̃µj, and Dµj are as defined above. Expanding this via outer
products gives

Dj = ∑
µ

DµjCµj =
(

Dµ1 j · · · Dµk j
)Cµ1 j

...
Cµk j

 =
(

Dµ1 j · · · Dµk j
)

C̄j.

58 Decimation-In-Frequency Algorithm Theory

Then
(

Dµ1 j · · · Dµm j
)

is precisely the list of blocks appended to D′. Fur-
thermore, each Dµj has a double-coset/eigenvalue list given by (ij, λj,µ),
and since the µ were unique, so are these new lists.

Since Sj is unique for each j, these new lists Sµj that constitute S′ are also
all unique, so each Dµj in D′ is a complete eigenbasis for the corresponding
intersections of eigenspaces for T and t.

Let [D] and [D′] represent the columns of D and D′, respectively, con-
catenated to form |G| × |G| matrices. By construction, [D′]F = [D]. But
[D] = [1]B

D and [D′] = [1]B
D′ , so

F = [1]D′
B [1]B

D′F = [1]D′
B [D]F = [1]D′

B [D] = [1]D′
B [1]B

D = [1]D′
D . �

We note that we need keep only those elements of D′ and S′ that cor-
respond to nontrivial eigenspaces of CG, as the others will correspond to
empty lists in D′.

The decimation-in-frequency algorithm then essentially consists of re-
peated application of Algorithm 4.16, as well as a grouping together of
double-coset bases at each new pair in the chain of subgroup pairs.

Algorithm 4.18 Let any symbols not defined here explicitly be as defined
earlier in this section.

• Let B0,k = ([gk]B), the coordinates of the kth element of B with respect
to B, and let B0 be the list (B0,k)

|G|
k=1.

• Let F be an empty list, which we use to store the factors of the semi-
normal DFT matrix.

• Let S0 be a list of |G| lists, the kth element of which consists of (p0(B0,k)),
the index of the (G0, G0)-double coset containing B0,k.

1. For each m = 1 to 2n− 1,

1.1. Apply the successor function sm to the first element of each list
in Sm−1, and set S′m−1 to the result.

1.2. Sort Bm−1 according to the lexicographic order on the correspond-
ing lists in S′m−1. Concatenate those elements of Bm−1 with iden-
tical lists in S′m−1. Set Bm,0 to this sorted, concatenated Bm−1, and
set Sm,0 to the sorted S′m−1 with duplicate lists removed. Set Pm
to the (permutation) change-of-basis matrix determined by this
reordering, and append it to F.

Decimation-in-Frequency Algorithms 59

1.3. For j = 1 to r′m, compute the factor Fm,j, the new eigenbasis Bm,j,
and the new eigenvalue list Sm,j from Bm,j−1, the coordinates
{[Ei,λ

m,j]B} of the projection eigenbases, and Sm,j−1 according to
Algorithm 4.16.

1.4. Append Fm,j to F, and set Sm = Sm,r′m and Bm = Bm,r′m .

2. Compute a coefficient permutation matrix PDFT as described below
using S and the order on the Fourier basis F and append PDFT to F.

3. Compute a scaling matrix SDFT and possibly a second permutation
matrix P′DFT from F and D as described below. �

Theorem 4.19 In Algorithm 4.18 above, B2n consists of blocks of coordinates with
respect to the basis B of bases for the simultaneous eigenspaces of the separating
elements ti,j.

Furthermore, F = (P1, F1,1, . . . , P2n−1, . . . , F2n−1,r′2n−1
, PDFT, SDFT, P′DFT) is a

sparse factorization of the DFT matrix associated to D, such that

P′DFTFDFTPDFTF2n−1,r′2n−1
· · · P2n−1 · · · F1,1P1 = [D]FB . (4.6)

Proof: We proceed by induction on m, first showing that at each stage Sm
contains unique lists and that the elements of Bm correspond to the Wλ,i,
where (i, λ) ∈ Sm.

The initial basis B0 trivially consists of blocks of eigenbases that diag-
onalize the z0,j, which can consist only of complex scalars since G0 = 1.
Furthermore, the lists in S0 uniquely identify the blocks in B0, since each
element of G determines its own (G0, G0)-double-coset.

Suppose that Bm−1 is as specified above. The sorting and concatena-
tion operation produces bases and guarantees that elements of S′m−1 are
unique. Repeated application of Algorithm 4.16 for the tm,j then produces
unique elements in Sm and blocks in Bm that give bases for the correspond-
ing spaces. Since each block represents a complete eigenbasis, the lists in
Sm are unique. Thus, after stage m = 2n, B2n consists of the desired simul-
taneous eigenbases.

Each application of Algorithm 4.16 provides the change of basis matrix
Fm,j that takes the coordinates of a vector in the Bm,j−1 basis to those in the
Bm,j basis. Since the Pm matrices give the change of basis that corresponds
to combining bases in the next set of double-coset modules, their product
with the Fm,j matrices gives the change of basis into B2n.

60 Decimation-In-Frequency Algorithm Theory

We note, however, that the factors from the m = 2n stage are trivial.
The only double coset of Gn and Gn−1 in G is G, as is the only double coset
of Gn and Gn in G, so no basis vectors in B2n−1 are grouped together after
the application of the successor function to their double coset indices. Fur-
thermore, regardless of whether the separating elements zn,j are central el-
ements or are differences of them, the eigenvalues of t2n,j = 1⊗ zn.j on each
of the spaces in B2n−1 are determined by the previously computed eigenval-
ues on each of these spaces. Hence, they perform no additional separation
of these spaces, and so the F2n,j factors are all trivial as well. Thus, we may
terminate the process after the computation of the m = 2n− 1 factors.

Since the Fourier basis F associated with the seminormal DFT D also
diagonalizes these ti,j separating elements, there exists a change of basis on
each block in B2n that takes it to the Fourier basis. By the description below,
PDFT and FDFT effect this final change of basis. �

We elect not to give general algorithms for the computation of PT and
FT above, as in general they will depend on how the lists of separating-
element eigenvalues in S2n relate to the indexing of the entries in the matrix
algebra

⊕
λ∈Ĝ Cdλ×dλ . Instead, we describe this in general below; specific

algorithms for the symmetric group are found in in Chapter 5.
In general, the coordinates of the vector should be ordered to corre-

spond with the row-major order of the Fourier coefficients from the semi-
normal DFT D. Hence, given a relation between the eigenvalues of the
separating elements and the row and column indices for the matrix alge-
bra, the blocks in B2n can be rearranged to match this order. Thus, if the
separating elements can separate rows 1, 2 and 3, and 4, and likewise for
the columns, we permute the coefficients to the order (1, 1), (1, 2/3), (1, 4),
(2/3, 1), (2/3, 2/3), (2/3, 4), and so on. This reordering of basis vectors
generates the permutation matrix PDFT.

Once these blocks are sorted, we determine linear transformations that
map these coefficients to the Fourier coefficients for the seminormal DFT.
For each block we desire a matrix A such that Ab = s, where b is a vector of
coefficients corresponding to that block and s is the correct seminormal rep-
resentation of the coefficients. Thus, for a block of size d, a set {b1, . . . , bd}
of d linearly independent coordinate vectors and their corresponding semi-
normal coordinates {s1, . . . , sd}, we have

A = A
(
b1 · · · bd

) (
b1 · · · bd

)−1 =
(
s1 · · · sd

) (
b1 · · · bd

)−1 .

We typically obtain these linearly independent coordinate vectors through
the computation of the DFT (without the final scaling) and the seminormal

Decimation-in-Frequency Algorithms 61

DFT for a sufficient number of group elements. Taking the appropriate
direct sum of these A matrices gives the scaling matrix SDFT.

Finally, now that the coefficients are transformed to the correct seminor-
mal ones, we may permute them once again to correspond to the row-major
order of the seminormal coefficients, encoding this further rearrangement
of the basis vectors as P′DFT.

Example 4.20 We illustrate the computation of this transform for S3 using
the centrally primitive idempotents of CS2 and CS3 as separating elements
in Appendix A. �

Additionally, we wish to have an efficient inverse transform, so that we
can recover elements of the group algebra CG from their matrix algebra
representations. Fortunately, the block-diagonal and permutation struc-
tures of the sparse factors of the DFT matrix that Algorithms 4.16 and 4.18
produce make the computation of this efficient inverse transform straight-
forward.

Algorithm 4.21 Let F = (P1, F1,1, . . . , P2n−1, . . . , F2n,r′2n
, PDFT, SDFT, P′DFT) be

the list of sparse factors of [D]FB generated by Algorithms 4.16 and 4.18.
Define

I = ((P′DFT)T, S−1
DFT, PT

DFT, F−1
2n,r′n

, . . . , PT
2n−1, . . . , F−1

1,1 , PT
1). �

Theorem 4.22 In Algorithm 4.21 above, the product of the elements of I is the
matrix representation of the inverse DFT D−1:

[D−1]B
F = PT

1 F−1
1,1 · · · PT

2n−1 · · · F−1
2n,r′n

PT
DFTS−1

DFT(P′DFT)T.

Furthermore, the number of nonzero entries in each matrix is bounded above by
the block sizes of the matrices in F.

Proof: Since [D−1]B
F [D]FB = [D−1 ◦ D]B

B = I|G|, the matrix representation of
D−1 is simply the inverse of the matrix representation of D. Hence, the in-
verses of the factors of [D]FB give a factorization of this inverse transform
matrix. Furthermore, the inverses of the permutation matrices are simply
their transposes, while the inverses of the block-diagonal Fi,j and SDFT ma-
trices exhibit the same block diagonal structure. �

62 Decimation-In-Frequency Algorithm Theory

4.7 Bases and Regular Representations

In order to implement these transforms on CG in terms of linear algebraic
computations, we must select a group-element basis for CG. In particular,
we specify two important classes of group-element bases for CG.

While a double-coset basis for CG gives particularly nice block-diagonal
forms for the regular representations of subalgebra elements acting on CG,
we can improve upon the computation of such forms through left- and
right-coset bases:

Definition 4.23 Let G be a group and 1 = G0 < G1 < . . . < Gn = G be
a chain of its subgroups, denoted C. A left-coset basis for CG with respect
to C is an ordered list L = (g1, . . . , gk) of the elements of G such that, for
each Gi ∈ C, L splits into sublists that correspond to the left cosets of Gi in
G. Similarly, a right-coset basis for CG with respect to C is an ordered list
L = (g1, . . . , gk) of the elements of G such that, for each Gi ∈ C, L splits into
sublists that correspond to the right cosets of Gi in G. �

We give a straightforward algorithm for the recursive computation of
such bases.

Algorithm 4.24 Let G and C be as above, and for each k < n let Tk be a left
transversal of Gk in Gk+1. Let L0 = (1), the identity element of G. Given Lk,
construct Lk+1 by

Lk+1 = t1Lk # t2Lk # · · · # t|Tk |Lk,

where t1, . . . , t|Tk | are the distinct elements of Tk, and where # denotes the
concatenation of lists.

Similarly, for right transversals T′
k, set L′0 = L0 and construct L′k+1 by

L′k+1 = L′kt1 # L′kt2 # · · · # L′kt|T′k |,

where t1, . . . , t|T′k | are the distinct elements of T′
k. �

Proposition 4.25 The Ln and L′n produced by Algorithm 4.24 are left-coset and
right-coset bases for G adapted to C, respectively.

Proof: Fix k ≤ n and let ti ∈ Ti for each k < i ≤ n. Then Lk lists the elements
of Gk, and so tntn−1 · · · tk+1Lk is a left coset of Gk. By its construction, Ln is a
concatenation of these lists of left coset elements and hence partitions into
left cosets of Lk. The right-hand case is similar. �

Bases and Regular Representations 63

Example 4.26 Consider the subgroup chain S1 < S2 < S3 for S3. Picking
T2 = {1, (1 2)} and T3 = {1, (1 3), (2 3)} gives L1 = (1), L2 = (1, (1 2)), and

L3 = (1, (1 2), (1 3), (1 3)(1 2), (2 3), (2 3)(1 2))
= (1, (1 2), (1 3), (1 2 3), (2 3), (1 3 2))

as left-coset bases for this chain. Picking T′
2 = T2 and T′

3 = T3 gives the
right-coset bases L′1 = (1), L′2 = (1, (1 2)), and

L′3 = (1, (1 2), (1 3), (1 2)(1 3), (2 3), (1 2)(2 3))
= (1, (1 2), (1 3), (1 3 2), (2 3), (1 2 3)).

Consider the subgroup chain 1 < Z/2Z < Z/6Z for Z/6Z. Picking
T2 = {0̄, 3̄} and T3 = {0̄, 1̄, 2̄} gives the left-coset basis

L3 = (0̄, 3̄, 1̄, 4̄, 2̄, 5̄).

Since Z/6Z is abelian, this basis equals the corresponding right-coset ba-
sis. �

Additionally, when using bases for CG constructed according to Algo-
rithm 4.24, the corresponding matrix representations of elements of CGi ⊗
CGo

j acting on CG take a particularly simple form.

Proposition 4.27 Let G be a group, H a subgroup of G, and let B be a right-coset
basis for CG adapted to 1 < H < G constructed by Algorithm 4.24. Let S be
the group-element basis for CH used in this construction, and let T be the right
transversal of H in G used. For α ∈ CH, consider α acting from the left on both
CH and CG. Then the matrix representations of these actions with respect to S
and B are related by

[α]B
B =

[G:H]⊕
i=1

[α]SS = I[G:H] ⊗ [α]SS, (4.7)

where I[G:H] is the identity matrix of size [G : H].

Proof: Consider first g ∈ H and σ ∈ G. Then S = {h1, . . . , hm} is a basis for
CH, and Sσ = {h1σ, . . . , hmσ} is a basis for the left CH-module CHσ. Fur-
thermore, ghj = hk if and only if ghjσ = hkσ, so the matrix representations
of g on CH with respect to S and on CHσ with respect to Sσ are identical
permutation matrices:

[g]SS = [g]Sσ
Sσ.

64 Decimation-In-Frequency Algorithm Theory

By the partitioning of B into right cosets of H, we have

[g]B
B =

⊕
t∈T

[g]St
St =

⊕
t∈T

[g]SS =
[G:H]⊕
i=1

[g]SS

where the last step follows because |T| = [G : H].
Now pick α ∈ CH, so that α = ∑h∈H αhh. By linearity,

[α]B
B = ∑

h inH
αh[h]B

B = ∑
h∈H

αh

[G:H]⊕
i=1

[h]SS =
[G:H]⊕
i=1

[
∑

h∈H
αhh

]S

S

=
[G:H]⊕
i=1

[α]SS.

Finally,
[G:H]⊕
i=1

[α]SS = I[G:H] ⊗ [α]SS

by the definition of the Kronecker product. �

Since α ∈ CH and α ⊗ 1 ∈ (CH ⊗CKo) act on CG from the left identi-
cally, we then have

[α⊗ 1]B
B =

[G:H]⊕
i=1

[α⊗ 1]SS = I[G:H] ⊗ [α⊗ 1]SS, (4.8)

so that this structural decomposition applies to the tensor algebras we wish
to act on CG. Consequently, because we tend to act on the left and then on
the right, we base much of the initial construction of matrix representations
on a right-coset basis for G.

We now relate the matrix representation of 1 ⊗ αo with respect to a
group-element basis B to that of α⊗ 1 through an inverse basis for B.

Definition 4.28 Let G be a finite group, and B = (b1, b2, . . . , bn) a group-
element basis for CG. Then the inverse basis of B is given by

BI = (b−1
1 , b−1

2 , . . . , b−1
n). �

We note that, for all h ∈ G, [h]B = [h−1]BI . Since B and BI are al-
ways group-element bases, and hence are permutations of each other, the
change-of-basis matrix [1]BI

B is a permutation matrix. Moreover, for h ∈ G
considered as an element of CG,

[1]BI

B [1]BI

B [h]B = [1]BI

B [h]BI = [1]BI

B [h−1]B = [h−1]BI = [h]B.

Bases and Regular Representations 65

Because this holds for all h ∈ G, which span CG, [1]BI

B [1]BI

B = I|G|, so [1]BI

B

equals its own inverse. Since [1]BI

B is a permutation matrix, ([1]BI

B)−1 =
([1]BI

B)T, so [1]BI

B is symmetric.

Example 4.29 Consider the left-coset basis L3 of S3 of Example 4.26:

L3 = (1, (1 2), (1 3), (1 2 3), (2 3), (1 3 2))

Its inverse basis is given by

LI
3 = (1, (1 2), (1 3), (1 3 2), (2 3), (1 2 3))

which in this case coincides with the corresponding right-coset basis L′3.
The inverse basis of the left-coset basis L3 = (0̄, 3̄, 1̄, 4̄, 2̄, 5̄) for Z/6Z is

LI
3 = (0̄, 3̄, 5̄, 2̄, 4̄, 1̄).

Since the left- and right-coset bases for Z/6Z are identical, this inverse
basis does not in this case equal the right-coset basis. �

Proposition 4.30 Let CG be considered as a (CG ⊗CGo)-module, and let B be
a group-element basis for CG. Let C be the corresponding inverse basis for B, and
let P = [1]CB . Then for α ∈ CG,

[1⊗ αo]B
B = P([α⊗ 1]B

B)TP. (4.9)

Proof: Fix g ∈ G. For each h ∈ G, we have

[1⊗ go]B
B[h]B = [hg]B = [(hg)−1]C

= [g−1h−1]C = [g−1 ⊗ 1]CC[h−1]C = [g−1 ⊗ 1]CC[h]B.

This result extends by linearlity to hold for all ∑h∈G αhh ∈ CG, so [1 ⊗
go]B

B = [g−1 ⊗ 1]CC. We then have that

[g−1 ⊗ 1]CC = ([g⊗ 1]CC)−1 = ([g⊗ 1]CC)T,

where the last step follows because g simply permutes the elements of C,
and hence its matrix representation with respect to C is a permutation ma-
trix. Finally,

([g⊗ 1]CC)T = (P[g⊗ 1]B
BP−1)T = P([g⊗ 1]B

B)TP

66 Decimation-In-Frequency Algorithm Theory

by change of basis, and because, as noted above, P is a symmetric permu-
tation matrix.

This result extends by linearity to show that

[1⊗ αo]B
B = P([α⊗ 1]B

B)TP

for all α ∈ CG. �

As a consequence of this result, given the regular representations of all
g ∈ G with respect to a particular basis B consisting of the elements of G, as
well as the change-of-basis matrix between B and its inverse basis, we can
construct the matrix representation of any element α ∈ (CG ⊗ CGo) with
respect to this basis B.

4.8 Computation of Double-Coset Projections

We use the above results to compute eigenspace projection operators spe-
cific to these double-coset modules. We first note that if B is a group-
element basis and C its inverse basis, applying Proposition 4.30 to [1⊗ zo

k,j]
B
B

with PC
B = [1]CB gives

[1⊗ zo
k,j]

B
B = PC

B ([zk,j ⊗ 1]B
B)TPC

B = PC
B

(
∑
λ

λPT
λ

)
PC

B = ∑
λ

λPC
B PλPC

B .

Hence, the projection matrices for the eigenspaces of 1⊗ zo
k,j with respect to

B are given by PC
B PλPC

B , so it suffices to compute bases only for the projec-
tions of [zk,j ⊗ 1].

We recall that if the separating elements up to zk,j are contained in
the algebra CGk ⊗ CGo

k−1, then the eigenspace projections of zk,j may be
restricted to the double-coset modules associated with this algebra. By
Proposition 4.27, we can compute these double-coset-specific projections
for zk,j from the bases of the eigenspaces of zk,j acting on CGk with respect
to its right-coset basis Bk:

Algorithm 4.31 Let λ be an eigenvalue of zk,j ∈ CGk, and let E denote
a basis for the corresponding eigenspace Wλ in CGk. Let s = [G : Gk],
the index of Gk in G. Let B = (g1, . . . , g|G|) be a right-coset basis for CG
generated according to Algorithm 4.24, and let Bk be the intermediate basis
for CGk. Let m = 2k − 1.

Computation of Double-Coset Projections 67

1. Compute the list L = (pm(g|Gk |), pm(g2|Gk |), . . . , pm(g|G|)) and enu-
merate its elements L1 through Ls.

2. For j = 1 to s, if Lj = i ∈ Im, then append ej ⊗ [E]Bk to Ei, where ej
is the column vector of length s with a one in the jth entry and zeroes
elsewhere. �

Proposition 4.32 The Ei for i ∈ I2k−1 computed in Algorithm 4.31 constitute the
coordinates of bases for the eigenspaces of zk,j ⊗ 1 in CG associated with λ such
that Ei is contained in the ith (Gk, Gk−1)-double-coset submodule of CG.

Proof: The elements of L indicate which (Gk, Gk−1)-double coset will con-
tain the jth right coset of Gk. Tensoring [E]Bk with ej is equivalent to right-
multiplying E by the jth coset representative in the transversal of Gk in G,
and the process that builds the Ei guarantees that the Ei contain all of the
coordinates for basis vectors that lie in its constituent right cosets. �

The computation of the projections for 1⊗ zk,j involve the inverse basis
as well because of the introduction of the PC

B factor in the projection.

Algorithm 4.33 Let λ be an eigenvalue of zk,j ∈ CGk, and let E denote
a basis for the corresponding eigenspace Wλ in CGk. Let s = [G : Gk],
the index of Gk in G. Let B = (g1, . . . , g|G|) be a right-coset basis for CG
generated according to Algorithm 4.24, let Bk be the intermediate basis for
CGk, and let C be the inverse basis of B. Let m = 2k.

1. Compute the list L = (pm(g−1
|Gk |

), pm(g−1
2|Gk |

), . . . , pm(g−1
|G|)) and enu-

merate its elements L1 through Ls.

2. For j = 1 to s, if Lj = i ∈ Im, then append ej ⊗ [E]Bk to Ei, where ej
is the column vector of length s with a one in the jth entry and zeroes
elsewhere. �

Proposition 4.34 The Ei for i ∈ I2k computed in Algorithm 4.33 constitute the
coordinates of bases for the eigenspaces of 1 ⊗ zk,j in CG associated with λ such
that [1]B

CEi is contained in the ith (Gk, Gk)-double-coset submodule of CG.

Proof: As above, the construction of the Ei is a matter of collecting the
[1]B

C(ej ⊗ [E]Bk) blocks whose nonzero coordinates lie in the ith double coset
of Gk and Gk. Suppose α = ∑g∈Gk

αgg ∈ CGk. Then

ej ⊗ [α]Bk =

[
∑

g∈Gk

αggtj

]
B

68 Decimation-In-Frequency Algorithm Theory

where tj is the jth element of the transversal T of Gk in G used to construct
the right-coset basis B. Multiplication by [1]B

C then yields

[1]B
C(ej ⊗ [α]Bk) = [1]B

C

[
∑

g∈Gk

αggtj

]
B

=

[
∑

g∈Gk

αggtj

]
C

=

[
∑

g∈Gk

αgt−1
j g−1

]
B

=

[
∑

g∈Gk

αg−1 t−1
j g

]
B

.

Thus, after this multiplication, this vector corresponds to the left coset t−1
j Gk.

We note, however, that GkσGk is a disjoint sum both of left cosets of Gk and
of right cosets of Gk, so we need only determine which left cosets of Gk are
contained in Gkt−1

j Gk.

The inverse basis BI = (g−1
1 , g−1

2 , . . . , g−1
|G|) of B partitions into left cosets

of Gk, so the elements g−1
|Gk |

, g−1
2|Gk |

, . . . are “samples” of these left cosets.
Hence, the elements of L determine which double coset of Gk and Gk the
block [1]B

C(ej ⊗ [E]Bk) corresponds to, so we concatenate the blocks ej ⊗
[E]Bk according to these indices. �

Thus, the projections of the zk,j acting on either side of CG are deter-
mined by the left action of zk,j on CGk, the double coset branching for the
chain of subgroup pairs we employ in the construction of the DFT matrix
factorization, and the permutation change-of-basis matrices from the basis
B to its inverse basis and to the double-coset basis.

Example 4.35 We construct the projection matrices for e2 = 1
2 (1 + (1 2))

acting on CS3 from the left and from the right, with respect to the right-
coset basis L′3 specified in Example 4.26 (which is also a double-coset basis).
Note that bases for the eigenspaces of e2 acting on CS2 from the left are

E1 =
(

1
1

)
and E2 =

(
1

−1

)
.

Indexing the double cosets in S3 by the positive integers and applying Al-

Computation of Double-Coset Projections 69

gorithm 4.31 yields L = (1, 2, 3), so that

E1,1 =

1
1
0
0
0
0

 , E1,2 =

0
0
1
1
0
0

 , E1,3 =

0
0
0
0
1
1

 ,

E2,1 =

1
−1

0
0
0
0

 , E2,1 =

0
0
1

−1
0
0

 , E2,1 =

0
0
0
0
1

−1

 .

are bases for the projections specific to the double cosets of S2 and S1. The
projection matrices E(ETE)−1ET are then of the form

P1,1 =

1
1
0
0
0
0

 (2)−1 (1 1 0 0 0 0
)

=

1
2

1
2 0 0 0 0

1
2

1
2 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

P2,3 =

0
0
0
0
1

−1

 (2)−1 (0 0 0 0 1 −1
)

=

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1

2 − 1
2

0 0 0 0 − 1
2

1
2

 ,

in the right-coset basis B and thus, in this case, in the double-coset basis.
Note that the only nonzero entries in each matrix occur in the rows and
columns corresponding to the appropriate double coset.

For the right-action eigenspace projections of e2, we compute L = (1, 2, 2)

70 Decimation-In-Frequency Algorithm Theory

from the inverse basis, and then construct the eigenspace bases

E′1,1 =

1
1
0
0
0
0

 , E′1,2 =

0 0
0 0
1 0
1 0
0 1
0 1

 , E′2,1 =

1
−1

0
0
0
0

 , E′2,2 =

0 0
0 0
1 0

−1 0
0 1
0 −1

 .

Multiplication by P, the change of basis matrix from L3 to its inverse L′3,
gives the bases

E′′1,1 =

1
1
0
0
0
0

 , E′′1,2 =

0 0
0 0
1 0
0 1
0 1
1 0

 , E′′2,1 =

1
−1

0
0
0
0

 , E′′2,2 =

0 0
0 0
1 0
0 −1
0 1

−1 0

 .

These yield projection matrices of the form

P′′1,2 =

0 0
0 0
1 0
0 1
0 1
1 0

(

2 0
0 2

)−1 (0 0 1 0 0 1
0 0 0 1 1 0

)
=

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1

2 0 0 1
2

0 0 0 1
2

1
2 0

0 0 0 1
2

1
2 0

0 0 1
2 0 0 1

2

 .

In each case, these projections take the form of the blocks along the diago-
nals of the matrices in Example 4.15. �

Since the computation of eigenspace bases for zk,j in CGk is faster than in
CG, these construction algorithms allow us to compute the factored forms
of the double-coset eigenspace projections more efficiently.

4.9 Conclusion

In this chapter, we have exhibited a general framework for the precompu-
tation of a decimation-in-frequency fast Fourier transform based on eigen-
space projections. We note that while the separation into double-coset spe-
cific projections and eigenspaces is not strictly necessary, it produces much

Conclusion 71

smaller block sizes in the change-of-basis matrices that Algorithm 4.16 pro-
duces, as well as smaller matrices to decompose into minimal-rank factor-
izations.

This algorithm works best when there are relatively few separating el-
ements zk,j that are required to separate paths and when these elements
suffice to separate all the paths in the character graph (so that the result-
ing spaces are all one-dimensional). Such is the case with the symmetric
group, which makes it an ideal candidate for an initial test of this factor-
ization algorithm. We present the specifics of this computation in the next
chapter.

Chapter 5

Fast Fourier Transforms for the
Symmetric Group

We combine the representation theory of Sn from Chapter 3 with the deci-
mation-in-frequency FFT framework from Chapter 4 to develop decimation-
in-frequency FFT algorithms for the symmetric group. We also describe
several improvements to the general algorithm that result from the partic-
ular structure of Sn and its seminormal matrix representations.

As indicated in Chapter 3, we select the subgroup chain C of Sn given
by

S1 < S2 < · · · < Sn,

and hence the corresponding chain P of subgroup pairs is

(S1, S1) < (S2, S1) < (S2, S2) < (S3, S2) < · · · < (Sn, Sn).

We also have a seminormal DFT D for Sn, namely that given in Section 3.3.
In order to employ the decimation-in-frequency algorithms developed in
Chapter 4, we must now specify a right-coset basis for Sn adapted to this
chain C, a branching order B(P) for the subgroup pair chain P and corre-
sponding double-coset basis B, and separating elements for each Sk. Addi-
tionally, we develop some improvements to the computation of the change-
of-basis factors, and specify how to construct the final permutation and
scaling matrices.

Ultimately, our algorithms produce the sparse matrix factorization

[D]FB = SDFTPDFTF2n−1P2n−1 · · · P3F2

of the DFT matrix [D]FB .

74 Fast Fourier Transforms for the Symmetric Group

5.1 Computation of Coset Bases

To determine a right-coset basis for Sn adapted to this chain C, we require
a right transversal of Sk−1 in Sk for k ≤ n. We note, however, that the
set of transpositions {1, (1 k), (2 k), . . . , (k − 1 k)} is both a left and a right
transversal for Sk−1 in Sk, so we take these as our coset representatives.
Thus, the right transversals of Sk in Sn are of the form

(ik+1 k + 1)(ik+2 k + 2) · · · (in n), (5.1)

where we let each number im range from 1 to m− 1 for all m between k + 1
and n.

Moreover, these choices of coset representatives give a convenient re-
cursive construction of the (Sk, Sk)- and (Sk, Sk−1)-double cosets in Sn. Sup-
pose that K < H < G, and that we wish to compute the double cosets of H
and K in G. For σ ∈ G, we have that

HσK = {ρστ | ρ ∈ H, τ ∈ K}
= {ρτ · τ−1στ | ρ ∈ H, τ ∈ K}
= {ρ · τ−1στ | ρ ∈ H, τ ∈ K}

where the last step is a reindexing that follows from K < H. Thus, HσK is
determined by the right cosets of H in G by all the K-conjugates of σ. Since
conjugation by Sk or Sk−1 changes only the first letter of each transposition
in the elements of the form shown in Equation (5.1), the right transversal
given by all such elements is a union of conjugacy classes. Hence, we can
specify the corresponding double cosets with only these conjugacy classes.

Example 5.1 Example 4.26 illustrates left- and right-coset bases for S3 con-
structed using these transposition transversals.

The right transversal of Sn−1 in Sn is given by {1, (1 n), . . . , (n − 1 n)}.
The elements conjugate under Sn−1 are {1} and {(1 n), . . . , (n− 1 n)}, and
hence there are two double cosets of Sn−1 and Sn−1 in Sn, one equal to Sn−1
and the other equal to Sn − Sn−1.

Likewise, under conjugation by Sn−2, this transversal yields the conju-
gacy classes {1}, {(1 n), . . . , (n − 2 n)}, and {(n − 1 n)}, so for n ≥ 3 there
are three double cosets of Sn−1 and Sn−2 in Sn, two of size (n − 1)! and a
third of size (n− 2)(n− 1)!. �

This partitioning of the transversal also gives a recursive algorithm for
the construction of a double-coset branching order and a double-coset basis

Computation of Coset Bases 75

for CSn. In fact, we specify this for a general chain of subgroups of a finite
group G.

Algorithm 5.2 Let G be a finite group, let C be the chain 1 = G0 < G1 <
· · · < Gn = G of subgroups of G, and let P be the associated alternating
chain of subgroups pairs. For each k in 1, . . . , n, let Tk be a right transversal
of Sk−1 in Gk such that Tk is a union of conjugacy classes under conjugation
by Gk−1.

Set L = {1}.

1. For k from n to 1,

1.1. Replace each group element σ in L with the sequence of group
elements t1σ, t2σ, . . . , t|Tk |σ.

1.2. Partition each group-element subset in L into its conjugacy classes
under Gk−1.

1.3. If k > 1, partition each group-element subset in L into its conju-
gacy classes under Gk−2.

Then L is a nested set of the elements of G, such that the sets at each level
correspond to double cosets for the pairs of subgroups in P . �

Example 5.3 We illustrate this process with S3 and the transversals T2 =
{1, (1 2)} and T3 = {1, (1 3), (2 3)}. Starting with L = {1}, left-multiplying
by T3 gives L = {1, (1 3), (2 3)}. Then partitioning by S2-conjugacy classes
produces

L = {{1}, {(1 3), (2 3)}}

and then by S1 classes gives

L = {{{1}}, {{(1 3)}, {(2 3)}}}.

Next, left multiplying by T2 gives

L = {{{1, (1 2)}}, {{(1 3), (1 2)(1 3)}, {(2 3), (1 2)(2 3)}}},

and the final partitioning by S1 conjugacy classes gives

L = {{{{1}, {(1 2)}}}, {{{(1 3)}, {(1 2)(1 3)}}, {{(2 3)}, {(1 2)(2 3)}}}}.

Viewed as a tree, L gives the double-coset branching structure on S3 de-
picted in Figure 4.1. �

76 Fast Fourier Transforms for the Symmetric Group

We note that a total order on the elements of G gives a natural order to
the double cosets in this branching, where the index i of each double coset
D is taken to be the least element in D, and where the index set I inherits the
total order on G. Thus, this total order on G determines the double-coset
basis order.

The right-coset basis generated by the (ordered) transposition transver-
sals {1, (k − 1 k), . . . , (2 k), (1 k)} gives just such a total order on Sn. Taken
together with the double-coset branching, this order determines a double-
coset basis for CSn. One benefit of the resulting order on this basis is that
the larger double cosets in Sn tend to form near the end of the order, while
the first k! elements in the order still give a double-coset basis for Sk < Sn
because 1 is the first element of each transversal.

5.2 Separating Elements

Having constructed coset bases for Sn, we now select separating elements
for the FFT precomputation. We have two reasonable choices of candidates:
the centrally primitive idempotents for CSk, 1 ≤ k ≤ n, and the Jucys-
Murphy elements mk introduced in Chapter 3.

5.2.1 Centrally Primitive Idempotents

Since we seek to distinguish the paths in the multiplicity-free character
graph Γ(C) for Sn, a natural choice of separating elements for each k is the
set of centrally primitive idempotents for CSk, as these distinguish between
the vertices at level k of Γ.

Moreover, since the idempotents are themselves orthogonal projections,
rather than have each idempotent act individually as a separating element,
with the two eigenvalues 0 and 1, we consolidate them into a single cen-
tral separating element z′k whose eigenspaces are the spaces into which the
idempotents project. Denote the centrally primitive idempotents for CSk

by e(k)
1 , . . . , e(k)

hk
, and let

z′k =
hk

∑
i=1

ie(k)
i ;

then the eigenspace associated to the eigenvalue i of z′k is the space into

which e(k)
i projects.

While this approach is initially appealing in its simplicity, it faces sev-
eral computational problems: the number of idempotents for CSn grows as

Eigenvalue List Completion 77

the number of partitions of n, which grows exponentially for large n (for
example, n = 20 has 627 partitions (30) and hence S20 has 627 centrally
primitive idempotents). Furthermore, computation of the idempotents for
Sn requires precomputation of the character tables of Sn.

5.2.2 Jucys-Murphy Elements

The Jucys-Murphy elements described above in Chapter 3 provide an al-
ternate means of specifying these representations and hence of separating
these Fourier spaces. By Equation (3.2) and Proposition 3.21, the eigenval-
ues of the Jucys-Murphy elements m2, . . . , mk suffice to distinguish semi-
normal basis vectors for representations of Sk. Hence, projecting the fre-
quency spaces into the eigenspaces associated with the left and right ac-
tions of these Jucys-Murphy elements accomplishes the same separation
that we achieve with the idempotents.

Furthermore, the Jucys-Murphy elements make up for the deficiencies
of these idempotents:

• Since the eigenvalues of mk are the contents of boxes added to parti-
tions of k − 1, they range from at least −k + 1 to at most k + 1. Thus,
the number of projection operators at each Sk stage is bounded by 2k,
rather than by the number of partitions of k.

• The matrix representations of these elements in the group element
basis consist of the sum of k − 1 transposition matrices, which them-
selves consist of simple, symmetric permutation matrices. Thus, the
Jucys-Murphy matrices are symmetric and easy to construct.

• These matrices can be stored efficiently in a sparse format, as each
contains only k · n! ones.

Appendix A illustrates the use of these Jucys-Murphy elements in the com-
putation of an FFT for S3.

5.3 Eigenvalue List Completion

Another benefit of these Jucys-Murphy elements is that their eigenvalues
on a space CeML yield important combinatorial information about the stan-
dard tableaux indexes M and L of the space. In particular, the eigenvalue
of mk ⊗ 1 on this space is ct(M[k]), while that of 1⊗mk is ct(L[k]).

78 Fast Fourier Transforms for the Symmetric Group

Suppose that, at stage s of Algorithm 4.18, the space B with eigenvalue
list (λ1, λ2, . . . , λs) is one-dimensional, so that it has only one vector in its
basis. Then there is a unique way to complete this eigenvalue list so that
(λ1, λ3, . . . , λ2n−1) and (λ2, λ4, . . . , λ2n) yield the standard tableaux that in-
dex this space. Since these tableaux have the same shape, their correspond-
ing lists of content values are permutations of each other. Hence, if the full
lists are uniquely specified by the partials, the remaining content values
λs+1 through λ2n must be taken from the list (λ1, λ2, . . . , λs).

Given two such partial lists L and M, we give an algorithm to determine
the full lists that they determine.

Algorithm 5.4 Let L = (λ1, λ2, . . . , λl) and M = (µ1, µ2, . . . , µm) be partial
lists of eigenvalues for a one-dimensional eigenspace of the Jucys-Murphy
elements.

1. For each n ∈ Z, set KL(n) = {i | λi = n} and KM(n) = {i | µi = n}.

2. Set C(n) = min{|KL(n)|, |KM(n)|}.

3. Set DL(n) to KL(n) with the least C(n) elements removed, and like-
wise set DM(n) to KM(n) with the least C(n) elements removed.

4. Set DL =
⋃

n∈Z DL(n) and DM =
⋃

n∈Z DM(n).

5. Set SL to the list (λj)j∈DL , where the j values increase monotonically.
Likewise, set SM to the list (µj)j∈DL , where the j values increase mo-
notonically.

6. Set L̄ = L#SM and M̄ = M#SL, where as above # represents list con-
catenation.

Then L̄ and M̄ are the unique complete eigenvalue lists for this space.

Proof: This completion algorithm relies on the hook structure of the stan-
dard tableaux. Any Ferrers diagram λ can be decomposed into a set of
nested hooks, each of which with a box of content 0 at the corner, boxes
of negative content value below the corner, and boxes of positive content
value to the right of the corner. If a box in a tableau is the kth such box
of its content in the order of boxes added to construct that tableau, then
that box lies in the kth hook of the shape. Hence, a box’s content value and
the number of boxes with its content value added to the tableau before it
completely specified its position in the shape.

Eigenvalue List Completion 79

Consequently, if L has l boxes of content n and M has m, they share
C(n) = min{l, m} boxes of that content value, which are located in hooks 1
through C(n). Removing the first C(n) indices of these content-n boxes to
form DL(n) then gives the indices of the boxes of content n in L that are not
present in M. The union DL of all such sets DL(n) then gives the indices of
all the boxes in L that are not present in M.

Since these boxes indexed by DL were added to the boxes common to
L and M to form L, they can also be added to M to form the shape consist-
ing of the union of the boxes in L and M. By the definition of a standard
tableaux, adding these boxes in the order they appear in the tableau keeps
the corresponding partition proper, so adding them in that same order to
M keeps the partition proper at each stage and hence guarantees that the
new tableau M#SL is standard. Likewise, L#Sm is standard.

Finally, since the space that L and M index is one-dimensional, M#SL
and L#SM are the only possible valid completions of these eigenvalue lists.�

Example 5.5 We give an example of such a completion process. Consider
the standard tableaux

L = 1 2 5
3 4 6

and M =
1 4
2 5
3 6

.

It is clear that there is precisely one way to add boxes to these tableaux so
that they have a common shape equal to the union of their two shapes. The
resulting tableaux are

L̄ =
1 2 5
3 4 6
7 8

and M̄ =
1 4 7
2 5 8
3 6

.

We construct these using Algorithm 5.4. As lists of content, these tableaux
are L = (0, 1,−1, 0, 2, 1) and M = (0,−1,−2, 1, 0,−1). Table 5.1 presents
the intermediate information constructed in this algorithm, from which we
see that DL = {5, 6} and DM = {3, 6}. Hence, SL = (2, 1) and SM =
(−2,−1), so that

L̄ = L#SM = (0, 1,−1, 0, 2, 1,−2,−1),
M̄ = M#SL = (0,−1,−2, 1, 0,−1, 2, 1).

These content lists then correspond to the completed tableaux of shape
(3, 3, 2) above. �

80 Fast Fourier Transforms for the Symmetric Group

n KL(n) KM(n) C(n) DL(n) DM(n)
−2 ∅ {3} 0 ∅ {3}
−1 {3} {2, 6} 1 ∅ {6}
0 {1, 4} {1, 5} 2 ∅ ∅
1 {2, 6} {4} 1 {6} ∅
2 {5} ∅ 0 {5} ∅

Table 5.1: Table of eigenvalue completion data from Algorithm 5.4 applied
to the standard tableaux L and M of Example 5.5.

We note that, since we have already reduced this space to one dimen-
sion, there will be no further separation of the space by the projection op-
erators: the space is known to be in the eigenspaces of the projections as-
sociated to the remaining eigenvalues in the completed list. Hence, we can
modify Algorithm 4.16 to bypass projections for such spaces altogether. We
still need the completed list of eigenvalues, however, to index the space
later.

5.4 Computation of Final Permutation Matrix

By Proposition 3.23, the last letter order on standard tableaux is also de-
termined by the lexicographic order on their associated content lists, and
hence by the lists of Jucys-Murphy eigenvalues. Moreover, these content
lists determine the shapes λ of the tableaux, and tableaux of the same shape
have the same content lists but in a different order. The following algo-
rithm then yields the permutation matrix that puts the Fourier coefficients
into the order corresponding to the row-major order in the matrix algebra.

Algorithm 5.6 Given the list of Jucys-Murphy eigenvalue lists for the basis
vectors resulting from the first part of Algorithm 4.18,

1. Tag each list L of eigenvalues with the index of the basis element in
the original order.

2. Separate each list L into left and right eigenvalue lists LL and LR.

3. Group the pairs of lists by sorted LL list.

4. Concatenate LR and LL and reverse this list to form S, and sort each
group by descending lexicographic order on the S lists.

Computation of Scaling Matrix 81

This process puts the coefficients in row-major order by matrix block. We
have then permuted the list of coefficient indices, which we use to construct
a permutation matrix PDFT that permutes the coefficients into this order. �

In particular, this row-major order makes converting from the vector of
seminormal coordinates to the seminormal matrix representation conve-
nient, and vice versa. Furthermore, this irreducible-representation parti-
tioning process gives the degrees of each of the irreducible representations,
which we require to convert between the matrix and the vector forms.

5.5 Computation of Scaling Matrix

Because of Proposition 2.8 and the fact that the content list for a tableau
completely determines that tableau, the diagonal elements in the matrix
algebra are also determined completely, regardless of the choice of semi-
normal DFT. Hence, rescaling the diagonal coefficients so that they are 1 on
the identity element of Sn gives the correct scaling for all of these diagonal
coefficients.

Additionally, Algorithm 3.26 specifies the off-diagonal matrix elements
in terms of the diagonal ones, and hence fixes the remaining degrees of
freedom in our choice of DFT. Thus, we can construct the appropriate scal-
ing matrix for this seminormal DFT without computing its value on the
generators of Sn beforehand. This scaling process involves three stages:

• Scaling the diagonal elements to be 1 on the identity.

• Constructing the seminormal matrix representations of the genera-
tors from the now-correctly scaled diagonal coefficients and Algo-
rithm 3.26.

• Determining the remaining scalings by making the images of other
group elements consistent with the corresponding products of the
generators’ matrices.

We then have the following algorithm to generate this scaling matrix SDFT.

Algorithm 5.7 Given the list of lists of left and right eigenvalues generated
by Algorithm 5.6, and the partial matrix factorization PDFT, F2n−1, . . . , F2 of
the DFT matrix generated by the first two steps in Algorithm 4.18,

1. Let S be the coefficient scaling matrix, initialized to the n!×n! identity
matrix. Index its diagonal elements by sλ,ij, where sλ,ij scales the ijth
Fourier coefficient in block λ.

82 Fast Fourier Transforms for the Symmetric Group

2. Let L be the list of indices for coefficients that we have yet to scale;
initialize L to 1, . . . , n!.

3. Ensure that the scalings for the image of 1 ∈ CSn are correct.

3.1. Since 1 maps to the identity in the block matrix algebra, its cor-
rect image contains ones down the diagonal coordinates and ze-
roes elsewhere. Hence, if the coordinate cλ,ij is nonzero, we set
sλ,ij = 1/cλ,ij.

3.2. Remove the indices of the nonzero coordinates from L.

4. Construct the seminormal matrix representations of the generating
transpositions (1 2), (2 3), . . . , (n − 1 n) from the coefficients under
the partial factorization that lie on the matrix diagonal, which we now
can scale correctly because they are covered by the scalings for the
identity. Thus, for each k such that 1 ≤ k < n,

4.1. Rewrite the image of (k k + 1) under the partial factorization,

SPDFTF2n−1P2n−1 · · · F2[(k k + 1)]B,

in block diagonal form to create the matrix Ck, with elements
denoted cλ,ij.

4.2. Initialize a matrix σk to all zeros to store the correct seminormal
representation of (k k + 1).

4.3. For each nonzero element cλ,ij in C,

4.3.1. If i = j, cλ,ij is on the diagonal and is scaled correctly. Hence,
σλ,ij = cλ,ij.

4.3.2. If i 6= j, cλ,ij is off the diagonal, so σλ,ij = 1 + cλ,ii.

Store the σk thus generated.

4.4. For each nonzero off-diagonal element of σk, set sλ,ij = σλ,ij/cλ,ij.

4.5. Remove the scaled row indices from L.

5. We now compute the remaining scaling coefficients. While L is non-
empty,

5.1. Let i be the first index remaining in L. Compute the ith row of
the partial factorization product by eT

i · SPDFTF2n−1 · · · F2, and let
j be the index of the first nonzero entry in this row.

5.2. Determine the permutation ρ such that [ρ]B = ej, and decom-
pose ρ into transpositions.

Computation of Scaling Matrix 83

5.3. Compute the correct seminormal representation σ of ρ from the
appropriate products of the σk matrices.

5.4. Compute the partial factorization image of ρ by

C = SPDFTF2n−1P2n−1 · · · F2[ρ]B.

5.5. For the nonzero coordinates cλ,ij corresponding to rows that have
not been scaled yet, set sλ,ij = σλ,ij/cλ,ij.

5.6. Remove the scaled coefficient indices from L.

Set SDFT to S. �

Finally, we note that we do not need a second permutation matrix P′DFT
because the separated eigenspaces of the Jucys-Murphy elements are all
one-dimensional and hence are put into the correct order by PDFT. Thus,
taken all together, we have the following procedure:

Algorithm 5.8 The application of Algorithms 4.18, 5.6, and 5.7 with the
double-coset basis B determined by Algorithm 5.2 generates the sparse ma-
trix factorization

[D]FB = SDFTPDFTF2n−1P2n−1 · · · P3F2

of the DFT matrix [D]FB for the seminormal DFT D : CSn → ⊕
λ`n Cdλ×dλ

for Sn specified by Algorithm 3.26. �

Chapter 6

Initial Implementation and
Results

6.1 Mathematica Implementation

For the development of a prototype implementation of these decimation-
in-frequency algorithms for the symmetric group, the symbolic computing
program Mathematica 5.0 was used. This platform offers several advan-
tages:

• The computational framework that Mathematica presented was more
familiar than those of other symbolic computation programs such as
Maple. Mathematica offers both procedural programming and func-
tional programming, as well as sophisticated pattern matching. Fur-
thermore, Mathematica is built around list structures and hence carries
out list-processing algorithms efficiently.

• Mathematica provides calculations in exact arithmetic, whereas MAT-
LAB natively supports only floating-point calculations.

• Like MATLAB, Mathematica supports sparse representations of vec-
tors and matrices and fast algorithms for computations with sparse
matrices.

• Mathematica features the Combinatorica package, which provides so-
phisticated, efficient functionality for working with permutations and
permutations groups. Moreover, Pemmaraju and Skiena (24) docu-
ment this package extensively. Since we are developing FFTs first for
the symmetric group, this seems a natural set of features to employ.

86 Initial Implementation and Results

n 3 4 5 6
Time/s 0.12 0.62 9.48 1710

Table 6.1: Precomputation times for n = 3 to 6.

• Mathematica also provides excellent features for importing and ex-
porting data and graphics conveniently.

The Mathematica code presented in Appendix C implements Algorithms 4.18,
4.16, 5.6 and 5.7, as well as the left-, right-, and double-coset basis orders
described in Section 5.1.

6.2 Precomputation

Most of the computational testing of this implementation was performed
on a 900 MHz Pentium III processor with 256 MB of RAM. To date, we have
been able to compute the factorization of the DFT matrix for Sn for n ≤ 6.
Table 6.1 lists the running times for the precomputation of the transform
according to this algorithm. In particular, the increase in running time by a
factor of 180 from n = 5 to n = 6 seems to indicate that this precomputation
requires O((n!)3) time.

The two major expensive steps in the computation of the transform are
in Algorithm 4.16, and are the multiplication of the Eλ,i and the Dj, and the
computation of the minimal rank decompositions of these products by row
reduction into echelon form. Suppose H and K are the left and right sub-
groups of G under consideration. Because the Eλ,i and the Dj pertaining to
the ith double coset of H and K both have total rank equal to the size of the
ith double-coset module, and because their nonzero entries are found en-
tirely in the coefficients associated with this double coset, the computation
of the products takes at most ∑g∈T |HgK|3 operations, where T is a double-
coset transversal of H and K in G. When H and K are small, this reduces
the time required for the multiplication of these products significantly in
the early stages of the precomputation. When H = G, however, this yields
on the order of |G|3 = (n!)3 operations for the symmetric group Sn.

The minimal rank decompositions also require extensive precomputa-
tion. Consider a space Dj of dimension s to be decomposed according to its
double-coset specific projections. If the projection has rank r, then we must
decompose an r × s matrix via row reduction, which takes O(s2(r + s))

Evaluation 87

operations. Hence, to decompose these products for all the projections re-
quires O(s2(|HgK| + 2ks)) ≈ O(s2|HgK|) operations, where HgK is the
double coset in which our space lies. Assuming, then, that s ≈ n, we re-
quire

∑
g∈T

|HgK|
n

(n2|HgK|) = n ∑
g∈T

|HgK|2

operations to decompose these products. As in the computation of the
product matrices themselves, the worst case occurs when H = G, so that G
itself is the only double coset in G. In this case, these row reductions take
O(n(n!)2) operations to carry out.

Our eigenvalue completion techniques detailed in Section 5.3 afford sig-
nificant increases in efficiency, particularly in the last stages of the compu-
tation. In fact, in the computation of the last change of basis factor F2n−1,
40–50% of the spaces can be skipped because their projections are already
known. Additionally, once we have completely decomposed a basis into
smaller bases by eigenspace projections, we need not process that basis
any longer, and can move to the next one. Likewise, once we have de-
termined r eigenvectors for a projection of rank r, we have a full basis for
its associated eigenspace, and so we can remove that projection from the set
that acts on subsequent bases. These eigenvalue list, basis, and projection
culling techniques improve the efficiency of the transform precomputation
by approximately an order of magnitude.

6.3 Evaluation

More important than the efficiency of the precomputation of the transform
is the efficiency of its evaluation. We note that we can measure this effi-
ciency in several different ways. Clausen and Baum (6) measure complex
additions and multiplications separately, and add them together to obtain
a total count of operations, while Maslen (18) considers one complex mul-
tiplication with one complex addition a single complex operation. In ei-
ther computational model, additions may incorporate sign changes, and
so encompass any operation of the form ±z1 ± z2. Furthermore, Maslen
considers the complexity TG of a transform on G as well as its reduced
complexity tG = 1

|G|TG. We tabulate these operation counts for our trans-
form in Table 6.2 and compare them with the operation counts for Maslen’s
decimation-in-time algorithm. We also depict the sparseness of the factor-
ization in Figure 6.1. We see that, according to Maslen’s definition of an

88 Initial Implementation and Results

n ⊕ ⊗ tfull
n tDIF

n tM
n

1
2 n(n− 1)

3 14 4 4.7 2.7 2.7 3
4 112 42 18.8 5.3 5.4 6
5 966 424 87.9 8.8 9.1 10
6 9278 4631 486.4 13.8 13.6 15

Table 6.2: Operation counts for the evaluation of the decimation-in-
frequency FFT. In addition to the number of addition and multiplications
⊕ and ⊗, respectively, we compare our reduced complexity to that of
Maslen (18). Here, tDFT

n denotes the reduced complexity of our decimation-
in-frequency algorithm for Sn, while tM

n denotes Maslen’s reduced com-
plexity, and tfull

n the reduced complexity of the full DFT matrix. In each case,
the reduced complexities are below the bound of 1

2 n(n − 1) that Maslen
conjectures holds for his algorithm for all n.

operation, the operation counts for the decimation-in-frequency algorithm
are approximately the same as those for Maslen’s decimation-in-time algo-
rithm, and in some cases are better.

Additionally, we compute similar operation counts for the inverse DFT
that we obtain from Algorithm 4.21. In fact, the sizes of the blocks in
the block-diagonal Fi factors bound the number of operations for both the
transform and its inverse, since their factors have the same block-diagonal
structure. Moreover, any 1 × 1 blocks are ones and hence are negligible.
Table 6.3 presents both these inverse-FFT operation counts and the block-
diagonal bounds. We also note that many of the blocks in the inverse trans-
form factors contain fractions with the same denominators, so that a com-
mon scaling of each factor would yield more coefficients of ±1 and hence
fewer multiplications. Such a scaling would correspond to the 1

N factor
frequently introduced into the DFT for Z/NZ.

As a result of these operation counts, we state the following conjecture
about the efficiency of our decimation-in-frequency algorithm:

Conjecture 6.1 The complexity of the evaluation of the decimation-in-frequency
FFT for Sn computed by Algorithm 5.8 is O(n2n!). The complexity of the inverse
transform is also O(n2n!). �

As discussed above, the establishment of this result would place the
complexity of this FFT in the same class as Maslen’s decimation-in-time al-
gorithm (18), which requires 3

4 n(n− 1)n! operations to evaluate and which
is to date the most efficient FFT known for Sn.

Evaluation 89

=

=

=

Figure 6.1: Graphical representation of DFT matrix factorization for n =
3, 4, 5. Each large box represents a matrix, and each black square a nonzero
entry. The full DFT matrices on the left are relatively dense, while the fac-
tors on the right are sparse.

n ⊕ ⊗ tfull
n tDIF

n tblock
n n2

3 14 30 5.3 5.0 5.7 9
4 124 232 19.3 9.7 11.5 16
5 1170 1922 88.3 16.1 18.3 25
6 11884 17683 486.7 24.6 31.0 36

Table 6.3: Operation counts for the evaluation of the decimation-in-
frequency inverse FFT, and complexity bounds from the block sizes. Here,
tfull
n is the reduced complexity of the full inverse matrix, tDIF

n that of the
factored inverse transform, and tblock

n that of the bound given by the block
sizes. We note that the last two are bounded above by n2.

90 Initial Implementation and Results

n (n!)2 Fn = 2n2n! Mn = ∑λ`n d3
λ (n!)2/(Fn + Mn)

3 36 108 10 0.31
4 576 768 64 0.69
5 14400 6000 596 2.18
6 518400 51840 8056 8.66
7 2.54× 107 4.94× 105 1.30× 105 40.6
8 1.63× 109 5.16× 106 2.53× 106 211
9 1.32× 1011 5.88× 107 5.98× 107 1110
10 1.32× 1013 7.25× 108 1.72× 109 5390

Table 6.4: Comparison of costs for group algebra multiplication and FFT-
based matrix algebra multiplication. The cost for a naive element-by-
element calculation in the group algebra is (n!)2, while that of the forward
and inverse FFTs is Fn = 2n2n! and of the matrix algebra multiplication
is Mn = ∑λ`n d3

λ. For n ≥ 5, performing the FFT and multiplying in the
matrix algebra is more efficient than multiplying in the group ring. By
n = 10, the FFT-based multiplication is faster than that in the group alge-
bra by a factor of 5000. Character degrees taken from James and Kerber
(14: App I.A).

6.4 Multiplication and Convolution

Because the elements of the matrix algebra
⊕

λ`n Cdλ×dλ consist of direct
sums of dλ × dλ matrices, multiplication of generic elements of the algebra
requires

∑
λ`n

d3
λ (6.1)

complex operations. Because ∑λ`n d2
λ = |Sn| = n!, we have that this sum is

already bounded above by (n!)3/2. Since multiplication of generic group al-
gebra elements corresponds to a convolution of their coefficients and hence
takes |Sn|2 = (n!)2 operations, this multiplication in the matrix algebra is
automatically more efficient than in the group algebra. With an efficient
FFT to convert between the two algebras, multiplication of group algebra
elements is made efficient: to compute αβ for α, β ∈ CSn, we instead com-
pute D−1(D(α)D(β)). Table 6.4 shows the operation counts for each for
n ≤ 10, assuming an FFT in 1

2 n2n! operations and an inverse FFT in n2n!
operations.

By n = 9, the cost of the matrix algebra multiplication itself accounts
for the majority of the total costs of the FFT-based multiplication. In par-

Multiplication and Convolution 91

ticular, by this point, the maximum degree of an irreducible character for
Sn, maxλ`n, is much greater than 2n2. Hence, for sufficiently large n, the
complexity of the FFT-based multiplication is bounded by

2n2n! + ∑
λ`n

d3
λ ≤ 2n2n! + ∑

λ`n
d2

λ max
λ`n

dλ = 2n2n! + max
λ

dλ ∑
λ`n

d2
λ

= (2n2 + max
λ`n

dλ)n! ≤ 2n! max
λ`n

dλ.

Thus, a lower bound for the ratio of the operation counts of the two meth-
ods is n!/2 maxλ`n dλ. Since maxλ`n dλ grows much more slowly than n!
does, this result guarantees the efficiency of the FFT-based multiplication
for arbitrarily large n.

Chapter 7

Future Directions and
Conclusions

While we have established a general framework for decimation-in-frequen-
cy fast Fourier transforms and have applied it to obtain an initial imple-
mentation of a fast transform for Sn that we conjecture to be of O(n2n!)
complexity, there are still many directions for future research in this project.
We indicate several of them below.

7.1 Double-Coset Bases and Module Decompositions

The double-coset basis chosen for Sn, or for a general finite group G, is
selected arbitrarily. Moreover, because we employ row reduction to de-
termine our bases for the eigenspaces, the basis vectors we obtain depend
highly on the chosen double-coset order. If we continue to use such row-
reduction techniques, then, it is worthwhile to investigate how different
choices of double-coset basis for the same branching order affect the factor-
ization we obtain.

As we remarked in Chapter 4, the double-coset modules for each sub-
group pair of G decompose into direct sums of tensor products of irre-
ducible representations for those subgroups. The identification of modules
that are isomorphic in this sense would be a first step in determining a
double-coset basis for G that produces identical blocks in the change-of-
basis transform factors. To this end, Appendix B presents a tabulation of
these decompositions for the double-coset modules of Sn.

94 Future Directions and Conclusions

7.2 Row Reduction and Choice of Basis

Related to these concerns over the double-coset basis is the issue of how to
perform the minimum-rank decomposition that produces the eigenbases
at each stage. Although the row reduction into echelon form in use in the
current implementation is easy to describe and implement, and has the ad-
vantage of producing factors with many 1s and relatively few nonzero en-
tries, it appears to have no natural relation to the structure of the spaces
themselves. The determination of a more natural choice of basis for these
eigenspaces could lead to their more efficient computation or to identical
blocks in the factorization matrices. Such a new choice might also indicate
how to project the bases into the appropriate eigenspaces without actually
carrying out the projections themselves. This, in turn, would improve the
efficiency of the precomputation algorithm significantly.

7.3 Efficiency of Precomputation

To compute transforms for the symmetric group Sn for much higher values
of n, or for any finite group G of comparable order, we require both a re-
formulation of our initial implementation of the precomputation and more
sophisticated computational techniques. In particular, attempts to calculate
a transform for S7 were hindered primarily by space restrictions, not time:
the basis and projection data occupied most of the available virtual memory
of the machine, and eventually the Mathematica kernel aborted the compu-
tation because of lack of memory. The computation proceeded through the
decomposition by S6, however, and based on the internal timing did so in
a reasonable amount of computation time. Hence, precomputing projec-
tion operators and saving data to disk rather than keeping all structures in
memory seem two reasonable first steps towards a more memory-efficient
implementation of this algorithm.

Additionally, we may be hampered by the projection-based nature of
this algorithm, particularly in the later stages of the precomputation. At
each stage of the precomputation, we must compute the product of each
basis vector with at least one projection matrix. In the last stage, where
we often have dense basis vectors, the computation of such products re-
quires at least |G|2 operations. At present, it is not immediately clear how
to improve the efficiency of such algorithms while remaining within our
projection-based framework.

Efficiency of Evaluation 95

7.4 Efficiency of Evaluation

One key issue that future research should address is proving bounds on
the complexity of our fast Fourier transform for Sn. Since we employ many
of the same combinatorial tools that Maslen (18) uses in his decimation-in-
time fast Fourier transform for Sn, such as paths through character graphs
and Young tableaux, it may be possible to use some of his results to bound
our complexity. In fact, because of the similar complexities of evaluation
between our fast transform and Maslen’s, it may be that the two transforms
are equivalent, or at least closely related. If this relation can be shown, it
may then be possible to adopt the same O(n2n!) bounds that Maslen proves
for his transform.

7.5 MATLAB and GAP Implementations

While Mathematica has provided an excellent platform for prototyping this
algorithm, MATLAB and GAP are used more extensively than Mathematica
is for signal processing and computational algebra, respectively. MATLAB
in particular presents a natural platform on which to develop a more ro-
bust implementation of these algorithms, as it allows more careful control
over memory management and algorithmic complexity while still provid-
ing high-level tools from linear algebra. Alternately, any GAP implementa-
tion may benefit from the use of AREP, a GAP package used to process
representations of algebras abstractly. AREP is currently maintained as
part of the SPIRAL project (25), which concerns the automatic generation of
structured representations of matrices associated with linear digital signal
processing transforms. One potential difficulty is that AREP is incompati-
ble with the most recent versions of GAP, so some work is likely required
to use it effectively in this context.

7.6 Parallel Implementations

These decimation-in-frequency algorithms seem ideal for parallel compu-
tation: the fundamental operation in the computation of these transforms
is the successive separation of bases for CG into different eigenspaces, so
each set of basis elements can be processed independently of the others. A
distributed computing approach may be one solution to the space and time
inefficiencies of the current precomputation algorithm.

Appendix A

Computational Examples

To illustrate the techniques presented in Chapters 4 and 5, we carry out the
major steps in the computation of a fast Fourier transform for S3 using both
group algebra idempotents and Jucys-Murphy elements. In each case, G =
S3, the subgroup chain C is given by S1 < S2 < S3, and the corresponding
chain P of subgroup pairs is

(S1, S1) < (S2, S1) < (S2, S2) < (S3, S2) < (S3, S3).

Applying Algorithm 4.24 with the right transversals T2 = {1, (1 2)} and
T3 = {1, (2 3), (1 3)} yields the right-coset basis

R = {1, (1 2), (2 3), (1 2 3), (1 3), (1 3 2)},

which has inverse basis

R′ = {1, (1 2), (2 3), (1 3 2), (1 3), (1 2 3)}.

Applying Algorithm 5.2 with the same transversals and this order given by
the right-coset basis produces the double-coset branching

B(P) = {{{{1}, {(1 2)}}}, {{{(2 3)}, {(1 2 3)}}, {{(1 3)}, {(1 2 3)}}}}.

and corresponding double-coset order B equal to BR. For convenience, we
also index these double cosets by the positive integers.

98 Computational Examples

Cycle Type
(1, 1) (2)

χ1 1 1
χ2 1 −1

Cycle Type
(1, 1, 1) (2, 1) (3)

χ1 1 1 1
χ2 2 0 −1
χ3 1 −1 1

Table A.1: Character tables for S2 and S3 used in the computation of the
centrally primitive idempotents.

A.1 CS3 with Idempotents

We first approach the decomposition of CS3 through the centrally primitive
idempotents of CS2 and CS3. From the idempotent formula

ei =
di

n ∑
g∈G

χi(g−1)g, (A.1)

and from the character tables of S2 and S3 given in Table A.1, the idempo-
tents for CS2 are

e(2)
1 =

1
2
(1 + (1 2)), e(2)

2 =
1
2
(1− (1 2)),

and those for CS3 are

e(3)
1 =

1
6
(1 + (1 2) + (1 3) + (1 3 2) + (2 3) + (1 2 3)),

e(3)
2 =

1
3
(2− (1 3 2)− (1 2 3)),

e(3)
3 =

1
6
(1− (1 2)− (1 3) + (1 3 2)− (2 3) + (1 2 3)).

These idempotents are themselves projections into their eigenspaces of
eigenvalue 1, so we need only determine bases for these eigenspaces. With
respect to the CS2-basis R2 contained in R, the matrix representations of
these idempotents are

[e(2)
1 ⊗ 1]R2

R2
=

1
2

(
1 1
1 1

)
and [e(2)

2 ⊗ 1]R2
R2

=
1
2

(
1 −1

−1 1

)
,

and hence suitable eigenvectors are
(
1 1

)T and
(
1 −1

)T. The compu-
tations to determine the eigenspaces specific to the (S2, S1)- and (S2, S2)-

CS3 with Idempotents 99

double cosets are the same as in Example 4.35, and so are

[E1,1
1]B =

1
1
0
0
0
0

 , [E1,2
1]B =

0
0
1
1
0
0

 , [E1,3
1]B =

0
0
0
0
1
1

 ,

[E2,1
1]B =

1
−1

0
0
0
0

 , [E2,2
1]B =

0
0
1

−1
0
0

 , [E2,3
1]B =

0
0
0
0
1

−1

 , (A.2)

and

[E1,1
2]B =

1
1
0
0
0
0

 , [E1,2
2]B =

0 0
0 0
1 0
0 1
0 1
1 0

 , [E2,1
2]B =

1
−1

0
0
0
0

 , [E2,2
2]B =

0 0
0 0
1 0
0 −1
0 1

−1 0

 .

(A.3)

In each case, the associated inverse matrices are

(ETE)−1 =
(1

2

)
or (ETE)−1 =

1
2

(
1 0
0 1

)
.

Similarly, from the matrix representations of the CS3 idempotents, we de-
termine eigenspace bases to be

[E1
3]B =

1
1
1
1
1
1

 , [E2
3]B =

1 1 0 0
0 0 1 1
0 0 −1 0

−1 0 0 0
0 0 0 −1
0 −1 0 0

 , [E3
3]B =

1
−1
−1

1
−1

1

 , (A.4)

100 Computational Examples

with inverse matrices

(([E1
3]B)T[E1

3]B)−1 = (([E3
3]B)T[E3

3]B)−1 =
(1

6

)
,

(([E2
3]B)T[E2

3]B)−1 =
1
3

2 0 −1 0
0 2 0 −1

−1 0 2 0
0 −1 0 2

 .

We now iterate our algorithm with these projections. We start with the
bases

B0 =

1
0
0
0
0
0

 ,

0
1
0
0
0
0

 ,

0
0
1
0
0
0

 ,

0
0
0
1
0
0

 ,

0
0
0
0
1
0

 ,

0
0
0
0
0
1

 ,

indexed by S0 = (1, 2, 3, 4, 5, 6), the integer double coset indices in our
branching order. Applying the successor function s1 to the elements of S0
gives S′0 = (1, 1, 2, 2, 3, 3). Combining blocks with identical lists then yields

B1,0 =

1 0
0 1
0 0
0 0
0 0
0 0

 ,

0 0
0 0
1 0
0 1
0 0
0 0

 ,

0 0
0 0
0 0
0 0
1 0
0 1

 ,

and pruning S′0 gives S1,0 = (1, 2, 3). The permutation of these basis vectors
to form new double-coset blocks is trivial, so the permutation matrix is as
well, and we hence do not include it in the factorization. We now apply the
factored projection matrices to these bases in B1,0: for example,

([E1,1
1]B)T(B1,0)1 =

(
1 1 0 0 0 0

)

1 0
0 1
0 0
0 0
0 0
0 0

 =
(
1 1

)
=
(
1
) (

1 1
)

,

CS3 with Idempotents 101

so the new eigenbasis is

[E1,1
1]B(([E1,1

1]B)T[E1,1
1]B)−1 (1) =

1
2

1
1
0
0
0
0

 .

Applying all the projections in Equation (A.2) gives the first factor

F1 =

1 1
1 −1

1 1
1 −1

1 1
1 −1

as well as a new eigenbasis

B1 =

1
2
1
2
0
0
0
0

 ,

1
2

− 1
2
0
0
0
0

 ,

0
0
1
2
1
2
0
0

 ,

0
0
1
2

− 1
2
0
0

 ,

0
0
0
0
1
2
1
2

 ,

0
0
0
0
1
2

− 1
2

indexed by the list S1 = ((1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)). Applying
the successor function s2 to S1, sorting, and concatenating then produces

B2,0 =

1
2
1
2
0
0
0
0

 ,

1
2

− 1
2
0
0
0
0

 ,

0 0
0 0
1
2 0
1
2 0
0 1

2
0 1

2

 ,

0 0
0 0
1
2 0

− 1
2 0
0 1

2
0 − 1

2

indexed by S2,0 = ((1, 1), (1, 2), (2, 1), (2, 2)), as well as the first nontrivial
permutation factor

P2 =

1
1

1
1

1
1

 .

102 Computational Examples

Applying the projections in Equation (A.3) then yields products such as

([E1,2
2]B)T(B2,0)3 =

1
2

(
0 0 1 0 0 1
0 0 0 1 1 0

)

0 0
0 0
1 0
1 0
0 1
0 1

 =
1
2

(
1 1
1 1

)
=
(1

2
1
2

) (
1 1

)
,

and corresponding eigenvectors such as

[E1,2
2]B(([E1,2

2]B)T[E1,2
2]B)−1

(1
2
1
2

)
=

1
4

0 0
0 0
1 0
0 1
0 1
1 0

(

1 0
0 1

)(
1
1

)
=

1
4

0
0
1
1
1
1

 .

These calculations produce the second change-of-basis factor

F2 =

1
1

1 1
1 −1

1 1
1 −1

as well as the eigenbases

B3 =

1
2
1
2
0
0
0
0

 ,

1
2

− 1
2
0
0
0
0

 ,

0
0
1
4
1
4
1
4
1
4

 ,

0
0
1
4
1
4

− 1
4

− 1
4

 ,

0
0
1
4

− 1
4

− 1
4
1
4

 ,

0
0
1
4

− 1
4
1
4

− 1
4

 ,

indexed by S3 = ((1, 1, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)). Ap-
plying s3 to the elements of S3, sorting, and concatenating one last time

CS3 with Idempotents 103

produces

B3,0 =

1
2 0
1
2 0
0 1

4
0 1

4
0 1

4
0 1

4

,

0
0
1
4
1
4

− 1
4

− 1
4

 ,

0
0
1
4

− 1
4

− 1
4
1
4

 ,

1
2 0

− 1
2 0
0 1

4
0 − 1

4
0 1

4
0 − 1

4

,

indexed by S3,0 = ((1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2)), as well as the second
nontrivial permutation factor

P3 =

1
1

1
1

1
1

 .

Applying the projections in Equation (A.4) then yields the factor

F3 =

1 1
1 − 1

2
1

1
1 1

2
1 −1

as well as the eigenbases

B4 =

1
6
1
6
1
6
1
6
1
6
1
6

,

1
3
1
3

− 1
6

− 1
6

− 1
6

− 1
6

,

0
0
1
4
1
4

− 1
4

− 1
4

 ,

0
0
1
4

− 1
4

− 1
4
1
4

 ,

1
3

− 1
3
1
6

− 1
6
1
6

− 1
6

,

1
6

− 1
6

− 1
6
1
6

− 1
6
1
6

indexed by

S4 = ((1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 2), (1, 2, 1, 2), (1, 2, 2, 2), (1, 2, 2, 3)).

We note that to put the coefficients in the order corresponding to the row-
major order of the Fourier coefficients, we must reverse the order of the

104 Computational Examples

coefficients for the second block. The permutation matrix for this change is
given by

PDFT =

1
1

1
1

1
1

 .

We compute SDFT according to Algorithm 5.7. We set

S =

1
1

1
1

1
1

 .

We have yet to scale the coefficients indexed by L = {1, 2, 3, 4, 5, 6}. Since
the image of the identity under the factorization is

PDFTF3P3F2P2F1[1]B =

1
1
0
0
1
1

 7→

1

1 0
0 1

1

 ,

which is the identity in the matrix algebra, we need do no scaling of coef-
ficients for the identity. Furthermore, since we know these rows are scaled
correctly, we remove the indices 1, 2, 5, 6 from L to leave L = {3, 4}. We
then compute the image of the generator (2 3) under this transform to be

SPDFTF3P3F2P2F1[(2 3)]B =

1
1
2
1
1

− 1
2

−1

 7→

1

1
2 1
1 − 1

2
−1

 .

We observe that the correct coefficients in the second block should be

σ2((2 3)) =
(1

2
3
2

1
2 − 1

2

)
.

CS3 with Jucys-Murphy Elements 105

Thus, we must scale the third coefficient by 3
2 and the fourth by 1

2 , and
remove 3 and 4 from L to obtain L = ∅. Since L is now empty, we terminate,
with our scaling matrix determined to be

SDFT =

1
1

3
2

1
2

1
1

 .

Then our factorization of the DFT D for S3 is

[D]FB = SDFTPDFTF3P3F2P2F1.

This factorization of our transform then takes 14 additions and 4 multipli-
cations to carry out, or a total of 16 complex operations under Maslen’s (18)
computational model.

A.2 CS3 with Jucys-Murphy Elements

We now approach this factorization through the Jucys-Murphy elements
m2 = (1 2) and m3 = (1 3) + (2 3). In the right-coset basis R2 for CS2
contained in R, the matrix representation of m2 is

[m2 ⊗ 1]R2
R2

=
(

0 1
1 0

)
,

for which eigenvectors associated to the eigenvalues 1 and −1 are
(
1 1

)T

and
(
1 −1

)T, respectively. Since these are the same as the eigenvectors
determined for CS2 in Section A.1, the corresponding projection operators
for the action of m2 ⊗ 1 and 1 ⊗ m2 are the same as those shown in Equa-
tions (A.2) and (A.3).

The matrix representation of m3 ⊗ 1 with respect to R is

[m3 ⊗ 1]R
R =

0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
0 1 1 0 0 0

106 Computational Examples

from which we calculate bases for its eigenspaces to be

[E2
3]B =

1
1
1
1
1
1

 , [E1
3]B =

1 1
−1 −1

0 1
0 −1
1 0

−1 0

 ,

[E−1
3]B =

1 1
1 1
0 −1
0 −1

−1 0
−1 0

 , [E−2
3]B =

1
−1
−1

1
−1

1

 . (A.5)

The inverse matrices (ETE)−1 for these eigenbases are

(([E2
3]B)T[E2

3]B)−1 = (([E−2
3]B)T[E−2

3]B)−1 =
(1

6

)
,

(([E1
3]B)T[E1]B

3)−1 = (([E−1
3]B)T[E−1

3]B)−1 =
1
6

(
2 −1

−1 2

)
.

Since we have identical projection eigenbases in the first two stages of
the computation, the factors F1, P2, F2, P3 are all the same as those com-
puted above in Section A.1, although S3,0 is slightly different because we
append Jucys-Murphy eigenvalues rather than idempotent indices in the
construction of the first two change-of-basis factors. Hence, we have B3,0 as
above, indexed by S3,0 = ((1, 1, 1), (1, 1,−1), (1,−1, 1), (1,−1,−1)), where
we elect to sort the eigenvalues in decreasing order.

We note also that the second and third eigenbases (B3,0)2 and (B3,0)3
both have unique lists of eigenvalues and are one-dimensional. Hence, we
may apply Algorithm 5.4 to determine that the full lists of eigenvalues are
((1,−1), (−1, 1)) and ((−1, 1), (1,−1)), respectively. Thus, (B3,0)2 lies in
the −1 eigenspace of m3 ⊗ 1, so we need not compute any of its projections
in the computation of F4.

Applying the projection operators determined by Equation (A.5) to the
remaining bases (B3,0)1 and (B3,0)4 yields the factor F4 and eigenbases B4
from above, indexed now by the eigenvalue lists

S4 = ((1, 1, 1, 2), (1, 1, 1,−1), (1, 1,−1,−1),
(1,−1, 1, 1), (1,−1,−1, 1), (1,−1,−1,−2)).

CS3 with Jucys-Murphy Elements 107

Sorting these basis vectors according to Algorithm 5.6 and scaling them
by Algorithm 5.7 produces the PDFT and SDFT matrices given above. Thus,
in this case, the Jucys-Murphy elements provide the same factorization of
[D]FB , and bypassing two eigenbases in the computation of F3 saves some
operations in the precomputation step.

Appendix B

Tabulation of Double Coset
Irreducibles

In this apendx, we tabulate the decompositions of the double-coset mod-
ules in CSn for n = 3, 4, 5 into tensor products of irreducible represen-
tations. We consider only the (S2, S1)-double-coset modules through the
(Sn−1, Sn−1)-double-coset modules, as the (S1, S1)-double-coset modules
are all trivial and the (Sn, Sn−1)- and (Sn, Sn)-double-coset modules are all
of Sn. Moreover, we note that each (S2, S1)-double-coset module M decom-
poses as

M ∼= S(2) ⊗ S(1) ⊕ S(1,1) ⊗ S(1).

For convenience, we tabulate these decompositions in matrices, with
the row and column indices corresponding to the partitions of n in dual
(i.e., decreasing) lexicographic order. An m in the ijth position of the matrix
associated to the module M then indicates that Sλi ⊗ Sλj has multiplicity m
in M. These total orders on the partitions of n = 2 through n = 5 are given
as follows:

n Partition Order
2 (2) < (1, 1)
3 (3) < (2, 1) < (1, 1, 1)
4 (4) < (3, 1) < (2, 2) < (2, 1, 1) < (1, 1, 1, 1)
5 (5) < (4, 1) < (3, 2) < (3, 1, 1)

< (2, 2, 1) < (2, 1, 1, 1) < (1, 1, 1, 1, 1)

110 Tabulation of Double Coset Irreducibles

B.1 Double-Coset Modules in CS3

The decompositions of the double-coset modules for CS5 are shown in Ta-
ble B.1.

σ Multiplicites

1

(
1 0

0 1

)

(1 3)

(
1 1

1 1

)

Table B.1: (S2, S2)-Double Cosets in CS3.

B.2 Double-Coset Modules in CS4

The decompositions of the double-coset modules for CS5 are shown in Ta-
bles B.2 through B.4.

σ Multiplicites

1

(3 4)

(
1 0

0 1

)

(1 3)
(1 4)

(1 3)(1 4)
(1 3)(2 4)
(1 3)(3 4)

(
1 1

1 1

)

Table B.2: (S2, S2)-Double Cosets in CS4.

Double-Coset Modules in CS5 111

σ Multiplicites

1

(3 4)

1 0

1 1

0 1

(1 3)

1 1

2 2

1 1

Table B.3: (S3, S2)-Double Cosets in CS4.

σ Multiplicites

1

1 0 0

0 1 0

0 0 1

(1 3)

1 1 0

1 2 1

0 1 1

Table B.4: (S3, S3)-Double Cosets in CS4.

B.3 Double-Coset Modules in CS5

The decompositions of the double-coset modules for CS5 are shown in Ta-
bles B.5 through B.9.

112 Tabulation of Double Coset Irreducibles

σ Multiplicites

1 (3 4)
(3 5) (3 4)(3 5)
(4 5) (3 4)(4 5)

(
1 0

0 1

)

all others

(
1 1

1 1

)

Table B.5: (S2, S2)-Double Cosets in CS5.

σ Multiplicites

1 (3 4)
(3 5) (3 4)(3 5)
(4 5) (3 4)(4 5)

1 0

1 1

0 1

(1 4) (1 5)

(1 4)(1 5) (1 4)(2 5)
(1 4)(3 5) (1 3)(5 4)

(3 4)(1 5)

1 1

2 2

1 1

Table B.6: (S3, S2)-Double Cosets in CS5.

Double-Coset Modules in CS5 113

σ Multiplicites

1

(4 5)

1 0 0

0 1 0

0 0 1

(1 4) (1 5)
(1 4)(1 5) (1 4)(4 5)

1 1 0

1 2 1

0 1 1

(1 4)(2 5)

1 2 1

2 4 2

1 2 1

Table B.7: (S3, S3)-Double Cosets in CS4.

σ Multiplicites

1

(4 5)

1 0 0

1 1 0

0 1 0

0 1 1

0 0 1

(1 5)

1 1 0

2 3 1

1 2 1

1 3 2

0 1 1

Table B.8: (S4, S3)-Double Cosets in CS4.

114 Tabulation of Double Coset Irreducibles

σ Multiplicites

1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

(1 5)

1 1 0 0 0

1 2 1 1 0

0 1 1 1 0

0 1 1 2 1

0 0 0 1 1

Table B.9: (S4, S4)-Double Cosets in CS4.

Appendix C

Mathematica Code: FFT
Generation Algorithm

The following pages present the Mathematica code that constitutes the ini-
tial implementation of the decimation-in-frequency FFT precomputation
algorithm specified in Algorithms 4.18, 4.16, 5.6 and 5.7. Sparse matrices
are used throughout to improve efficiency in both memory and computa-
tion time.

(*
SymmetricGroupFFT Package
*)
BeginPackage[

"SymmetricGroupFFT‘", {"DiscreteMath‘Combinatorica‘",
"LinearAlgebra‘MatrixManipulation‘",
"LinearAlgebra‘Orthogonalization‘"}];

(*
Matrix Operations
*)
(*
Smart matrix operations that ignore {{}}
*)
SmartDot[(A_)?MatrixQ, (B_)?MatrixQ] :=

If[A == {{}} || B == {{}}, {{}}, A.B];
SameColumnSize[l_List] := SameQ @@ (Dimensions[#1][[2]] &) /@ l;
MatrixNullQ[x_] = x == {{}};
ListNullQ[x_] = x == {};
SmartColumnAppend[(x__)?MatrixQ] :=

Join @@ DeleteCases[{x}, _?MatrixNullQ] /;
SameColumnSize[DeleteCases[{x}, _?MatrixNullQ]]

(*
Sparse matrix construction
*)
SparseIdentityMatrix[n_Integer] /; n > 0 :=

SparseArray[{{i_, i_} -> 1}, {n, n}];
SparseDiagonalMatrix[(values_)?ListQ] :=

116 Mathematica Code: FFT Generation Algorithm

SparseArray[
Table[{i, i}, {i, 1, Length[values]}] -> values, {Length[values],

Length[values]}];
(*
Sparse matrix direct sum
*)
MatrixDirectSumSparse[mat : {_?MatrixQ ..}] :=

MatrixDirectSumSparseInner[DeleteCases[mat, _?MatrixNullQ]];
MatrixDirectSumSparseInner[mat : {_?MatrixQ ..}] :=

SparseArray[
Flatten[MapThread[

Array[List, #1, #2 +
1] &, ({#1, Most[FoldList[Plus, {0, 0}, #1]]} &)[

Dimensions /@ mat]], 2] -> Flatten[mat]]
(*
Diagonal Inverse
*)
SparseDiagonalInverse[mat_] :=

SparseArray[Table[{i, i} -> 1/mat[[i, i]], {i, 1, Length[mat]}]];
(*
Permutation matrices for defining representation
*)
(*
RowPermutationMatrix[p] generates a permutation matrix that moves row p[i] to \
row i or column i to p[i].
ColumnPermutationMatrix[p] generates a permutation matrix that moves row i to \
row p[i] or column p[i] to i.
*)
RowPermutationMatrix[(p_)?PermutationQ] :=

SparseArray[
MapThread[{#1, #2} &, {Range[1, Length[p]], p}] ->

Table[1, {Length[p]}]];
ColumnPermutationMatrix[(p_)?PermutationQ] :=

SparseArray[
MapThread[{#1, #2} &, {p, Range[1, Length[p]]}] ->

Table[1, {Length[p]}]];
(*
Row and Column Selection Matrices
*)
(*
RowSelectionMatrix[L, n] generates a matrix that selects rows L from an n-row \
matrix.
ColumnSelectionMatrix[L, n] generates a matrix that selects columns L from an \
n-column matrix.
*)
RowSelectionMatrix[l_List, ncols_Integer] :=

SparseArray[
MapThread[List, {Range[1, Length[l]], l}] ->

Table[1, {Length[l]}], {Length[l], ncols}];
ColumnSelectionMatrix[l_List, nrows_Integer] :=

SparseArray[
MapThread[List, {l, Range[1, Length[l]]}] ->

Table[1, {Length[l]}], {nrows, Length[l]}];
(*
Matrix Output
*)
RowToTeX[x_?VectorQ] := Module[{len},

len = Length[x];
StringJoin @@

117

Take[Flatten[Map[{#, " & "} &, Map[ToString, Map[TeXForm, x]]]], {1,
2len - 1}]

];
MatrixToTeX[x_?MatrixQ] := Module[{len},

len = Length[x];
"\\begin{pmatrix} " <>

StringJoin @@
Take[Flatten[Map[{#, " \\\\ "} &, Map[RowToTeX, x]]], {1,

2 len - 1}] <> "\\end{pmatrix}"
];

RowToGAP[x_?VectorQ] := Module[{len},
len = Length[x];
"[" <>

StringJoin @@
Take[Flatten[

Map[{#, ", "} &, Map[ToString, Map[InputForm, x]]]], {1,
2len - 1}] <> "]"

];
MatrixToGAP[x_?MatrixQ] := Module[{len},

len = Length[x];
"[" <>

StringJoin @@
Take[Flatten[Map[{ #, ", "} &, Map[RowToGAP, x]]], {1,

2 len - 1}] <> "]"
];

(*
Miscellaneous Utilities
*)
(*
"Unzip" list by every other entry
*)
splitList[(x_)?ListQ] :=

Reap[(Sow[x[[#1]], Mod[#1, 2]] &) /@ Range[1, Length[x]]][[2]];
(*
"Rezip" two lists back together
*)
interleaveLists[l1_List, l2_List] := Flatten[MapThread[List, {l1, l2}]];
(*
Intersect sets with multiplicity
*)
MultiIntersection[l1_List, l2_List] :=

Module[{nl, f}, f[x_] := {First[#], Length[#]} & /@ Split[Sort[x]];
nl = Sort[Join[Flatten[Map[f, {l1, l2}], 1]]];
nl = Split[nl, #[[1]] === #2[[1]] &];
Flatten[Cases[nl, {{x_, m_}, {x_, n_}} :> Table[x, {m}]], 1]]

(*
Recover List Tails from Pairs of Lists
*)
CompleteJMEvalLists[l1_List, l2_List] :=

Module[{nl, f, comelts, l1lookup, l2lookup, l1diff, l2diff},
f[x_] := {First[#], Length[#]} & /@ Split[Sort[x]];
nl = Sort[Join[Flatten[Map[f, {l1, l2}], 1]]];
nl = Split[nl, #[[1]] === #2[[1]] &];
Cases[nl, {{x_, m_}, {x_, n_}} :> (comelts[x] = m)];
Cases[nl, {{x_, m_}} :> (comelts[x] = 0)];
Reap[

Apply[Sow, MapThread[List, {Range[1, Length[l1]], l1}],
1], _, (l1lookup[#1] = #2) &][[2]];

Reap[

118 Mathematica Code: FFT Generation Algorithm

Apply[Sow, MapThread[List, {Range[1, Length[l2]], l2}],
1], _, (l2lookup[#1] = #2) &][[2]];

l1diff =
l1[[Sort@Flatten[(Drop[l1lookup[#], comelts[#]]) & /@ Union[l1]]]];

l2diff =
l2[[Sort@Flatten[(Drop[l2lookup[#], comelts[#]]) & /@ Union[l2]]]];

{Join[l1, l2diff], Join[l2, l1diff]}
];

(*
Symmetric Group Construction
*)
(*
Construction of Coset-Ordered Symmetric Group
*)
(*
Transposition[n, i, j] produces the permutation in Sn that swaps i and j.
JMTranspositionList[n, k] produces the list of permutations for m_k in S_n.
*)
Transposition[n_Integer, i_Integer, j_Integer] :=

Table[k + KroneckerDelta[i, k]*(j - i) - KroneckerDelta[j, k]*(j - i), {k,
1, n}];

JMTranspositionList[n_Integer, k_Integer] /; n > 1 && k > 1 && k <= n :=
Table[Transposition[n, j, k], {j, 1, k - 1}];

(*
SymmetricGroupCoset[A, p, 0] = p A;
SymmetricGroupCoset[A, p, 1] = A p;
SymmetricGroupByCosets[n, k, o] constructs S_k ordered by order o, as \
length-n permutations.
Current orders:
0: Nested left-coset order, with coset representatives in the order 1, (k - 1 \
k), ..., (1 k)
1: Nested right-coset order, with coset representatives in the order 1, (k - \
1 k), ..., (1 k)
*)
SymmetricGroupCoset[subset : {_?PermutationQ ..}, (p_)?PermutationQ,

0] := (Permute[p, #1] &) /@ subset;
SymmetricGroupCoset[subset : {_?PermutationQ ..}, (p_)?PermutationQ,

1] := (Permute[#1, p] &) /@ subset;
SymmetricGroupByCosets[n_Integer, 1, side_Integer] /; n > 0 := {Range[1, n]};
SymmetricGroupByCosets[n_Integer, k_Integer, order_Integer] /;

n > 0 && k > 1 && n >= k && (order == 0 || order == 1) :=
Module[{SSubGroup}, SSubGroup = SymmetricGroupByCosets[n, k - 1, order];

Flatten[(SymmetricGroupCoset[SSubGroup, #1, order] &) /@
Table[Transposition[n, j, k], {j, k, 1, -1}], 1]];

(*
Permutation Ranking in Coset Order
*)
(*
ConstructSymmetricGroupLookups[n, 0/1] constructs the lookup table for S_n in \
the L/R coset order.
RankPermutationByCoset[p, 0/1] ranks p in the L/R coset order for S_n, where \
n = Length[p];
defaults to right coset order if second argument omitted.
UnrankPermutationByCoset[i, n, 0/1] generates p from its rank i in the L/R \
coset order for S_n.
*)
ConstructSymmetricGroupLookups[n_Integer,

order_Integer] := (SymmetricGroupInverseLookup[n,

119

order] = (RankPermutation[#1] + 1 &) /@
SymmetricGroupByCosets[n, n, order];

SymmetricGroupLookup[n, order] =
InversePermutation[SymmetricGroupInverseLookup[n, order]];);

RankPermutationByCoset[(p_)?PermutationQ, order_Integer] :=
SymmetricGroupLookup[Length[p], order][[RankPermutation[p] + 1]];

UnrankPermutationByCoset[index_Integer, n_Integer, order_Integer] :=
UnrankPermutation[SymmetricGroupInverseLookup[n, order][[index]] - 1, n];

RankPermutationByCoset[(p_)?PermutationQ] = RankPermutationByCoset[p, 1];
(*
Construction of Double-Coset Ordered Symmetric Group
*)
(*
SymmetricCompare compares two permutations according to the specified order.
*)
SymmetricCompare[p_?PermutationQ, q_?PermutationQ,

order_Integer] := (RankPermutationByCoset[p, order] <
RankPermutationByCoset[q, order]);

(*
PartitionByConjugacy partitions a subset A of S_n by conjugacy classes under \
the action of S_k in S_n.
*)
PartitionByConjugacy[A : {_?PermutationQ ..}, k_Integer] :=

Module[{Arest = Sort[A, SymmetricCompare[#1, #2, 1] &], a, aconjs,
n = Length[First[A]], p = {},
sym = SymmetricGroupByCosets[Length[First[A]], k, 1] },

While[Length[Arest] > 0,
a = First[Arest];
aconjs =

Sort[Union[(Permute[Permute[#, a], InversePermutation[#]] &) /@
sym], SymmetricCompare[#1, #2, 1] &];

AppendTo[p, aconjs];
Arest =

Sort[Complement[Arest, aconjs], SymmetricCompare[#1, #2, 1] &];
];

p
];

(*
PartitionSymmetricGroup partitions S_k in S_n by double cosets of the \
subgroup chain 1 < S_2 < ... < S_n.
*)
PartitionSymmetricGroupByDC[narg_Integer, karg_Integer] :=

Module[{n = narg, k = karg, sympart, cosetreps},
sympart = {UnrankPermutation[0, n]};
sympart = Map[PartitionByConjugacy[#, k] &, sympart, {-3}];
sympart = Map[PartitionByConjugacy[#, k - 1] &, sympart, {-3}];
cosetreps = Table[Transposition[n, i, k], {i, k, 1, -1}];
sympart =

Map[Flatten[Outer[Permute, cosetreps, #, 1], 1] &, sympart, {-3}];
While[k > 2,

k--;
sympart = Map[PartitionByConjugacy[#, k] &, sympart, {-3}];
sympart = Map[PartitionByConjugacy[#, k - 1] &, sympart, {-3}];
cosetreps = Table[Transposition[n, i, k], {i, k, 1, -1}];
sympart =

Map[Flatten[Outer[Permute, cosetreps, #, 1], 1] &, sympart, {-3}];
];

(* put this line in if we want S1, S1 trivial double cosets *)

120 Mathematica Code: FFT Generation Algorithm

(*sympart = Map[PartitionByConjugacy[#, 1] &, sympart, {-3}];*)
sympart];

(*
SymmetricGroupByCosets computes S_k in S_n ordered by double cosets.
*)
SymmetricGroupByCosets[n_Integer, k_Integer, 2] :=

Reap[Map[Sow, PartitionSymmetricGroupByDC[n, k], {-2}]][[2]][[1]];
(*
ResolveTreeLayer replaces leaf lists (smallests lists in tree) with their \
lengths, and Sows a list consisting of each leaf list’s index, repeated for \
the length of the list.
This second list indicates which branches at level n of the tree merge at \
level n - 1.
*)
ResolveTreeLayer[tree_List] := Module[{temp, i = 0},

temp = Map[Length, tree, {-2}];
Sow[Flatten[Reap[Map[(i++; Sow[Table[i, {#}]]) &, Flatten[temp]]][[2]]]];
temp
]

(*
SymmetricGroupDoubleCosetBranching determines which double cosets merge as \
they grow larger in the usual L/R subgroup chain pattern.
*)
SymmetricGroupDoubleCosetBranching[n_Integer, 2] :=

Reap[Fold[ResolveTreeLayer[#1] &,
Map[1 &, PartitionSymmetricGroupByDC[n, n], {-2}],
Range[1, 2n - 3]]][[2]][[1]]

(*
ConstructSymmetricGroupDCBLookup constructs the branching lookup table for \
the double cosets of the usual subgroup chain in S_n.
*)
ConstructSymmetricGroupDCBLookup[n_Integer, 2] :=

Module[{}, (SymmetricGroupDCBLookup[n, 2] =
SymmetricGroupDoubleCosetBranching[n, 2]);];

(*
SymmetricGroupDCBNesting[index, n, o] computes the indices of the double \
cosets in which the specified permutation
*)
SymmetricGroupDCBNesting[index_Integer, n_Integer, order_Integer] :=

FoldList[SymmetricGroupDCBLookup[n, order][[#2, #1]] &, index,
Range[1, 2n - 3]];

(*
Matrices for Left and Right Regular Representations of Symmetric Group
*)
(*
PermutationRegRep[p, 0/1] gives the L/R regular permutation representation \
with respect to the lex. ordering from Combinatorica.
PermutationRegRepCoset[p, 0/1, o] gives the L/R regular perm repn with \
respect to order o.
JMMatrix[n, k, 0/1] gives the L/R reg perm repm of m_k on S_n with respect to \
the right coset basis.
*)
PermutationRegRep[(p_)?PermutationQ, 0] :=

SparseArray[({RankPermutation[Permute[p, #1]] + 1,
RankPermutation[#1] + 1} &) /@ SymmetricGroup[Length[p]] ->

Table[1, {i, 1, Length[p]!}]];
PermutationRegRep[(p_)?PermutationQ, 1] :=

SparseArray[({RankPermutation[Permute[#1, p]] + 1,
RankPermutation[#1] + 1} &) /@ SymmetricGroup[Length[p]] ->

121

Table[1, {i, 1, Length[p]!}]];

PermutationRegRepCoset[(p_)?PermutationQ, 0, order_Integer] :=
SparseArray[({RankPermutationByCoset[Permute[p, #1], order],

RankPermutationByCoset[#1, order]} &) /@
SymmetricGroup[Length[p]] -> Table[1, {i, 1, Length[p]!}]];

PermutationRegRepCoset[(p_)?PermutationQ, 1, order_Integer] :=
SparseArray[({RankPermutationByCoset[Permute[#1, p], order],

RankPermutationByCoset[#1, order]} &) /@
SymmetricGroup[Length[p]] -> Table[1, {i, 1, Length[p]!}]];

(*
Jucys-Murphy Regular Representations
*)
(*
JMMatrix[n, k, o] generates the regular representation for JM elt m_k acting \
on S_n on the L/R in the right-coset order.
*)
JMMatrix[n_Integer, k_Integer, side_Integer] /; n > 1 && k > 1 && k <= n :=

Plus @@ (PermutationRegRepCoset[#1, side, 1] &) /@
JMTranspositionList[n, k];

(*
JMEigensystem[n, k, 0/1] generates bases and eigenvalues for the eigenspaces \
of m_k for S_n acting on the L/R in right-coset order.
*)
JMEigensystem[n_Integer, k_Integer, side_Integer] :=

Module[{jm, sparseidentity, evecs},
jm = JMMatrix[n, k, side];
sparseidentity = SparseIdentityMatrix[n!];
evecs =

Reverse[DeleteCases[(NullSpace[jm - #1*sparseidentity] &) /@
Range[-k + 1, k - 1], _?ListNullQ]];

{evecs, (({#1[[1]]}.jm.#1[[1]])[[1]]/Norm[#1[[1]]]^2 &) /@ evecs}
];

(*
Double Coset Matrices
*)
LeftCosetMatrix[n_Integer, k_Integer, order_Integer] :=

Plus @@ (PermutationRegRepCoset[#, 0, order] & /@
SymmetricGroupByCosets[n, k, order]);

RightCosetMatrix[n_Integer, k_Integer, order_Integer] :=
Plus @@ (PermutationRegRepCoset[#, 1, order] & /@

SymmetricGroupByCosets[n, k, order]);
DoubleCosetMatrix[n_Integer, k1_Integer, k2_Integer, order_Integer] :=

LeftCosetMatrix[n, k1, order].RightCosetMatrix[n, k2, order];
(*
FFT Construction
*)
(*
FFT routines
*)
(*
Nonpartitioned routines
*)
(*
FFTFactorization[n] generates full DFT decomposiiton for Sn.
*)
FFTFactorization[n_Integer, order_Integer] /; n > 1 :=

Module[{factorlist, devallist, irreddims},
{devallist, factorlist} = FFTFactorizationToStage[n, 2*n - 3, order];

122 Mathematica Code: FFT Generation Algorithm

devallist = ModifyFFTEigenvalueList[devallist];

AppendTo[factorlist,
RowPermutationMatrix[Flatten[Map[#1[[4]] &, devallist, {2}]]]];

irreddims = Length /@ Union /@ Sort /@ (First /@ #1 &) /@ devallist;

AppendTo[factorlist,
FFTScalingMatrix[n, order, factorlist, irreddims]];

{devallist, factorlist, irreddims}
];

(*
FFTFactorizationToStage[n, s, o] generates the DFT matrix decomposition to \
stage s for order o.
*)
FFTFactorizationToStage[n_Integer, stage_Integer, order_Integer] /;

n >= 2 && stage > 0 && stage <= 2*n - 3 :=
Module[{factorlist = {}, dlist = {SparseIdentityMatrix[n!]},

devallist = Table[Infinity, {2n - 2}, {n!}], jmshortevecs,
jmshortinverses, jmevecs, jmevals, jmevecsinverses, newfactor, lrperm,
s, k, side},

(* make left - coset/right - coset change of basis matrix *)
lrperm =

RowPermutationMatrix[
RankPermutationByCoset[#,

1] & /@ (UnrankPermutationByCoset[#, n, 0] & /@
Range[1, n!])];

(* make chosen - order/right - coset change of basis matrix *)
basisperm =

RowPermutationMatrix[
RankPermutationByCoset[#,

1] & /@ (UnrankPermutationByCoset[#, n, order] & /@
Range[1, n!])];

(* do stages 2 at a time in loop, so we can reuse L objects in R stage *)

For[s = 1, s <= stage, s++,
k = Floor[(s + 3)/2];
side = Mod[s + 1, 2];
If[side == 0,

(* L stage *)
Print["Stage ", k, "L"];

{jmshortevecs, jmevals} = JMEigensystem[k, k, 0];

jmevecs =
MatrixDirectSumSparse /@ (Table[#1, {n!/k!}] & /@ jmshortevecs);

Print["Generated projection eigenbases."];

jmshortinverses = Inverse[#1.Transpose[#1]] & /@ jmshortevecs;

jmevecsinverses =
MatrixDirectSumSparse /@ (Table[#1, {n!/k!}] & /@

jmshortinverses);
Print["Generated projection inverses."];

123

(* change basis of eigenbasis vectors to chosen one *)
jmevecs = #.Transpose[basisperm] & /@ jmevecs;
Print["Generated left-action eigenbases."];,

(* R stage, if needed *)
Print["Stage ", k, "R"];
(* convert eigenbasis vectors to right - action,

then change basis to chosen one *)
jmevecs = #.basisperm.lrperm.Transpose[basisperm] & /@ jmevecs;
Print["Generated right-action eigenbases."];
];

Print[
Timing[{dlist, devallist[[s]], newfactor} =

FFTFactor[jmevecs, jmevals, jmevecsinverses, dlist,
devallist[[s]]];][[1]]];

devallist = FFTFactorizationEvalRecovery[devallist];
Print[MatrixForm[devallist]];
AppendTo[factorlist, newfactor];

Print[{First[#], Length[#]} & /@ Split@Sort@devallist[[s]]];
StageStatistics[dlist, devallist];
];

{devallist, factorlist}
];

(*
Partitioned Routines
*)
(*
FFTFactorizationDC[n] generates full DFT decomposiiton for Sn using \
double-coset partitions.
*)
FFTFactorizationDC[n_Integer, order_Integer] /; n > 1 :=

Module[{factorlist, invfactorlist, newinvfactorlist = {}, devallist,
irreddims, i},

{devallist, factorlist, invfactorlist} =
FFTFactorizationToStageDC[n, 2*n - 3, order];

devallist = ModifyFFTEigenvalueList[devallist];

AppendTo[factorlist,
RowPermutationMatrix[Flatten[Map[#1[[4]] &, devallist, {2}]]]];

newinvfactorlist = {invfactorlist[[1]], Transpose[factorlist[[2]]]};
For[i = 2, i <= Length[invfactorlist], i++,

AppendTo[newinvfactorlist,
SparseArray[

Fold[Dot[factorlist[[#2]], #1] &, invfactorlist[[i]],
Range[1, 2i - 2]]]];

AppendTo[newinvfactorlist, Transpose[factorlist[[2i]]]];
];

irreddims = Length /@ Union /@ Sort /@ (First /@ #1 &) /@ devallist;

AppendTo[factorlist,
FFTScalingMatrix[n, order, factorlist, irreddims]];

AppendTo[newinvfactorlist, SparseDiagonalInverse[Last[factorlist]]];
{devallist, factorlist, newinvfactorlist, irreddims}

124 Mathematica Code: FFT Generation Algorithm

];
(*
FFTFactorizationToStageDC[n, s, o] generates the DFT matrix decomposition to \
stage s for nested-double-coset order o, using double-coset partitions of \
frequency blocks.
*)
FFTFactorizationToStageDC[n_Integer, stage_Integer, order_Integer] /;

n >= 2 && stage > 0 && stage <= 2*n - 3 :=
Module[{factorlist = {}, invfactorlist = {}, newfactor, lrperm,

basisperm,
dlist = {SparseIdentityMatrix[n!]},
dlistflat = SparseIdentityMatrix[n!],
devallist = Table[Infinity, {2n - 2}, {n!}], dcbranchlist, dcindices,
dclookup, biglist, neworder,
jmshortevecs, jmevecs, jmevals, jmevecsinverses, s, k, side, time},

(* construct double coset branching pattern for S_n *)
dcbranchlist =

Transpose[
Map[SymmetricGroupDCBNesting[#, n, order] &, Range[1, n!]]];

(* make left - coset/right - coset change - of - basis matrix *)
lrperm =

RowPermutationMatrix[
RankPermutationByCoset[#,

1] & /@ (UnrankPermutationByCoset[#, n, 0] & /@
Range[1, n!])];

(* make right - coset to chosen order change - of - basis matrix *)
basisperm =

RowPermutationMatrix[
RankPermutationByCoset[#,

1] & /@ (UnrankPermutationByCoset[#, n, order] & /@
Range[1, n!])];

(* tests to see which branching order we need to pass to projection \
builder *)

(*Print[MatrixForm[dcbranchlist.Transpose[basisperm]]];
Print[MatrixForm[dcbranchlist.basisperm]];
Print[MatrixForm[dcbranchlist.basisperm.lrperm]];*)

(* do stages 2 at a time in loop, so we can reuse L objects in R stage *)

For[s = 1, s <= stage, s++,
k = Floor[(s + 3)/2];
side = Mod[s + 1, 2];

(* Sort decompressor columns by eigenvalue list and double coset,
then split into finer operators to pass to FFTFactor *)

(* TODO : explain steps in more detail *)
dcbranchlist = Drop[dcbranchlist, 1];
biglist = Join[-devallist, dcbranchlist, {Range[1, n!]}];
biglist =

MapThread[
Join[#1, {#2}] &, {Transpose[biglist], Transpose[dlistflat]}, 1];

neworder = Ordering[biglist];
biglist =

Split[Sort[

125

biglist], #1[[Range[1, 2n - 1]]] == #2[[Range[1, 2n - 1]]] &];
dlist = SparseArray[Transpose[Part[#, All, -1]]] & /@ biglist;
(* pick out double coset index for each d operator *)
dclookup = Part[#, 1, 2n - 1] & /@ biglist;
dcbranchlist = dcbranchlist[[All, neworder]];
devallist = devallist[[All, neworder]];
newfactor = RowPermutationMatrix[neworder];
If[newfactor != SparseIdentityMatrix[n!],

AppendTo[factorlist, RowPermutationMatrix[neworder]];, Null
];

(* (* debug statements *)
Print[biglist];
Print[devallist];
Print[dcbranchlist];
Print[MatrixForm /@ dlist];*)

(* generate projection operators for decompressors *)
If[side == 0,

(* L stage *)
Print["Stage ", k, "L"];

dcindices = ({Sort[First[dcbranchlist]]}.basisperm)[[1]];

time = Timing[{jmshortevecs, jmevals} =
JMEigensystem[k, k, 0]][[1]];

Print["Generated sets of eigenvectors: " <> ToString[time]];

jmevecs =
Map[#.Transpose[basisperm] &,

FFTDoubleCosetProjectionEigenbases[n, k, jmshortevecs,
dcindices], {2}];

Print["Generated left-action partitioned eigenbases."];

time = Timing[
jmshortinverses =

Inverse[#1.Transpose[#1]] & /@ jmshortevecs][[1]];
Print["Generated inverses: " <> ToString[time]];

jmevecsinverses =
FFTDoubleCosetProjectionInverses[n, k, jmshortinverses,

dcindices];
Print["Generated left-action partitioned inverses."];
,

(* R stage, if needed *)
Print["Stage ", k, "R"];

dcindices = ({Sort[First[dcbranchlist]]}.basisperm.lrperm)[[1]];

jmevecs =
Map[#.lrperm.Transpose[basisperm] &,

FFTDoubleCosetProjectionEigenbases[n, k, jmshortevecs,
dcindices], {2}];

Print["Generated right-action partitioned eigenbases."];

126 Mathematica Code: FFT Generation Algorithm

jmevecsinverses =
FFTDoubleCosetProjectionInverses[n, k, jmshortinverses,

dcindices];
Print["Generated right-action partitioned inverses."];
];

(* (* debug statements *)
Print[Map[MatrixForm[#] &, jmevecs, {2}]];
Print[Map[MatrixForm[#.basisperm] &, jmevecs, {2}]];
Print[Map[MatrixForm[#.basisperm.lrperm] &, jmevecs, {2}]];*)

(*Print[jmevecs = (AppendColumns @@ #) & /@ jmevecs];

Print[jmevecsinverses =
MatrixDirectSumSparse /@ jmevecsinverses];*)

StageStatistics[dlist, devallist];

Print[
"Projected eigenbases: " <>

ToString[
Timing[{dlist, devallist[[s]], newfactor} =

FFTFactorDC[jmevecs, jmevals, jmevecsinverses, dlist,
devallist[[s]], dclookup];][[1]]]];

devallist = FFTFactorizationEvalRecovery[devallist];
AppendTo[factorlist, newfactor];

(*Print[{First[#], Length[#]} & /@ Split@Sort@devallist[[s]]];*)
(*Print[MatrixForm[devallist]];*)
dlistflat = SparseArray[AppendRows @@ dlist];
AppendTo[invfactorlist, dlistflat];
];

{devallist, factorlist, invfactorlist}
];

(*
FFTDoubleCosetProjectionEigenbases produces the double-coset-partitioned \
projection operators for S_k in S_n from S_k-eigenbases and from the \
double-coset branching at that stage.
*)
FFTDoubleCosetProjectionEigenbases[n_Integer, k_Integer,

jmshortevecs : {_?MatrixQ ..}, dcbranchingarg : {_Integer ..}] :=
Module[{dcbranching = First /@ Partition[dcbranchingarg, k!],

jmshortsizes = Length /@ jmshortevecs, rowlists, jmevecs, dcevecs},
jmevecs =

MatrixDirectSumSparse /@ (Table[#1, {n!/k!}] & /@ jmshortevecs);
rowlists =

Map[#[[2]] &,
Sort[Reap[

MapThread[
Sow[#1, #2] &, {Range[1, Length[dcbranching]],

dcbranching}], _, List[#1, #2] &][[2]]], 1];
rowlists =

Outer[Function[{x, y}, Map[Sequence @@ Range[x # - x + 1, x #] &, y]],
jmshortsizes, rowlists, 1];

dcevecs =
MapThread[Function[{x, y}, Map[x[[#]] &, y, 1]], {jmevecs, rowlists},

1];

127

dcevecs
];

(*
FFTDoubleCosetProjectionInverses produces the double-coset-partitioned \
projection operators for S_k in S_n from S_k-eigenbases and from the \
double-coset branching at that stage.
*)
FFTDoubleCosetProjectionInverses[n_Integer, k_Integer,

jmshortinverses : {_?MatrixQ ..}, dcbranchingarg : {_Integer ..}] :=
Module[{dcbranching = Sort[First /@ Partition[dcbranchingarg, k!]],

dcinverses},
dcbranching = Length /@ Split[dcbranching];
Outer[MatrixDirectSumSparse[Table[#1, {#2}]] &, jmshortinverses,

dcbranching, 1]
];

(*
FFTFactorizationEvalRecovery recovers eigenvalues for 1D Fourier spaces once \
enough eigenvalues are known. Returns repopulated list of eigenvalues.
*)
FFTFactorizationEvalRecovery[devallistarg_] :=

Module[{devallist = devallistarg, devallistsplit, listlen, onedims,
reapresult},

listlen = Length[First[devallist]];
devallistsplit =

Split[Sort[Transpose[Append[devallist, Range[1, listlen]]]],
Most[#1] == Most[#2] &];

reapresult =
Reap[Map[(If[Length[#1] == 1, Sow[Last[First[#]]]]; #1) &,

devallistsplit, 1]][[2]];
If[reapresult != {},

onedims =
Intersection[First[reapresult] ,

Flatten[Position[Last[devallist], Infinity]]];
Map[(devallist[[All, #]] =

interleaveLists @@
CompleteJMEvalLists @@

splitList[DeleteCases[devallist[[All, #]], Infinity]]) &,
onedims];

];
devallist
];

(*
StageStatistics provides stats on the current state of the factor algorithm \
from the eigenvalues and decompression operators.
*)
StageStatistics[dlistarg_, devallistarg_] :=

Module[{dlist = dlistarg, devallist = Transpose[devallistarg], reapresult,
onedims, i, completeevals},

Print["Number of Decompressors: ", Length[dlist]];
Print[

"Subspace Dimensions: ", {First[#], Length[#]} & /@
Split@Sort@(Length /@ First /@ dlist)];

(*i = 0;
reapresult =

Reap[Map[(i += #1; If[#1 == 1, Sow[i]]; #1) &,
Length /@ First /@ dlist]][[2]];

If[reapresult != {},
onedims = reapresult[[1]];

128 Mathematica Code: FFT Generation Algorithm

completeevals =
Map[CompleteJMEvalLists @@ # &,

splitList /@ devallist[[onedims]]];

Print["Eigenvalues of 1D Subspaces: ",
MapThread[

List, {onedims, splitList /@ devallist[[onedims]],
completeevals, Map[Length, completeevals, {2}]}]];,

Null];*)

(*Print[devallist[[onedims]]];*)
];

(*
Factor Construction
*)
(*
RREFDecomp[A] decomposes an m-by-n matrix A of rank r into an m-by-r matrix D \
and a k-by-n matrix C such that A = DC.
*)
RREFDecomp[(A_)?MatrixQ] :=

Module[{B, rank, Am, An, C, D}, rank = MatrixRank[A];
If[rank <= 0, {{{}}, {{}}},

{Am, An} = Dimensions[A];
B = RowReduce[Transpose[Join[Transpose[A], IdentityMatrix[Am]]]];
C = B[[Range[1, rank], Range[1, An]]];
D = Inverse[B[[All, Range[An + 1, An + Am]]]][[All, Range[1, rank]]];
{C, D}]

];
RREFDecomp2[{{}}] = {{{}}, {{}}};
RREFDecomp2[(A_)?MatrixQ] := Module[{B, rank, Am, An, C, D},

{Am, An} = Dimensions[A];
If [Am < 1.5An,

{C, D} = RREFDecomp[A],
{D, C} = RREFDecomp[Transpose[A]];
If[C != {{}},

{C, B} = RREFDecomp[Transpose[C]];
D = SmartDot[Transpose[D], B];];

];
{C, D}
];

(*
Old FFT Factoring
*)
(*
FFTFactor takes the eigenbases and eigenvalues for the JM element and a set \
of decompression matrices and returns a new set of decompression matrices and \
the next factor in the FFT.
*)
FFTFactor[evecsarg_, evalsarg_, evecsinversesarg_, decompresslist_,

devalsarg_] :=
Module[{evecs = evecsarg, evals = evalsarg,

evecsinverses = evecsinversesarg, devals = devalsarg,
evecdecompresslist, clist, csublist, dnewlist = {}, drank, projranks,
deadprojindices, crank, currank = 0, evallookup, C, D, i, j},

evecdecompresslist =
MapThread[Transpose[#1].#2 &, {evecs, evecsinverses}];

projranks = MatrixRank /@ evecs;
clist = {};

129

MapThread[(evallookup[#1] = #2) &, {evals, Range[1, Length[evals]]}];

For[i = 1, i <= Length[decompresslist], i++,
csublist = {};
drank = MatrixRank[decompresslist[[i]]];
If[drank == 1,

currank++;
(*Print[

"1D Eigenvalue at " <> ToString[currank] <> ": " <>
ToString[devals[[currank]]]];*)

j = evallookup[devals[[currank]]];
projranks[[j]]--;
csublist = {{{1}}};
AppendTo[dnewlist, decompresslist[[i]]];,
For[j = 1, j <= Length[evecs] && drank > 0, j++,

{C, D} = RREFDecomp[evecs[[j]].decompresslist[[i]]];
crank = MatrixRank[C];
If[crank > 0,

AppendTo[csublist, C];
AppendTo[dnewlist, SmartDot[evecdecompresslist[[j]], D]];

devals[[Range[currank + 1, currank + crank]]] =
Table[evals[[j]], {crank}];

drank -= crank;
projranks[[j]] -= crank;
currank += crank;
(*projranks[[j]] =

ReplacePart[projranks, projranks[[j]] - crank, j];*),
Null
];

(* Print[{i, j}]; *)
];

];

(*
cull out projection matrices that have already been completely \

projected *)
deadprojindices = Flatten[Position[projranks, 0]];
(*Print["Indices to be culled: " <> ToString[deadprojindices]];*)
If[Length[deadprojindices] > 0,

Map[(projranks[[#]] = Null; evecs[[#]] = Null;
evecdecompresslist[[#]] = Null; evals[[#]] = Null;) &,

deadprojindices];

projranks = DeleteCases[projranks, Null];
evecs = DeleteCases[evecs, Null];
evecdecompresslist = DeleteCases[evecdecompresslist, Null];
evals = DeleteCases[evals, Null];

MapThread[(evallookup[#1] = #2) &, {evals,
Range[1, Length[evals]]}];,

Null];

(*For[j = 1, j <= Length[projranks], j++,
If[projranks[[j]] == 0,

(*Print[j];*)

130 Mathematica Code: FFT Generation Algorithm

projranks = Delete[projranks, j];
evecs = Delete[evecs, j];
evecdecompresslist = Delete[evecdecompresslist, j];
evals = Delete[evals, j];
j--;
];

];*)
(*Print[projranks];

Print[evecs];
Print[evecdecompresslist];
Print[evals];*)

AppendTo[clist, SmartColumnAppend @@ csublist];
];

dnewlist = DeleteCases[dnewlist, _?MatrixNullQ];
dnewlist = SparseArray /@ dnewlist;
{dnewlist, devals, MatrixDirectSumSparse[clist]}
];

(*
DC-Partition FFT Factoring
*)
(*
FFTFactorDC takes the eigenbases and eigenvalues for the JM element and a set \
of decompression matrices and returns a new set of decompression matrices and \
the next factor in the FFT.
** TODO: revise documentation once this routine is optimized for double coset \
partitions **
*)
FFTFactorDC[evecsarg_, evalsarg_, evecsinversesarg_, decompresslist_,

devalsarg_, dclookuparg_] :=
Module[{evecs = evecsarg, evals = evalsarg,

evecsinverses = evecsinversesarg, devals = devalsarg,
dclookup = dclookuparg, evecdecompresslist, clist, csublist,
dnewlist = {}, drank, projranks, crank, evallookup, dcindex,
currank = 0, CD, C, D, i, j},

evecdecompresslist =
MapThread[Transpose[#1].#2 &, {evecs, evecsinverses}, 2];

projranks = Map[Length, evecs, {2}];
clist = {};

For[i = 1, i <= Length[decompresslist], i++,
csublist = {};
(*Print[i];*)
drank = Length[Transpose[decompresslist[[i]]]];
dcindex = dclookup[[i]];

If[devals[[currank + 1]] != Infinity,
currank++;

Print["1D Eigenvalue at " <> ToString[currank] <> ": " <>
ToString[devals[[currank]]]];

(*j = evallookup[devals[[currank]]];
projranks[[j]]--;*)

csublist = {{{1}}};
AppendTo[dnewlist, decompresslist[[i]]];,
For[j = 1, j <= Length[evecs] && drank > 0, j++,

CD = evecs[[j, dcindex]].decompresslist[[i]];
(*Print[

131

Dimensions[CD]];*)(*, MatrixForm[CD],
MatrixForm[evecs[[j, dcindex]]],
MatrixForm[decompresslist[[i]]]}];*)

{C, D} = RREFDecomp2[CD];

If[C != {{}},
crank = Length[C];
AppendTo[csublist, C];

AppendTo[dnewlist,
SmartDot[evecdecompresslist[[j, dcindex]], D]];

devals[[Range[currank + 1, currank + crank]]] =
Table[evals[[j]], {crank}];

currank += crank;
drank -= crank;
];

(* Print[{i, j}]; *)
];

];

AppendTo[clist, SmartColumnAppend @@ csublist];
];

dnewlist = DeleteCases[dnewlist, _?MatrixNullQ];
dnewlist = SparseArray /@ dnewlist;
{dnewlist, devals, MatrixDirectSumSparse[clist]}
];

(*
Post-Factorization Eigenvalue Manipulation
*)
ModifyFFTEigenvalueList[devallist_] :=

Module[{devalsplitlist, devallastrow, lastletterordersort},
(* split lists of eigenvalues into lists for left, right actions *)
(* TODO : eliminate Drop once DC eval recovery finished *)
(* devalsplitlist = splitList[Drop[devallist, {-1}]];*)
devalsplitlist = splitList[devallist];

(* compute list of eigenvalues for last right action based on \
differences of previous eigenvalues and add to master list *)

(* devallastrow =
Plus @@ devalsplitlist[[1]] - Plus @@ devalsplitlist[[2]];

AppendTo[devalsplitlist[[2]], devallastrow];*)

(* add row number,
sorted list of eigenvalues to each entry in master list *)

(* transpose eigenvalue list structure to create L/
R lists for each row *)

devalsplitlist = Transpose /@ devalsplitlist;
devalsplitlist =

MapThread[
Append[#1, #2] &, {MapThread[{#1, #2, Sort[#1]} &, devalsplitlist],

Range[1, Length[devalsplitlist[[1]]]]}];

(* sort master list first based on sorted eval list
(in order to sort by irreducible) *)

devalsplitlist = Sort[devalsplitlist, OrderedQ[{#2[[3]], #1[[3]]}] &];

(* split into groups by same irreducible *)

132 Mathematica Code: FFT Generation Algorithm

devalsplitlist = Split[devalsplitlist, #1[[3]] === #2[[3]] &];

(* sort each group into last -
letter order (equiv. to lex. order on reversed eval list) *)

lastletterordersort[x_] :=
Sort[x, OrderedQ[{Reverse[Join[#2[[2]], #2[[1]]]],

Reverse[Join[#1[[2]], #1[[1]]]]}] &];
devalsplitlist = lastletterordersort /@ devalsplitlist;

(* return sorted, modified master list *)
devalsplitlist];

(*
Scaling Matrix Construction
*)
FFTScalingMatrix[n_Integer, order_Integer, fftfactors_List,

irredrepsizes_List] :=
Module[{matrixsize, scalingentries, remainingrows, nextrow, nextcolumn,

currentscalingmatrix, fftvalues, snvalues, nonzerolocs, newscalings,
genmatrices, gencolumns, i},

matrixsize = n!;
scalingentries = Table[1, {matrixsize}];
remainingrows = Range[1, matrixsize];
currentscalingmatrix = SparseDiagonalMatrix[scalingentries];

(* make sure all entries for identity are 1 *)
nextcolumn = RankPermutationByCoset[Range[1, n], order];
fftvalues =

Flatten[Dot @@ Reverse[fftfactors].ColumnSelectionMatrix[{nextcolumn},
matrixsize]];

nonzerolocs =
Reap[MapThread[(If[#1 == 0, Null, Sow[#2]]; #1) &, {fftvalues,

Range[1, matrixsize]}]][[2]][[1]];
nonzerolocs = Intersection[nonzerolocs, remainingrows];
scalingentries[[nonzerolocs]] =

MapThread[#1/#2 &, {Table[1, {Length[nonzerolocs]}],
fftvalues[[nonzerolocs]]}];

remainingrows = Complement[remainingrows, nonzerolocs];
currentscalingmatrix = SparseDiagonalMatrix[scalingentries];

(* get scalings for (i i + 1) transpositions *)
{genmatrices, gencolumns} =

GenSNMatrices[n, order, fftfactors, currentscalingmatrix,
irredrepsizes];

(* TODO : remove debugging Print statements *)
For[i = 1, i <= Length[genmatrices], i++,

fftvalues =
Flatten[currentscalingmatrix.(Dot @@

Reverse[
fftfactors].ColumnSelectionMatrix[{gencolumns[[i]]},

matrixsize])];
snvalues = Flatten[genmatrices[[i]]];
nonzerolocs =

Reap[MapThread[(If[#1 == 0, Null, Sow[#2]]; #1) &, {fftvalues,
Range[1, matrixsize]}]][[2]][[1]];

nonzerolocs = Intersection[nonzerolocs, remainingrows];
newscalings =

MapThread[#1/#2 &, {snvalues[[nonzerolocs]],
fftvalues[[nonzerolocs]]}];

133

scalingentries[[nonzerolocs]] = newscalings;
remainingrows = Complement[remainingrows, nonzerolocs];
Print[

"Number of rows remaining to scale: " <>
ToString[Length [remainingrows]]];

(* Print["Rows remaining to scale:" <> ToString[remainingrows]]; *)
];

(* compute scalings for remaining entries *)
While[Length[remainingrows] > 0,

nextrow = First[remainingrows];

(* select next row from FFT matrix *)
rowvalues =

Flatten[Transpose[
ColumnSelectionMatrix[{nextrow}, matrixsize]].Dot @@
Reverse[fftfactors]];

nextcolumn = 1;
While[rowvalues[[nextcolumn]] == 0, nextcolumn++];
Print["Next column to scale: " <> ToString[nextcolumn]];
fftvalues =

Flatten[currentscalingmatrix.(Dot @@
Reverse[fftfactors].ColumnSelectionMatrix[{nextcolumn},
matrixsize])];

snvalues =
Flatten[SNMatricesFromGens[n, order, nextcolumn, genmatrices]];

nonzerolocs =
Reap[MapThread[(If[#1 == 0, Null, Sow[#2]]; #1) &, {fftvalues,

Range[1, matrixsize]}]][[2]][[1]];
nonzerolocs = Intersection[nonzerolocs, remainingrows];
newscalings =

MapThread[#1/#2 &, {snvalues[[nonzerolocs]],
fftvalues[[nonzerolocs]]}];

scalingentries[[nonzerolocs]] = newscalings;
remainingrows = Complement[remainingrows, nonzerolocs];
Print[

"Number of rows remaining to scale: " <>
ToString[Length [remainingrows]]];

(* Print["Rows remaining to scale:" <> ToString[remainingrows]]; *)
];

SparseDiagonalMatrix[scalingentries]
];

(*
GenSNMatrices creates the lists of Young’s seminormal repn matrices for the \
generating tranpositons (i i+1) from the FFT matrix factors and the degrees \
of the irreducibles.
*)
GenSNMatrices[n_Integer, order_Integer, fftfactors_, currentscalingmatrix_,

irredrepsizes_] :=
Module[{genindices, gencolumns, genmatrices, snmatrices, matrixsize},

matrixsize = n!;

genindices =
Map[RankPermutationByCoset[#, order] &,

Table[Transposition[n, i, i + 1], {i, 1, n - 1}]];
gencolumns =

Transpose[
currentscalingmatrix.(Dot @@

134 Mathematica Code: FFT Generation Algorithm

Reverse[fftfactors].ColumnSelectionMatrix[genindices,
matrixsize])];

genmatrices = (VectorToBlocks[#1, irredrepsizes] &) /@ gencolumns;
(* Debug : print matrices we generate correct forms for

Print[Map[MatrixForm, genmatrices, {2}]];*)
snmatrices = Map[IrredSNMatrix, genmatrices, {2}];
(* Debug : print correct seminormal matrices for transpositions

Print[Map[MatrixForm, snmatrices, {2}]];*)
{snmatrices, genindices}
];

(*
IrredSNMatrix computes the Young’s seminormal matrix representation of a \
generator of S_n from its diagonal (which is assumed to be correct).
*)
IrredSNMatrix[matrix_] :=

Module[{nonzerolist, diagelems, snentries, dim},
dim = Dimensions[matrix][[1]];
diagelems = (matrix[[#1, #1]] &) /@ Range[1, dim];
nonzerolist =

Reap[MapThread[
If[#1 == 0, Null, Sow[#2]] &, {matrix,

Table[{i, j}, {i, 1, dim}, {j, 1, dim}]}, 2]][[2]][[1]];
snentries =

Map[If[#1[[1]] != #1[[2]], 1 + diagelems[[#1[[1]]]],
diagelems[[#1[[1]]]]] &, nonzerolist, {1}];

SparseArray[nonzerolist -> snentries, {dim, dim}]
];

(*
SNMatricesFromGens computes the Young’s seminormal matrix representation for \
an element of S_n from the seminormal matrices of the generators.
*)
SNMatricesFromGens[n_Integer, order_Integer, rank_Integer, genmatrices_] :=

Module[{perm, rcrank, decomp, snmatrices},
(* convert rank to perm under specified order,

then to rank under right coset order *)
perm = UnrankPermutationByCoset[rank, n, order];
rcrank = RankPermutationByCoset[perm, 1];
(* TODO :

Explain decomposition algorithm in greater detail wrt new right \
coset order, including - sign on Floor *)

decomp = ({Mod[-Floor[(rcrank - 1)/#1!], #1 + 1], #1 + 1} &) /@
Range[1, n - 1];

decomp = DeleteCases[decomp, {0, _}];
(* start with identity matrix *)
snmatrices = MapThread[Dot, {genmatrices[[1]], genmatrices[[1]]}];
If[Length[decomp] > 0,

snmatrices =
MapThread[Dot,

Map[SNTransposMatrices[#1[[1]], #1[[2]], genmatrices] &, decomp,
1]], snmatrices =

MapThread[Dot, {genmatrices[[1]], genmatrices[[1]]}]];
snmatrices];

(*
SNTransposMatrices computes the Young’s seminormal matrix representation for \
a transposition of S_n from the seminormal matrices of the generators.
*)
SNTransposMatrices[i_Integer, j_Integer, genmatrices_] /; i < j :=

Module[{indices},
indices = Join[Range[i, j - 1]];

135

indices = Join[indices, Reverse[Delete[indices, -1]]];
MapThread[Dot, (genmatrices[[#1]] &) /@ indices]
];

(*
FFT Evaluation
*)
(*
Convolution Operations
*)
VectorToBlocks[(v_)?VectorQ, (blocksizes_)?(VectorQ[#1, IntegerQ] &)] /;

Length[v] == Plus @@ (#1^2 &) /@ blocksizes :=
Module[{vblocks, blocksquares},

blocksquares = (Plus @@
Function[{x}, x^2] /@ blocksizes[[Range[1, #1]]] &) /@

Range[1, Length[blocksizes]];
vblocks =

MapThread[
v[[Range[#1 + 1, #2]]] &, {Join[{0},

blocksquares[[Range[1, Length[blocksquares] - 1]]]],
blocksquares}];

vblocks = MapThread[Partition[#1, #2] &, {vblocks, blocksizes}]];

ConvolveInFourier[(x_)?VectorQ, (y_)?
VectorQ, (blocksizes_)?(VectorQ[#1, IntegerQ] &),

changeofbasis : {_?MatrixQ ..}] :=
Module[{xhat, yhat, product},

xhat = Fold[#1.Transpose[#2] &, {x}, changeofbasis][[1]];
yhat = Fold[#1.Transpose[#2] &, {y}, changeofbasis][[1]];
product =

MapThread[
Dot, {VectorToBlocks[xhat, blocksizes],

VectorToBlocks[yhat, blocksizes]}]];

ConvolveInStandard[(x_)?VectorQ, (y_)?
VectorQ, (blocksizes_)?(VectorQ[#1, IntegerQ] &),

changeofbasis : {_?MatrixQ ..}, inverses : {_?MatrixQ ..}] :=
Module[{xhat, yhat, product},

xhat = Fold[#1.Transpose[#2] &, {x}, changeofbasis][[1]];
yhat = Fold[#1.Transpose[#2] &, {y}, changeofbasis][[1]];
product =

MapThread[
Dot, {VectorToBlocks[xhat, blocksizes],

VectorToBlocks[yhat, blocksizes]}];
product =

Fold[#1.Transpose[#2] &, {Flatten[product]},
Reverse[inverses]][[1]]];

ConvolveByPermutations[(x_)?VectorQ, (y_)?VectorQ, n_Integer, order_Integer] :=
Module[{xf, yf, products}, xf = PadRight[x, n!][[Range[1, n!]]];
yf = PadRight[y, n!][[Range[1, n!]]];
products =

Sort[Flatten[
Outer[{#1[[1]]*#2[[1]],

RankPermutationByCoset[
Permute[UnrankPermutationByCoset[#1[[2]], n, order],

UnrankPermutationByCoset[#2[[2]], n, order]], order]} &,
MapThread[{#1, #2} &, {xf, Range[1, n!]}],

MapThread[{#1, #2} &, {yf, Range[1, n!]}], 1], 1],
OrderedQ[{#1[[2]], #2[[2]]}] &];

136 Mathematica Code: FFT Generation Algorithm

products =
Partition[products, n!]; (Plus @@ #1 &) /@ (First /@ #1 &) /@

products];
(*
Operation Counting
*)
RowAdditions[(x_)?VectorQ] := Length[DeleteCases[Normal[x], 0]] - 1;
RowMultiplications[(x_)?VectorQ] := Length[DeleteCases[Normal[x], 0 | 1 | \
-1]];
RowCombinedOps[(x_)?VectorQ] := Max[RowAdditions[x], RowMultiplications[x]];
MatrixAdditions[(A_)?MatrixQ] := Plus @@ RowAdditions /@ A;
MatrixMultiplications[(A_)?MatrixQ] := Plus @@ RowMultiplications /@ A;
MatrixCombinedOps[(A_)?MatrixQ] := Plus @@ RowCombinedOps /@ A;
(*
End of Package
*)
EndPackage[]

Bibliography

[1] Adkins, W. A. and Weintraub, S. H. (1992). Algebra: An Approach via
Module Theory. Number 136 in Graduate Texts in Mathematics. Springer,
New York.

[2] Brown, H., Hjelmeland, L., and Masinter, L. (1972). Constructive graph
labeling using double cosets. Discrete Mathematics, 7:1–30.

[3] Chirikjian, G. S. and Kyatkin, A. B. (2001). Engineering Applications of
Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion
Groups. CRC Press, Boca Raton, FL.

[4] Clausen, M. (1989). Fast generalized Fourier transforms. Theoretical
Computer Science, 67:55–63.

[5] Clausen, M. (2001). Elements of a general algebraic theory of stan-
dard tableaux. In Betten, A., Kohnert, A., Laue, R., and Wassermann,
A., editors, Algebraic Combinatorics and Applications, pages 67–78, Berlin.
Springer-Verlag.

[6] Clausen, M. and Baum, U. (1993a). Fast Fourier Transforms. BI-Wissen-
schaftsverlag, Mannheim, Germany.

[7] Clausen, M. and Baum, U. (1993b). Fast Fourier transforms for sym-
metric groups: Theory and implementation. Mathematics of Computation,
61(204):833–847.

[8] Diaconis, P. (1989). A generalization of spectral analysis with applica-
tion to ranked data. The Annals of Statistics, 17(3):949–979.

[9] Driscoll, J. R. and Healy, Jr., D. M. (1994). Computing Fourier trans-
forms and convolutions on the 2-sphere. Advances in Applied Mathemat-
ics, 15:202–250.

138 Bibliography

[10] Drozd, Y. A. and Kirichenko, V. V. (1994). Finite Dimensional Algebras.
Springer-Verlag, New York.

[11] Dummit, D. and Foote, R. (1999). Abstract Algebra. John Wiley and
Sons, New York.

[12] Eisberg, R. and Resnick, R. (1985). Quantum Physics of Atoms, Molecules,
Solids, Nuclei, and Particles. John Wiley and Sons, New York.

[13] Gross, K. I. (1978). On the evolution of noncommutative harmonic
analysis. Am. Math. Monthly, 85:525–548.

[14] James, G. and Kerber, A. (1981). The Representation Theory of the Sym-
metric Group. Addison-Wesley, Reading, MA.

[15] Jucys, A. A. (1966). On the Young operators of symmetric groups.
Lithuanian Physics Journal, 6:163–180.

[16] Lafferty, J. D. and Rockmore, D. N. (1997). Spectral techniques for
expander codes. In ACM Symposium on Theory of Computing (STOC ’97).

[17] Logan, J. D. (1998). Applied Partial Differential Equations. Undergradu-
ate Texts in Mathematics. Springer-Verlag, New York.

[18] Maslen, D. K. (1998). The efficient computation of Fourier transforms
on the symmetric group. Mathematics of Computation, 67(223):1121–1147.

[19] Maslen, D. K., Orrison, M. E., and Rockmore, D. N. (2004). Comput-
ing isotypic projections with the Lanczos iteration. SIAM J. Matrix Anal.
Appl., 25(3):784–803.

[20] Maslen, D. K. and Rockmore, D. N. (1997). Generalized FFTs - a sur-
vey of some recent results. DIMACS Series in Discrete Mathematics and
Computer Science, 28:183–237.

[21] Murphy, G. E. (1981). A new construction of Young’s seminormal rep-
resentation of the symmetric groups. Journal of Algebra, 69:287–297.

[22] Murphy, G. E. (1983). The idempotents of the symmetric group and
Nakayama’s conjecture. Journal of Algebra, 81:58–265.

[23] Okounkov, A. and Vershik, A. (1996). A new approach to representa-
tion theory of symmetric groups. Selecta Mathematica, 2(4):581–605.

Bibliography 139

[24] Pemmaraju, S. and Skiena, S. (2003). Computational Discrete Mathe-
matics: Combinatorics and Graph Theory with Mathematica. Cambridge
University Press, Cambridge.

[25] Püschel, M., Moura, J. M. F., Johnson, J., Padua, D., Veloso, M., Singer,
B. W., Xiong, J., Franchetti, F., Gačić, A., Voronenko, Y., Chen, K., John-
son, R. W., and Rizzolo, N. (2005). SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE, special issue on ”Program Generation,
Optimization, and Adaptation”, 93(2). to appear.

[26] Ram, A. (1997). Seminormal representations of Weyl groups and
Iwahori-Hecke algebras. Proc. London Math. Soc., 73:99–133.

[27] Rockmore, D. N. (2003). Recent progress and applications in group
FFTs. NATO Advanced Study Institute on Computational Noncommu-
tative Algebra and Applications.

[28] Sagan, B. E. (2001). The Symmetric Group: Representations, Combinatorial
Algorithms, and Symmetric Functions. Number 203 in Graduate Texts in
Mathematics. Springer, New York.

[29] Serre, J.-P. (1977). Linear Representations of Finite Groups. Number 42 in
Graduate Texts in Mathematics. Springer, New York.

[30] Sloane, N. J. A. (1999). Sequence A000041 in The Online Encyclopedia
of Integer Sequences. Found at http://www.research.att.com/∼njas/
sequences/.

[31] Townsend, J. S. (2000). A Modern Approach to Quantum Mechanics. Uni-
versity Science Books, Sausolito, CA.

http://www.research.att.com/~njas/sequences/
http://www.research.att.com/~njas/sequences/

	Decimation-in-Frequency Fast Fourier Transforms for the Symmetric Group
	Recommended Citation

	Abstract
	Acknowledgments
	Introduction
	Introduction
	Group-Theoretical Fourier Transforms
	Algorithmic Approaches to FFTs
	FFTs for the Symmetric Group
	Applications
	Open Questions

	Character Graphs and Seminormal Representations
	Character Graphs
	Path Algebras
	Seminormal Matrix Representations
	Applications to MC-Groups

	Representation Theory of the Symmetric Group
	Constructions of Irreducible Representations
	Reformulation of Path-Algebraic Techniques
	Seminormal Matrix Representations
	Computation and Examples of Representations
	Conclusions and Generalizations

	Decimation-In-Frequency Algorithm Theory
	The DFT as a Change of Basis
	Path Algebras, DFTs and FFTs
	Bimodules and Opposite Algebras
	Double-Coset Branchings and Bases
	Projections and Minimum Rank Decompositions
	Decimation-in-Frequency Algorithms
	Bases and Regular Representations
	Computation of Double-Coset Projections
	Conclusion

	Fast Fourier Transforms for the Symmetric Group
	Computation of Coset Bases
	Separating Elements
	Eigenvalue List Completion
	Computation of Final Permutation Matrix
	Computation of Scaling Matrix

	Initial Implementation and Results
	Mathematica Implementation
	Precomputation
	Evaluation
	Multiplication and Convolution

	Future Directions and Conclusions
	Double-Coset Bases and Module Decompositions
	Row Reduction and Choice of Basis
	Efficiency of Precomputation
	Efficiency of Evaluation
	MATLAB and GAP Implementations
	Parallel Implementations

	Computational Examples
	CS3 with Idempotents
	CS3 with Jucys-Murphy Elements

	Tabulation of Double Coset Irreducibles
	Double-Coset Modules in CS3
	Double-Coset Modules in CS4
	Double-Coset Modules in CS5

	Mathematica Code: FFT Generation Algorithm
	Bibliography

