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Abstract

Let P(ε) = P0 + A(ε) be a stochasticity-preserving analytic perturbation of
a stochastic matrix P0. We characterize the hybrid Cesaro limit

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε),

where N(ε) ↑ ∞ as ε ↓ 0, when P0 has eigenvalues on the unit circle in the
complex plane other than 1.
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Chapter 1

Introduction

The theory of discrete-time Markov chains on finite state spaces has a wide
array of applications in modeling everything from credit ratings to pop-
ulation genetics. The long-term behavior of the chain, which is often of
primary interest, is reflected by the behavior of the powers Pn of the asso-
ciated stochastic matrix of transition probabilities P, as n → ∞. If the recur-
rent classes of P are all primitive, it is well-known that limn→∞ Pn exists, so
this limiting matrix provides the desired long-term information about the
chain’s behavior. (For definitions of some of the terms used here, refer to
Chapter 2.)

On the other hand, if even one of P’s recurrent classes is cyclic, this limit
will not exist. Instead, the powers of P, as the term cyclic suggests, will tend
toward some repeating sequence with finite period. In this case, the average
long-term behavior of the chain can be represented by the Cesaro limit

P∗ = lim
n→∞

1
n

n

∑
k=1

Pk,

which is guaranteed to exist and is equal to the eigenprojection for the
eigenvalue 1 of P. The Cesaro limit, sometimes referred to as the stationary
matrix for P, generalizes limn→∞ Pn, as the two are evidently equal if the
latter exists.

In the above discussion, we have implicitly assumed that the transition
probabilities in P are known exactly. This is often impossible when mod-
eling real-world systems, however, where the probabilities are determined
approximately based on observations of how the system in question op-
erates. That is, it will typically be the case that p̂ij = pij + ε ij; the actual
transition probability pij is estimated by p̂ij, and ε ij is an error term, a func-



2 Introduction

tion that depends on the observations made. To simplify the problem we
might suppose that the separate error terms are all analytic functions of a
single parameter ε taking on small positive values. We then have an ana-
lytically perturbed stochastic matrix P(ε) = P0 + A(ε), where A(ε) → 0 as
ε ↓ 0 and P(ε) remains stochastic for all sufficiently small positive ε.

An important problem that arises in this type of situation is to deter-
mine the long-term behavior of the perturbed Markov chain, as well as
whether this long-term behavior approaches that of the unperturbed Mar-
kov chain as the unifying parameter ε ↓ 0. In other words, we may wonder
whether limε↓0 P∗(ε) = P∗

0 , or equivalently if the two limits

lim
ε↓0

lim
N→∞

1
N

N

∑
k=1

Pk(ε) = lim
ε↓0

P∗(ε)

and

lim
N→∞

lim
ε↓0

1
N

N

∑
k=1

Pk(ε) = lim
N→∞

1
N

N

∑
k=1

Pk
0 = P∗

0

are identical. The answer, as it turns out, is no: if the perturbation alters the
recurrent-transient structure of the matrix, the two limits will not be equal.

The iterated limits above may lead us to wonder what happens when
ε and N are combined in some fashion to form a single hybrid limit. The
following expression melds the two limit operations in a fairly straightfor-
ward way:

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε).

Here N(ε) takes on positive integer values and increases to ∞ as ε decreases
to 0. We can think about this hybrid limit as follows: for each estimate of
the actual transition probabilities—that is, each value of ε—we are only in-
terested in the average behavior of the Markov chain up to some finite time
limit; but as our estimates improve, we become interested in the chain’s be-
havior over longer and longer spans of time. In [4], Filar, Krieger, and Syed
characterize this limit in the case that the unperturbed stochastic matrix P0
has no eigenvalues on the unit circle in the complex plane other than 1, or
equivalently if P0 has no recurrent classes that are cyclic. More specifically,
they show that the hybrid limit exists when N(ε) ↑ ∞ at different rates,
and they show that the value of the limit depends only on properties of the
eigenvalue 1 of P(ε).

In the most general case, though, P0 may have cyclic recurrent classes,
or equivalently eigenvalues on the unit circle other than 1. We investigate
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the existence and value of the above hybrid Cesaro limit for such cases.
In Chapter 2, we introduce some concepts and terminology from matrix
theory and linear algebra that provide the framework for much of what
comes subsequently; we also describe the structure of a general stochas-
tic matrix and the relationship between this structure and the eigenvalues
of the matrix; last, we present an older result concerning stochastic matrix
eigenvalues and use it to establish a property of these eigenvalues useful
for analyzing the hybrid Cesaro limit. Chapter 3 contains an overview of
perturbation theory for matrices. Topics include the way perturbations af-
fect eigenvalues and eigenprojections, a type of reduction process for per-
turbed matrices that yields information about the perturbed eigenvalues,
and some of the peculiarities of perturbed stochastic matrices. The main re-
sults concerning the hybrid Cesaro limit are collected in Chapter 4. We first
describe how the hybrid Cesaro limit can be decomposed for easier analy-
sis, then present both the previous results from [4] as well as the original
results we have obtained. Finally, Chapter 5 reviews aspects of the problem
that remain open and challenges in grappling with these open questions.





Chapter 2

Stochastic Matrices and Θn

Since the limit operation we are concerned with involves stochastic matri-
ces, the eigenvalues of such matrices appear prominently in our later anal-
ysis. In this chapter we present several results relating to stochastic matrix
eigenvalues. The most important of these is an original result that yields
an estimate crucial for proving statements about the hybrid Cesaro limit.

2.1 Matrix Preliminaries

We begin by reviewing some basic matrix terminology that figures into a
number of the concepts introduced subsequently. In what follows, Mn(C)
denotes the set of all n × n matrices with complex entries.

Definition 2.1. Let T ∈ Mn(C), and suppose that λ ∈ C is an eigenvalue of T.
The algebraic multiplicity of λ is the degree of λ as a root of the characteristic
equation det(T − xI) = 0. The geometric multiplicity of λ is the dimension of
the eigenspace

Wλ = { v ∈ C
n | Tv = λv } = { v ∈ C

n | (T − λI)v = 0 }.

Recall that the algebraic multiplicity of an eigenvalue is always at least
as large as the geometric multiplicity, but may be strictly larger.

Definition 2.2. An eigenvalue λ of the matrix T ∈ Mn(C) is semisimple if the
algebraic and geometric multiplicities of λ are equal.

Hence semisimplicity means, in a sense, that the eigenspace for λ is not
“deficient.” Eigenspaces that are deficient, however, can be repaired by
relaxing the definition as follows.
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Definition 2.3. If λ is an eigenvalue of T ∈ Mn(C), the generalized eigenspace
associated with λ is the set

{ v ∈ C
n | (T − λI)kv = 0 for some k ∈ Z

+ }.

Evidently the generalized eigenspace associated with λ contains the
eigenspace associated with λ. Additionally, the generalized eigenspace is
a subspace of Cn, in the case that we are working with Mn(C), and the di-
mension of this subspace is equal to the algebraic multiplicity of λ. Hence
we can speak simply of the multiplicity of an eigenvalue in reference to this
common value.

The sense in which generalized eigenspaces “fix” the type of deficiency
mentioned above can be formalized using the notion of direct sums.

Definition 2.4. Let W1, W2, . . . , Wm be subspaces of the vector space V. Then V
is the direct sum of the Wi, written

V = W1 ⊕ W2 ⊕ · · · ⊕ Wm =
m⊕

i=1

Wi,

if for each v ∈ V there exist unique wi ∈ Wi, i = 1, 2, . . . , m, such that v =
w1 + w2 + · · · + wm. In this situation, the component of v ∈ V in Wi is the
unique wi ∈ Wi that appears in the above decomposition of v.

If λ1, . . . , λm are the eigenvalues of a matrix T ∈ Mn(C) and W1, . . . ,
Wm are the associated generalized eigenspaces, then it is always the case
that Cn =

⊕m
i=1 Wi. This statement does not hold in general, however, if

we substitute eigenspaces for generalized eigenspaces. In particular, it fails
precisely when any eigenvalue is not semisimple, or equivalently when T is
not diagonalizable. In other words, if any eigenvalue of T is not semisimple
then the union of bases for the individual eigenspaces does not span all of
Cn.

The discussion of direct sums motivates the following.

Definition 2.5. Let T ∈ Mn(C). Then T is a projection matrix if T2 = T.

The notion of a projection can be straightforwardly generalized to lin-
ear transformations on arbitrary vector spaces, but for our purposes the
definition given is sufficient.

It is a fact that if Cn =
⊕m

i=1 Wi and 1 ≤ i ≤ m, there is a unique
P∗

i ∈ Mn(C) satisfying the following two properties:
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(1) P∗
i maps Cn onto Wi; that is, the linear transformation on Cn defined

by v 7→ P∗
i v has range Wi;

(2) for each v ∈ Cn, the component of v in Wi is equal to P∗
i v.

This P∗
i is a projection matrix: if the decomposition of v ∈ Cn based on the

Wi is v = w1 + · · ·+ wm, then the component of wi in Wj is clearly wi if i = j
and 0 if i 6= j; thus

(P∗
i )2v = P∗

i wi = wi = P∗
i v,

so P∗
i and (P∗

i )2 act identically on Cn and must be the same matrix. P∗
i is

called the projection matrix onto Wi along W1, . . . , Wi−1, Wi+1, . . . , Wm. In
this situation it is straightforward to see that ∑

m
i=1 P∗

i = I. Additionally,
P∗

i P∗
j = δijP∗

i , where δij is the Kronecker delta defined by

δij =

{
0, if i 6= j;
1, if i = j.

Conversely, if T is a projection matrix, then there are unique subspaces W1
and W2 of Cn such that T is the projection matrix onto W1 along W2.

Another useful concept relating to projection matrices is the following.

Definition 2.6. Suppose that T is the projection matrix onto W1 along W2 and
that T′ is the projection matrix onto W ′

1 along W ′
2. Then T′ is a sub-projection of

T if there is a subspace V of Cn such that W1 = W ′
1 ⊕ V and W ′

2 = W2 ⊕ V.

Using the same type of direct sum decomposition techniques used ear-
lier, it is not difficult to show that if T′ is a sub-projection of T, then TT′ =
T′ = T′T.

Placing the above discussion of projection matrices in the context of
eigenvalues and eigenspaces yields another important piece of terminol-
ogy.

Definition 2.7. Let T ∈ Mn(C), and suppose that λ1, . . . , λm and W1, . . . , Wm
are the eigenvalues and respective generalized eigenspaces for T. The eigenpro-
jection for T associated with λi, written P∗(λi), is the projection matrix onto Wi
along W1, . . . , Wi−1, Wi+1, . . . , Wm.

Observe that TP∗(λi) = P∗(λi)T for each i: since T maps each Wi to
itself, if v = w1 + · · · + wm is the decomposition of v based on the Wi then

P∗(λi)Tv = P∗(λi)(Tw1 + · · · + Twm) = Twi = TP∗(λi)v.
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Thus P∗(λi)T and TP∗(λi) act identically on Cn and are the same matrix.
Finally, recall that a matrix M is nilpotent if Mk = 0 for some k > 0;

the smallest positive integer k for which Mk = 0 is called the index of the
nilpotent. In the situation described in the previous paragraph, there is a
unique nilpotent matrix D(λi) which satisfies TP∗(λi) = λiP∗(λi) + D(λi)
and P∗(λi)D(λi) = D(λi) = D(λi)P∗(λi). The index of D(λi) is greater
than 1 precisely when λi is not semisimple; equivalently, D(λi) = 0 if and
only if λi is semisimple.

2.2 Stochastic Matrices and Their Structure

Recall that a square matrix is stochastic if its entries are real and nonnega-
tive and the sum of the entries in each row is equal to 1. In this section we
relate the structure of a stochastic matrix—that is, the location of its posi-
tive entries—to information about its eigenvalues. Most of this material is
drawn from Chapter 1 of [9]. Throughout, P = [pij] denotes a fixed n × n
stochastic matrix and p(m)

ij is the ijth entry of Pm.

Definition 2.8. If i and j are indices from the set {1, 2, . . . n}, then i has access
to j, written i → j, if p(m)

ij > 0 for some m > 0. Also, i communicates with j,
written i ↔ j, if i has access to j and j has access to i.

Since every row of a stochastic matrix has a positive entry, it is clear that
every index has access to some index. On the other hand, it is possible for
an index not to communicate with any index. For example, if

P =

[
1 0
1 0

]
,

then the index 2 does not communicate with any index since Pm = P for all
m > 0.

Viewing → and ↔ as binary relations on the set of indices, the former
is transitive: if p(m)

ij > 0 and p(m′)
jk > 0, then since Pm+m′

= PmPm′ we have

p(m+m′)
ik =

n

∑
l=1

p(m)
il p(m′)

lk ≥ p(m)
ij p(m′)

jk > 0.

The second binary relation has even nicer properties if we restrict our at-
tention to the set of indices Jc = { i ∈ {1, . . . , n} | i ↔ j for some index j }.
Specifically, ↔ is an equivalence relation on Jc. (That ↔ is symmetric is
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evident; transitivity follows from the transitivity of →, and we obtain re-
flexivity from symmetry and transitivity together with the definition of Jc.)
We may thus partition Jc into “communicating classes” of indices, call them
C1, C2, . . . , Ck. Typically, we also group all non-communicating indices into
a class of their own, denoted C0.

We can further classify the set of indices based on the following defini-
tion.

Definition 2.9. An index i is recurrent if, for every index j to which i has access,
j also has access to i. Otherwise, i is transient.

Based on what was noted previously, every index in C0 is transient. For
any other Ci, the properties of → and ↔ imply that if one index in Ci is
recurrent, all other indices in Ci are also recurrent. It follows that either
every index in Ci is recurrent or every index in Ci is transient. Therefore
it makes sense to refer to the classes themselves as recurrent or transient
based on the classification of their indices. It is a fact that any stochastic
matrix contains at least one recurrent class of indices (see [9], p. 16). We
now illustrate these concepts with an example.

Example 2.1. Let

P =




0 0.3 0 0.1 0.5 0.1 0
0 0.4 0 0.1 0.2 0 0.3

0.2 0.7 0 0 0 0 0.1
0 0.2 0 0.5 0 0.2 0.1
0 0 0 0 1 0 0
0 0 0 0 0 0.6 0.4
0 0 0 0 0 1 0




.

One can verify that C0 = {1, 3} is the class of non-communicating indices,
and that among the communicating indices the classes are C1 = {2, 4},
C2 = {5}, and C3 = {6, 7}. Notice that even though the index 1 is non-
communicating, 3 → 1. Of the communicating classes, C1 is transient since
the index 2, for example, has access to the indices 5 and 7, but not vice
versa. On the other hand, both C2 and C3 are recurrent: the indices in each
class do not have access to any index outside of their own class.

The relationships between indices and classes of indices can be clari-
fied, within a given stochastic matrix, by permuting the indices so that the
indices in each class are adjacent. We also typically order the classes with
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recurrent (communicating) classes first, followed by transient communicat-
ing classes, and finally the non-communicating class (if there is one), since
the resulting matrix is then lower block triangular—that is, all the positive
entries occur either within or below the diagonal blocks associated with
the different classes. If we perform this process on the matrix from Exam-
ple 2.1, placing the classes in the order C2, C3, C1, C0, we obtain

P′ =




1 0 0 0 0 0 0
0 0.6 0.4 0 0 0 0
0 1 0 0 0 0 0

0.2 0 0.3 0.4 0.1 0 0
0 0.2 0.1 0.2 0.5 0 0

0.5 0.1 0 0.1 0.3 0 0
0 0 0.1 0 0.7 0.2 0




.

Note that this type of reordering is not unique: we can change the order
of the indices within each class, as well as the order of the recurrent classes
and the order of the transient communicating classes, and the resulting
matrix will still be lower block triangular. It is important, however, that
whichever particular way the indices are permuted, the underlying struc-
ture of the matrix is not affected. To be precise, the original matrix and
the permuted one are always similar, so their eigenvalues are the same.
In the example with which we have been working, we have the identity
P′ = SPS−1, where

S =




0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0




.

Observe that S is a permutation matrix: each row and column has exactly
one entry equal to 1 and the rest equal to 0. It is not difficult to see that
however the indices of P are permuted, the resulting matrix will be similar
to P via conjugation by a permutation matrix.

Aside from helping to bring out the inherent structure of a stochastic
matrix, the index classification we have described is useful because it yields
eigenvalue information about P. For one, from rearranging the indices as
above we can see that the eigenvalues of P will be the union of the eigen-
values for each diagonal block. As it turns out, the blocks for the transient
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classes, as well as the non-communicating class, all have eigenvalues with
modulus strictly less than 1 (this follows from Theorem 1.5 in [9], p. 22).
On the other hand, for each recurrent class there is a positive integer k such
that the associated diagonal block has all the kth roots of unity as eigenval-
ues of multiplicity 1, and no other eigenvalues on or outside the unit circle
in the complex plane (this follows from Theorem 1.1, Corollary 1, and The-
orem 1.7 in [9], pp. 3–4, 8, and 23, respectively). If k = 1 the class is called
primitive, whereas if k > 1 the class is called cyclic. These results imply that
if P is a stochastic matrix and λ is an eigenvalue of P satisfying |λ| = 1,
then λ is semisimple. Additionally, 1 is an eigenvalue of P.

2.3 Stochastic Matrix Eigenvalues and Θn

Additional information about the eigenvalues of stochastic matrices is avail-
able from more sophisticated results.

Definition 2.10. Let n ∈ N. We denote by Θn the set of all eigenvalues of n × n
stochastic matrices. That is,

Θn = { λ ∈ C | there is an n × n stochastic matrix with λ as an eigenvalue }.

Trivially, then, Θ1 = {1} (there is only one 1 × 1 stochastic matrix), and
it is not difficult to show that Θ2 = [−1, 1]. The following three results can
all be found in [7]; the first is due to Dmitriev and Dynkin, the second to
Karpelevič. For x ∈ R, [x] denotes the greatest integer less than or equal to
x.

Theorem 2.1. ([7], p. 175) If z is a complex number whose argument is between 0
and 2π/n, inclusive, where n ≥ 3, then z is an eigenvalue of some n× n stochastic
matrix if and only if z lies in the triangle with vertices 0, 1, and e2πi/n.

Theorem 2.2. ([7], pp. 176-177) Let n ∈ N. Then Θn is symmetric with respect
to the real line (that is, z ∈ Θn if and only if z ∈ Θn), is contained within the
closed unit disk, and intersects the unit disk’s boundary, |z| = 1, at precisely the
kth roots of unity for k ≤ n. The boundary of Θn consists of these points and of
curvilinear arcs connecting them in circular order. For n > 3, these arcs can be
characterized as follows.

Consider a boundary arc of Θn with endpoints λ′ and λ′′ in counterclockwise
order. Write λ′ as e2πi(a′/b′), where 0 ≤ a′ < b′ ≤ n and gcd(a′, b′) = 1. (In
particular, when λ′ = 1 this gives a′ = 0 and b′ = 1.) Similarly write λ′′ as
e2πi(a′′/b′′). Then either

b′′
[ n

b′′
]
≥ b′

[ n
b′
]

(2.1)
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or
b′′
[ n

b′′
]
≤ b′

[ n
b′
]

, (2.2)

and if (2.1) holds for a given arc then (2.2) must hold for the complex conjugate
arc (and vice versa). Hence, by the symmetry of Θn, we may suppose that (2.1) is
satisfied and that b′′ > 1. (If b′′ = 1, then a′′ = 0 and a′/b′ = (n − 1)/n, so
that both (2.1) and (2.2) hold for the arc; hence both hold for the complex complex
conjugate arc, and we may consider it instead.)

Now let r1 = b′′, r2 = a′′, and let r3, . . . , rm be the remainders obtained by
iteratively using the Euclidean algorithm: rk = qkrk+1 + rk+2, with 0 < rk+2 <

rk+1, for k = 1, 2, . . . , m − 2, and rm−1 = qm−1rm. If [n/b′′] = 1 and m is even,
then the arc is implicitly parametrized by the equation

zq(zp − t)r = (1 − t)r, (2.3)

where the real parameter t runs over the interval [0, 1], r = rm−1, and p and q are
defined by

a′′p ≡ 1 (mod b′′), 0 < p < b′′ (2.4)
a′′q ≡ −r (mod b′′), 0 ≤ q < b′′. (2.5)

Otherwise, the arc is analogously parametrized by the equation

(zb − t)d = (1 − t)dzq, (2.6)

where d = [n/b′′], b = b′′, and q is defined by

a′′q ≡ −1 (mod b′′), 0 < q < b′′. (2.7)

Corollary 2.1. ([7], p. 175) The set Θ3 consists of the points on the interior or
boundary of the triangle with vertices 1, e2πi/3, and e−2πi/3 together with the
points in the interval [−1, 1].

Using Theorem 2.2, I have been able to prove that Θn possesses geomet-
ric properties useful in analyzing Cesaro limits.

Lemma 2.1. Let p ∈ C[z, t], viewed as a function from C × R to C (that is, p is
a polynomial in z = x + iy and t). Suppose that p(z0, t0) = 0, and let

w1 =
∂p
∂x

(z0, t0) and w2 =
∂p
∂t

(z0, t0).

If w1 6= 0, then the equation p(z, t) = 0 implicitly defines a C1 function f : I →
C, where I is an open interval containing t0, and f ′(t0) = −w1w2/|w1|

2.



Stochastic Matrix Eigenvalues and Θn 13

Proof. If we view p as a function from R2 × R to R2, then p is certainly C1.
Letting w1 = a + bi and w2 = c + di, and noting that

∂p
∂y

=
∂p
∂z

∂z
∂y

=
∂p
∂z

· i = i
(

∂p
∂z

· 1
)

= i
(

∂p
∂z

∂z
∂x

)
= i

∂p
∂x

,

we see that
∂p
∂y

(z0, t0) = i
∂p
∂x

(z0, t0) = iw1 = −b + ai.

Hence the matrix for the derivative of p at (z0, t0) is

Dp(z0, t0) =

[
a −b c
b a d

]
.

Then by the implicit function theorem, we can assert the existence of a C1

function f from some open interval containing t0 to C as long as the matrix
[

a −b
b a

]

is invertible. But this is the case if and only if its determinant, a2 + b2, is
nonzero, and clearly this is true if and only if w1 6= 0.

Finally, under this assumption the implicit function theorem gives that

f ′(t0) = −

[
a −b
b a

]−1 [c
d

]
= −

1
a2 + b2

[
a b

−b a

] [
c
d

]

= −
1

a2 + b2

[
ac + bd
ad − bc

]
.

It just remains to note that

−
w1w2

|w1|2
= −

(a − bi)(c + di)
|a + bi|2

= −
(ac + bd) + (ad − bc)i

a2 + b2 .

We now arrive at the two original results which later bear on our analy-
sis of Cesaro limits. Throughout these results, we make use of the notation
from Theorem 2.2. Before presenting them, we introduce a piece of nota-
tion and a concept from number theory. First, if a and b are integers we
write b | a if b divides a; that is, b | a if there is an integer c such that a = bc.
If b does not divide a, we likewise write b - a. Next, suppose that n is a
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positive integer. The nth Farey series Fn is the increasing sequence of irre-
ducible fractions between 0 and 1 inclusive with denominators no larger
than n. For example, F3 is the sequence 0/1, 1/3, 1/2, 2/3, 1/1. A property
of Farey series useful to us is the following: if a/b and c/d are consecutive
fractions in the Farey series Fn, then bc − ad = 1 (see [5], Theorem 28, p.
23).

Theorem 2.3 (Krieger-Murcko). Fix an n > 3. Suppose that λ′ = e2πi(a′/b′)

and λ′′ = e2πi(a′′/b′′) are consecutive roots of unity as in Theorem 2.2 and that
the boundary arc of Θn connecting λ′ and λ′′ is described by (2.3). Then at the
endpoints λ′ and λ′′ of the boundary arc, the arc has well-defined tangent lines l ′1
and l′′1 , respectively. Also, if l′2 and l′′2 denote the lines tangent to the unit circle
|z| = 1 at λ′ and λ′′, respectively, then l′1 makes a nonzero angle with l ′2 at λ′, and
likewise for l′′1 and l′′2 at λ′′.

Proof. To begin, we examine the case where λ′ = 1 and λ′′ = e2πi/n. (It
is straightforward to see that these are, in fact, consecutive roots of unity.)
Then a′/b′ = 0/1 and a′′/b′′ = 1/n, so r1 = b′′ = n, r2 = a′′ = 1 = rm,
and [n/b′′] = [n/n] = 1. Therefore this case satisfies the requirements from
Theorem 2.2 for the boundary arc to be described by (2.3). The desired
result here follows immediately from Theorem 2.1 since the arc is simply
the straight line segment connecting 1 and e2πi/n. So we may henceforth
assume that a′ > 0, b′ > 1, and a′′/b′′ 6= 1/n.

We next show that a′′ > 1 and q > 0 for these remaining cases. Suppose
first that a′′ = 1. Since we are assuming that a′′/b′′ 6= 1/n, it follows that
b′′ < n; moreover, as [n/b′′] = 1, we have that n ≤ 2b′′ − 1. Now, any
rational number c/d, where 2 ≤ c < d ≤ n and c and d are relatively prime,
satisfies

c
d
≥

2
n
≥

2
2b′′ − 1

>
2

2b′′
=

1
b′′

. (2.8)

Since a′/b′ is the greatest rational number less than a′′/b′′ = 1/b′′ with
denominator less than or equal to n, (2.8) implies that a′ = 1, whence also
b′ = b′′ + 1 ≤ n. Finally, we obtain that

b′′
[ n

b′′
]

= b′′ < b′′ + 1 = b′ = b′
[ n

b′
]

.

But this inequality contradicts (2.1), so we may conclude that a′′ > 1.
Now suppose, again for the sake of contradiction, that q = 0. Since a′′

and b′′ are relatively prime, rm is always equal to 1; thus r = rm−1 is the last
ri > 1, and if some ri > 1 then r ≤ ri. In particular, r ≤ b′′ as r1 = b′′ > 1.
But r ≡b′′ −a′′q = 0 by (2.5), so it must be the case that r = b′′. Thus
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rm−1 = r1, so a′′ = r2 = rm = 1. This contradicts what was just established
about a′′, so q > 0.

Moving on from these preliminaries, let f (z, t) = zq(zp − t)r − (1 − t)r,
z0 = e2πi(a′′/b′′), and z1 = e2πi(a′/b′). The congruence relation a′′p ≡b′′ 1
from (2.4), together with the fact that b′′ > 1, implies that

zp
0 = e2πi(a′′p/b′′) = e2πi/b′′ 6= 1. (2.9)

Hence f (z0, 1) = zq
0(zp

0 −1)r 6= 0. Therefore it must be the case that f (z0, 0) =
0 and f (z1, 1) = 0. Additionally, observe that

∂ f
∂x

= qzq−1(zp − t)r + przp+q−1(zp − t)r−1 (2.10)

and
∂ f
∂t

= r(1 − t)r−1 − rzq(zp − t)r−1. (2.11)

We now consider the endpoint z0. From (2.10) we see that

∂ f
∂x

(z0, 0) = qzq−1
0 (zp

0 )r + przp+q−1
0 (zp

0)r−1 = (pr + q)zpr+q−1
0 .

But zpr+q
0 − 1 = f (z0, 0) = 0, so in fact

∂ f
∂x

(z0, 0) = (pr + q)z−1
0 .

As p, q, and r are all positive integers, this shows that ∂ f /∂x is nonzero at
(z0, 0). Next let w1 = (pr + q)z−1

0 = (pr + q)z0 and

w2 =
∂ f
∂t

(z0, 0) = r − rzq
0(zp

0 )r−1 = r − rzpr+q−p
0 = r(1 − z−p

0 ).

Lemma 2.1 implies that if v = −w1w2/|w1|
2 is nonzero, then the boundary

arc implicitly described by (2.3) has a well-defined tangent line at z0 = λ′′

and v is a vector (complex number) in the direction of this line. Certainly
v 6= 0 if the dot product of v with the radial vector for z0 is nonzero, so we
begin by showing this. Now, the dot product of two vectors v1 and v2 in
R2, when we view v1 and v2 as complex numbers, is easily seen to be equal
to Re (v1v2). Since

vz0 = −
w1w2

|w1|2
z0 = −

[
(pr + q)z0

][
r(1 − z−p

0 )
]

(pr + q)2 z0 = −
r(1 − z−p

0 )

pr + q
,
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the desired dot product is equal to

−
r

pr + q
(1 − Re (z−p

0 )).

But r and pr + q are both positive, so it only remains to note that z−p
0 lies

on the unit circle and is not equal to 1 by (2.9). Thus the boundary arc does
indeed have a well-defined tangent line l ′′1 at z0.

To establish that l′′1 makes a nonzero angle with l′′2 , the line tangent to
the unit circle at z0 = λ′′, it suffices to show that direction vectors for the
two lines are not (real) scalar multiples of one another. But the direction
vector for l′′2 is orthogonal to the radial vector for z0, so the dot product
calculation carried out above immediately implies the desired result.

Before beginning work on the second arc endpoint, z1 = λ′, we intro-
duce another piece of notation. For 0 ≤ t ≤ 1, let zt denote the point on the
boundary arc corresponding to t; this simply extends our usage of z0 and
z1.

We first establish that there is an ε > 0 such that for all t ∈ (1 − ε, 1),
(∂ f /∂x)(zt, t) 6= 0. To this end, note first that neither zt nor zp

t − t can be
equal to 0 for t ∈ (0, 1): from (2.3), zp

t − t = 0 would imply that (1− t)r = 0,
clearly an impossibility for all t ∈ (0, 1); since q > 0, the same thing rules
out zt = 0 for the relevant values of t.

Now suppose, for the sake of contradiction, that there is a sequence
{tn}

∞
1 ⊆ (0, 1) converging to 1 such that (∂ f /∂x)(ztn , tn) = 0 for all n. But

∂ f
∂x

(ztn , tn) = qzq−1
tn

(zp
tn
− tn)r + przp+q−1

tn
(zp

tn
− tn)r−1

= zq−1
tn

(zp
tn
− tn)r−1[q(zp

tn
− tn) + przp

tn
]

= zq−1
tn

(zp
tn
− tn)r−1[(pr + q)zp

tn
− qtn]

for all n by (2.10), so the observations in the previous paragraph allow us
to conclude that

(pr + q)zp
tn
− qtn = 0 (2.12)

for all n. Since tn → 1 as n → ∞, ztn → z1 as well. Therefore, taking limits
in (2.12) as n → ∞ yields the identity (pr + q)zp

1 = q. As p, q, and r are all
positive, however,

∣∣(pr + q)zp
1

∣∣ = |pr + q| = pr + q > q = |q|,

giving us a contradiction. Thus (∂ f /∂x)(zt, t) 6= 0 for all t sufficiently close
to 1.
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Now from Lemma 2.1, the above implies that the complex-valued func-
tion t 7→ zt is differentiable for all t sufficiently close to 1 with derivative

vt = −
w1,tw2,t

|w1,t|2
= −w2,t/w1,t,

where w1,t = (∂ f /∂x)(zt, t) and w2,t = (∂ f /∂t)(zt, t). To show that the
boundary arc has a well-defined tangent line at z1 = λ′, then, it suffices to
show that limt→1 vt exists and is nonzero. We begin with the former.

To ease notation slightly, we will henceforth let ut denote zp
t − t; so,

to rephrase something we established above, zt and ut are both nonzero
for the values of t with which we are concerned. Using the expressions
for ∂ f /∂x and ∂ f /∂t from (2.10) and (2.11), as well as the identity zq

t ur
t =

(1 − t)r from (2.3), we obtain as an expression for vt

vt =
1 − zp

t
1 − t

rzt

(pr + q)zp
t − qt

.

Examining different pieces of this expression, first notice that rzt → rz1
as t → 1. Since zq

1ur
1 = (1 − 1)r = 0, it follows that u1 = 0, i.e. that zp

1 = 1;
therefore (pr + q)zp

t − qt → (pr + q)zp
1 − q = pr as t → 1. Regarding the

remaining fraction in the expression for vt, observe that

1 − zp
t

1 − t
= 1 −

ut

1 − t
.

But (
ut

1 − t

)r
= z−q

t ,

so a continuity argument shows that as t → 1, ut/(1 − t) approaches some
rth root of z−q

1 , call it α. Putting all of the above together, we see that
limt→1 vt exists, call it v, and that

v = (1 − α)
rz1

pr
=

(1 − α)z1

p
.

As in the method used at the first arc endpoint z1, to complete the proof
it suffices to establish that the dot product of v with the radial vector for z1
is nonzero. Using the expression for such dot products derived earlier, we
see that it is equal to

Re
(

(1 − α)z1

p
z1

)
= Re

(
1 − α

p

)
=

1 − Re α

p
. (2.13)
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Since α is an rth root of z−q
1 , certainly α lies on the unit circle. From (2.13),

then, it suffices to show that α 6= 1. Reducing the problem one additional
time, notice that α cannot be equal to 1 if z−q

1 6= 1. We thus focus on proving
this last statement.

We begin by showing that b′ - q. This is evident if b′′ ≤ b′, since 0 <

q < b′′. Hence suppose that b′′ > b′ and that b′ | q, say q = kb′. As we are
assuming that b′ > 1, it follows that b′′ ≥ 3. Additionally, a′′ < b′′ − 1 and
a′′ 6= b′′/2. For the former, if a′′ = b′′ − 1, then we would have that r1 = b′′,
r2 = a′′ = b′′ − 1 ≥ 2, and r3 = 1 = rm; but then m is odd, contradicting
one of the hypotheses for the boundary arc to be described by (2.3). For the
latter, if a′′ = b′′/2, then a′′/b′′ = 1/2, so in fact a′′ = 1 and b′′ = 2; but this
contradicts the fact that a′′ > 1. We now consider two cases:

• If a′′ < b′′/2, then, since r2 = a′′ > 1, we know that r ≤ r2 = a′′ <

b′′/2.

• If a′′ > b′′/2, then r3 = b′′ − a′′. But 1 = b′′ − (b′′ − 1) < b′′ − a′′ and
b′′ − a′′ < b′′ − b′′/2 = b′′/2, so it follows that r ≤ r3 = b′′ − a′′ <

b′′/2.

Hence r < b′′/2 regardless. Now, a′/b′ and a′′/b′′ are consecutive terms in
the Farey series Fn, so a′′b′ − a′b′′ = 1 and a′′b′ ≡b′′ 1. Therefore

−r ≡ a′′q = a′′(kb′) = (a′′b′)k ≡ k (mod b′′),

so k = jb′′ − r for some j ≥ 1. Noting again that b′ > 1, we obtain that

b′′ = (b′′/2) · 2 < (b′′ − r)b′ ≤ (jb′′ − r)b′ = kb′ = q < b′′.

This contradiction at last allows us to conclude that b′ - q when b′′ > b′, so
b′ - q in all cases.

Returning to the larger question, observe that z−q
1 = e2πi(−a′q/b′). Since

a′ and b′ are relatively prime (with a′ > 0) and b′ - q, we can conclude that
b′ does not divide a′q. Thus a′q/b′ is not an integer, whence z−q

1 6= 1. This
completes the proof.

Theorem 2.4 (Krieger-Murcko). Fix an n > 3. Suppose that λ′ = e2πi(a′/b′)

and λ′′ = e2πi(a′′/b′′) are consecutive roots of unity as in Theorem 2.2 and that
the boundary arc of Θn connecting λ′ and λ′′ is described by (2.6). Then at the
endpoints λ′ and λ′′ of the boundary arc, the arc has well-defined tangent lines l ′1
and l′′1 , respectively. Also, if l′2 and l′′2 denote the lines tangent to the unit circle
|z| = 1 at λ′ and λ′′, respectively, then l′1 makes a nonzero angle with l ′2 at λ′, and
likewise for l′′1 and l′′2 at λ′′.
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Proof. To begin, note that we may assume that a′/b′ 6= 0/1, for the asso-
ciated boundary arc was addressed at the beginning of the proof of Theo-
rem 2.3. In particular, this implies that a′ > 0 and b′ > 1.

Now let f (z, t) = (zb − t)d − (1− t)dzq, z0 = e2πi(a′/b′), and z1 = e2πi(a′′/b′′).
Observe that

f (z1, 1) = (zb
1 − 1)d − (1 − 1)dzq

1 =
(
(e2πi(a′′/b′′))b − 1

)d
= (e2πia′′ − 1)d = 0,

where we have made use of the fact that b = b′′. Moreover, since 0 <

q < b′′ = b and bd − q ≡b −q, it follows that b - (bd − q). As a′′ and
b′′ are relatively prime with a′′ 6= 0 (this holds because b′′ > 1—see the
statement of Theorem 2.2), we additionally obtain b - a′′(bd − q). Thus
zbd−q

1 = e2πi(a′′(bd−q)/b′′) 6= 1 and

f (z1, 0) = zbd
1 − zq

1 = zbd−q
1 zq

1 − zq
1 6= 1 · zq

1 − zq
1 = 0;

hence it must be the case that f (z0, 0) = 0.
To complete the preliminaries, we have

∂ f
∂x

= bdzb−1(zb − t)d−1 − qzq−1(1 − t)d

and
∂ f
∂t

= dzq(1 − t)d−1 − d(zb − t)d−1.

For the endpoint z0, we first calculate

∂ f
∂x

(z0, 0) = bdzb−1
0 zb(d−1)

0 − qzq−1
0 = bdzbd−1

0 − qzq−1
0 = (bd − q)zq−1

0 ;

note that this uses the identity zbd
0 − zq

0 = f (z0, 0) = 0. But bd − q ≥ b − q >

b − b = 0, whence ∂ f /∂x is nonzero at (z0, 0). We now proceed exactly
as we did with the arc endpoint z0 in the previous proof. Letting w1 =

(bd − q)zq−1
0 and

w2 =
∂ f
∂t

(z0, 0) = dzq
0 − dzb(d−1)

0 = d(zq
0 − zbd−b

0 ) = dzq
0(1 − z−b

0 ),

it suffices to show that the dot product of v = w1w2/|w1|
2 with the radial

vector for z0 is nonzero. As

vz0 = −
w1w2

|w1|2
z0 = −

[
(bd − q)zq−1

0
][

dzq
0(1 − z−b

0 )
]

(bd − q)2 z0 = −
d(1 − z−b

0 )

bd − q
,
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the desired dot product is equal to

Re (vz0) = −
d

bd − q
(
1 − Re (z−b

0 )
)
. (2.14)

Since a′′b′ − a′b′′ = 1 (this again follows from viewing a′/b′ and a′′/b′′ as
consecutive terms in the Farey series Fn), we have that

z−b
0 = e2πi(−a′b′′/b′) = e2πi(−(a′′b′−1)/b′) = e−2πia′′e2πi/b′ = e2πi/b′ ,

whence z−b
0 lies the unit circle but is not equal to 1 (recall that b′ > 1). Thus

Re (z−b
0 ) < 1, and since d ≥ 1 we can conclude that the dot product in (2.14)

is nonzero.
For the endpoint z1, we continue in the mold of the proof of Theo-

rem 2.3. That is, we begin by establishing that there is an ε > 0 such that
(∂ f /∂x)(zt, t) 6= 0 for all t ∈ (1− ε, 1). To this end, we first have that neither
zt nor ut = zb

t − t can be equal to 0 for all t ∈ (0, 1): for zt = 0 implies

0 = f (zt, t) = f (0, t) = (−t)d,

while ut = 0 implies

0 = f (zt, t) = ud
t − (1 − t)dzq

t = −(1 − t)dzq
t .

Now suppose, for the sake of contradiction, that there is a sequence
{tn}

∞
1 ⊆ (0, 1) converging to 1 such that (∂ f /∂x)(ztn , tn) = 0 for all n. But

using the identity ud
t = (1 − t)dzq

t , we have that

zt
∂ f
∂x

(zt, t) = bdzb
t ud−1

t − qzq
t (1 − t)d = bdzb

t ud−1
t − qud

t

=
(
bdzb

t − q(zb
t − t)

)
ud−1

t =
(
(bd − q)zb

t + qt
)
ud−1

t ,

so that by the observations in the previous paragraph (bd − q)zb
tn

+ qtn = 0
for all n. Since tn → 1 and ztn → z1 as n → ∞, this implies that

0 = lim
n→∞

(
(bd − q)zb

tn + qtn
)

= (bd − q)zb
1 + q = bd,

clearly a contradiction since b and d are both positive. Thus we can con-
clude that (∂ f /∂x)(zt, t) is nonzero for all t sufficiently close to 1.

Now take w1,t = (∂ f /∂x)(zt, t) and w2,t = (∂ f /∂t)(zt, t), and let

vt = −
w1,tw2,t

|w1,t|2
= −w2,t/w1,t,
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so that vt is a tangent vector to the boundary arc for all t close to 1; as in
the previous proof, we will show that v = limt→1 vt exists and that the dot
product of this vector with the radial vector for z1 is nonzero.

Using the expressions for ∂ f /∂x and ∂ f /∂t together with the identity
ud

t = (1 − t)dzq
t , we see that

vt = −
w2,t

w1,t
= −

utw2,t

utw1,t
= −

dutz
q
t (1 − t)d−1 − dzq

t (1 − t)d

bdzb+q−1
t (1 − t)d − qutz

q−1
t (1 − t)d

= −
dutzt − d(1 − t)zt

bdzb
t (1 − t) − qut(1 − t)

= −
ut − 1 + t

1 − t
dzt

bdzb
t − qut

= −
zb

t − 1
1 − t

dzt

(bd − q)zb
t + qt

.

Examining pieces of this final expression, we find first that

lim
t→1

dzt

(bd − q)zb
t + qt

=
dz1

(bd − q)zb
1 + q

=
dz1

bd − q + q
= z1/b.

In addition,

−
zb

t − 1
1 − t

= 1 −
ut

1 − t
.

The fact that (ut/(1 − t))d = zq
t for t 6= 1 implies that ut/(1 − t) approaches

some dth root of zq
1 as t → 1. Let α denote this limit. Since a′′q ≡b′′ −1 and

b′′ > 1, we see that zq
1 = e2πi(a′′q/b′′) = e−2πi/b′′ 6= 1. Thus α lies on the unit

circle but is not equal to 1; in particular, Re α < 1.
Putting the above together, we obtain that

v = lim
t→1

vt = (1 − α)z1/b,

whence the dot product of v and the radial vector for z1 is

Re (vz1) = Re
(

(1 − α)z1

b
z1

)
=

Re (1 − α)

b
=

1 − Re α

b
>

1 − 1
b

= 0.

This completes the proof.





Chapter 3

Analytic Perturbations

In this chapter we review some important results from perturbation the-
ory for linear operators on the finite-dimensional vector space Cn (i.e. n × n
matrices with coefficients in C). Most of the material is drawn from Chap-
ter 2 of [6]. In all of what follows, Mn(C) denotes the set of complex n × n
matrices.

3.1 Perturbed Eigenvalues and Eigenprojections

We begin with a definition to place us on solid ground.

Definition 3.1. An analytic perturbation of a matrix T0 ∈ Mn(C) is a power
series

T(ε) = T0 + A(ε) = T0 + εA1 + ε2 A2 + · · ·

in which the coefficients A1, A2, . . . are all elements of Mn(C) as well. We refer to
T(ε) as an analytically perturbed matrix.

Such a power series will have a radius of convergence r0 ∈ [0, ∞] just as
does a standard power series in which the coefficients are complex num-
bers rather than matrices. That is, T(ε) will converge for all complex ε
satisfying |ε| < r0 and diverge for all ε with |ε| > r0; the value of r0 de-
pends on the entries in A1, A2, . . . Henceforth we assume that any analyti-
cally perturbed matrix with which we are concerned has positive radius of
convergence r0.

If T(ε) is an analytic perturbation of T0, T(ε) has a fixed number of dis-
tinct eigenvalues except at certain “exceptional” values of ε, only a finite
number of which lie in any compact set. If λ is an eigenvalue of T0, then
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T(ε) possesses a collection of associated perturbed eigenvalues, call them
λ1(ε), λ2(ε), . . . , λk(ε), each of which can be represented in a power series–
like form called a Puiseux series:

λj(ε) = λ + c1,jε
1/pj + c2,jε

2/pj + · · · , (3.1)

where pj is a positive integer. We refer to λ1(ε), . . . , λk(ε) as the λ-group
eigenvalues for T(ε), since they all converge to λ as ε → 0.

Recall from Chapter 2 that the multiplicity of an eigenvalue refers to
its algebraic multiplicity, or equivalently the dimension of its generalized
eigenspace. It is known that at any non-exceptional value of ε as described
above, the sum of the multiplicities of the individual λ-group eigenvalues
in T(ε) is equal to the multiplicity of λ in T0.

There are also useful results relating to eigenprojection matrices. Cer-
tainly at non-exceptional values of ε, it makes sense to talk about eigen-
projections for the individual perturbed eigenvalues λ j(ε). If we choose
r > 0 small enough that the domain D = { ε | |ε| < r } contains no ex-
ceptional points except possibly 0, we can further define a matrix-valued
function P∗(λ, ε) on D equal to the sum of these individual eigenprojec-
tions. As it turns out P∗(λ, ε) can be expressed as an analytic perturbation
of P∗(λ), the eigenprojection for T0 associated with λ. We refer to P∗(λ, ε)
as the total projection for the λ-group. If the multiplicity of λ in T0 is m, then
P∗(λ, ε) projects onto an m-dimensional subspace of Cn. This subspace,
which generally depends on ε, is denoted M(λ, ε); we refer to it as the per-
turbed eigenspace for the λ-group. For the remainder of the chapter, we only
concern ourselves with T(ε) on a domain as described above.

We illustrate the concepts introduced in this section with an example.

Example 3.1. Consider the analytically perturbed matrix

T(ε) =

[
2 − ε + ε2 3ε2

ε2 2 − ε − ε2

]
.

To be explicit, we can write this as

T(ε) =

[
2 0
0 2

]
+

[
−ε + ε2 3ε2

ε2 −ε − ε2

]

=

[
2 0
0 2

]
+ ε

[
−1 0

0 −1

]
+ ε2

[
1 3
1 −1

]
.

Therefore

T0 =

[
2 0
0 2

]
, A1 =

[
−1 0

0 −1

]
, A2 =

[
1 3
1 −1

]
;
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also,

A(ε) = εA1 + ε2 A2 =

[
−ε + ε2 3ε2

ε2 −ε − ε2

]
.

Evidently the radius of convergence of T(ε) is ∞.
T0 has a single eigenvalue of multiplicity 2, namely 2. It is straight-

forward to see, then, that the eigenprojection for T0 associated with the
eigenvalue 2 is the identity matrix I.

Puiseux series for the perturbed eigenvalues in the 2-group of T(ε) can
be determined straightforwardly in this example by calculating the char-
acteristic polynomial of T(ε) and factoring it. This process yields λ1(ε) =
2 − ε + 2ε2 and λ2(ε) = 2 − ε − 2ε2. Since these Puiseux series are sim-
ply polynomials in ε, there is no restriction on the values we may assign
the positive integers p1 and p2 in (3.1). From the expressions for the per-
turbed eigenvalues, we see that 0 is the only exceptional point; that is,
λ1(ε) = λ2(ε) if and only if ε = 0.

With a bit more effort, the individual eigenprojections for λ1(ε) and
λ2(ε), valid for all ε 6= 0, can be calculated as well. They are

P∗
(
λ1(ε)

)
=

[
3/4 3/4
1/4 1/4

]
and P∗

(
λ2(ε)

)
=

[
1/4 −3/4

−1/4 3/4

]
.

From this we see that P∗(2, ε) = P∗
(
λ1(ε)

)
+ P∗

(
λ2(ε)

)
, the total projection

for the 2-group, is equal to the identity matrix; that is, the perturbation term
for the total projection is equal to 0 in this case. This is to be expected from
the comment in Section 2.1 regarding sums of eigenprojections; it also fits
with the earlier statement in this section implying that P∗(2, ε) is an analytic
perturbation of the eigenprojection for T0 corresponding to the eigenvalue
2. Since P∗(2, ε) = I, it is evident that M(2, ε) = C2.

This example was rather contrived insofar as we could easily determine
complete expressions for the Puiseux series, the individual eigenprojec-
tions, and the total projection. In the general case these objects can only be
approximated; for example, each term in the series expansion for the total
projection must be calculated using a fairly complicated formula (see [6],
p. 77). For the perturbed eigenvalues, which are of significant interest for
analyzing the hybrid Cesaro limits, at least a portion of the Puiseux series
can be obtained by a type of reduction process.

3.2 The Reduction Process

We begin here with a continuation of the previous example.
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Example 3.2. Let

T(ε) =

[
2 − ε + ε2 3ε2

ε2 2 − ε − ε2

]
.

Now consider the matrix

T̃(ε) =
1
ε
(T(ε) − 2I)P∗(2, ε) =

1
ε
(T(ε) − 2I)I =

[
−1 + ε 3ε

ε −1 − ε

]
.

Observe that T̃(ε) is actually an analytic perturbation of the matrix

T̃0 =

[
−1 0

0 −1

]
.

Clearly T̃0 has −1 as an eigenvalue of multiplicity 2; moreover, the per-
turbed −1-group eigenvalues can be directly calculated in the same way as
in Example 3.1. They are λ̃1(ε) = −1 + 2ε and λ̃2(ε) = −1 − 2ε. Observe
the relationship between the λj(ε), as determined in Example 3.1, and the
λ̃j(ε): in each case,

λj(ε) = 2 + ελ̃j(ε).

In other words, the new perturbed eigenvalues λ̃j(ε) are obtained from the
old ones by subtracting off the unperturbed part, 2, and dividing by ε. In
particular, the first-order coefficients of the Puiseux series for λ1(ε) = 2 −
ε + 2ε2 and λ2(ε) = 2 − ε − 2ε2, namely −1 for both cases, are precisely the
eigenvalues of the unperturbed matrix T̃0.

The above is an instance of the reduction process. More specifically, the
reduction process consists of determining T̃(ε) from T(ε) in order to gain
information about the Puiseux series of the perturbed eigenvalues of T(ε).
As alluded to at the end of the previous section, this is primarily useful
when we cannot immediately generate these Puiseux series, as we could in
the previous examples by factoring the characteristic polynomial.

For the remainder of the section, we assume that T(ε) = T0 + A(ε) =
T0 + εA1 + ε2 A2 + · · · is an n × n analytically perturbed matrix and that λ
is a semisimple eigenvalue of T0 of multiplicity m. In the general setting,
the reduction process works as follows. We reduce T(ε) for λ to the matrix

T̃(ε) =
1
ε
(T(ε) − λI)P∗(λ, ε). (3.2)

T̃(ε) is necessarily an analytically perturbed matrix itself. To see this, first
note that the product of two analytically perturbed matrices is again an
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analytically perturbed matrix. Therefore (T(ε) − λI)P∗(λ, ε) is certainly an
analytically perturbed matrix. The “constant” term, (T0 − λI)P∗(λ, 0), acts
on Cn by projecting a vector onto the generalized eigenspace for λ in T0,
and then multiplying by T0 − λI. This is identical to the action of the 0
matrix precisely when the eigenspace and generalized eigenspace for λ in
T0 are the same, or equivalently when λ is semisimple for T0. In other
words, the constant term (T0 − λI)P∗(λ, 0) is equal to 0 precisely when λ
is a semisimple eigenvalue of T0. Since we assume λ is semisimple above,
(T(ε) − λI)P∗(λ, ε) will have the form 0 + εB1 + ε2B2 + · · · for some ma-
trices B1, B2, . . . Dividing by ε therefore yields the analytically perturbed
matrix B1 + εB2 + · · · . One can show that T̃(0) = B1 = P∗(λ, 0)A1P∗(λ, 0).

Returning to the question of how the reduction process affects the eigen-
values of the matrices in question, we begin by writing Cn = M(λ, ε) ⊕
M′(ε), where

M′(ε) =
⊕

µ 6=λ

M(µ, ε),

the direct sum being taken over all eigenvalues µ of T0 not equal to λ. Since
M(λ, ε) has dimension m, M′(ε) has dimension n − m.

If v ∈ M′(ε) for a fixed ε, then P∗(λ, ε)v = 0, whence T̃(ε)v = 0 as
well. In other words, T̃(ε) maps all of M′(ε) to 0, so M′(ε) is contained
in the (generalized) eigenspace for 0. Since the direct sum of the gen-
eralized eigenspaces for T̃(ε) is equal to Cn, there must exist a collection
λ̃1(ε), . . . , λ̃k(ε) of perturbed eigenvalues of T̃(ε), each of which has a gen-
eralized eigenvector that does not lie in M′(ε). More specifically, there must
exist linearly independent vectors v1(ε), . . . , vm(ε) such that

(1) vi(ε) is a generalized eigenvector of some λ̃j(ε) for each i;

(2) if W(ε) = span {v1(ε), . . . , vm(ε)}, then Cn = W(ε) ⊕ M′(ε).

Observe that condition (2) implies that vi(ε) /∈ M′(ε) for each i. There-
fore v′

i(ε) = P∗(λ, ε)vi(ε), the component of vi(ε) in M(λ, ε), is always
nonzero. One can now show that the v′

i(ε) are all linearly independent, so
that they span M(λ, ε). Further, the v′

i(ε) are all still generalized eigenvec-
tors of the λ̃j(ε): if

[
T̃(ε) − λj(ε)I

]lvi(ε) = 0, then
[
T̃(ε) − λj(ε)I

]lv′
i(ε) = 0

as well. Using the fact that v′
i(ε) ∈ M(λ, ε), it also follows that

[
T(ε) −

(
λ + ελ̃j(ε)

)
I
]lv′

i(ε) = 0.

In other words, v′
i(ε) is a generalized eigenvector of T(ε) associated with

the perturbed eigenvalue λ + ελ̃j(ε).
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From all of this, we see that λ + ελ̃1(ε), . . . , λ + ελ̃k(ε) must be precisely
the λ-group eigenvalues of T(ε). And conversely, if λ(ε) is a λ-group eigen-
value of T(ε), then

1
ε
(λ(ε) − λ)

is a perturbed eigenvalue of T̃(ε). Most importantly, the Puiseux series of
each λ-group eigenvalue of T(ε) must begin λ j(ε) = λ + ελ̃j(0) + · · · for
some j; in other words, these Puiseux series involve no fractional powers
of ε less than 1. So by calculating the values of the λ̃j(0)—they are all eigen-
values of T̃(0)—we obtain the first-order coefficients in the Puiseux series
of the λ-group eigenvalues of T(ε).

A subtle but rather important point in the discussion above is that T̃(ε)
may be viewed, for the purposes of obtaining eigenvalue information, as
acting not on all of Cn but just on the perturbed eigenspace M(λ, ε). Cer-
tainly T̃(ε) maps M(λ, ε) to itself, and further all the reduced λ-group eigen-
values of T(ε) (that is, the λ̃j(ε)) occur as eigenvalues of T̃(ε) within the
subspace M(λ, ε). We therefore lose nothing by ignoring the trivial action
of T̃(ε) on M′(ε). In fact, we gain a bit of clarity, for we would rather ignore
the eigenvalue 0 of T̃(ε) as it relates to the subspace M′(ε). It may happen,
in particular, that 0 is also an eigenvalue of T̃(ε) in M(λ, ε), and it is prefer-
able not to group this appearance of the eigenvalue 0 with its appearance
for M′(ε).

Using this idea, we can describe how the reduction process may be per-
formed iteratively to yield successively more information about the Puiseux
series coefficients for the perturbed eigenvalues. Given T1(ε), if λ1 is a
semisimple eigenvalue of T1(0), we first reduce T1(ε) for λ1 to the matrix
T2(ε). Viewing the reduced matrix as acting on the subspace M1(λ1, ε) =
M(λ1, ε) as above, we can ask whether T2(0) has any semisimple eigenval-
ues in M1(λ1, 0). If so—say λ2 is such an eigenvalue—we reduce T2(ε) for
λ2 to the matrix

T3(ε) =
1
ε

(
T2(ε) − λ2P∗(λ1, 0)

)
P̃∗(λ2, ε). (3.3)

This reduction equation takes a little more explanation. To begin, P̃∗(λ2, ε)
is the projection onto the perturbed eigenspace for the λ2-group in M1(λ1, ε).
If λ2 = 0, this may not be equal to the total projection for the λ2-group, since
the total projection includes the subspace described above that we wish to
ignore. Nonetheless, it is still guaranteed that P̃∗(λ2, ε) is an analytically
perturbed matrix. Thus we refer to it as an analytic projection.
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Continuing, P∗(λ1, 0) takes the place of the identity matrix between (3.2)
and (3.3). To maintain the perspective of only paying attention to M1(λ1, ε),
it is more appropriate to use P∗(λ1, 0), which is the identity operator on
M1(λ1, 0) but maps the subspace we wish to ignore to 0. This point, how-
ever, is less essential than the one made in the previous paragraph. We
could actually retain I in (3.3) and obtain the same T3(ε), as P̃∗(λ2, ε) is a
sub-projection of P∗(λ1, ε).

We now view T3(ε) as acting on the range of the matrix P̃∗(λ2, ε), which
we denote by M2(λ2, ε); this is analogous to T2(ε) acting on the range of
the matrix P∗(λ, ε), since the latter range is equal to M1(λ1, ε). Note that
M2(λ2, ε) is equal to the intersection of M1(λ1, ε) with the entire perturbed
eigenspace for the λ2-group in T2(ε). If now λ3(ε) is a perturbed eigenvalue
of T3(ε) in M2(λ2, ε), then in a manner analogous to what we saw earlier
it follows that λ2 + ελ3(ε) is a perturbed eigenvalue of T2(ε) in M1(λ1, ε).
Therefore

λ1 + ε
(
λ2 + ελ3(ε)

)
= λ1 + ελ2 + ε2λ3(0) + · · ·

is a perturbed eigenvalue in the λ1-group of T(ε). This process can be re-
peated whenever we can find semisimple eigenvalues following a given
reduction. As long as it continues, the coefficients in the Puiseux series are
attached to positive integral powers of ε.

3.3 Applications to Stochastic Matrices

As described in Chapter 1, we are primarily concerned with analytic per-
turbations of stochastic matrices. This motivates the following definition.

Definition 3.2. An analytically perturbed stochastic matrix P(ε) is an an-
alytic perturbation of a stochastic matrix P0 such that for all sufficiently small
positive ε, P(ε) remains stochastic.

This definition ensures that the analytically perturbed matrices with
which we concern ourselves have nice probabilistic interpretations. Also,
we often drop the adverb “analytically” and just refer to P(ε) as a perturbed
stochastic matrix.

The fact that the unit-circle eigenvalues of a stochastic matrix are always
semisimple permits us to perform the reduction process for a perturbed
stochastic matrix P(ε) = P0 + A(ε) at least once for any such eigenvalue.
In Chapter 4 we go into more detail on the reduction process for unit-circle
eigenvalues of P(ε).





Chapter 4

Cesaro Limit Results

Throughout this chapter, P(ε) = P0 + A(ε) is an n × n analytically per-
turbed stochastic matrix.

4.1 Decomposing the Cesaro Limit

Combining the information in Sections 2.1 and 3.1, we see that for a given
P(ε),

∑
λ

P∗(λ, ε) = I,

where the sum is taken over all eigenvalues λ of P0. This type of decompo-
sition of the identity matrix suggests decomposing the hybrid Cesaro limit
expression as well:

1
N

N

∑
k=1

Pk(ε) =
1
N

N

∑
k=1

Pk(ε) ∑
λ

P∗(λ, ε) = ∑
λ

1
N

N

∑
k=1

Pk(ε)P∗(λ, ε).

Since P0 has only finitely many eigenvalues, we can investigate the overall
hybrid Cesaro limit by separately examining

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(λ, ε)

for each eigenvalue λ of P0. This is very similar to the approach used in [4],
more of which we shall see shortly. Before proceeding, however, we look
at a pair of examples to get a sense of what will come.
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4.2 Examples

In each of the following two examples, drawn from [8], we analyze the limit

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(λ, ε)

when λ is an eigenvalue of P0 on the unit circle other than 1 (in both cases,
λ = −1). Each example possesses a property that one might expect to cause
the limit not to exist; we show, however, that this is not the case. Recall from
Section 2.1 that the multiplicity of an eigenvalue is its algebraic multiplicity,
or equivalently the degree of its associated generalized eigenspace.

Example 4.1. For 0 < ε ≤ 1, let

P(ε) = P0 + εA1 =




0 1 − ε 0 ε 0 0
1 − ε 0 ε 0 0 0

0 0 0 1 − ε 0 ε
0 0 1 − ε 0 ε 0
0 0 0 0 0 1
0 0 0 0 1 0




.

The unperturbed matrix

P0 =




0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0




has each of 1 and −1 as eigenvalues of multiplicity 3. The −1-group eigen-
values for P(ε) are λ1(ε) = −1 and λ2(ε) = −1 + ε. The former has multi-
plicity 1, and is thus necessarily semisimple, while the latter is not semisim-
ple: its algebraic multiplicity is 2, but its geometric multiplicity is 1. The to-
tal projection P∗(−1, ε) for the −1-group is the sum of the individual eigen-
projections

P∗
(
λ1(ε)

)
=

1
2




0 0 0 0 1 −1
0 0 0 0 −1 1
0 0 0 0 1 −1
0 0 0 0 −1 1
0 0 0 0 1 −1
0 0 0 0 −1 1



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and

P∗
(
λ2(ε)

)
=

1
2




1 −1 0 0 −1 1
−1 1 0 0 1 −1

0 0 1 −1 −1 1
0 0 −1 1 1 −1
0 0 0 0 0 0
0 0 0 0 0 0




In addition, the nilpotent matrix associated with λ2(ε) is

D(ε) = εM =
ε

2




0 0 −1 1 1 −1
0 0 1 −1 −1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




;

its index of nilpotence is 2, since D2(ε) = 0.
Next we show that

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(−1, ε) = 0,

regardless of how fast N(ε) ↑ ∞ as ε ↓ 0.
To this end, first note that

Pk(ε)P∗(−1, ε) = Pk(ε)
[
P∗
(
λ1(ε)

)
+ P∗

(
λ2(ε)

)]

= λk
1(ε)P∗

(
λ1(ε)

)
+ λk

2(ε)P∗
(
λ2(ε)

)
+ kλk−1

2 (ε)D(ε)

= (−1)kP∗
(
λ1(ε)

)
+ (−1 + ε)kP∗

(
λ2(ε)

)

+ kε(−1 + ε)k−1M.

Hence

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(−1, ε)

=
1

N(ε)

N(ε)

∑
k=1

(−1)kP∗
(
λ1(ε)

)
+

1
N(ε)

N(ε)

∑
k=1

(−1 + ε)kP∗
(
λ2(ε)

)

+
1

N(ε)

N(ε)

∑
k=1

kε(−1 + ε)k−1M.

(4.1)
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Now consider the three terms in (4.1) individually. To start,

1
N(ε)

N(ε)

∑
k=1

(−1)kP∗
(
λ1(ε)

)
=

−1 + (−1)N(ε)

2N(ε)
P∗
(
λ1(ε)

)
.

Since P∗
(
λ1(ε)

)
is a constant matrix and
∣∣∣∣
−1 + (−1)N(ε)

2N(ε)

∣∣∣∣ =

∣∣−1 + (−1)N(ε)
∣∣

2N(ε)

≤
2

2N(ε)
→ 0

as ε ↓ 0, the first term contributes nothing to the overall limit. The second
term behaves in the same way because | − 1 + ε| ≤ 1, −1 + ε is bounded
away from 1 as ε ↓ 0, and P∗

(
λ2(ε)

)
is also a constant matrix.

As for the third term in (4.1), we see that

1
N(ε)

N(ε)

∑
k=1

kε(−1 + ε)k−1M

=
1 − (−1 + ε)N(ε)

[
1 + (2 − ε)N(ε)

]

(2 − ε)2N(ε)
εM

=

[
ε

(2 − ε)2N(ε)
−

ε(−1 + ε)N(ε)

(2 − ε)2N(ε)
−

ε(−1 + ε)N(ε)

2 − ε

]
M. (4.2)

The numerator of each bracketed term in (4.2) approaches 0 as ε ↓ 0: in each
case the magnitude of the numerator is ≤ ε. On the other hand, the first two
denominators become unbounded and the third denominator approaches
a finite nonzero limit. It follow that the entire bracketed coefficient of M
in (4.2) goes to 0, and since M is itself a constant matrix this implies that the
third term from (4.1) tends to the zero matrix as ε ↓ 0.

We showed that all three terms in (4.1) approach 0 as ε ↓ 0, thus estab-
lishing that the overall limit is 0.

Example 4.2. For 0 < ε ≤ 1
2 , let

P(ε) =




0 1 − 2ε ε ε2 0 ε − ε2

1 − 2ε 0 ε2 ε ε − ε2 0
0 0 ε + ε2 − ε3 1 − ε − ε2 + ε3 0 0
0 0 1 − ε − ε2 + ε3 ε + ε2 − ε3 0 0
0 0 0 0 0 1
0 0 0 0 1 0




.
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The unperturbed matrix P0 is the same as that in Example 4.1, having 1
and −1 as eigenvalues of multiplicity 3. The −1-group eigenvalues of P(ε)
are λ1(ε) = −1, λ2(ε) = −1 + 2ε, and λ3(ε) = −1 + 2ε + 2ε2 − 2ε3; each
has multiplicity 1. The associated eigenprojections, which sum to the total
projection P∗(−1, ε) for the −1-group, are

P∗
(
λ1(ε)

)
=

1
4




0 0 0 0 1 − ε −1 + ε
0 0 0 0 −1 + ε 1 − ε
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 2 −2
0 0 0 0 −2 2




,

P∗
(
λ2(ε)

)
=

1
4




2 −2 −1/ε 1/ε −1 + ε 1 − ε
−2 2 1/ε −1/ε 1 − ε −1 + ε

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

P∗
(
λ3(ε)

)
=

1
4




0 0 1/ε −1/ε 0 0
0 0 −1/ε 1/ε 0 0
0 0 2 −2 0 0
0 0 −2 2 0 0
0 0 0 0 0 0
0 0 0 0 0 0




.

Notice that P∗
(
λ2(ε)

)
and P∗

(
λ3(ε)

)
become unbounded as ε ↓ 0 because

of the entries that involve 1/ε.
As in Example 4.1, we show that

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(−1, ε) = 0,

again irrespective of the rate at which N(ε) ↑ ∞.
To begin, define new matrices

M1(ε) =
1
4




2 −2 0 0 −1 + ε 1 − ε
−2 2 0 0 1 − ε −1 + ε

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,
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M2 =
1
4




0 0 0 0 0 0
0 0 0 0 0 0
0 0 2 −2 0 0
0 0 −2 2 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

M3(ε) =
1
4




0 0 −1/ε 1/ε 0 0
0 0 1/ε −1/ε 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

so that P∗
(
λ2(ε)

)
= M1(ε) + M3(ε) and P∗

(
λ3(ε)

)
= M2 − M3(ε). Then

Pk(ε)P∗(−1, ε) = Pk(ε)
[
P∗
(
λ1(ε)

)
+ P∗

(
λ2(ε)

)
+ P∗

(
λ3(ε)

)]

= λk
1(ε)P∗

(
λ1(ε)

)
+ λk

2(ε)P∗
(
λ2(ε)

)
+ λk

3(ε)P∗
(
λ3(ε)

)

= λk
1(ε)P∗

(
λ1(ε)

)
+ λk

2(ε)M1(ε) + λk
3(ε)M2

+
(
λk

2(ε) − λk
3(ε)

)
M3(ε),

and thus

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(−1, ε)

=
1

N(ε)

N(ε)

∑
k=1

λk
1(ε)P∗

(
λ1(ε)

)
+

1
N(ε)

N(ε)

∑
k=1

λk
2(ε)M1(ε)

+
1

N(ε)

N(ε)

∑
k=1

λk
3(ε)M2 +

1
N(ε)

N(ε)

∑
k=1

(
λk

2(ε) − λk
3(ε)

)
M3(ε).

(4.3)

The matrices P∗
(
λ1(ε)

)
, M1(ε), and M2 are all clearly bounded as ε ↓ 0,

and consequently the reasoning used in Proposition 4.4 below can be used
to show that the first three terms in (4.3) all go to 0. For the fourth term, we
make use of the fact that, for ε 6= 0, εM3(ε) is a constant matrix:

1
N(ε)

N(ε)

∑
k=1

(
λk

2(ε) − λk
3(ε)

)
M3(ε)

=
1

N(ε)

N(ε)

∑
k=1

(
λ2(ε) − λ3(ε)

) k

∑
j=1

λ
k−j
2 (ε)λ

j−1
3 (ε)M3(ε)
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=
1

N(ε)

λ2(ε) − λ3(ε)

ε

N(ε)

∑
k=1

k

∑
j=1

λ
k−j
2 (ε)λ

j−1
3 (ε)

[
εM3(ε)

]

=
2ε2 − 2ε

N(ε)

N(ε)

∑
j=1

λ
j−1
3 (ε)

N(ε)−j+1

∑
k=1

λk−1
2 (ε)

[
εM3(ε)

]

=
2ε2 − 2ε

N(ε)

N(ε)

∑
j=1

λ
j−1
3 (ε)

1 − λ
N(ε)−j+1
2 (ε)

1 − λ2(ε)

[
εM3(ε)

]

=
1

N(ε)

2ε2 − 2ε

2 − 2ε

N(ε)

∑
j=1

λ
j−1
3 (ε)

(
1 − λ

N(ε)−j+1
2 (ε)

)[
εM3(ε)

]

= −
ε

N(ε)

N(ε)

∑
j=1

λ
j−1
3 (ε)

(
1 − λ

N(ε)−j+1
2 (ε)

)[
εM3(ε)

]
.

Hence∥∥∥∥∥
1

N(ε)

N(ε)

∑
k=1

(
λk

2(ε) − λk
3(ε)

)
M3(ε)

∥∥∥∥∥

=

∥∥∥∥∥−
ε

N(ε)

N(ε)

∑
j=1

λ
j−1
3 (ε)

(
1 − λ

N(ε)−j+1
2 (ε)

)[
εM3(ε)

]
∥∥∥∥∥

=
ε

N(ε)

∣∣∣∣∣

N(ε)

∑
j=1

λ
j−1
3 (ε)

(
1 − λ

N(ε)−j+1
2 (ε)

)
∣∣∣∣∣
∥∥εM3(ε)

∥∥

≤
ε

N(ε)

N(ε)

∑
j=1

∣∣∣λj−1
3 (ε)

(
1 − λ

N(ε)−j+1
2 (ε)

)∣∣∣
∥∥εM3(ε)

∥∥

≤
ε

N(ε)

N(ε)

∑
j=1

(1 · 2)
∥∥εM3(ε)

∥∥

= 2ε
∥∥εM3(ε)

∥∥.

Since 2ε
∥∥εM3(ε)

∥∥ → 0 as ε ↓ 0, it follows that the fourth term from (4.3)
goes to 0 along with the other three, implying the result.

4.3 Further Decomposition of the Limit

Suppose that λ is an eigenvalue of P0 that lies on the unit circle. In this
section we describe how the total projection P∗(λ, ε), which appears in the
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initial decomposition of the hybrid Cesaro limit from Section 4.1, can be
further broken down into more readily-analyzed pieces. We first express
P∗(λ, ε) as

P∗(λ, ε) = P∗
k(λ)(λ, ε) +

k(λ)

∑
i=1

(P∗
i−1(λ, ε) − P∗

i (λ, ε)) (4.4)

for certain analytic projection matrices P∗
i (λ, ε). (Here k(λ) is a nonnegative

integer that will emerge from the process.) Subsequently, for each i ≤ k(λ)
we will decompose P∗

i−1(λ, ε) − P∗
i (λ, ε).

To this end, we begin by introducing notation that allows us to de-
scribe the decomposition process. Let m0(λ) denote the multiplicity of the
eigenvalue 0 in P0 − λI, so that m0(λ) is the same as the multiplicity of
λ in P0. Let m′(λ) denote the multiplicity of 0 in T0(λ, ε) = P(ε) − λI =
(P0 − λI) + A(ε). That is, if a perturbed eigenvalue of T0(λ, ε) is identically
equal to 0, then m′(λ) is its multiplicity; otherwise, m′(λ) = 0. Note that
m′(λ) is the same as the multiplicity of λ in P(ε). In each of Example 4.1
and Example 4.2, then, m′(−1) = 1. Let P∗

0 (λ, ε) be the total projection
matrix for the 0-group eigenvalues in T0(λ, ε); then T0(λ, ε) is identical to
P∗(λ, ε), the total projection matrix for the λ-group eigenvalues in P(ε).
Also, let M0(λ, ε) = M(λ, ε), the m0(λ)-dimensional perturbed eigenspace
for the λ-group in P(ε). Notice that M0(λ, ε) is the same as the perturbed
eigenspace for the 0-group in T0(λ, ε). Finally, let M−1(λ, ε) = Cn, so that
T0(λ, ε) acts on M−1(λ, ε) in the sense introduced in Section 3.2, and ob-
serve that m0(λ) ≥ m′(λ). We now proceed inductively as follows.

Given Tj(λ, ε), which acts on Mj−1(λ, ε), and the corresponding analytic
projection P∗

j (λ, ε) onto the mj(λ)-dimensional subspace Mj(λ, ε), one of
the following three conditions must hold:

(1) 0 is not a semisimple eigenvalue of Tj(λ, 0) in Mj−1(λ, 0);

(2) mj(λ) = m′(λ); or

(3) 0 is a semisimple eigenvalue of Tj(λ, 0) in Mj−1(λ, 0).and mj(λ) >

m′(λ).

In the first two cases we terminate the decomposition process: we let k(λ) =
j, and take the decomposition of P∗(λ, ε) as in (4.4). In the third case, we
apply the reduction process as described in Section 3.2: we let

Tj+1(λ, ε) =
1
ε

Tj(λ, ε)P∗
j (λ, ε),
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so that Tj+1(λ, ε) acts on the subspace Mj(λ, ε). We now define Mj+1(λ, ε) to
be the intersection of Mj(λ, ε) with the eigenspace for the 0-group of eigen-
values in Tj+1(λ, ε), and we define P∗

j+1(λ, ε) to be the analytic projection
onto this subspace. Letting mj+1(λ) denote the dimension of this subspace,
we see that mj(λ) ≥ mj+1(λ) ≥ m′(λ).

This process is guaranteed to halt after some finite number of steps.
For suppose that condition (1) above never occurs, and let λ(ε) = λ +

∑
∞
l=1 clε

l/p be the Puiseux series for a perturbed eigenvalue in the λ-group
of P(ε) that is not identically equal to λ. Also, let l0 be the smallest value
of l for which cl 6= 0. Then by what was noted in Section 3.2 about how
the reduction process affects perturbed eigenvalues, for each nonnegative
integer j < l0/p we have that

1
εj (λ(ε) − λ) =

∞

∑
l=1

clε
(l/p)−j =

∞

∑
l=l0

clε
(l/p)−j

is the Puiseux series for a perturbed eigenvalue in the 0-group of Tj(λ, ε).
In particular, this is true for the largest integer j′ less than l0/p. Letting
l1 = p(j′ + 1), we see that

1
ε

∞

∑
l=l0

clε
(l/p)−j′ =

l1−1

∑
l=l0

clε
(l/p)−(j′+1) + cl1 +

∞

∑
l=l1+1

clε
(l/p)−(j′+1) (4.5)

is a perturbed eigenvalue of Tj′+1(λ, ε), and hence must approach some
eigenvalue of Tj′+1(λ, 0) as ε ↓ 0. But this necessitates that l1 = l0, for
otherwise the first sum on the right-hand side of the above identity would
diverge as ε ↓ 0. (The second sum approaches 0 as a result of the way we
defined l1.) Thus the perturbed eigenvalue in (4.5) is in the cl0-group of
Tj′+1(λ, ε), whence mj′+1(λ) < mj′(λ). From all of this we see that the m j(λ)
must eventually decrease to m′(λ), as every perturbed λ-group eigenvalue
not identically equal to λ is eventually “split off” in the reduction process.

Before proceeding with the second step of the decomposition, we in-
troduce a term to distinguish between the two conditions under which the
process laid out above terminates. If condition (2) is eventually satisfied,
we say that λ is completely reducible for P(ε). In [4], the authors show that 1
is completely reducible for any perturbed stochastic matrix P(ε).

Continuing with the decomposition, suppose that 1 ≤ i ≤ k(λ) and
that mi(λ) < mi−1(λ). Then Mi(λ, ε) is a proper subspace of Mi−1(λ, ε),
so the analytic projections P∗

i (λ, ε) and P∗
i−1(λ, ε) onto these subspaces are

not equal. (If instead mi(λ) = mi−1(λ), then the subspaces and hence the
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analytic projections are identical.) In this case, the unperturbed reduced
matrix Ti(λ, 0) must have a nonempty collection of nonzero eigenvalues,
call them µi,1(λ), µi,2(λ), . . . , µi,ni(λ)(λ); these µi,j(λ) are just the eigenval-
ues that “split off” from 0 after the (i + 1)st application of the reduction
process.) For 1 ≤ j ≤ ni(λ), we let P∗

i,j(λ, ε) be the total projection for the
µi,j(λ)-group eigenvalues in Ti(λ, ε). Then

P∗
i−1(λ, ε) = P∗

i (λ, ε) +
ni(λ)

∑
j=1

P∗
i,j(λ, ε).

With this secondary decomposition, we arrive at our desired decomposi-
tion of P∗(λ, ε):

P∗(λ, ε) = P∗
k(λ)(λ, ε) +

k(λ)

∑
i=1

(P∗
i−1(λ, ε) − P∗

i (λ, ε))

= P∗
k(λ)(λ, ε) +

k(λ)

∑
i=1

ni(λ)

∑
j=1

P∗
i,j(λ, ε).

(4.6)

As mentioned earlier, we make use of this decomposition in evaluating
smaller pieces of the overall Cesaro limit expression. Before continuing,
though, note that if 0 ≤ i1 < i2 ≤ k(λ), then P∗

i2(λ, ε) is a sub-projection of
P∗

i1(λ, ε). Similarly, for such i1 and i2, if 1 ≤ j ≤ ni2(λ), then P∗
i2,j(λ, ε) is a

sub-projection of P∗
i1(λ, ε). Hence, by the inductive definition of the Ti(λ, ε),

we see that

Ti(λ, ε) =
1
ε

Ti−1(λ, ε)P∗
i−1(λ, ε) =

1
ε

[
1
ε

Ti−2(λ, ε)P∗
i−2(λ, ε)

]
P∗

i−1(λ, ε)

=
1
ε2 Ti−2(λ, ε)P∗

i−2(λ, ε)P∗
i−1(λ, ε) =

1
ε2 Ti−2(λ, ε)P∗

i−1(λ, ε)

= · · · =
1
εj Ti−j(λ, ε)P∗

i−1(λ, ε)

= · · · =
1
εi T0(λ, ε)P∗

i−1(λ, ε) =
1
εi (P(ε) − λI)P∗

i−1(λ, ε).

4.4 Previous Results

We begin by introducing a piece of notation. If λ is a unit-circle eigenvalue
of P0, 1 ≤ i ≤ k(λ), and 1 ≤ j ≤ ni(λ), we define

Di,j(λ, ε) = (Ti(λ, ε) − µi,j(λ)I)P∗
i,j(λ, ε).
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We refer to these matrices as generalized analytic idempotents. Note that
each Di,j(λ, 0) is a nilpotent matrix; we denote its index of nilpotence by
ni,j(λ).

The three propositions below, which are restatements of results in [4],
are central to the overall characterization of the hybrid Cesaro limit there.
All three concern the projection matrices obtained as above by decompos-
ing P∗(1, ε).

Proposition 4.1. If 1 ≤ i ≤ k(1) and N(ε)εi → ∞ as ε ↓ 0, then for 1 ≤ j ≤
ni(1),

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗
i,j(1, ε) = 0.

Proposition 4.2. If 1 ≤ i ≤ k(1) and N(ε)εi → 0 as ε ↓ 0, then for 1 ≤ j ≤
ni(1),

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗
i,j(1, ε) = P∗

i,j(1, 0).

Proposition 4.3. If 1 ≤ i ≤ k(1) and N(ε)εi → L as ε ↓ 0, where 0 < L < ∞,
then for 1 ≤ j ≤ ni(1),

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗
i,j(1, ε)

=
1 − eLµi,j(1)

−Lµi,j(1)
P∗

i,j(1, 0)

+
1

−Lµi,j(1)

ni,j(1)−1

∑
l=1

(
1 − eLµi,j(1)

l

∑
k=0

(
− Lµi,j(1)

)k

k!

)

×
Dl

i,j(1, 0)
(
− µi,j(1)

)l .

Now, since 1 is completely reducible for P(ε), P∗
k(1)(1, ε) projects onto

the eigenspace for 1 in P(ε), so P(ε)P∗
k(1)(1, ε) = P∗

k(1)(1, ε). Consequently,

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗
k(1)(1, ε) = lim

ε↓0

1
N(ε)

N(ε)

∑
k=1

P∗
k(1)(1, ε)

= lim
ε↓0

P∗
k(1)(1, ε) = P∗

k(1)(1, 0).
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The following three major results (essentially Theorems 1, 2, and 3 in [4], p.
237) are a consequence of the above propositions and the observation just
made.

Theorem 4.1. Suppose that 0 ≤ i ≤ k(1) − 1 and N(ε) ↑ ∞ with N(ε)εi → ∞

but N(ε)εi+1 → 0 as ε ↓ 0. Then

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(1, ε) = P∗
i (1, 0).

Theorem 4.2. If N(ε)εk(1) → ∞ as ε ↓ 0, then

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(1, ε) = P∗
k (1, 0).

Theorem 4.3. Suppose 1 ≤ i ≤ k(1) and N(ε)εi → L as ε ↓ 0, where 0 < L <

∞. Then

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(1, ε)

= P∗
i (1, 0) +

ni(1)

∑
j=1

1 − eLµi,j(1)

−Lµi,j(1)
P∗

i,j(1, 0)

+
ni(1)

∑
j=1

1
−Lµi,j(1)

ni,j(1)−1

∑
l=1

(
1 − eLµi,j(1)

l

∑
k=0

(
− Lµi,j(1)

)k

k!

)
Dl

i,j(1, 0)
(
− µi,j(1)

)l

The final result which we present from [4] concerns eigenvalues λ of P0
satisfying |λ| < 1. It follows from Proposition 1, p. 235 there.

Theorem 4.4. Suppose that λ is an eigenvalue of P0 such that |λ| < 1. Then

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(λ, ε) = 0.

4.5 New Results

The previous determinations of the value of

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(λ, ε), (4.7)
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when either λ = 1 or |λ| < 1, do not change when P0 is permitted to have
eigenvalues on the unit circle other than 1. Therefore to fully characterize
the overall hybrid Cesaro limit, it suffices to concentrate on the limit in (4.7)
when λ is an eigenvalue on the unit circle other than 1; that is, we wish to
determine whether this limit exists, and if it does we wish to determine a
general expression for it. One result I obtained, from my work over the
summer (see [8]), is as follows.

Proposition 4.4. Suppose that λ is an eigenvalue of P0 satisfying |λ| = 1, λ 6= 1,
and let λ1(ε), . . . , λm(ε) be the perturbed λ-group eigenvalues, with associated
eigenprojections P∗

(
λ1(ε)

)
, . . . , P∗

(
λm(ε)

)
. If each λi(ε) is a semisimple eigen-

value of P(ε) and each P∗
(
λi(ε)

)
is bounded as ε ↓ 0, then

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(λ, ε) = 0.

Proof. Since the λi(ε) are semisimple,

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(λ, ε) =
1

N(ε)

N(ε)

∑
k=1

Pk(ε)
m

∑
i=1

P∗
(
λi(ε)

)

=
m

∑
i=1

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗
(
λi(ε)

)

=
m

∑
i=1

1
N(ε)

N(ε)

∑
k=1

λk
i (ε)P∗

(
λi(ε)

)

=
m

∑
i=1

λi(ε)

N(ε)

1 − λ
N(ε)
i (ε)

1 − λi(ε)
P∗
(
λi(ε)

)
.

By hypothesis, there exist positive constants ε0, M1, . . . , Mm such that
for all ε ∈ (0, ε0), P(ε) is stochastic and

∥∥P∗
(
λi(ε)

)∥∥ ≤ Mi, i = 1, . . . , m.
Hence, for these ε, |λi(ε)| ≤ 1, i = 1, . . . , m. It follows that

∥∥∥∥∥
1

N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(λ, ε)

∥∥∥∥∥ ≤
m

∑
i=1

∥∥∥∥∥
λi(ε)

N(ε)

1 − λ
N(ε)
i (ε)

1 − λi(ε)
P∗
(
λi(ε)

)
∥∥∥∥∥

=
m

∑
i=1

|λi(ε)|

N(ε)

|1 − λ
N(ε)
i (ε)|

|1 − λi(ε)|

∥∥P∗
(
λi(ε)

)∥∥

≤
m

∑
i=1

1
N(ε)

1 + |λi(ε)|N(ε)

|1 − λi(ε)|
Mi



44 Cesaro Limit Results

≤
1

N(ε)

m

∑
i=1

2Mi
|1 − λi(ε)|

,

again for ε ∈ (0, ε0). As

m

∑
i=1

2Mi
|1 − λi(ε)|

→
2

|1 − λ|

m

∑
i=1

Mi

but N(ε) → ∞ as ε ↓ 0,
∥∥∥∥∥

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(λ, ε)

∥∥∥∥∥ → 0,

and the result follows.

Note that each P∗
(
λi(ε)

)
above need not be an analytic perturbation of

any matrix.
We now come to the main results. Throughout, we assume that λ 6= 1

is a unit-circle eigenvalue of P0. If, in the process of reducing P(ε) for λ,
we have that αi,j(λ, ε) is a perturbed eigenvalue for Ti(λ, ε) in the µi,j(λ)-
group (1 ≤ i ≤ k(λ) and 1 ≤ j ≤ ni(λ)), then βi,j(λ, ε) = λ + εiαi,j(λ, ε) =

λ + εiµi,j(λ) + · · · is the corresponding perturbed eigenvalue in P(ε). Since
P(ε) is stochastic for all sufficiently small positive ε, say 0 < ε < ε0, it must
be the case that βi,j(λ, ε) lies within Θn for such ε. As the term εiµi,j(λ) in
the Puiseux series for βi,j(λ, ε) dominates all the other non-constant terms
as ε ↓ 0, certainly Re [λµi,j(λ)] ≤ 0: otherwise, βi,j(λ, ε) would lie strictly
outside the unit disk for all sufficiently small positive ε, whereas Θn is en-
tirely contained within the unit disk.

In fact, however, the results from Section 2.3 imply that strict inequality
holds above. For suppose to the contrary that Re [λµi,j(λ)] = 0. Then the
curve traced out by βi,j(λ, ε) in the complex plane for 0 ≤ ε < ε0 is tangent
to the unit circle at λ. But the boundary arcs of Θn incident to λ make
nonzero angles with the unit circle at λ by Theorems 2.3 and 2.4, so it is
necessarily the case that βi,j(λ, ε) falls outside of Θn for all sufficiently small
positive ε. As this cannot happen, the claimed strict inequality must hold.
Now define νi,j(λ, ε) = λ + εiµi,j(λ), and write λµi,j(λ) = −a + bi, so that
a > 0. Then for positive ε so small that

(
3
4

a2 + b2
)

εi ≤ a,



New Results 45

we obtain
∣∣νi,j(λ, ε)

∣∣ =
∣∣νi,j(λ, ε)

∣∣∣∣λ
∣∣ =

∣∣(λ + εiµi,j(λ)
)
λ
∣∣

=
∣∣1 + εiλµi,j(λ)

∣∣

≤ 1 +
1
2

εiRe [λµi,j(λ)] < 1.

Additionally, by what was noted at the end of Section 4.3 we have the
identity
[
P(ε) − νi,j(λ, ε)I

]
P∗

i,j(λ, ε) =
[
P(ε) − λI − εiµi,j(λ)I

]
P∗

i,j(λ, ε)

=
[
(P(ε) − λI)P∗

i−1(λ, ε) − εiµi,j(λ)I
]
P∗

i,j(λ, ε)

= εi
[

1
εi (P(ε) − λI)P∗

i−1(λ, ε) − µi,j(λ)I
]

P∗
i,j(λ, ε)

= εi[Ti(λ, ε) − µi,j(λ)I
]
P∗

i,j(λ, ε)

= εiDi,j(λ, ε).

As a consequence of this and the fact that

P∗
i,j(λ, ε)Di,j(λ, ε) = Di,j(λ, ε)P∗

i,j(λ, ε) = Di,j(λ, ε),

we obtain the following lemma (this is virtually identical to Lemma 2 in [4]).

Lemma 4.1.

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗
i,j(λ, ε) =

1
N(ε)

N(ε)

∑
k=1

νk
i,j(λ, ε)P∗

i,j(λ, ε)

+
1

N(ε)

N(ε)

∑
k=1

k

∑
l=1

(
k
l

)
νk−l

i,j [εiDi,j(λ, ε)]l .

Proof. Since P∗
i,j(λ, ε) is a projection matrix and commutes with P(ε), we

have that

Pk(ε)P∗
i,j(λ, ε) = Pk(ε)[P∗

i,j(λ, ε)]k = [P(ε)P∗
i,j(λ, ε)]k.

Using what was noted before the lemma, we see that

Pk(ε)P∗
i,j(λ, ε) = [νi,j(λ, ε)P∗

i,j(λ, ε) + εiDi,j(λ, ε)]k

=
k

∑
l=0

(
k
l

)
[νi,j(λ, ε)P∗

i,j(λ, ε)]k−l [εiDi,j(λ, ε)]l



46 Cesaro Limit Results

= [νi,j(λ, ε)P∗
i,j(λ, ε)]k

+
k

∑
l=1

(
k
l

)
[νi,j(λ, ε)P∗

i,j(λ, ε)]k−l [εiDi,j(λ, ε)]l

= νk
i,j(λ, ε)P∗

i,j(λ, ε) +
k

∑
l=1

(
k
l

)
νk−l

i,j (λ, ε)[εi Di,j(λ, ε)]l .

The result now follows by summing over k and dividing by N(ε).

So for each P∗
i,j(λ, ε), this lemma further breaks down the expression of

interest. We deal with the first piece immediately, and then return to the
second, obtaining several useful estimates, before proving the main propo-
sitions.

Lemma 4.2.

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

νk
i,j(λ, ε)P∗

i,j(λ, ε) = 0.

Proof. Using the expression for a finite geometric series, we estimate the
norm of the limit expression as follows:

∥∥∥∥
1

N(ε)

N(ε)

∑
k=1

νk
i,j(λ, ε)P∗

i,j(λ, ε)

∥∥∥∥

=

∥∥∥∥
1

N(ε)

νi,j(λ, ε)
[
1 − ν

N(ε)
i,j (λ, ε)

]

1 − νi,j(λ, ε)
P∗

i,j(λ, ε)

∥∥∥∥

≤
1

N(ε)

∣∣∣∣
νi,j(λ, ε)

[
1 − ν

N(ε)
i,j (λ, ε)

]

1 − νi,j(λ, ε)

∣∣∣∣‖P∗
i,j(λ, ε)‖

≤
2

N(ε)|1 − νi,j(λ, ε)|
‖P∗

i,j(λ, ε)‖.

But ‖P∗
i,j(λ, ε)‖ → ‖P∗

i,j(λ, 0)‖ and |1 − νi,j(λ, ε)| → |1 − λ| 6= 0 as ε ↓ 0, so
the fact that N(ε) ↑ ∞ implies that the final expression above approaches
0 as ε ↓ 0. Hence the first expression also approaches 0, and the lemma
follows.

Returning to the second term from Lemma 4.1, the next three lemmas
allow us to estimate this term. They are taken almost unchanged from [4],
pp. 238–239.
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Lemma 4.3.

1
N(ε)

N(ε)

∑
k=1

k

∑
l=1

(
k
l

)
νk−l

i,j (λ, ε)
[
εiDi,j(λ, ε)

]l

=
1

N(ε)

N(ε)

∑
l=1

[N(ε)

∑
k=l

(
k
l

)
νk−l

i,j (λ, ε)

][
εiDi,j(λ, ε)

]
,

and

N(ε)

∑
k=l

(
k
l

)
νk−l

i,j (λ, ε) =
1 − ∑

l
k=0
(N(ε)+1

k
)
ν

N(ε)+1−k
i,j (λ, ε)

[
1 − νi,j(λ, ε)

]k

[
1 − νi,j(λ, ε)

]l .

Lemma 4.4.
∣∣∣∣

N(ε)

∑
k=l

(
k
l

)
νk−l

i,j (ε)

∣∣∣∣ =

∣∣∣∣
N(ε)−l

∑
k=0

(
k + l

l

)
νk

i,j(ε)

∣∣∣∣ ≤
N(ε)−l

∑
k=0

(
k + l

l

)∣∣νi,j(ε)
∣∣k.

Also, we have the two estimates

N(ε)−l

∑
k=0

(
k + l

l

)∣∣νi,j(ε)
∣∣k ≤

∞

∑
k=0

(
k + l

l

)∣∣νi,j(ε)
∣∣k =

1
[
1 −

∣∣νi,j(ε)
∣∣]l+1

and

N(ε)−l

∑
k=0

(
k + l

l

)∣∣νi,j(ε)
∣∣k ≤

N(ε)−l

∑
k=0

(
k + l

l

)
=

N(ε)−l

∑
k=0

(l + k) · · · (1 + k)
l!

≤
Nl+1(ε)

l!
,

where the latter is valid for l ≥ 1.

Lemma 4.5. If 1 ≤ i ≤ k(λ) and 1 ≤ j ≤ ni(λ), then there are positive constants
Ci,j(λ), Ki,j(λ), and ε i,j(λ) such that

∥∥Dl
i,j(λ, ε)

∥∥ ≤ Ci,j(λ)
(
Ki,j(λ)ε

)l/n2
i,j(λ)

whenever 0 < ε < ε i,j(λ) and l ≥ ni,j(λ). Also, for sufficiently small positive ε
we have

∥∥Di,j(λ, ε)
∥∥ ≤

∥∥Di,j(λ, 0)
∥∥+ 1.

We now present the main propositions.
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Proposition 4.5. If 1 ≤ i ≤ k(λ) and N(ε)εi → ∞ as ε ↓ 0, then for 1 ≤ j ≤
ni(λ),

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗
i,j(λ, ε) = 0.

Proof. Suppose that 1 ≤ i ≤ k(λ) and 1 ≤ j ≤ ni(λ) with N(ε)εi → ∞ as
ε ↓ 0. By the results in Lemmas 4.1, 4.2, and 4.3, it suffices to show that

1
N(ε)

N(ε)

∑
l=1

[N(ε)

∑
k=l

(
k
l

)
νk−l

i,j (λ, ε)

][
εiDi,j(λ, ε)

]l
→ 0

as ε → 0. We will estimate the norm of this expression using the first esti-
mate from Lemma 4.4, the estimates from Lemma 4.5, and the fact (noted
at the beginning of this chapter) that for all sufficiently small positive ε,

∣∣νi,j(λ, ε)
∣∣ ≤ 1 +

1
2

εiRe [λµi,j(λ)].

Thus for small enough ε,
∥∥∥∥∥

1
N(ε)

N(ε)

∑
l=1

[N(ε)

∑
k=l

(
k
l

)
νk−l

i,j (λ, ε)

][
εiDi,j(λ, ε)

]l
∥∥∥∥∥

≤
1

N(ε)

N(ε)

∑
l=1

∣∣∣∣∣

N(ε)

∑
k=l

(
k
l

)
νk−l

i,j (λ, ε)

∣∣∣∣∣ε
li∥∥Dl

i,j(λ, ε)
∥∥

≤
1

N(ε)

N(ε)

∑
l=1

εli
∥∥Dl

i,j(λ, ε)
∥∥

[
1 −

∣∣νi,j(λ, ε)
∣∣]l+1

≤
1

N(ε)

N(ε)

∑
l=1

2l+1εli
∥∥Dl

i,j(λ, ε)
∥∥

[
−εiRe (λ̄µi,j(λ))

]l+1

≤
2

N(ε)εi
(
−Re (λ̄µi,j(λ))

)
ni,j(λ)−1

∑
l=1

[
2

−Re (λ̄µi,j(λ))

]l∥∥Di,j(λ, ε)
∥∥l

+
2

N(ε)εi
(
−Re (λ̄µi,j(λ))

)
N(ε)

∑
l=ni,j(λ)

[
2

−Re (λ̄µi,j(λ))

]l∥∥Dl
i,j(λ, ε)

∥∥

≤
2

N(ε)εi
(
−Re (λ̄µi,j(λ))

)
ni,j(λ)−1

∑
l=1

[
2

−Re (λ̄µi,j(λ))

]l(∥∥Di,j(λ, 0)
∥∥+ 1

)l

+
2

N(ε)εi
(
−Re (λ̄µi,j(λ))

)
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×
N(ε)

∑
l=ni,j(λ)

[
2

−Re (λ̄µi,j(λ))

]l
Ci,j(λ)

(
Ki,j(λ)ε

)l/n2
i,j(λ)

≤
2

N(ε)εi
(
−Re (λ̄µi,j(λ))

)
ni,j(λ)−1

∑
l=1

[
2
(∥∥Di,j(λ, 0)

∥∥+ 1
)

−Re (λ̄µi,j(λ))

]l

+
2Ci,j(λ)

N(ε)εi
(
−Re (λ̄µi,j(λ))

)
∞

∑
l=1

[
2
(
Ki,j(λ)ε

)1/n2
i,j(λ)

−Re (λ̄µi,j(λ))

]l
.

In the final expression, there are two sums, one finite and one infinite. The
finite sum does not vary with ε, and is multiplied by

2
N(ε)εi

(
−Re (λ̄µi,j(λ))

) ,

which tends to 0 as ε ↓ 0 since N(ε)εi → ∞. Thus the term involving the
finite sum vanishes. As for the second sum, it is a geometric series whose
ratio depends on ε; in fact, this ratio is a positive constant multiplied by a
fractional positive power of ε, so for ε small enough the geometric series
will converge. Even stronger, the sum of the geometric series tends to 0
as ε ↓ 0, and since the series is multiplied by a factor that, like the one
above, also tends to 0, we see that the infinite sum term approaches 0 as
ε ↓ 0. Having thus bounded the original expression of interest by one that
approaches 0 as ε ↓ 0, the original expression, too, must go to 0. This
establishes the result.

Proposition 4.6. If 1 ≤ i ≤ k(λ) and N(ε)εi → 0 as ε ↓ 0, then for 1 ≤ j ≤
ni(λ),

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗
i,j(λ, ε) = 0.

Proof. Using the second estimate from Lemma 4.4, we obtain
∥∥∥∥∥

1
N(ε)

N(ε)

∑
l=1

[
N(ε)

∑
k=l

(
k
l

)
νk−l

i,j (λ, ε)

]
[
εiDi,j(λ, ε)

]l
∥∥∥∥∥

≤
1

N(ε)

N(ε)

∑
l=1

∣∣∣∣∣

N(ε)

∑
k=l

(
k
l

)
νk−l

i,j (λ, ε)

∣∣∣∣∣ εli∥∥Dl
i,j(λ, ε)

∥∥

≤
1

N(ε)

N(ε)

∑
l=1

Nl+1(ε)

l!
εli ∥∥Dl

i,j(λ, ε)
∥∥
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≤
N(ε)

∑
l=1

Nl(ε)εli

l!
(∥∥Di,j(λ, 0)

∥∥+ 1
)l

≤
∞

∑
l=1

Nl(ε)εli

l!
(∥∥Di,j(λ, 0)

∥∥+ 1
)l

= exp
(

N(ε)εi(∥∥Di,j(λ, 0)
∥∥+ 1

))
− 1.

Since N(ε)εi → 0 as ε ↓ 0, it follows that N(ε)εi(∥∥Di,j(λ, 0)
∥∥ + 1

)
→ 0 as

well, whence
exp

(
N(ε)εi(∥∥Di,j(λ, 0)

∥∥+ 1
))

→ 1.

Thus the final expression in the string of inequalities goes to 0 as ε ↓ 0, so
the first must as well, completing the proof.

Proposition 4.7. If 1 ≤ i ≤ k(λ) and N(ε)εi → L as ε ↓ 0, where 0 < L < ∞,
then for 1 ≤ j ≤ ni(λ),

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗
i,j(λ, ε) = 0.

Proof. To begin, note that since 1− νi,j(λ, ε) → 1− λ 6= 0 as ε ↓ 0, there is an
r > 0 such that

∣∣1 − νi,j(λ, ε)
∣∣ ≥ r for all sufficiently small positive ε. This

allows us to establish the following rough estimate which we will make use
of subsequently.

∣∣∣∣∣
1 − ∑

l
k=0
(N(ε)+1

k
)
ν

N(ε)+1−k
i,j (λ, ε)

[
1 − νi,j(λ, ε)

]k

[
1 − νi,j(λ, ε)

]l+1

∣∣∣∣∣

≤
1 + ∑

l
k=0
(N(ε)+1

k
)∣∣νi,j(λ, ε)

∣∣N(ε)+1−k∣∣1 − νi,j(λ, ε)
∣∣k

∣∣1 − νi,j(λ, ε)
∣∣l+1

≤
1 + ∑

l
k=0
(N(ε)+1

k
)
2k

rl+1 ≤
1 + 2l ∑

l
k=0
(N(ε)+1

k
)

rl+1

≤
1 + 2l ∑

l
k=0(N(ε) + 1)k

rl+1 ≤
2l+1 ∑

l
k=0(N(ε) + 1)k

rl+1

≤
2l+1[(N(ε) + 1)l+1 − 1

]

rl+1
[
(N(ε) + 1) − 1

] ≤
2l+1(N(ε) + 1)l+1

rl+1N(ε)

≤
22l+2Nl+1(ε)

rl+1N(ε)
=

22l+2Nl(ε)

rl+1 .
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Hence, using the formula from Lemma 4.4 together with the estimate just
obtained and that in Lemma 4.5, we see that

∥∥∥∥∥
1

N(ε)

N(ε)

∑
l=1

[
N(ε)

∑
k=l

(
k
l

)
νk−l

i,j (λ, ε)

]
[
εiDi,j(λ, ε)

]l
∥∥∥∥∥

≤
1

N(ε)

N(ε)

∑
l=1

∣∣∣∣∣

N(ε)

∑
k=l

(
k
l

)
νk−l

i,j (λ, ε)

∣∣∣∣∣ εli∥∥Dl
i,j(λ, ε)

∥∥

≤
1

N(ε)

N(ε)

∑
l=1

22l+2Nl(ε)

rl+1 εli∥∥Dl
i,j(λ, ε)

∥∥

=
1

N(ε)

ni,j(λ)−1

∑
l=1

22l+2Nl(ε)

rl+1 εli(∥∥Dl
i,j(λ, 0)

∥∥+ 1
)l

+
1

N(ε)

N(ε)

∑
l=ni,j(λ)

22l+2Nl(ε)

rl+1 εliCi,j(λ)
(
Ki,j(λ)ε

)l/n2
i,j(λ)

≤
1

N(ε)

ni,j(λ)−1

∑
l=1

22l+2(N(ε)εi)l

rl+1

(∥∥Dl
i,j(λ, 0)

∥∥+ 1
)l

+
4Ci,j(λ)

rN(ε)

∞

∑
l=1

[
4N(ε)εi(Ki,j(λ)ε

)1/n2
i,j(λ)

r

]l
.

In the final expression we have, as in the first proof, a finite sum and an
infinite sum. Since N(ε)εi → L as ε ↓ 0, where 0 < L < ∞, the finite sum
approaches the (finite) value

ni,j(λ)−1

∑
l=1

22l+2Ll

rl+1

(∥∥Dl
i,j(λ, 0)

∥∥+ 1
)l .

As N(ε) ↑ ∞, however, the term involving the finite sum goes to 0 as ε ↓ 0.
The infinite sum, meanwhile, is a geometric series whose ratio goes to 0

as ε ↓ 0. Thus the infinite sum also approaches 0, whence the final expres-
sion in the string of inequalities has limit 0 as ε ↓ 0. It follows that the first
expression has the same limit, establishing the result.

As a consequence of these propositions, we obtain the following.

Theorem 4.5 (Krieger-Murcko). Let λ be a unit-circle eigenvalue of P0 not
equal to 1. Suppose that for 1 ≤ i ≤ k(λ), limε↓0 N(ε)εi exists in [0, ∞]. Then

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(λ, ε) = lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗
k(λ)(λ, ε)
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if either of these two limits exists. If λ is completely reducible, then

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗(λ, ε) = 0.

Proof. The first of these statements follows straightforwardly from Propo-
sitions 4.5, 4.6, and 4.7 once we recall the decomposition of P∗(λ, ε) in (4.6).

Now suppose that λ is completely reducible. Then P(ε)P∗
k(λ)(λ, ε) =

λP∗
k(λ)(λ, ε), so

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗
k(λ)(λ, ε) =

1
N(ε)

N(ε)

∑
k=1

λkP∗
k(λ)(λ, ε)

=
λ[1 − λk]

N(ε)[1 − λ]
P∗

k(λ)(λ, ε) = α(ε)P∗
k(λ)(λ, ε).

But
∣∣α(ε)

∣∣ =

∣∣∣∣∣
λ[1 − λk]

N(ε)[1 − λ]

∣∣∣∣∣ =

∣∣λ(1 − λk)
∣∣

N(ε)
∣∣1 − λ

∣∣ ≤
2

N(ε)
∣∣1 − λ

∣∣ → 0

as ε ↓ 0, so α(ε) → 0 as ε ↓ 0. Since also P∗
k(λ)(λ, ε) → P∗

k(λ)(λ, 0), we see that

lim
ε↓0

1
N(ε)

N(ε)

∑
k=1

Pk(ε)P∗
k(λ)(λ, ε) = lim

ε↓0
α(ε)P∗

k(λ)(λ, ε) = 0,

completing the proof.



Chapter 5

Further Work

If P(ε) = P0 + A(ε) = P0 + εA1 + ε2 A2 + · · · is an analytically perturbed
stochastic matrix and λ 6= 1 is a unit-circle eigenvalue of P0, two main
questions remain open:

(1) Is it possible for λ not to be completely reducible?

(2) If the answer to (1) is yes, what types of behavior are possible for the
hybrid Cesaro limit expression in those cases?

I have little intuition as to what the answers to these questions might
be, although a brief examination of the first proved suggestive. During
my summer research, I made a cursory attempt to generate a perturbed
stochastic matrix with −1 as a non–completely reducible eigenvalue. My
approach was to take as P0 the simplest possible 4 × 4 stochastic matrix
with −1 as an eigenvalue of multiplicity 2 and try to find an A1 such that
the reduction process for −1 would halt after a single reduction. (Recall
from Chapter 3 that the unperturbed reduced matrix in this case is equal to
P∗(−1, 0)A1P∗(−1, 0).) With no insight as to an efficient way of trying to
approach the problem, I used a brute force method that reduced the prob-
lem to solving a large system of inequalities; if a solution existed, it would
yield a desired A1. The system did not yield a solution, but the inequali-
ties were such that if they had been relaxed slightly, a solution would have
existed.

Although I was working with the simplest possible example, the way in
which the system of inequalities failed to produce a solution suggested to
me that there might be unknown relationships between the eigenprojection
for −1 and the sign structure of the entries of A1 that cause no example as
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I was searching for to exist. With no other evidence at my disposal, I might
conjecture that the answer to question (1) is no.

The difficulty in trying to prove this generally, as I see it, is the lack
of any theory relating eigenvalue information about analytically perturbed
matrices to the sign structure of the perturbation terms. For example, if

P0 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 ,

then the first perturbation term A1 = [aij] is very restricted in its sign struc-
ture: entries occurring where 1s are in P0 must be nonpositive, and entries
occurring where 0s are in P0 must be nonnegative. (This follows from the
requirement that P(ε) remain stochastic for all sufficiently small positive ε.)
It is not at all clear, though, how this sign structure can interact with the
eigenprojection for −1, much less how to systematically approach this type
of question.

One idea for gaining a greater understanding of the problem is to at-
tempt to generate examples with larger matrices where there is a greater
amount of freedom. Without a reasonably efficient method for going about
this, however, such attempts might well fail to be illuminating and also
become prohibitively complicated. This is why having at least some theo-
retical understanding of the situation seems fairly necessary to making any
significant progress. I look forward to puzzling over this for some time to
come.
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