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Abstract

Call a set of 2n + k elements Kneser-colored when its n-subsets are put into
classes such that disjoint n-subsets are in different classes. Kneser showed
that k + 2 classes are sufficient to Kneser-color the n-subsets of a 2n + k
element set. There are several proofs that this same number is necessary
which rely on fixed-point theorems related to the Lusternik-Schnirelmann-
Borsuk (LSB) theorem. By employing generalizations of these theorems we
expand the proofs mentioned to obtain proofs of an original result we call
the Subcoloring theorem. The Subcoloring theorem asserts the existence of
a partition of a Kneser-colored set that halves its classes in a special way.
We demonstrate both a topological proof and a combinatorial proof of this
main result. We present an original corollary that extends the Subcolor-
ing theorem by providing bounds on the size of the pieces of the asserted
partition. Throughout, we formulate our results both in combinatorial and
graph theoretic terminology.
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Chapter 1

Introduction

1.1 Background: Families of Theorems

Often theorems which are powerful in their own specific fields have exten-
sions or equivalences in other fields of mathematics. Connections between
theorems in a particular field can often lend insight to the discovery or ex-
ploration of relationships between their ostensibly dissimilar incarnations
in other fields.

This thesis is a continuation of the exploration conducted in the sum-
mer of 2004 on the following sets of equivalences:

Tucker’s Lemma ⇔ Borsuk-Ulam Theorem ⇔ LSB Theorem
Sperner’s Lemma ⇔ Brouwer Fixed Point Theorem ⇔ KKM Lemma

We will state some of these theorems later when it is convenient. These
families of equivalences each include three fixed-point theorems: one of
combinatorial character, one that is topological and one that describes set
covering.

In 1997 Su established a direct constructive proof of the Brouwer fixed-
point theorem based on the Borsuk-Ulam theorem (14). Since (14) pro-
vided the link between the two sets of equivalences, it was clear that the
Lusternik-Schnirelmann-Borsuk (LSB) theorem did imply the Knaster-Kuratowski-
Mazurkiewicz (KKM) Lemma, and it seemed logical that there should be
some direct link. In fact, such a link does exist: we found a direct proof of
the KKM Lemma based on a version of the LSB theorem for open sets (see
Appendix B for the full text of (13) ).

In this thesis I continue to focus on the LSB theorem and its relatives



2 Introduction

but with different goal that I will describe in the following sections.

1.2 Motivation: Greene’s Proof of Kneser’s Conjecture

Kneser’s Conjecture is a powerful and well-known result in combinatorics.
Kneser made the following conjecture in 1955:

Kneser’s Conjecture. Consider the n-subsets of a 2n + k element set. Divide
these into classes such that any two n-subsets of the same class are pairwise inter-
secting. Then k + 2 classes are necessary (and this number is sufficient).

We call the 2n + k element set the ground set and say that a ground set
is Kneser-colored when its n-subsets have been put into classes such that no
two disjoint n-subsets are in the same class.

Since a good grasp of this definition is essential to our subsequent dis-
cussion we provide an example of a Kneser coloring in Figure 1.1 below.

Figure 1.1: A Kneser-colored set

Figure 1.1 demonstrates a Kneser-colored set of 2n + k elements where
n = k = 2. The colors represent classes, and since we are classifying the
2-subsets, this is equivalent to coloring the edges of the complete graph on
6 vertices. Note that the coloring demonstrated uses the minimum possible
number of colors (or classes).

The first proof of this conjecture appeared in 1978 when Lovász showed
that it was true using algebraic topology in (8). A few weeks later that
same year Bárány submitted a paper entitled “A Short Proof of Kneser’s
Conjecture,” (1) that relied on the LSB theorem and a result of Gale. In 2002
Greene published a further simplification under the title, “A New Short
Proof of Kneser’s Conjecture” (6) that showed that only the LSB theorem
itself was actually necessary. Let Sm = {x ∈ Rm+1| ||x|| = 1} denote the
unit sphere in Rm+1, then the LSB theorem states the following (9):
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Lusternik-Schnirelmann-Borsuk (LSB) Theorem. If Sm is covered by m+1
closed sets then one of the sets contains a pair of antipodes.

1.3 Problem Statement

Greene’s recent use of the LSB theorem 1 to provide a direct proof of the
combinatorial conjecture of Kneser motivates the exploration of the combi-
natorial consequences of other topological fixed point theorems related to
LSB.

We will begin by examining the combinatorial consequences of Fan’s
generalization of the LSB theorem as stated in 3.2, (4). Using a construction
similar to that of Bárány and Greene we prove an original theorem which
we will call the Subcoloring theorem. In Chapter 2, we frame this theorem
both as a combinatorial result and as a graph theoretic result. In Chapter
3, we demonstrate a proof of this theorem from Fan’s generalization of LSB
and additionally show a proof that follows closely from a later result of Fan
from 1982.

In Chapter 4, we shift our attention to Fan’s generalization of Tucker’s
Lemma (4)(a result that is equivalent to Fan’s generalization of LSB). We
adapt Matoušek’s recent proof of Kneser’s conjecture from Tucker’s Lemma
in order to find an original combinatorial proof of Fan’s 1982 result and of
the Subcoloring theorem from Fan’s generalization of Tucker’s Lemma.

In Chapter 5, we prove a corollary of the Subcoloring theorem that
bounds the sizes of the pieces of a partition which it asserts. We describe
this corollary’s effects in both combinatorial and graph theoretic settings.

Finally, in the last 2 chapters, we present a few potential applications of
this result and some concluding thoughts on the topic. Two papers written
in the last year, ”LSB implies KKM” and ”Combinatorial consequences of
LSB-related topological fixed-point theorems” are included at the end as
appendices.





Chapter 2

The Subcoloring Theorem

2.1 The Main Result: The Subcoloring Theorem

In (4) Fan shows a generalization of the LSB theorem which the LSB theo-
rem as a limiting case. We derive an original Kneser-like conclusion of the
non-limiting case using a construction that closely resembles that of Greene
and Bárány’s proofs of the Kneser result. We will call this original result the
Subcoloring theorem.

We restate Kneser’s conjecture for convenience:

Kneser’s Conjecture. Consider the n-subsets of a 2n + k element set. Divide
these into classes such that any two n-subsets of the same class are pairwise inter-
secting. Then k + 2 classes are necessary (and this number is sufficient).

The related original result which we will prove in Chapters 3 and 4 is the
Subcoloring theorem. In the statement of this theorem which follows, we
say an n-subset of a ground set of points is complete when all of its elements
occur in the same piece of a partition of the ground set.

The Subcoloring Theorem. (Spencer, Su) Consider the n-subsets of a 2n + k
element set. Divide these into classes C = {1, 2, ...m} such that any two n-subsets
of the same class are pairwise intersecting. Fix these classes.

• Suppose exactly k + 2 classes are used. Then, for any division of the classes
into two sets C1 and C2 whose sizes differ by at most 1, there exists a par-
tition of the original set of elements into two sets P1 and P2 such that all
complete n-subsets of classes in Ci are in Pi (with all classes in Ci observed
in Pi).
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• Suppose more than k+2 classes are used. Then there exists some sequence of
k +2 increasing classes, which has the property that when the classes in odd
positions in the sequence are put into C1 and the classes in even positions
of the sequence are put into C2, there exists a partition of the original set of
elements into two sets P1 and P2 such that all complete n-subsets of classes
in Ci are in Pi (with all classes in Ci observed in Pi).

Note that in both cases, one of the Ci described has size bk+2
2 c, and the

other has size dk+2
2 e.

In the case where more than k+2 classes are used we note that the result
holds for any numbering of the classes/colors. That is, for any numbering
of the classes we can find a partition of the type described where some
set of k + 2 classes appearing in C has the property that when ordered by
number, the classes alternately appear in either P1 or P2. We will refer to
this as the increasing alternating sequence property of the partition.

Also, in the case where more than k + 2 classes are used, complete n-
subsets of classes that are not in the sequence of classes that the result as-
serts may appear in either none or exactly one of the Pi.

In order to clarify the result we provide a simple example for the case
when the number of classes is k + 2 in Figure 2.1 below:

Figure 2.1: Subcoloring Theorem Results

Figure 2.1 demonstrates a Kneser-coloring of a set that has 2n+k points
where n = k = 2. The leftmost graph shows a Kneser-coloring of the set
with the minimal number of colors as in Figure 1.1. The other graphs show
partitions (which obey the properties specified by the Subcoloring theorem)
of the ground set of elements for each possible division of the color classes:
for instance, the rightmost graph is a partition that results from partitioning
the colors into the groups blue/yellow and red/green. The 2-subsets which
are not entirely contained in a single part of the partition are shown as
dashed lines; only the complete 2-subsets are colored.



A Graph Theoretic Formulation 7

2.2 A Graph Theoretic Formulation

Though the version of the Subcoloring theorem stated in section 2.1 fo-
cuses on the combinatorial character of the result, the result may also be
formulated in terms of more graph theoretic vocabulary. This will require
a formal introduction to a class of graphs known as Kneser Graphs. As this
name suggests, Kneser graphs are closely related to the Kneser colorings
that we discussed in section 1.2.

Letting s ≤ r be natural numbers, the Kneser graph K
(s)
r is constructed

as follows. The vertex set of K
(s)
r is the set of s-subsets of {1, 2, ...r}. Two

vertices are joined by an edge if and only if they are disjoint subsets. Figure
2.2 shows a famous example of a Kneser graph popularly known as the
Petersen graph.

Figure 2.2: The Peterson Graph.

The Petersen graph is the Kneser graph K
(2)
5 . Each vertex in the Pe-

tersen graph is a 2-element subset of the set {1,2,3,4,5}. A pair of vertices
is adjacent in the graph if the sets which correspond to them are disjoint.
On the right of Figure 2.2 is a proper coloring of the Petersen graph by the
minimal number of colors: k + 2 = 3.

What we previously described as a Kneser coloring of the n-subsets of a
2n+k element set corresponds to a proper coloring of the vertices of K

(n)
2n+k

(that is, a coloring which has no two adjacent vertices colored the same).
Translating Kneser’s conjecture into this setting we get an equivalent state-
ment:

Kneser’s Conjecture. The chromatic number of K
(n)
2n+k is k + 2.

We are now ready to state a graph theoretic formulation of the Subcolor-
ing theorem. When considering subgraphs of a colored graph we will refer
to the coloring of the subgraph under the original coloring as an inherited
coloring. We will say that a union of Kneser subgraphs of a Kneser graph is
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maximal when the addition of any vertex not in the union of subgraphs to
any of the subgraphs in the union would make that subgraph not a Kneser
graph.

The Subcoloring Theorem. (Spencer, Su) Let n, k be natural numbers. For any
proper coloring of the vertices of K

(n)
2n+k by the colors C = {1, 2, ...,m} :

• Suppose m = k + 2. Then given any division of the colors into two sets C1

and C2 that differ in size by at most one, there exist two disjoint induced
subgraphs of K

(n)
2n+k, G1 and G2, such that all the colors in Ci appear in the

inherited coloring of Gi (with no other colors appearing in Gi), and the Gi

are Kneser graphs. Further, G1 ∪G2 is maximal.

• Suppose m ≥ k + 2. Then there exists a sequence of k + 2 increasing colors
with the property that when the colors in odd position in the sequence are
put into set C1 and the colors in even position in the sequence are put into
set C2 that there then exist two disjoint induced subgraphs of K

(n)
2n+k, G1

and G2, which are both Kneser graphs and whose union is maximal, such
that every color in Ci appears in the inherited coloring of Gi.

As in the original statement of the theorem, in both cases one of the Ci

described has size bk+2
2 c, and the other has size dk+2

2 e.
The reader should note that the asserted Kneser subgraphs are not nec-

essarily colored by the minimum possible number of colors. That is, χ(Gi)
may be less than the number of colors in the inherited coloring of Gi.

We can also describe the result in alternate graph theoretic terms used
by Simonyi and Tardos in (12). For Kneser graphs, the Subcoloring theorem
asserts the existence of special complete bipartite subgraphs which have
the complete bipartite subgraphs asserted by the Zig-Zag theorem in (12)
as subgraphs. The complete bipartite subgraphs graphs asserted by the
Subcoloring theorem are special in that they are colored in a particular way,
they are in some sense maximal, and they have the property that the graphs
induced by each piece of their bipartitions are also Kneser graphs.

Saying that a bipartite subgraph K of a Kneser graph is complete is
equivalent to saying that the ground set of points corresponding to any
vertex in the first piece of the bipartition of K is disjoint from the ground
sets of points corresponding to any vertex in the second piece of the bipar-
tition in K and vice-versa.

We say that a complete bipartite subgraph K of a graph G is maximal
when no vertices of G that are not in K can be added to K in order to ob-
tain a larger complete bipartite subgraph. A complete bipartite subgraph
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of a Kneser graph is thus maximal when all vertices not in K correspond
to subsets of the ground set of elements which already appear in the union
of the ground set elements that correspond to vertices in K. That is, when
the union of the ground set elements corresponding to the vertices of K is
the entire original ground set. To relate this to our earlier terminology: say-
ing that a complete bipartite subgraph with each piece of the bipartition a
Kneser graph is maximal is the same as saying that the pieces of the bipar-
tition of the graph are disjoint Kneser graphs whose union is maximal.

Suppose that c is a coloring of a Kneser graph G by χ(G) colors. In the
limiting case the Subcoloring theorem states that for any set C1 of bχ(G)

2 c of
the colors in c, there exists a maximal complete bipartite subgraph K of G
which has for the pieces of the bipartition of K two sets of vertices: one set
induces a Kneser subgraph colored by the colors of C1 (with each color in
C1 appearing), the other set induces a Kneser subgraph colored by all the
colors not in C1 (with all of these colors appearing).

In the next two chapters we will prove the Subcoloring theorem in a
variety of ways. In Chapter 3 we will demonstrate a topological proof that
follows from Fan’s generalization of LSB. In Chapter 4 we will demonstrate
a combinatorial proof that follows from Fan’s generalization of Tucker’s
Lemma.





Chapter 3

A Topological Proof of the
Subcoloring Theorem

3.1 Greene’s Topological Proof of Kneser’s Conjecture

Since Greene’s proof plays a major role in an original proof which we will
establish in this Chapter, I will reproduce his proof nearly unaltered here.
As Kneser showed, it is obvious that k + 2 classes is sufficient to Kneser-
color the n-subsets of a 2n+k element set (there is a simple argument of this
fact in the next section). To show that this number is necessary, Greene’s
proof assumes that we have a classification of the n element subsets of a
2n + k element set into k + 1 classes (or fewer), which has the property
that disjoint n-subsets are in different classes. First we will review some
necessary notation.

Recall that Sm = {x ∈ Rm+1| ||x|| = 1} denotes the unit sphere in Rm+1.
Let H(a) = {x ∈ Sm|a · x > 0}, the open hemisphere centered at a.

Proof. First, we show that k+2 classes is sufficient. Let the numbers 1, 2, ..., 2n+
k denote the elements of the 2n + k element set. For each i in this set let
Ki be the collection of all n-subsets that have smallest element i. Then, by
construction the k + 2 sets K1,K2, ...,Kk+1, and Kk+2 ∪ ... ∪ Kn+k+1 are
classes which satisfy the desired property (that any two n-subsets within a
class have a non-trivial intersection).

Greene proves the following short lemma which extends the LSB theo-
rem as stated in section 1.2:

Lemma 1. (LSB for open and closed sets) If Sm is covered with m + 1 sets, each
of which is either open or closed, then one of the sets contains a pair of antipodes.
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I will not include the proof of this lemma since we use a different tech-
nique in the our later construction, and we will not need this lemma again.
Now we are ready to show that less than k + 2 classes is insufficient to
Kneser-color the set.

Distribute 2n + k points on Sk+1 in general position; thus strictly less
than k + 2 points lie on any great k-sphere. Classify the n-subsets of these
points into k +1 classes denoted A1, A2, ..., Ak+1. For i = 1, 2, ..., k +1 let Ui

denote the set of all points a of Sk+1 for which H(a) contains an n-subset in
the class Ai. The Ui are open sets, hence F = Sk+1\(U1∪...∪Uk+1) is closed.
Together F and the Ui are k + 2 sets that cover Sk+1. From the lemma then,
some set must contain a pair of antipodes. The set F cannot contain a pair
of antipodes, since this would mean that some H(a) and H(−a) would each
contain less than n points, such that at least k+2 points would occur on the
great k-sphere that is the boundary of H(a). Thus, some Ui must contain a
set of antipodes such that there exists an a for which H(a) and H(−a) each
contain an n-subset of class i. Clearly these n-subsets are disjoint, such that
the Ai could not have been a Kneser coloring of the original 2n + k points.
This argument easily generalizes for any number of classes less than or
equal to k + 1.

Therefore, k + 2 classes are both necessary and sufficient.

3.2 Adapting Greene’s Proof to Prove the Subcoloring
Theorem

In order to prove the Subcoloring theorem we will establish a version of
Fan’s generalization of the LSB theorem for open sets, and rely on a condi-
tion of Gale. Fan’s LSB generalization as generally stated is the same as the
following except that the Fi are closed sets(4).

Fan’s LSB Generalization. (For Open Sets) Let k, m be two arbitrary positive
integers. If m open subsets F1, F2, . . . , Fm of the k-sphere Sk cover Sk and if
no one of them contains a pair of antipodal points, then there exist k + 2 indices
a1, a2, · · · , ak+2 such that 1 ≤ a1 < a2 < . . . < ak+2 ≤ m and

Fa1 ∩ −Fa2 ∩ Fa3 ∩ · · · ∩ (−1)k+1Fak+2
6= ∅

where −Fi denotes the set antipodal to Fi.
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Proof. Begin with open sets F1, F2, . . . , Fm which cover Sk and do not con-
tain antipodes. Since Sk is compact, any open cover of it has a finite sub-
cover. Construct an open cover as follows: since Fi is open, every point,
x ∈ Fi is an interior point such that Fi contains an open neighborhood of x
of some positive radius. For every point, x, on Sk, include in the open cover
an open neighborhood of radius 0.9 times the radius of an open neighbor-
hood of x that is contained within all Fi that contain x (clearly the latter
exists since x may be contained only in finitely many Fi). A finite number
of such neighborhoods cover Sk. Denote these neighborhoods Nj . Now let

Ci = {∪Nj |Nj ⊆ Fi}.

By this construction, the Ci are closed subsets of the corresponding Fi that
cover. Since the Fi contained no antipodes, the Ci cannot. Also, note that
−Ci ⊆ −Fi. Now apply the standard version of Fan’s LSB generalization
(4) to the Ci to find that:

∅ 6= Ca1∩−Ca2∩Ca3∩· · ·∩(−1)k+1Cak+2
⊆ Fa1∩−Fa2∩Fa3∩· · ·∩(−1)k+1Fak+2

,

As desired.

It is easy to check that the limiting case of Fan’s generalization is the
LSB theorem: if we let m = k + 1, then since the assertion of the theorem
cannot be true (there simply are not enough sets to find such a collection of
ai), it must be that at least one of the Fi conatains a pair of antipodes. This
is the LSB theorem.

Lemma 1. (Gale) There is a distribution of 2n + k points on Sk such that every
open hemisphere of Sk contains at least n points.

A proof of this result can be found in Gale’s original paper. We are now
ready to proceed with the proof of the main theorem. We will provide a
general construction and then attend to the two types of cases.

Proof. Embed a ground set of 2n+kpoints on Sk such that the Gale property
is met. Classify the n-subsets into m classes (indexed 1, 2, ...,m) such that
disjoint n-subsets are in different classes. Let H(x) denote the open hemi-
sphere centered at x. Let Fi be the set of all coordinate points, x, of Sk for
which H(x) contains an n-subset of class i. By construction, the Fi are all
open, and from Lemma 1, the Fi cover Sk. Clearly, Fi cannot contain a pair
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of antipodes since this would imply the existence of two disjoint n-subsets
(each contained in an open hemisphere, the two of which are disjoint) of
the same class.

Case 1: (Subcoloring theorem with exactly k + 2 classes) If there are ex-
actly k + 2 classes, the set of indices given by Fan’s LSB generalization cor-
responds to the set of all classes such that the expression for the non-empty
intersection simplifies to the following:

F1 ∩ −F2 ∩ F3 ∩ · · · ∩ (−1)k+1Fk+2 6= ∅.

That is, there is a nontrivial open intersection in which every point has
the property that its open hemisphere contains n-subsets of classes 1, 3,
5, etc, and its antipode’s open hemisphere contains n-subsets of classes 2,
4, 6, etc. Since the set of points with this property is open and there are
only finitely many ground set points on the sphere, there is at least one
coordinate point in the open intersection which has the property that the
boundary of its open hemisphere does not contain any ground set points.
Call this coordinate point b.

Let P1 consist of all points of the ground set in H(b). Let P2 consist of all
points of the ground set in H(−b). It is obvious from our construction that
P1 and P2 are disjoint and that their union contains all of the 2n + k points.

As described above, P1 contains n-subsets of classes 1, 3, 5, etc, where
every class is realized. Similarly P2 contains n-subsets of classes 2, 4, 6, etc,
where every class is realized. Since P1 ⊆ H(b) and P2 ⊆ H(−b) any class
that is observed on a complete set in P1 cannot be observed in a complete
n-subset in P2 (if this happened it would have necessarily followed from
a violation of our original assumption that disjoint n-subsets are in differ-
ent classes). Thus, all complete n-subsets of odd class are observed in P1

and every odd class is observed in P1. The analog for P2 and even classes
follows by the same argument.

Since the labelling of the classes was arbitrary, any relabelling is equally
valid. Thus, any dk+2

2 e-subset of classes may be chosen to be those which
are indexed for membership in P1 (this is simple: give any class that is de-
sired to be represented in P1 an odd index).

Case 2: (Subcoloring theorem with more than k + 2 classes) The main
difference from the case where the number of classes is k + 2 is that now
the expression in Fan’s LSB generalization involves only a subset of the set
of Fi. The conclusions are thus somewhat different.
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Fan’s LSB generalization stipulates that there exist k+2 indices a1, a2, · · · , ak+2

such that 1 ≤ a1 < a2 < . . . < ak+2 ≤ m and

Fa1 ∩ −Fa2 ∩ Fa3 ∩ · · · ∩ (−1)k+1Fak+2
6= ∅

The nonempty open intersection described contains coordinate points
whose open hemispheres contain n-subsets of classes a1, a3, a5, etc, and
whose antipodes’ open hemispheres contains n-subsets of classes a2, a4, a6,
etc. As before, there exists some coordinate point with this property that
has no ground set points which lie on the boundary of its open hemisphere.
Call this coordinate point b.

Let all ground set points in H(b) be in the first set P1 of the partition.
Let all ground set points in H(−b) be in the second set P2 of the partition. It
is obvious from our construction that P1 and P2 are disjoint and their union
contains all the 2n + k points. As described above, P1 contains n-subsets
of classes a1, a3, a5, etc, where every class is realized. Similarly P2 contains
n-subsets of classes a2, a4, a6, etc, where every class is realized. From our
original assumption that disjoint n-subsets are in different classes, P1 can
not contain any complete n-subsets of class ai for i even. The analog says
that P2 can not contain any complete n-subsets of class ai for i odd. Note
that we are guaranteed by Fan’s LSB generalization that the ai are associ-
ated with an increasing alternating sequence of classes. This confirms the
increasing alternating sequence property for the non-limiting case. Note
also that since only a subset of the Fi corresponding to the original classes
are described in the intersection expression it may be the case that other
classes which were not described (that is, sets not indexed by ai) are ob-
served in P1 or P2.

A Note: In Case 2 we are not given a choice of which classes will be
observed in P1 and P2. Fan’s LSB generalization essentially chooses for us.
In the first case we were given the choice because when exactly k+2 classes
were present all of the Fi were in some sense interchangable in the expres-
sion given by Fan’s LSB generalization. In the second case, because the
application of Fan’s LSB generalization selects a subset of the Fi in a way
that does not consider the indices to be equivalent (namely, the assertion
of the theorem is that it is possible to identify a particular combination of
actual sets, regardless of their labels, which has the intersection described
non-empty), we are not able to generalize through relabelling.
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3.3 A Proof Using Fan’s 1982 Result

In 1982, Fan proved the following result in (5) as a consequence of his gen-
eralization of the LSB theorem:

Theorem 1. Let E be a ground set of 2n+k points, and suppose each n-subset of
E is assigned one of m colors {1, ...,m} such that no two disjoint n-subsets have
the same color. Then there exist colors i1 < i2 < ... < ik+2 and corresponding n-
subsets A1, ..., Ak+2 colored i1, ..., ik+2 respectively such that ∪j oddAj is disjoint
from ∪j evenAj .

This result is a direct consequence of the Subcoloring theorem. To see
this, consider the C1 and C2 asserted by the Subcoloring theorem. Observe
that to exhibit a class Ci must contain an n-subset of that class. From the
alternating sequence property of the Subcoloring theorem and this obser-
vation, we can find Ai such that ∪j evenAj ⊆ C1 and ∪j oddAj ⊆ C2, colored
as specified by Theorem .

Also, from this result we can find an another proof of the Subcoloring
theorem.

Claim: The Subcoloring theorem can be proved from Fan’s 1982 result.

Proof. Consider the sets ∪j oddAj and ∪j evenAj asserted by Fan’s 1982 re-
sult. These sets each exhibit as many classes as the Subcoloring theorem
asserts will appear as a lower bound in each piece of the partition and
have the increasing alternating sequence property. However, (∪j oddAj) ∪
(∪j evenAj) is not necessarily the whole ground set E. Let C1 = ∪j oddAj

and let C2 = E \ (∪j oddAj). Since C1 and C2 are still disjoint, no classes
will appear in both of them and the other properties are preserved. In the
case when m = k + 2 no classes that are not in ∪j evenAj can appear in
C1: the disjointness of C1 and C2 forbids the presence in C1 of any classes
in C2, and all classes already appear in either C1 or C2, thus the complete
n-subsets in C1 must all be of classes exhibited by ∪j evenAj . Thus, this C1

and C2 satisfy the conclusion of the Subcoloring theorem.



Chapter 4

A Combinatorial Proof of the
Subcoloring Theorem

Matoušek recently published the first combinatorial proof of Kneser’s conjecture(10).
Based on the fact that Fan’s generalizations of the LSB theorem and Tucker’s
lemma are equivalent, our work in the previous section motivates the ques-
tion of whether an extension of Kneser’s conjecture can be found by ex-
tending Matoušek’s proof (or using a similar construction) so that Fan’s
generalized Tucker’s lemma can be applied.

First we will review Tucker’s lemma. Let Bn = {x ∈ Rn| ||x|| ≤ 1}
denote the unit ball in Rn. Recall that the octahedral subdivision of the n-ball
is the division of the ball induced by its intersection with the coordinate
hyperplanes in Rn. Also, a barycentric derived subdivision is a subdivision
derived by successive application of a finite number of barycentric subdi-
visions. We will use the version of Tucker’s lemma stated in (11):

Tucker’s Lemma. Let K be a barycentric subdivision of the octahedral subdi-
vision of the n-ball Bn. Suppose that each vertex of K is assigned a label from
{±1,±2, ...,±n} in such a way that labels of antipodal vertices sum to zero. Then
some pair of adjacent vertices of K have labels that sum to zero.

Fan’s generalization of Tucker’s lemma states the following(4):

Fan’s Tucker Generalization. Let K be a barycentric derived subdivision of the
octahedral subdivision of the n-ball Bn. Let m be a fixed positive integer indepen-
dent of n. To each vertex of K, let one of the 2m numbers {±1,±2, ...,±m} be
assigned in such a way that the following two conditions hold:

• labels at antipodal vertices sum to zero and
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• labels at adjacent vertices do not sum to zero.

Then there are an odd number of n-simplices whose labels are of the form {k0,−k1, ..., (−1)nkn},
where 1 ≤ k0 < k1 < ... < kn ≤ m. In particular m ≥ n + 1.

As with LSB, it is easy to check that the limiting case of Fan’s Tucker
generalization is Tucker’s lemma itself: if we let m = n, and have a labeling
that has antipodal sums of 0, then since the assertion of the theorem cannot
be true (there simply are not enough labels to find such a collection of ki), it
must be that there is at least one pair of adjacent vertices whose labels sum
to 0. This is Tucker’s Lemma.

Matoušek’s combinatorial proof of Kneser’s conjecture begins by con-
structing a barycentric subdivision of the octahedral subdivision of Sn−1.
By preserving information about the inclusion of simplices in the subdivi-
sion, and assigning labels according to two cases (one of which is based
on an attempted Kneser coloring by k + 1 classes) such that the conditions
of Tucker’s lemma are met, Matoušek is able to apply Tucker’s lemma to
obtain a contradiction.

We will slightly expand Matoušek’s construction so that Fan’s Tucker
generalization can be used to obtain a combinatorial proof of the Subcolor-
ing Theorem discussed in the previous chapter. The first part of the proof
that follows is taken directly from (10).

We restate the Subcoloring theorem for convenience:

The Subcoloring Theorem. (Spencer, Su) Consider the n-subsets of a 2n + k
element set. Divide these into classes C = {1, 2, ...m} such that any two n-subsets
of the same class are pairwise intersecting. Fix these classes.

• Suppose exactly k + 2 classes are used. Then, for any division of the classes
into two sets C1 and C2 whose sizes differ by at most 1, there exists a par-
tition of the original set of elements into two sets P1 and P2 such that all
complete n-subsets of classes in Ci are in Pi (with all classes in Ci observed
in Pi).

• Suppose more than k+2 classes are used. Then there exists some sequence of
k +2 increasing classes, which has the property that when the classes in odd
positions in the sequence are put into C1 and the classes in even positions
of the sequence are put into C2, there exists a partition of the original set of
elements into two sets P1 and P2 such that all complete n-subsets of classes
in Ci are in Pi (with all classes in Ci observed in Pi).
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We will prove this Theorem with the aid of the following notation. Let
B2n+k denote the unit ball in R2n+k under the l1-norm. Let S2n+k−1 de-
note its boundary, and let K0 be the natural triangulation of B2n+k induced
by the coordinate hyperplanes (where each n-dimensional simplex corre-
sponds uniquely to orthant in R2n+k). Call a triangulation K of B2n+k a
special triangulation if it refines K0 and is antipodally symmetric about the
origin.

Proof. We will construct a special triangulation K, label it in a way that in-
corporates a proper Kneser coloring and meets the conditions for applying
Fan’s Tucker generalization, and finally apply this result and interpret its
assertions in our construction.

We begin by defining the triangulation K. Let L0 be the subcomplex
of K0 consisting of the simplices lying on S2n+k−1. Note that the non-
empty simplices of L0 are in one-to-one correspondence with nonzero vec-
tors from V = {−1, 0, 1}2n+k. The left diagram in Figure 4 shows K0 and
L0 for B2. The inclusion relation on the simplices of L0 corresponds to the
relation � on V , where u � v if ui � vi for all i = 1, 2, ..., n and where 0 � 1
and 0 � −1.

Let L
′
0 be the first barycentric subdivision of L0. Thus, the vertices of L

′
0

are the centers of gravity of the simplices of L0 and the simplices of L
′
0 cor-

respond to chains of simplices of L0 under inclusion. A simplex of L
′
0 can

be uniquely identified with a chain in the set V \{(0, ..., 0)} under �. Now
we define K: it consists of the simplices of L

′
0 and the cones with the origin

for an apex over such simplices. We have constructed a special triangulation
of B2n+k as in Fan’s Tucker’s generalization. The right diagram in Figure 4
demonstrates K of B2.

0

(0, −1)

(−1, 0)

(0, 1)

(1, 0)

(1, −1)

(1, 1)(−1, 1)

(−1, −1)

Figure 4.1: The Triangualtions K0 and L0 (left), and K (right).
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Let E = {1, 2, ..., 2n+k} denote a set of 2n+k elements. Suppose that c
is a proper Kneser-coloring of the n-subsets of E by m colors. In particular,
m must be at least k + 2. For tactical convenience we will label the colors
2n, 2n + 1, ..., 2n + m − 1. We will now define a labeling of the vertices
of K as in Fan’s Tucker generalization. These vertices include 0, so they
can be identified with the vectors of V , and we want to define a labeling
λ : V → {±1,±2, ...,±(2n + m− 1)}.

We fix some arbitrary linear ordering≤ on 2[2n+k] that refines the partial
ordering according to size (which has that |A| < |B| implies A < B). Let
v ∈ V and define λ(v) as follows. Consider the ordered pair (A,B) of
disjoint subsets of E defined by

A = {i ∈ [2n + k] : vi = 1}, B = {i ∈ [2n + k] : vi = −1}.

We distinguish two cases. If |A|+ |B| ≤ 2n− 2 (Case 1) then

λ(v) =

{
|A|+ |B|+ 1 if A > B

−(|A|+ |B|+ 1) if A < B
(4.1)

If |A| + |B| ≥ 2n − 1 (Case 2) then at least one of A and B has size at least
n. If, say, |A| ≥ n we define c(A) as c(A′), where A′ consists of the first n
elements of A, and for |B| ≥ n, c(B) is defined similarly. We set

λ(v) =

{
c(A) if A > B

−c(B) if A < B
(4.2)

Thus, in Case 1 we assign labels in {±1,±2, ...,±(2n − 1)} while labels as-
signed in Case 2 are in {±2n,±2n + 1, ...,±(2n + m− 1)}.

We now will verify that λ meets the conditions necessary to apply Fan’s
Tucker generalization. First, we note that λ is a well-defined mapping from
V to {±1,±2, ...,±(2n+m−1)}. To see that λ labels antipodes so that their
sum is 0, i.e. that −λ(v) = λ(−v), we observe that from our definitions
of A and B, Ai = B−i where Ai denotes the set A that corresponds to the
ith vector v. Thus labels assigned by both cases will label antipodes with
additive inverses.

Next, we need to check that there are no 1-simplices whose vertices la-
bels sum to 0 (that is, there are no complementary edges). Because of the
way we defined λ, any complementary edge would have to have had both
of its vertices labelled by either Case 1 or Case 2. Suppose that there is
a complementary edge between vertex i and vertex j. If both labels were
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assigned by Case 1, then because of our observation about simplices cor-
responding to chains in V under �, we would get (after a possible rela-
belling) that Ai ⊆ Aj and Bi ⊆ Bj with at least one of these inclusions
being proper. But this gives that |Ai|+ |Bi| 6= |Aj |+ |Bj | so that there is no
way that Case 1 could have assigned complementary labels to the ith and
jth vertices. Suppose both labels were assigned by Case 2, and that, with-
out loss of generality, Ai ⊆ Aj and Bi ⊆ Bj . This would mean that the label
of the ith vector (which corresponds to the color of a k-subset of Ai after a
possible relabelling) was the negative of the label of the jth vector (which
corresponds to a k-subset of the same color in Bj). But since Ai ⊆ Aj and
Aj ∩ Bj = ∅ this would imply that we had found two disjoint k-subsets of
the same color. Since c is proper Kneser-coloring, this cannot be the case.
Thus, λ has no complementray edges.

Since λ has that −λ(v) = λ(−v) and contains no complementary edges,
we can apply Fan’s Tucker generalization. Fan’s Tucker generalization
gives that there are an odd number of 2n+k-simplices in K whose labels are
of the form S = {l0,−l1, ..., (−1)nl2n+k}, where 1 ≤ l0 < l1 < ... < l2n+k ≤
2n+m− 1. In particular there is at least one 2n+k-simplex with this prop-
erty. Referring to our construction of λ, at least the 2n+k+1−(2n−1) = k+2
highest of these labels were assigned by Case 2. Index these k + 2 vertices
that were labelled by Case 2 with the indices {1, 2, ..., k + 2}. Recalling that
the vertices of our 2n + k-simplex correspond to entries of a chain in V
under � we find that (after a possible reindexing):

A1 ⊆ A2 ⊆ ... ⊆ Ak+2

B1 ⊆ B2 ⊆ ... ⊆ Bk+2,

where Ai ∩ Bi = ∅. Now let Ps = Ak+2 and Pl = {E \ Ak+2}. We make
several observations:

• Note: a positive label was assigned when A > B and a negative labels
was assigned when B > A. Thus, the label j occurring on the asserted
2n + k simplex in λ would follow from n-subset of color i being con-
tained in sets Ai ⊆ ... ⊆ Ak+2 ⊆ Ps for some i. Similarly, the label −r
occurring on the asserted 2n + k simplex in λ would follow from an
n-subset of color r being contained in the sets Bj ⊆ ... ⊆ Bk+2 ⊆ Pl

for some j.

• One of Ak+2 or Bk+2 contains n-subsets of bk+2
2 c colors. The other

contains n-subsets of the other dk+2
2 e colors. Thus, one of Pl or Ps con-
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tains k-subsets of at least bk+2
2 c colors. The other contains n-subsets

of at least dk+2
2 e other colors.

• Since c was a proper Kneser-coloring and Ps and Pl are disjoint by
construction, there are no colors that are exhibited by n-subsets in
both Ps and Pl.

From our construction, Fan’s generalization of Tucker’s Lemma asserts
the existence of a 2n + k simplex with a sequence S of k + 2 labels (where
each label represents a color) whose absolute values increase monotonically
and whose signs alternate. From our first observation, all positive colors in
S must have been exhibited in some Ai and all negative colors in S must
have been exhibited in some Bj . Thus Ak+2 contains n-subsets of each
of the positive colors and Bk+2 contains n-subsets of each of the negative
colors, and since Ak+2 and Bk+2 are disjoint by construction, we have Fan’s
1982 result that we introduced in section 3.3.

Suppose m = k + 2. All of the n-subsets of Ak+2 are indexed by either
exclusively the even-indexed colors or exclusively the odd-indexed colors.
Similarly, all of the n-subsets of Bk+2 are indexed by the other parity colors.
Since there are no colors exhibited by Ps and Pl which are not exhibited
by Ak+2 and Bk+2 respectively, the same property holds for the Pi. Thus,
Ps and Pl are the two pieces of the partition described in the Subcoloring
theorem. Since the indices assigned to the colors were arbitrary, this result
holds for any relabelling: for any set of bk+2

2 c colors, there exists a partition
which meets the conditions described in the Subcoloring theorem in which
they appear in the same piece of the partition.

Thus, we conclude the proof.



Chapter 5

Bounds and Applications

Subsequent results and observations Now that we have established the
Subcoloring theorem, there are a number of questions that we can ask about
its assertions. This section includes an exploration of some of those ques-
tions.

5.1 Bounding the Pieces of the Partition

Though the Subcoloring theorem asserts that we can find a partition of the
set of 2n + k points with the properties described, it tells us nothing about
the sizes of the pieces of the asserted partition. Thus, we aim to construct
bounds on the sizes of these pieces. Denote the larger piece of the partition
by Pl and the smaller piece by Ps where |Ps| ≤ |Pl|. We will say that a class
is exhibited by Pi if some n- subset of Pi is in that class. For the present we
consider the limiting case where the number of classes is equal to k + 2.

An obvious bound

First we consider an obvious bound. Since Ps must have at least bk+2
2 c

classes exhibited, clearly it must have at least that number of n-subsets con-
tained within it:

bk + 2
2

c ≤
(
|Ps|
n

)
. (5.1)

When k = 2 and for any n, this bound produces the conclusion that
|Ps| = |Pl| = n + 1. This result is quite obvious because if |Ps| were any
smaller, it could contain at most one n-subset, and thus have at most one
class exhibited. Though this example is not particularly surprising, the
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equal sizes of Ps and Pl would be useful if it could be generalized. Un-
fortunately, with n held constant, this concept for bounding creates a lower
bound for |Ps| that grows much slower than k.

A more clever bound

Still focusing on the limiting case, we shift our attention to creating an up-
per bound for |Pl|. First, we observe that since the full set of n-subsets is
colored in a Kneser-way (that is, disjoint sets are different classes/colors)
the subcolorings induced on the partition pieces must also be Kneser col-
orings. That is, within Pi disjoint n-subsets are colored differently.

From the Subcoloring Theorem, the n-subsets of Pl are colored with at
most dk+2

2 e colors/classes. Since we already observed that Pl is Kneser-
colored, we can now apply Kneser’s conjecture in a reverse style: dk+2

2 e
colors are sufficient to Kneser-color the n-subsets of a set that has at most
2n + (dk+2

2 e − 2) points. That is, if a set has more than this many points,
then dk+2

2 e colors will not be enough to color its n-subsets in a Kneser way.
Since Pl is colored in a Kneser way with at most dk+2

2 e colors, it must be
that |Pl| ≤ 2n + (dk+2

2 e − 2).
The resulting bound on |Ps| is |Ps| ≥ (2n + k) − (2n + (dk+2

2 e − 2)) =
k − dk+2

2 e+ 2 = k − dk
2e+ 1 = bk

2c+ 1, that is:

|Ps| ≥ bk
2
c+ 1 (5.2)

In many cases this is a much higher lower bound than our previous
method produced. In particular, for constant n, as k increases, the relative
sizes of Pl and Ps approach equality. Unlike the other bounding method,
this method’s lower bound grows at a rate linearly related to k.

For n large compared to k, this bound is not very helpful. In fact, in
some cases it is actually lower than the “obvious” bound. In cases where
n is much larger than k however, regardless of what k is, there must be at
bare minimum n points in Ps (since at least one class must be represented
in Ps) so we obtain a similar result of nearly equally sized partition pieces.

This motivates the question of a general minimum bound for the size of
Ps in cases where the relative magnitude of n and k are not known. Com-
puting some bounds, we observe that for small values of n with arbitrary k
the minimum bound (of the obvious bound and the clever bound) is very
close to one quarter. It turns out that it is simple to show that at least one
of our bounds will always be greater than one quarter.
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Corollary 1. Let K denote a set of 2n + k points. Suppose the n element subsets
of K are classified in a Kneser way using exactly k + 2 classes. The Subcoloring
Theorem guarantees the existence of a division of the original point set into two
new sets, Pl and Ps, such that specified properties hold. It is also the case that for
all such divisions, |Ps|/|K| > 1

4 .

Proof. We will suppose the contrary and use our obvious and clever bounds
to arrive at a contradiction.

We begin by manipulating inequality 5.2. Suppose that this clever lower
bound for |Ps| is less than or equal to 1

4 of the total number of points:

bk
2c+ 1

2n + k
≤ 1

4
.

Multiplying through by four and 2n + k we obtain:

4
(
bk
2
c+ 1

)
≤ 2n + k.

If k is even then the equation becomes 2k +4 ≤ 2n+k such that k ≤ 2n−4.
If k is odd then the equation becomes 2k + 2 ≤ 2n + k such that k ≤ 2n− 2.
In either case, it is certainly true that k ≤ 2n− 2.

Leaving the clever bound for now, suppose that the obvious bound in
inequality 5.1 gives a value of |Ps| such that |Ps|

2n+k ≤ 1
4 . Manipulating this

expression we get |Ps| ≤ 1
4(2n + k) = n

2 + k
4 . Since |Ps| must be an integer,

we know we can write |Ps| ≤ bn
2 + k

4c. We will only make the right-hand
side of inequality 5.1 greater by substituting bn

2 + k
4c for |Ps| as follows:

bk
2
c+ 1 ≤

(
bn

2 + k
4c

n

)
.

Now we will substitute in our expression for k from the clever lower
bound computations we did earlier with equation 5.2. Since k ≤ 2n− 2, we
get:

bk
2
c+ 1 ≤

(
bn

2 + 2n−2
4 c

n

)
=

(
bn

2 + n
2 −

1
2c

n

)
=

(
bn− 1

2c
n

)
=

(
n− 1

n

)
.

But
(n−1

n

)
equals 0 and the left side of the equation is clearly positive. Thus

we arrive at a contradiction.
Thus we must reject our assumption and conclude that at least one of

the bounds is greater than 1
4 .
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5.1.1 Bounds for various quantitities in the non-limiting case

In the non-limiting case, the assertion of the Subcoloring theorem does not
give any information about what happened with the classes that are not
indexed by the ai. For this reason is is difficult to imagine a bound tighter
than the obvious one we discussed in the previous section: the upper limits
on the number of colors exhibited by a piece of the partition are equal to
the total number of n-subsets within those pieces respectively (note that
this limit is reached when all n-subsets within Pi are differently colored).
Also, there is no reasonable way to bound the number of colors exhibited
by each piece other than to say that it must excede bk+2

2 c and be less than
the total number of colors less bk+2

2 c. These bounds induce bounds on the
sizes of the Pi that are less restrictive than the obvious bound discussed in
the previous section in nearly every case.

5.1.2 The Implications of Bounds in the Graph Theoretic Formu-
lation

Recall the statement of the subcoloring theorem in terms of the Kneser
graph:

The Subcoloring Theorem. Let n, k be natural numbers. For any proper color-
ing of the vertices of K

(n)
2n+k by the colors C = {1, 2, ...,m} :

• Suppose m = k + 2. Then given any division of the colors into two sets C1

and C2 that differ in size by at most one, there exist two disjoint induced
subgraphs of K

(n)
2n+k, G1 and G2 such that all the colors in Ci appear in

the inherited coloring of Gi (with no other colors appearing), and the Gi are
Kneser graphs. Further, G1 ∪G2 is maximal.

• Suppose m ≥ k + 2. Then there exists a sequence of k + 2 increasing colors
with the property that when the colors in odd position in the sequence are
put into set C1 and the colors in even position in the sequence are put into
set C2 that there then exist two disjoint induced subgraphs of K

(n)
2n+k, G1

and G2, which are both Kneser graphs and whose union is maximal, such
that every color in Ci appears in the inherited coloring of Gi.

An interesting feature of this formulation of the Subcoloring theorem
is that although between G and H there are at least k + 2 colors, which is
a sufficient number to color the original Kneser graph, G1 and G2 may be
quite small (especially when k is not big compared to n). For instance, in
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the case of the Petersen graph K
(2)
5 in Figure 2.2, if it is colored by k +2 = 3

colors then one of the asserted subgraphs is a single vertex and the other is
three vertices with no edges. In fact, reflecting on the definition of a Kneser
graph, it is obvious that the asserted subgraphs will have no edges as long
as they correspond to partitions of the 2n + k points in which fewer than
2n points are in either piece of the partition: if |Pi| < 2n then there can be
no pairs of disjoint n-subsets in |Pi|.

We can construct some simple bounds about when there will be edges
in the asserted Kneser subgraphs. Since one of the Pi must conatain at
least d2n+k

2 e points we are guaranteed edges in at least one of the asserted
subgraphs when

d2n + k

2
e ≥ 2n.

Similarly, we can set a bound above which both Kneser subgraphs must
have edges. From Corollary 1 in this chapter we have that the smaller Pi

must contain at least 1
4 of the total number of points. Thus, both subgraphs

are guaranteed to contain edges when

d2n + k

4
e ≥ 2n.

5.2 Applications

The kinds of situations that the Subcoloring Theorem describes naturally
are those in which the Kneser coloring condition makes sense. There should
be some reasonable rationale for having to color disjoint n-subsets differ-
ently. A situation in which this condition naturally arises is a prospective
competition between n-subsets of the population in which no ties are al-
lowed. In this setting, the limiting case of the theorem allows us to identify
an “elite” collection of competitors that has size strictly between 1

4 and 3
4 of

the total number of competitors. Some examples have logical reasons for
adopting the limiting case of allowed classes. Examples of relevant situa-
tions include:

5.2.1 Division of Labor in high-cost-training situations

Suppose you are building a factory and training workers. In particular,
suppose that every product that you are considering making takes n work-
ers to complete (but the time to complete a product varies) and your work-
ers will be allowed to take unpaid breaks when they want to so long as they
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are not in the middle of working on a product. For the factory to be optimal
you would like to initally train the workers so that any time n of them are
ready to work they can go to a station that they are trained in using and
start on a product. Also, it is prohibitively expensive to retrain workers. If
you have 2n + k workers, how many different products must you choose
to make for these conditions to be met? Kneser’s conjecture says you must
make at least k + 2 products.

Suppose you built the factory to manufacture k + 2 products but now
you wish to break the factory into two smaller factories with the same prop-
erty that anytime n workers are ready they can start on some product. Also,
you don’t want to retrain any workers. The Subcoloring theorem says that
for any division of the products into two halves (approximately equally
sized) you can find a division of workers into two groups that will each
have the desired property. Further, the groups of workers will not be too
lopsided since at least a quarter will be in each group.

5.2.2 Tennis Club

There is a tennis club of size (4 + k) which assigns every possible doubles
pair a color of jersey to play under. They want to insure that any two dou-
bles teams which could possibly compete play under differently colored
jersies. From Kneser’s conjecture, the minimum number of jersey colors
which must be assigned is k + 2.

Now suppose that the club wanted to split into two clubs in which each
doubles pair contained within a new small club plays under the same color
jersey that they did originally. The Subcoloring theorem says that we can
divide the colors of jersies into two approximately equally sized groups,
Group 1 and Group 2 (with sizes within 1 of each other) in any way and
there will exist some division of players such that all doubles pairs within
the first new club will play under a jersey color in Group 1, and all colors of
jerseys in Group 1 will be worn by some pair in the first club. An analogous
statement about Group 2 and the second club also holds.

We can obtain similar results for larger teams of players.

5.2.3 Combination Therapy

Assessing the promise of medical therapies individually can be misleading
when in true practice therapies are often used in combinations or cocktails
whose effectiveness has a substantial dependence on the interactions be-
tween the therapies applied.
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Suppose that we are interested in evaluating combination therapies of
2n+k experimental treatments. We would like to identify a class of promis-
ing therapies for increased research funding. We survey experts on the
treatments by allowing them to rank the combinations of size n into k + 2
categories of promise with the condition that between any two totally sep-
arate treatment combinations, one must be preferred over the other. From
the Subcoloring theorem, we know that we will be able to identify an “elite”
class of treatments in which all combinations have rank in the upper half
of the promise classifications, and no promising combinations occur within
the “non-elite” class. By concentrating study on this reduced field of treat-
ments (each valuable to several combinations) we mobilize resourses in a
more effective way.

5.2.4 Party Politics and Picking a Running Mate

Suppose that there are 2n + k candidates from the same party who intend
to run for an office that is elected as a team of n members. If the n-subsets
are ranked by popularity such that any two totally disjoint teams have
one which is more popular, and no more than k + 2 classes of popularity
are used, then there exists a partition of the potential candidates into two
classes such that all n-teams within one class dominate all n-teams that are
within the other class. If slush funds are being distributed, the party might
prefer to concentrate their publicity on the candidates that are in the “elite”
popularity class, since these candidates have a uniformily high potential
value in the election with respect to all potential n-teams they might run
with.
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Conclusions

By extending Greene’s proof using Fan’s generalization of the LSB theorem
we were able to prove the result we have called the Subcoloring theorem.
Though the Subcoloring theorem is equivalent to an earlier result of Fan
in (5), the insight gained in this process made it a natural step to adapt
a combinatorial proof of Kneser’s conjecture. By expanding Matoušek’s
combinatorial proof we were able to find an original proof of Fan’s result
and the Subcoloring theorem.

This project has probably been most interesting because of its interdis-
ciplinary nature. The first part of the project used topological methods to
reach a combinatorial conclusion. We were able to find a parallel proof
within combinatorics. Throughout, we have been able to reformulate our
results in a graph theoretic framework that relates to areas of current re-
search, for example, the work of Simonyi and Tardos in (12).

This thesis motivates the question of what other topological theorems
can be used in combinatorial settings. Even if other applications of topolog-
ical theorems do not result in original combinatorial theorems, the bridge
that they could provide would greatly enhance understanding of the inter-
play between these areas of mathematics. Even among theorems closely
related to the LSB theorem there are many promising directions. For in-
stance, given the work in this thesis, it seems logical that there should be
some direct proof of Kneser’s Conjecture from the Borsuk-Ulam theorem. If
this link could be established, there are many well-known generalizations
of the Borsuk-Ulam theorem that might have interesting combinatorial con-
sequences.
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