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Chapter 1

Introduction

1.1 Introduction

Within the past twenty years, mathematicians have analyzed combinato-
rial games on graphs, such as peg solitaire, checker jumping and graph
pebbling. In most cases, the reason why these games have been studied
is that we can apply analysis of the games as a way to solve more seri-
ous questions in number theory or other mathematical fields. I will now
describe what graph pebbling is and how it arose.

In 1989, Lemke and Kleitman proved a conjecture of Erdős and Lemke
from additive number theory in (21). It is known that for any set N =
{n1, n2, . . . , nq} of q natural numbers, there is a nonempty index set I ⊂
{1, . . . , q} such that q|∑i∈I ni. The conjecture stated that the additional con-
dition ∑i∈I ni ≤ lcm(q, n1, n2, . . . , nq) could also be imposed (18). Although
a correct proof was constructed, Lemke and Kleitman’s argument was de-
tailed and contained a considerable amount of case analysis. Glenn Hurl-
bert, a leading expert on graph pebbling, asserts in (18) that “it was the
intention of Lagarias and Saks to introduce graph pebbling as a more in-
tuitive vehicle for proving this theorem”. Specifically, Erdős and Lemke’s
extension would follow if the conjectured pebbling number of the Carte-
sian product of paths was true. Before we continue with this exposition,
we will provide some specific definitions in the field of pebbling.

Given a graph G, distribute k pebbles on its vertices in some configura-
tion, call it C. Assume that in all cases G is connected. Specifically, a config-
uration on a graph G is a function from V(G) to N ∪ {0} representing an
arrangement of pebbles on G. A pebbling move is defined by removing two
pebbles from some vertex and placing one pebble on an adjacent vertex.



2 Introduction

A pebble can be moved to a root vertex v if given a sequence of pebbling
moves, it is possible to place one pebble on v. Here is an example of a
pebbling move: We define the pebbling number, π(G) to be the minimum

x x x x
3 0 1 1

−→

Figure 1.1: A pebbling move.

number of pebbles that are sufficient so that for any initial configuration of
pebbles, it is possible to move to any root vertex v in G. After moving to
a particular root vertex, if one desires to move to another root vertex, the
pebbles reset to their original initial configuration. As a simple example,
the pebbling number of Kn, the complete graph on n vertices, is n. Notice
that if a pair of pebbles was placed on any vertex, then a pebbling move
could place one pebble on any other vertex of the graph. By the pigeonhole
principle, this means that π(G) ≤ |G| + 1, where |G| denotes the num-
ber of vertices of G. Since placing one pebble on every vertex means that
any root vertex contains a pebble, we see that π(G) ≤ |G|. To see that
π(G) > |G| − 1 consider the configuration of pebbles that places one peb-
ble on all but one vertex of G. The unpebbled vertex can never be reached
via a pebbling move since there are no pebbling moves that can be made.
Thus, π(G) = |G|.

As another example, it can be determined through case analysis that the
pebbling number of the following graph is 4. From this example, we can see

x x

xx

Figure 1.2: A graph where π(G) = 4.

how checking all the different initial configurations, even for a very basic
graph, can get complicated quite easily. With this initial background infor-
mation covered, we now continue the story of pebbling’s “first moves.”
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In 1989, Fan Chung Graham published the first pebbling paper, which
was a proof of the Cartesian product result for paths. One way to generalize
Fan Chung Graham’s result is the following famous conjecture of Ronald
Graham:

Conjecture 1.1.1. For all G1, G2, π(G1 × G2) ≤ π(G1)π(G2).

This conjecture is still open, though people have shown its validity on
special cases of graphs. To explain one example of such a generalization of
the path result, define the support of a distribution of pebbles D on a graph
G as the number of vertices where D(v) > 1. A graph G has the 2-pebbling
property if, for any distribution D of size at least 2π(G)− q(D) + 1, where
q(D) is the support of a distribution, it is possible to move two pebbles to
any specified root vertex. Moews proves (22) that if G is a graph with the
2-pebbling property and T is a tree, then π(G× T) ≤ π(G)π(T).

The remainder of this introduction will focus on other pebbling ques-
tions that I have considered in this thesis. This work was begun at the East
Tennessee State University REU and continued over the course of the se-
nior thesis year. Each of the following sections will introduce one branch
of research I am conducting.

1.2 Cover Pebbling

Within the past few years the field of graph pebbling has rapidly grown.
Mathematicians are now studying a multitude of related questions that in-
volve pebbling moves on graphs. One such question relates to the cover
pebbling number of a graph. The cover pebbling number γ(G) was intro-
duced in (7), and defined as the minimum number of pebbles needed to
place a pebble on every vertex of the graph using a sequence of pebbling
moves, regardless of the initial configuration. One application in (7) for
γ(G) is based on a military application where troops must be distributed
simultaneously. If C is a configuration of pebbles onto the vertices of G and
it is possible to cover pebble G, then we say C is cover solvable.

The main problem in cover pebbling is determining γ(G) for all graphs.
As of October 2004, this problem is essentially solved. After the first cover
pebbling paper (7), two papers, written by Hurlbert and Munyan (19), and
Watson and Yerger (12), provide cover pebbling results for specific classes
of graphs. A month later, Vuong and Wyckoff proved a general theorem,
that essentially says that for cover pebbling, the configuration that requires
the most number of pebbles before a cover solution can be found occurs
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when all the pebbles are on a single vertex. Thus, they proved the following
theorem, colloquially called the “stacking theorem,” because all the pebbles
can be placed on one vertex. Before we state the theorem, we must define
a few terms. For v ∈ V(G), define

s(v) = ∑
u∈V(G)

2d(u,v),

where d(u, v) denotes the distance from u to v, and let

s(G) = max
v∈V(G)

s(v).

Theorem 1.1. (Vuong and Wyckoff) Given a graph G, the cover pebbling number
on G is s(G).

In fact, Vuong and Wyckoff prove an analogous result for a more gen-
eral statement of the theorem, where the number of pebbles required on
each vertex is positive, but may be greater than one and may be different
for every vertex. Finally, Godbole, Watson and Yerger have shown in Chap-
ter 2 that given a configuration of pebbles C, and a graph G, the decision of
whether the graph has a cover-solution or not is NP-complete.

1.3 Domination Cover Pebbling

After the cover pebbling problem was solved, the REU group considered
other pebbling-type question and invariants. Alberto Teguia proposed the
concept of domination cover pebbling as a way to connect the field of graph
domination to pebbling. Recall that a set of vertices D in G is a dominat-
ing set if every vertex in G is either in D or adjacent to some element in
D. The domination cover pebbling number of a graph G is the minimum
number of pebbles required so that any initial configuration of pebbles can
be transformed by a sequence of pebbling moves so that the set of vertices
that contain pebbles form a dominating set S of G. The pebbles may be
placed on any of the vertices of G. One reason why this problem is hard
is that for different initial configurations of pebbles, different dominating
sets may be required. Graphs can be easily constructed to show this prop-
erty. Consider the following configurations of pebbles on P4, the path on
four vertices: For the graph on the left, we make pebbling moves so that
the first and third vertices are selected (from left to right) are the vertices
of the dominating set. However, for the graph on the right, we make peb-
bling moves so that the second and fourth vertices are selected (from left to
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x x x x x x x x
5 5

Figure 1.3: An example where two different initial configurations produce
two different domination cover solutions.

right) are the vertices of the dominating set. We refer the reader to (16) for
additional exposition on domination in graphs.

With this problem, two branches of study were proposed. The first
task was to determine the domination cover pebbling number for various
classes of graphs. In Chapter 3, we have determined the domination cover
pebbling number for Kn, the complete graph on n vertices, Pn, the path
graph on n vertices, Cn, the cycle graph on n vertices, Kc1,c2,...,cr , the com-
plete r-partite graph with vertex classes c1, c2, . . . , cr respectively, and Bn,
the complete binary tree of height n. The second task was to prove more
general structural results about domination cover pebbling. Specifically,
given a graph with n vertices and diameter d, we want to determine that
maximum value of ψ(G). We have proven a sharp result for graphs of di-
ameter 2 and 3, and an almost sharp result for graphs of diameter n. Recall
that the diameter of a graph is the maximum number of edges that are tra-
versed in the shortest path between two arbitrary vertices of a graph.

We also discovered that domination cover pebbling can be related to an-
other graph invariant called the vertex neighbor integrity (VNI) of a graph.
We describe this parameter using the definitions of Cozzens and Wu (6).
Let G = (V, E) be a graph and u be a vertex of G. The open neighborhood
of u is N(u) = {v ∈ V(G)|{u, v} ∈ E(G)}; the closed neighborhood of
u is N[u] = {u} ∪ N(u). Analogously, for any S ⊆ V(G), define the
open neighborhood N(S) = ∪u∈SN(u) and the closed neighborhood N[S] =
∪u∈SN[u]. A vertex u ∈ V(G) is subverted by removing the closed neigh-
borhood N[u] from G. Notice that this subversion is equivalent to the re-
moval of a dominating set from G. For a set of vertices S ⊆ V(G), the
vertex subversion strategy S is applied by subverting each of the vertices of
S from G. Define the survival subgraph to the the subgraph left after the
subversion strategy is applied to G. The order of G is defined to be |V(G)|.
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Definition 1.3.1. The vertex neighbor integrity of a graph G is defined as

VNI(G) = min
S⊆V(G)

{|S|+ ω(G \ S)},

where w(H) is the order of the largest connected component in the graph H.

We apply a variant of subversion in order to describe how VNI calcu-
lations relate to domination cover pebbling. Let Ωω(G) be the minimum
number of pebbles required such that it is always possible to construct an
incomplete domination cover solution of G, where disjoint undominated
components of G can have order at most ω. This corresponds to the ω(G)
term in the VNI computation. Notice that domination cover pebbling cor-
responds to the case when ω = 0. As a side note, the only people so far that
have worked explicitly in the field of VNI have been women. There have
only been a few results so far with respect to this VNI domination cover
pebbling, but this may be a topic of further investigation.

1.4 Deep Graphs

Another variant of graph pebbling that has recently been constructed is the
concept of deep graphs. In 2004, Hetzel and Isaksson (17) introduced the
concept of deep graphs. A graph is deep if for each positive integer n ≤ π(G),
there exists an induced subgraph H of G such that π(H) = n. At the REU,
we extended this definition to prove stronger, more relevant results.

Before we describe these results we will define terminology used in this
branch of the research. One classification of graphs that has been useful in
obtaining results for pebbling problems is considering graphs of Class 0. A
graph is Class 0 if its pebbling number is equal to its number of vertices.
In fact, in 1997, Clarke, Hurlbert and Hochberg proved in (4) that all 3-
connected graphs with diameter 2 are Class 0. We say that a graph G is
Class 0 deep if G is deep and Class 0. Recall that a graph is k-connected
if it is possible to remove k − 1 vertices from G and have the remaining
graph be connected. A graph G is profound if it is deep and it is possible
to construct G by a series of induced subgraphs H1 ⊂ H2 ⊂ · · · ⊂ Hπ(G).
By this construction each of these subgraphs are also profound. Extending
this definition to Class 0 graphs, we say that a graph G is Class 0 profound if
it is Class 0 deep and G can be constructed by a series of induced subsets,
H1 ⊂ H2 ⊂ · · · ⊂ H|G|, each of which are Class 0 deep.

In the beginning of Chapter 5, we prove some interesting properties
about deep graphs. For instance, deepness is not a monotonic property with
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respect to edges. That is, if a graph is deep, adding edges to it may mean the
graph is now not deep. Also, not all graphs that are Class 0 deep are Class
0 profound. Notice the inclusion in the opposite direction holds by defi-
nition. The remainder of the chapter determines probabilistic results con-
cerning G(n, p), a random graph on n vertices, where each edge is placed
independently with probability p. Specifically, we want to show that for
some range of values of p, as n approaches infinity, the probability that
G(n, p) is Class 0 profound approaches 1 almost surely.

1.5 Cover Pebbling Thresholds

Instead of considering random graphs, now consider what happens when
we randomly throw pebbles on a graph such that the each pebble has the
same probability of landing on each vertex of the graph. We want to deter-
mine the probability that the graph is cover solvable. In order to tackle a
doable problem, we consider placing the random pebbles on Kn, the com-
plete graph on n vertices. Conjectures and results have been obtained in
two ways. Watson and Yerger used somewhat simple techniques from
analysis, and with the help of Godbole, also applied some more complex
techniques from probability theory to solve the question.

One common occurrence when considering properties of random graphs
is that there exists a threshold, a frequency such that the following occurs:
If n, in this case the number of pebbles, but it could be other properties
such as the number of edges in a graph or the probability of an edge in
G(n, p), is asymptotically less than the threshold, then the probability of
the property occurring as n approaches infinity is 0 almost surely. Simi-
larly, if the number of pebbles is asymptotically greater than the threshold,
the probability that the property occurring approaches 1 almost surely as n
approaches infinity. With this framework in mind, in Chapter 6, we prove
the surprising result that to first order, when the pebbles are initially dis-
tributed in a random way, the threshold for cover pebbling the complete
graph on n vertices is γn, where γ is the golden ratio, 1+

√
5

2 !
In addition, the random allocation of pebbles described above is one

of generally two ways that the pebbles are distributed. The other way is
for the probability of every distribution of pebbles to be uniform. Unfortu-
nately, little emphasis has been put on this second distribution.
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1.6 Optimal Pebbling

There is another branch of pebbling research that explores best-case peb-
bling scenarios. Instead of being concerned with the worst possible case,
the optimal pebbling number tries to determine the fewest number of peb-
bles so that every vertex can be reached. Formally speaking, we have the
following definition:

Definition 1.6.1. The optimal pebbling number πOPT(G) is the minimum k such
that some distribution of k pebbles so that every vertex can be reached.

Studies of the optimal pebbling number were started by Pachter et al
(23), who computed that the optimal pebbling number of the path graph
was d2n/3e.

Recently, Douglas West et al (2) reexamined optimal pebbling numbers
and made some simplifications to the literature. The most useful result
of this paper is their “smoothing lemma.” This lemma says that an opti-
mal pebbling configuration will have at most two pebbles on any vertex
of degree 2 and no pebbles on any leaf. Another active group in optimal
pebbling is the research group of Narayan at Michigan Tech.

1.7 Structure of the Thesis

The thesis will be organized in the following manner. Each section will
describe a particular problem, starting with results proved by other math-
ematicians, or drafted by me over the summer, and continues with new
results or generalizations. Notice that most of my summer work was not
completed in a final form by the end of the program, so a significant por-
tion of my thesis time has been spent proofreading, editing and tightening
the summer results. In addition, there are parts of the thesis that are part
of the joint work I am continuing from the REU whose first drafts were
not written by me. However, I have edited and revised all of the material
present, and I will note others’ contributions accordingly.
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Cover Pebbling

2.1 Cover Pebbling

This section will describe various non-probabilistic results related to cover
pebbling. First, I will briefly discuss the invention of cover pebbling, which
appeared in (7). Then I will describe the current status of the cover pebbling
problem by proving various results from the papers of (27), (19), and (26).
It is interesting that although cover pebbling forces every vertex to have
a pebble on it instead of just one, which is the requirement of pebbling, it
is a simple question to solve. If fact, one corollary of (26) is the proof of a
modified from of Graham’s conjecture that relates to cover pebbling.

As a first simple example, consider the following theorem shown in (7):

Theorem 2.1. γ(Kn) = 2n− 1.

Proof. Suppose that two pebbles are placed on each vertex of Kn except for
one. Although the non-pebbled vertex, call it v, can be reached by any of
the pairs, the vertex whose pair of pebbles is used to cover v is now empty.
Thus, we can never have all the vertices covered, and so γ(G) ≥ 2n− 1.

Now suppose that there are at least 2n− 1 pebbles on the vertices. Sup-
pose that some vertex, say w, has no pebbles on it, else we are finished. In
this case, by the pigeonhole principle there exists some vertex that contains
a pair of pebbles. Take a pair of pebbles on this vertex and cover w. Now,
removing w we have 2n − 3 pebbles left for the n − 1 vertices remaining.
Thus, we can apply induction to see that every vertex will be able to be
covered.
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2.2 Trees and the “Stacking Theorem”

For all graphs with n vertices and arbitrary diameter, the complete graph
has the smallest cover pebbling number and the path graph has the largest
cover pebbling number. Another relevant question that may be asked is,
given a graph with k vertices, and diameter d, what is the graph with the
largest cover pebbling number? This graph is the fuse graph and we will
state the definition given in (7).

Definition 2.2.1. Suppose that l ≥ 2 and n ≥ 3. Define the fuse graph, denoted
by Fl(n) as follows. The vertices of Fl(n) are v1, . . . , vn, such that the first l ver-
tices form a path from v1 to vl , and the remaining vertices are independent and
adjacent only to vl .

In the paper, they also show that γ(Fl(n)) = (n− l + 1)2l − 1. In (27),
Watson and Yerger use this bound and a greedy algorithm to show a sharp
upper bound for graphs of fixed diameter and n vertices.

In order to accurately describe the results of (7), we must define a few
more relevant terms.

Definition 2.2.2. (7) Let T be a tree and let V(T) be the vertex set of T. For
v ∈ V(T), define

s(v) = ∑
u∈V(T)

2d(u,v),

where d(u, v) denotes the distance from u to v, and let

s(T) = max
v∈V(T)

s(v).

In (7) the main result is that for any tree T, γ(T) = s(T). In fact, this re-
sult extends to include trees with positive weight functions. That is, given
some weight function w(G), which is defined as a function that maps some
nonnegative integer onto each vertex of G, call it w(v), we can also deter-
mine the cover pebbling number of G with respect to the given weighting.
The authors prove that γ(T) with respect to some weight function w is
equal to

max
v∈V(T)

sw(v),

where
sw(v) = ∑

u∈V(T)
w(u)2d(u,v).
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The proof of this assertion is based on classifying vertices in three types:
demand vertices, that need more pebbles, (that is, w(v)−C(v) > 0) neutral
vertices, where w(v) = C(v), and supply vertices, where C(v)− w(v) > 0.
Then the authors perform a series of case analysis steps to find a way to
place enough pebbles on the tree’s vertices. Notice that this result is the
first evidence leading towards the stacking theorem, namely that the initial
configuration that requires the most number of pebbles occurs when all the
pebbles are initially placed on one vertex.

The next few sections will derive results obtained by Nathaniel Watson
and the author in (27). Most of this work was completed over the sum-
mer and was submitted to Bulletin of the Institute for Combinatorics and its
Applications in March.

2.3 Complete Multipartite Graphs

The first class of graphs after trees that we tackled was complete multipar-
tite graphs.

Definition 2.3.1. For s1 ≥ s2 ≥ · · · ≥ sr, let Ks1,s2,...,sr be the complete r-partite
graph with s1, s2, . . . , sr vertices in vertex classes c1, c2, . . . , cr respectively.

Definition 2.3.2. For a complete r-partite graph G = Ks1,s2,...,sr , let φ(G) =
4s1 + 2s2 + · · ·+ 2sr − 3.

Theorem 2.2. γ(Ks1,s2,...,sr) = φ(G).

Proof. First, we will show that not every configuration of size φ(Ks1,s2,··· ,sr)−
1 on Ks1,s2,··· ,sr is cover-solvable. Consider the case where all φ(Ks1,s2,··· ,sr)−
1 pebbles are on one vertex of c1, call it x. There are k = s2 + s3 + · · ·+ sr
vertices that are distance 1 from x and l = s1 − 1 vertices that are distance
2 from x. For the k vertices a distance 1 from x, 2k pebbles are required to
cover these vertices, and for the l vertices at distance 2 from x, there are 4l
pebbles required to cover these vertices. We need one more pebble to re-
main on x, for a total of 2k + 4l + 1 = φ(Ks1,s2,··· ,sr) pebbles required, which
is one more than we have. Thus, this configuration is not cover-solvable.

Now suppose that there exists some complete r-partite graph Ks1,s2,...,sr

which has a configuration of size γ(Ks1,s2,...,sr) that is not cover-solvable.
Among such graphs, choose one (let it be G′ = Ks′1,s′2,...,s′r′

).
First, we will show that G′ cannot be a star graph (that is, a Ks′1,1.) In

(7) it is shown that for any tree T, γ(T) = s(T). Since G′ is a tree, we can
compute γ(G′) by evaluating s(v) for all v ∈ G to obtain s(G). If v ∈ c1 then
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s(v) = 4s′1 − 1, and if v ∈ c2 then s(v) = 2s′1 + 1. Thus, s(G′) = γ(G′) =
4s′1 − 1 = 4s′1 + 2s′2 − 3 = φ(G′). Hence, for a star, every configuration of
size γ(G′) is cover-solvable. Since G′ is not a star, further suppose that for
any G′, each complete multipartite subgraph G of G′ is cover-solvable with
φ(G) pebbles.

Notice that for any complete p-partite graph with p ≥ 2 other than
a star graph, the removal of a vertex from the graph leaves a subgraph
that is a complete q-partite graph with q ≥ 2. Since G′ cannot be a star,
for any vertex v ∈ G′, G′ − v is a complete r∗-partite graph with r∗ ≥ 2.
Furthermore, since by our assumption, for any complete r-partite graph
G smaller than G′, a configuration of size γ(G) or greater must be cover-
solvable, and since clearly γ(G′− v) ≤ γ(G′)− 2, any configuration of size
γ(G′)− 2 or greater on G′ − v is cover-solvable.

Let C be a configuration of size γ(G′) on G′. Suppose C(v) = 1 or 2
for some v ∈ G′. Then C restricted to G′ − v is a configuration of size at
least γ(G′)− 2 and thus is cover-solvable on G′ − v. After we carry out the
steps of the cover-solution of this subgraph, we will have cover-solved G′,
contradicting our hypothesis.

Otherwise, if C(v) = 0 or C(v) ≥ 3 for all v ∈ G′, choose some v′ for
which C(v′) = 0 (if no such v′ exists, we are done). Then consider the
vertices of G′ which are in different vertex classes of G′ from v′. If at least
one of these is initially occupied, call it v′′. Then since C(v′′) ≥ 3, we can
cover v′ with pebbles from v′′, while leaving γ(G′)− 2 pebbles on G′ − v′.
Thus, the configuration of pebbles on G′ after this move, restricted to the
subgraph G′ − v′ is cover solvable, and after we carry out the steps of the
cover-solution of this subgraph, we will have cover-solved G′. Otherwise,
all the vertices in the vertex classes of G′ that are different than the vertex
class from v′ are empty. Thus, all pebbles are on vertices in the vertex class
of v′, and in particular, some vertex w of this class has pebbles on it, so
C(w) ≥ 2. Thus, we can use pebbles on w to cover some vertex w′ in an-
other vertex class, as all these vertices are empty. Note that after this move,
the configuration of pebbles on G′ − w′ has size γ(G′) − 2, and thus this
configuration restricted to the subgraph G′ − w′ is cover-solvable. Again,
after we carry out the steps of the cover-solution of this subgraph, we will
have cover-solved G′.
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2.4 The Wheel Graph

In this section, we will compute γ(Wn), where Wn is the wheel graph.
The wheel graph is composed of a cycle consisting of n vertices, v1, . . . , vn,
which are all connected to a hub vertex, v0, for a total of v = n + 1 vertices.

Theorem 2.3. For n ≥ 3, γ(Wn) = 4n− 5 = 4v− 9.

Proof. Consider the configuration of pebbles where all the pebbles are on
one vertex of Wn, say x, that is not the hub. In this case, 2 pebbles are
required to cover each of the three vertices adjacent to x, and 4 pebbles are
required to cover each of the n − 3 vertices that are a distance of 2 away
from x. The total number of pebbles required to cover-solve these vertices
is 4n − 6. However, we require one more pebble to place on x. Hence,
γ(Wn) ≥ 4n− 5.

To complete the proof, we will show that if there is some configuration
of pebbles on Wn with at least 4n − 5 pebbles, then the configuration is
cover-solvable. Suppose C is a configuration of pebbles on Wn and consists
of at least 4n− 5 pebbles. We now will describe a sequence of moves that
will cover-solve any such configuration. First, if there are outer vertices on
Wn that are empty but are adjacent to outer vertices w such that initially
C(w) ≥ 3, then if the adjacent vertices can be covered and w can also re-
mained covered, then these adjacent vertices should be covered. Let k be
the number of outer vertices that are covered after this process.

Case 1: Suppose that k = 0. In this case, all the pebbles are on the hub
vertex. To cover-solve the remaining v− 1 vertices, we can cover b 4v−10

2 c =
2v − 5 vertices using the excess pebbles already on the hub vertex. Since
v ≥ 4 and 2v− 5 ≥ v− 1, we can cover-solve all of the outer vertices in this
manner.

Case 2: Suppose that k = 1 or k = 2. Each outer vertex covered in the
process above requires at most two pebbles to cover it. Since v ≥ 4, there
are at least 4v− 9− 2k pebbles already on the hub vertex. After subtract-
ing 1 pebble for the hub itself, there are 4v − 10− 2k pebbles that can be
used such that pebbles can be placed on the remaining v− k− 1 uncovered
vertices. With these remaining pebbles on the hub, we can cover at least
b 4v−10−2k

2 c = 2v− 5− k vertices. Since 2v− 5− k ≥ v− k − 1 for v ≥ 4,
there are enough pebbles to cover-solve Wn in this situation.

Case 3: Suppose that k ≥ 3. Again, each outer vertex in the process
above requires at most two pebbles to cover it. If there are any pairs of
pebbles remaining on outer vertices such that removing the pairs would
not uncover that vertex, those pairs of pebbles should be moved to the
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hub vertex. After this process, there are at least d 4v−9−2k
2 e = 2v − 4 − k

pebbles on the hub vertex. Notice that this bound is based on the worst
case that occurs when no pebbles are initially on the hub vertex. From the
hub vertex, it takes exactly 2 pebbles to cover each of the remaining outer
vertices and one pebble to cover the hub vertex. So at most b 2v−5−k

2 c =
v− 3− b k

2c outer vertices can be pebbled. Since there are at most v− k− 1
outer vertices left to be pebbled, and for k ≥ 3, v − k − 1 ≥ v − 3− b k

2c,
there are enough pebbles to cover-solve Wn in this case, and the proof is
complete.

2.5 The Cover Pebbling Number of Graphs of Diam-
eter d

In this section, we compute an upper bound for the cover pebbling number
of graphs of a specified diameter. This was a step in the direction of the
stacking theorem.

Definition 2.5.1. A binary weighting on a graph G is a function from V(G) to
{0, 1}. If B is a binary weighting on G, then let the order |B| of B be ∑v∈G B(v).

Definition 2.5.2. For a graph G and binary weighting B, a configuration C on
G will be called permissible (with respect to B) if for all v ∈ G, B(v) = 0 =⇒
C(v) = 0. A permissible configuration on a graph G with a binary weighting B
will be called cover-solvable (with respect to B) if we can reach a configuration on
which B(v) = 1 =⇒ C(v) ≥ 1 for all v ∈ G by a sequence of pebbling moves.

Lemma 2.5.1. Let G be a graph of diameter d, B a binary weighting on G, and
C a configuration of size at least (|B| − 1)2d + 1 on G which is permissible with
respect to B. Then C is cover-solvable with respect to B.

Proof. Assume the opposite. Then for all pairs {G, B} of a graph G together
with a binary weighting on G such that there exists a non-cover-solvable
configuration of size at least (|B| − 1)2d + 1 (where d is the diameter of
G,) choose one for which |B| is minimal, and call it {G′, B′}. Let d′ be the
diameter of G′, let k = (|B′| − 1)2d′ + 1, and choose some configuration
(call it C′) on G′ which is permissible with respect to B′, has size at least k
and is not cover-solvable.

Certainly we cannot have |B′| = 1, for then the only permissible con-
figuration of size |C′| ≥ k = 1 is the function which takes the value |C′| on
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the lone vertex for which B′ = 1, and is zero elsewhere. This configuration
covers all vertices with non-zero weights, and so is trivially cover-solvable,
creating a contradiction.

Now, suppose that |B′| ≥ 2. If it is true that C′(v) > 0 whenever
B′(v) = 1 we have a contradiction, for C′ is then trivially cover-solvable.
Otherwise, let v′ be some vertex of G′ for which C′(v′) = 0 and B′(v′) = 1.
At most |B′| − 1 vertices are initially occupied, and there are at least =
(|B′| − 1)2d′ + 1 total pebbles, so by the pigeonhole principle, there are at
least 2d′ + 1 pebbles on some vertex (call it v′′). Since the diameter of G′
is d′, d(v′, v′′) ≤ d′. Thus we can move 2d′ of the pebbles from v′′ onto
v′, through a series of pebbling moves, losing half of these pebbles for each
edge we must move across, but leaving at least one pebble on v′ if we move
all pebbles via one of the shortest paths.

Now, define a binary weighting B∗ on G by

B∗(v) =
{

0 : v = v′
B′(v) : v 6= v′ ,

and define a configuration C∗ on G by

C∗(v) =





0 : v = v′

C′(v′′)− 2d′ : v = v′′
C′(v) : otherwise

.

This is the configuration after we have moved pebbles from v′′ onto v′,
except that we ignore the pebbles on v′ and designate it as a vertex which
need not be covered by pebbles. Clearly |B∗| = |B′| − 1 and |C∗| = |C′| −
2d′ so from |C′| ≥ ((|B′| − 1)2d′ + 1), we see |C∗| ≥ ((|B∗| − 1)2d′ + 1). C∗ is
permissible with respect to B∗, and so by our assumption of the minimality
of B′, C∗ is cover-solvable with respect to B∗.

If we carry out the moves of the cover-solution of C∗ on G starting with
the configuration left on G′ after our initial movement of pebbles from v′′ to
v′, (certainly this is possible because this configuration is no smaller than C∗
on any vertex,) we will have covered every vertex of G′ for which B∗ = 1.
Also, we must still have v′ ≥ 1, because C∗(v′) = 0, which does not permit
any sequence of moves that decreases the number of pebbles on v′. Thus
every vertex for which B′ = 1 now has C′ ≥ 1, and we have cover-solved
C′ with respect to B′, which contradicts the assumption that C′ was not
cover-solvable.



16 Cover Pebbling

Theorem 2.4. Let G be a graph of order n and diameter d, and let C be a con-
figuration on G of size at least 2d(n− d + 1)− 1. Then G is cover-solvable (with
respect to the weighting on G which is equal to 1 for each vertex.)

Proof. First, notice that this bound is sharp because we can exhibit the fol-
lowing class of graphs where γ(G) ≥ 2d(n− d + 1)− 1. Suppose we have
a graph consisting of n vertices and diameter d. Then we will construct a
fuse graph (a path connected to a star) whose length is d− 1 and has n− d
spokes at the end of the fuse. Here is an example for n = 7 and d = 4.

x x x x x

x

x

¡
¡

¡

@
@

@

Figure 2.1: A graph where n = 7 and d = 4 such that γ(G) = 2d(n− d +
1)− 1.

Suppose all the pebbles are on the last vertex of the path, which is at
distance d from the spokes (in the figure, the leftmost vertex.) Then each of
the n− d spokes requires 2d pebbles, and the path requires 2d− 1 vertices to
cover-solve. (Note: In (7), the cover-pebbling number of all trees is found.
Thus, we know for these particular trees that γ(G) = 2d(n − d + 1) − 1
even before proving this theorem.)

We will prove this theorem by defining an algorithm by induction which
will take us to a configuration, the solvability of which we can prove using
the lemma. Let R0 = {v ∈ G : C(v) > 0}, let S0 = {v ∈ G : C(v) = 0}, and
let T0 = ∅. Let C0 = C.

For illustrative purposes, we now describe the first step of the algo-
rithm. If S0 = ∅, we are clearly done, for C already covers G. Otherwise,
note that since R0 and S0 are complementary, there exist vertices r0 ∈ R0
and s0 ∈ S0 such that d(r0, s0) = 1. If C0(r0) = 1 or C0(r0) = 2, then let
R1 = R0 \ {r0}, S1 = S0 and T1 = T0 ∪ {r0} = {r0}. In this case, let C1 = C0.

If on the other hand C0(r0) ≥ 3 then we move 2 pebbles from r0 to
s0, and instead put s0 in T1 and define C1 according to the following con-
figuration. Explicitly, in this case let R1 = R0, S1 = S0 \ {s0}, and T1 =
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T0 ∪ {s0} = {s0}. Define C1 on G by

C1(v) =





r0 − 2 : v = r0
1 : v = s0

C0(v) : otherwise
.

Define the sequences R0, R1, . . . , Rd−1, S0, S1, . . . , Sd−1, T0, T1, . . . , Td−1,
and C0, C1, . . . , Cd−1, recursively in an analogous manner. Suppose for some
m < d− 1 we have Rm, Sm, Tm, and Cm, such that the following hold:

1. |Tm| = m.

2. Rm, Sm and Tm are disjoint and Rm ∪ Sm ∪ Tm = V(G).

3. For all v ∈ Rm ∪ Tn, Cm(v) > 0 and for all v ∈ Sm, Cm(v) = 0.

4. Cm is a configuration which can be reached from C by a sequence of
pebbling moves.

5. Rm and Sm are both non-empty.

6. ∑v∈Rm
Cm(v) ≥ [2d(n− d + 1)− 1]− [2m+1 − 2].

Note that all these conditions are trivially true for m = 0.
From condition 1, it is evident that the minimum distance between Rm

and Sm is at most m + 1. Take points rm ∈ Rm and sm ∈ Sm for which this
minimum distance is achieved (and thus d(rm, sm) ≤ m + 1.) If Cm(rm) ≤
2m+1 then let Rm+1 = Rm \ {rm}, Sm+1 = Sm and Tm+1 = Tm ∪ {rm}. In this
case, let Cm+1 = Cm.

Otherwise, if Cm(rm) > 2m+1 then we can move 2m+1 pebbles along
a minimal path from rm to sm, which is of length at most m + 1. We lose
half of these pebbles for each edge we must move across, but we will be
able to move 2(m+1)−d(rm,sm) ≥ 1 onto sm. Put sm in Tm+1 and define Cm+1
according to the configuration after these moves. Explicitly, in this case let
Rm+1 = Rm, Sm+1 = Sm \ {sm} and Tm+1 = Tm ∪ {sm}. Define Cm+1 on G
by

Cm+1(v) =





rm − 2m+1 : v = rm

2(m+1)−d(rm,sm) : v = sm
Cm(v) : otherwise

.

For m + 1, it is clear from our definitions that conditions 1, 2, 3, and 4
still hold. Condition 6 also holds, for in either of the two above cases, the
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total number of pebbles left on Rm+1 is at most 2m+1 less than were on Rm.
Thus,

∑
v∈Rm+1

Cm+1(v) ≥ ∑
v∈Rm

Cm(v)− 2m+1

≥ [2d(n− d + 1)− 1]− [2m+1 − 2]− 2m+1

= [2d(n− d + 1)− 1]− [2m+2 − 2].

For condition 5, since always m + 1 < d and n ≥ d, [2d(n − d + 1) −
1] − [2m+1 − 2] > 0. Thus, the fact that condition 6 is true for m + 1 ne-
cessitates that Rm 6= ∅. Also, if Sm+1 = ∅ then Cm+1(v) > 0 for all v ∈
Rm ∪ Sm ∪ Tm = V(G), and since Cm is attainable from C by a sequence
of pebbling moves, we have cover-solved C and we are done. So we may
assume Sm+1 6= ∅ and condition 5 holds.

By this recursive definition, we now have Rd−1, Sd−1, Td−1, and Cd−1 for
which conditions 1-6 hold. Now define a binary weighting B on G by

B(v) =
{

1 : v ∈ Rd−1 ∪ Sd−1
0 : v ∈ Td−1

.

Also, define C′d−1 on G by

C′d−1(v) =
{

Cd−1(v) : v ∈ Rd−1 ∪ Sd−1
0 : v ∈ Td−1

.

Clearly C′d−1 is permissible with respect to B. From condition 1, |Td−1| =
d− 1 so |B| = n− d + 1, and from condition 6 we have |C′d−1| ≥ [2d(n−
d + 1) − 1] − [2(d−1)+1 − 2] = 2d(n − d) + 1. Thus, by the lemma, C′d−1 is
cover-solvable with respect to B.

By condition 4, Cd−1 is a configuration which can be reached from C by
a sequence of pebbling moves. If after we carry out this sequence of moves,
we carry out the moves of this cover-solution of C′d−1 on G (certainly this is
possible because C′d−1 is no greater than Cd−1 on any vertex,) we will have
covered every vertex of G for which B = 1, that is every vertex in Rd−1 ∪
Sd−1. Also, every vertex v ∈ Td−1 must remain covered, because for each of
these vertices, C′d−1(v) = 0, which does not permit any sequence of moves
which decreases the number of pebbles on v. Applying, condition 2, we see
for every vertex v ∈ V(G) = Rd−1 ∪ Sd−1 ∪ Td−1, our final configuration
after this sequence of moves is greater than zero, and so we have cover-
solved C.
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2.6 Hypercube Cover Pebbling Number

Recall that the first nontrivial family of graphs whose pebbling numbers
were obtained was the Cartesian products of paths. In the same paper,
Fan Chung Graham proves that the pebbling number of a hypercube in
d dimensions is 2d. In a recent paper, Hurlbert and Munyan (19)prove a
corresponding result for cover pebbling the hypercube. They show that
the number of pebbles required for this situation is 3d. The proof utilizes
induction on the size of the support of G, which is defined as the set of
vertices that initially have pebbles on them.

Another property that was initially mentioned in (7) is the cover pebbling
ratio, which is defined as γ(G)/π(G). This ratio can be as small as 2 for
complete graphs, or as large as n

lg n for fuses. For the d-cube, the cover

pebbling ratio is dlg(3)−1.

2.7 The Stacking Theorem

In 2004, two independent efforts produced a proof of the stacking theorem,
namely Vuong and Wyckoff (26) and Sjostrand (24). One of the main ideas
in both papers is determining some process to distribute the pebbles in an
optimal way. In this light, Sjostrand (24) defines a node to be fat if the
number of pebbles on vertex v is greater than w(v). Analogous definitions
hold for thin and perfect. Another new definition is the value of a pebble,
which is the number of pebbles that have gone into making it. To cover the
entire graph Sjostrand uses the invariant that every pebble has a value no
greater than the cost from its nearest fat node. Sjostrand then pebbles the
graph in a way to preserve this invariant, specifically that among all pairs
( f , t) of fat and thin vertices, take one that minimizes the distance d( f , t).

2.8 Complexity of the Cover Pebbling Problem

(This section was joint work with Nathaniel Watson.) The normal way that
mathematicians and computer scientists formalize the concept of the diffi-
culty of a problem is to describe the problem in terms of computational com-
plexity. Formally, we imagine a decision problem to be a set of infinite strings
of characters (like data represented by bits in a computer.) A decision prob-
lem is said to accept a string if this set contains the string. Usually, we look
for the best possible asymptotic upper bound (in terms of the length of the
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string) for the number of steps the fastest possible algorithm takes to deter-
mine whether a given string is in the set. Informally, we think of decision
problems being yes-no questions about a property of some class of finite
mathematical structures (graphs, integer matrices, etc.) and we ask how
fast it is possible to correctly determine the yes or no answer in terms of the
size of the input.

For instance, some problems can be solved by an algorithm which takes
only a number of steps which is bounded by a polynomial in the size of the
input, while others take at least an exponential amount of time to solve. The
former class of decision problems is called P for “polynomial.” The class
NP, for “nondeterministic polynomial” is a bit more complicated; roughly
speaking it is the set of decision problems for which a “yes” answer can be
“checked” in polynomial time, given an appropriate piece of information.
That is, if we call the class of inputs to the decision problem X, and the
class of inputs which the decision problem accepts X′, there exists a class
Y of objects (called the certificates) and a function A : X × Y → {0, 1}
which is computable in polynomial time, such that for any instance x ∈ X
of the decision problem, there exists a y ∈ Y such that A(x, y) = 1 if and
only if x ∈ X′. For instance, the decision problem which asks whether a
given number is composite is easily seen to be in NP, because the composite
numbers are exactly those with nontrivial divisor, and, given two numbers,
it is easy to determine by division whether one is a divisor of the other.
Also, any problem in P is also in NP, because any polynomial-time method
of solving a problem is trivially also a polynomial-time method of verifying
a yes answer. However, it is a celebrated open problem if the converse also
holds and P = NP.

Within NP, there is a class of problems, called the NP-complete problems,
which is thought of being a set of problems that are at least as hard as any
other problem in NP. This is because any instance x of a problem D in NP
can be translated by a polynomial-time algorithm to an instance x′ of any
NP-complete problem D′ such that x′ is accepted by D′ if and only if x is
accepted by D. Therefore, if we could solve any NP-complete problem in
polynomial time, we could solve any problem in NP in polynomial time by
translating it to an instance of this problem. Thus, the question of whether
P = NP reduces to the question of whether any particular NP-complete
problem can be solved in polynomial time.

We now show that the problem which asks if a configuration of pebbles
on a graph is cover solvable is NP-complete. It is worth noting that most
complexity theorists speculate that P 6= NP, and therefore, when a prob-
lem is classified as NP-complete, it is usually thought of as evidence of its
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difficulty. See (13) for a comprehensive theory of NP-completeness.

Theorem 2.5. Let G be a graph, and C a configuration on G. Let |G| = m and
label the vertices of G as v1, v2, . . . vm. Then C is cover solvable if and only if there
exist integers nij ≥ 0 with 1 ≤ i, j ≤ m and nij = 0 and nji = 0 whenever
{vi, vj} /∈ E(G) such that for all 1 ≤ k ≤ m,

C(vk) +
m

∑
l=1

nlk − 2
m

∑
l=1

nkl ≥ 1.

Proof First, suppose C is cover solvable. Then we can find some sequence
of pebbling moves which cover solves C. Let nij be the total number of
pebbling moves from vi to vj in this sequence. Then after all the moves,
there are exactly

C(vk) +
m

∑
l=1

nlk − 2
m

∑
l=1

nkl

pebbles left on vk, which is always at least 1 because of the fact that this
sequence of moves cover solves C.

Conversely, suppose such numbers nij exist. This means that there does
exist a sequence of moves that solves C, with nij moves being made from
vi to vj, but possibly with some illegal “negative pebbling” along the way.
That is, we could be removing pebbles from vertices that already have zero
pebbles. We show, however, that for each i, j it is possible to legally make
nij moves from vi to vj; since for each k,

C(vk) +
m

∑
l=1

nlk − 2
m

∑
l=1

nkl ≥ 1,

this leads to a cover solution of C. Thus, the main question is: In what order
do we make these moves? We proceed in any arbitrary fashion, continuing
to make pebbling moves as long as there exist vertices vi′ and vj′ such that
less than ni′ j′ moves from vi′ to vj′ have already been made and there are at
least two pebbles on vi′ . If no such pair {vi′ , vj′} exists, then for each (i, j),
either nij moves have been made from i to j or else there is at most 1 pebble
on vertex vi. Let C′ be the configuration left on G after these moves and S
be the set of vi ∈ G for which the total number of moves from vi is less than
∑m

l=1 nil .
If S = ∅ then clearly for every 1 ≤ i, j ≤ m we have made nij moves

from vi to vj and thus, for every k there are C(vk) + ∑m
l=1 nlk − 2 ∑m

l=1 nkl ≥ 1
pebbles on vk, so C′(v) ≥ 1 for all v ∈ G and we have solved C.
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If S 6= ∅ then consider the total number of moves that remain to be
made from a vertex of S (the total ∑i∈S ∑m

l=1 nil minus the number of moves
that have already been made from vertices in S.) By the definition of S, this
total is at least |S|, since at least one move remains to be made from every
vertex in S. The total is exactly |S| only if exactly one move remains to be
made from each vertex. Also, C′(v) ≤ 1 for all v ∈ S, for a total of at most
|S| pebbles. Consider the remaining moves, each of which must originate
from S. Each of these moves, if executed, would remove one pebble from
S if they also end at a vertex in S, and two if they end at a vertex outside
of S. Thus each move must both begin and end in S, for otherwise S would
be left with a negative total number of pebbles at the end of the pebbling
sequence, which is impossible. Even if all moves begin and end in S, how-
ever, we end up with at most 0 pebbles on S – which too is impossible since
we have assumed that the moves cover-solve, and so there must be one
pebble on each vertex of S. Thus we must have S = ∅ and we have solved
C.

Corollary 2.8.1. The cover solvability decision problem which accepts pairs {G, C}
if and only if G is a graph and C is a configuration which is cover solvable on G is
in NP.

Proof The above theorem gives the appropriate certificate of cover solv-
ability, any list of integers nij which satisfy the equation in Theorem 2.5. In-
deed, Theorem 2.5 shows that cover-pebbling is equivalent to a special case
of the NP-complete problem of integer programming, which asks, given an
n×m integer matrix A and an n-dimensional integer vector b if there exists
an m-dimensional integer vector x such that Ax ≥ b, holds componentwise.
Having reduced cover solvability to a special case of this NP problem, we
know that cover solvability is also in NP.

We now pause to point out another corollary which will be needed later
but is interesting on its own:

Corollary 2.8.2. Let G be a graph, C a configuration on G. If the sequence of
pebbling moves Q = (q1, q2 . . . qk) solves C, and it is possible to make the sequence
Q′ = (qi1 , qi2 , . . . qil ) of moves (with 1 ≤ ij ≤ k for all j but with no particular
requirement on the order of the ij,) then the configuration C′ obtained from C after
the moves (qi1 , qi2 , . . . qil ) is solvable.

Proof The point of this corollary is that the order of our pebbling moves
can’t matter. To show this, we simply note that if it were possible to some-
how execute the remaining moves from Q which are not in Q′, they would
solve C′. By Theorem 2.5, it is thus possible to solve C′.
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Now we turn our attention to showing that the cover solvability deci-
sion problem is NP-hard, that is, that any instance of any problem in NP
can be translated to an instance of cover solvability in polynomial time.
The usual method of showing that a problem A is NP-hard is to find an
NP-complete problem B for which any instance of B can be translated into
an instance of A in polynomial time. Then for any instance of any problem
in NP we can translate it in polynomial time to an instance of B, then trans-
late this instance into an instance of A. For cover solvability, we will use
a known NP-complete problem known as “exact cover by 4-sets.” Indeed,
the corresponding and seemingly simpler problem of exact cover by 3-sets
is also NP-complete, but for our purposes, the 4-set problem is more useful.
We state a theorem of Karp that tells us the 4-set problem is NP complete.

Theorem 2.6. (20) Let the exact cover by 4-sets problem be the decision problem
which takes as input a set S with 4n elements and a class A of at least n 4-element
subsets of S, accepting such a pair if there exists an A′ ⊆ A such that A′ is a class
of disjoint subsets which make a partition of S, that is they are n subsets containing
every element of S. This problem is NP-complete.

Theorem 2.7. The cover solvability decision problem is NP-complete

Proof Having shown that this decision problem is in NP, it remains to be
shown that it is NP-hard. Given a set S = {s1, s2, . . . s4n} and a class A =
{a1, a2, . . . am} of four-element subsets of S, that is, an instance of the exact
cover by 4-sets problem, we construct a graph G′ and a configuration C′ on
G′ in the following manner: We create a set of vertices T = {t1, t2, . . . t4n}
which will be thought of as corresponding to the elements of S, and a set
of vertices B = {b1, b2, . . . bm} which will be thought of as corresponding to
the members of A. Let C′(t) = 0 for all t ∈ T and let C′(b) = 9 for all b ∈ B.
We make edges between B and T in the intuitive way, including {bi, tj} if
tj ∈ bi. Additionally, create a vertex v and a path of length m− n which has
one terminal vertex v and the other called w. Let C′(v) = 2m−n − (m− n) +
1, C′(w) = 0 and C′(u) = 1 for all u between v and w on the path. Finally,
create vertex classes B′ = {b′1, b′2 . . . b′m} and B′′ = {b′′1 , b′′2 . . . b′′m}, creating
edges {bi, b′i}, {b′i , b′′i } and {b′′i , v} for all i. Let C′(u) = 1 for all u ∈ B′ ∪ B′′.
(Figure 2.2.)

Clearly, this construction can be made in polynomial time in the size
of the pair {S, A}. Indeed, an upper bound for creating the graph is 8|A|
vertices and 8|A| − 1 edges. In order to finish the proof, we claim that C′ is
solvable if and only if A contains a perfect cover of S.
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Figure 2.2: A graph that corresponds to the exact cover by four 4-sets prob-
lem, a1 = {s1, s2, s3, s4}, a2 = {s3, s4, s5, s6}, a3 = {s5, s6, s7, s8}.

First suppose that A contains a perfect cover A′ = {ai1 , ai2 , . . . ain} of S.
Then for each vertex in B which is a bij for some 1 ≤ j ≤ n, we use 8 of
the pebbles on this bij , two each to cover the four vertices of T to which
it is adjacent. Because of the fact that A′ is a perfect cover and the way
we constructed G′, we now have exactly one pebble on every vertex of T.
Furthermore, we have m− n vertices in B which still have 9 pebbles each
on them. Because v is at distance v from each of these vertices, we can use
8 pebbles from each of these vertices to move one pebble each onto v from
these m− n vertices. This leaves 2m−n + 1 pebbles on v, which is enough to
move one pebble onto w while leaving one pebble on v. After this is done,
we have exactly one pebble on every vertex of G′, and we thereby know
that C′ is solvable.

To show the converse, suppose that A does not contain a perfect cover
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of S. Suppose as well that C′ is solvable on G′. Clearly, the sequence of peb-
bling moves which solves C′ must contain (at least) one move to t for every
t ∈ T. Clearly, each of these moves must originate from B, and no more
than 4 can originate from any one vertex of B. Since A does not contain
a perfect cover of S, it cannot be the case that these moves originate from
exactly n vertices in B.

We make these 4n moves immediately from C′, using Corollary 2.8.2 to
see that the resulting configuration must be solvable (we use the fact that
no more than 4 of these moves can originate from any one vertex in B to
see that it is indeed possible to make these moves). In addition to the one
pebble left on every vertex of B to ensure they remain covered, there are
now 8(m− n) pebbles on B, but they are not in m− n groups of 8 pebbles
because the moves we made originated from more than n vertices of B.
In order to reach w, we clearly need to move m − n pebbles onto v while
leaving the rest of the graph covered. Clearly, this is only possible if all
8(m − n) extra pebbles are moved by a path of length 3 onto v. Clearly,
only one such path is available, but any group of less than 8 pebbles cannot
increase the number of pebbles on v by moving along these paths while
leaving the vertices of the path covered. By the fact that there are not indeed
m − n groups of 8 pebbles on B we see that it is impossible to gather the
pebbles necessary to reach w and thus our configuration is not solvable,
which is a contradiction.





Chapter 3

Domination Cover Pebbling

3.1 Domination Cover Pebbling

Professor Teresa Haynes, an East Tennessee State University professor, has
written around fifty papers in the theory of graph domination. A signif-
icant percentage of graduate students at ETSU are collaborators with her
and write masters theses about domination in graphs. Therefore, it was no
surprise that Alberto Teguia, an ETSU graduate student who sat in on some
of the REU discussions, proposed the concept of domination cover pebbling.

Recall that a set of vertices D in G is a dominating set if every vertex in G
is either in D or adjacent to some element in D. The domination cover peb-
bling number of a graph G is the minimum number of pebbles required so
that any initial configuration of pebbles can be transformed by a sequence
of pebbling moves so that after the pebbling moves, the set of vertices that
contain pebbles form a dominating set S of G. As stated in the introduction,
the reason why domination cover pebbling is nontrivial is that the optimal
choice of covered vertices may not always be the same.

Therefore Sjostrand’s pebbling distribution idea for cover pebbling does
not help us solve the domination cover pebbling problem because if the
pebbles are initially distributed in different places, a different dominating
set may be produced. For instance, take a path on four vertices arranged as
a horizontal line and place pebbles only on the far left vertex. Now, from
left to right, the domination cover would place a pebble on vertices 1 and
3. If the pebbles were initially on the far right vertex, then the domination
cover would include vertices 2 and 4. This is one reason why the domina-
tion cover problem is difficult.
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3.2 Preliminary results

We begin by determining the domination cover pebbling number for vari-
ous types of graphs.

Theorem 3.1. For the complete graph on n vertices, denoted by Kn, ψ(Kn) = 1.

This result is obvious since placing a pebble on any vertex dominates
Kn.

Theorem 3.2. For s1 ≥ s2 ≥ · · · ≥ sr, let Kc1,c2,...,cr be the complete r-partite
graph with s1, s2, . . . , sr vertices in vertex classes c1, c2, . . . , cr respectively. Then,
for s1 ≥ 3, ψ(Kc1,c2,...,cr) = s1.

Proof. First, if there is one pebble each on every vertex of c1 but one, the
configuration does not produce a domination cover pebbling. So ψ(Kc1,c2,...,cr)
> s1− 1. Notice that if there are vertices on two different c′is, the graph con-
tains a domination cover pebbling. Thus, any pair of pebbles on a vertex
along with another pebbled vertex can force a domination cover pebbling.
So if there are s1 pebbles, the only configuration that has not been consid-
ered that does not force a domination cover pebbling is for there to be one
pebble on every vertex in a vertex class that contains si vertices, but this
also forces a domination cover pebbling. Hence, ψ(Kc1,c2,...,cr) = s1.

For the next theorem we define the wheel graph, denoted Wn, to be the
graph with V(Wn) = h, v1, v2, . . . , vn, where h is called the hub of Wn, and
E(Wn) = Cn ∪ {hv1, hv2, . . . , hvn}. In this case Cn denotes the cycle graph
on n vertices.

Theorem 3.3. For n ≥ 3, ψ(Wn) = n− 2.

Proof. First, ψ(Wn) > n − 3 because placing one pebble on each of n − 3
consecutive outer vertices leaves a vertex of Wn undominated. If there is a
pair of pebbles on any vertex, move it to the center, and the domination is
complete. Likewise, if there is a pebble in the hub vertex, Wn is dominated.
Thus, consider all configurations containing pebbled vertices that each con-
tain only one pebble. If there are n− 2 vertices containing pebbles, the two
non-pebbled outer vertices are forced to be dominated since there are only
3 vertices in all of Wn that contain no pebbles. Therefore, ψ(Wn) = n− 2.
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3.3 Domination cover pebbling for Paths

(This section was originally drafted by James Gardner and revised by the
author.) We now show ψ(Pn), where Pn denotes a path on n vertices.

Theorem 3.4.

ψ(Pn) = 2n+1

(
1− 8−(kn+1)

7

)
+

⌊αn

2

⌋
,

for n ≥ 3 and where n− 2 ≡ αn (mod 3) and n− 2 = αn + 3kn.

Proof. Let V = V(Pn) = {v1, v2, . . . , vn} with E(Pn) = {v1v2, . . . vn−1vn}.
Consider the configuration where all pebbles are placed on v1. We need at
least 2n−2 pebbles to dominate vn. Likewise, we need at least 2n−2 + 2n−5 +
2n−8 + · · ·+ 2αn to dominate {vn, vn−1, · · · , vαn+1}. If αn = 0 or 1, then we
have already dominated Pn. Otherwise, αn = 2 and we need one more
pebble on either v1 or v2 to dominate Pn. Thus, under this configuration,

ψ(Pn) ≥ 2n−2
kn

∑
i=0

1
8i +

⌊αn

2

⌋

= 2n+1

(
1− 8−(kn+1)

7

)
+

⌊αn

2

⌋

(since
⌊

αn
2

⌋
= 0 for αn = 0 or 1 and 1 for αn = 2).

We now use induction to show that

ψ(Pn) ≤ 2n+1

(
1− 8−(kn+1)

7

)
+

⌊αn

2

⌋
.

The assertion is clear for n = 3. Therefore, we assume it is true for all
Pm, where 3 ≤ m ≤ n. Consider an arbitrary configuration of Pn having
2n+1((1− 8−(kn+1))/7) + bαn/2c pebbles. Clearly, we can cover dominate
{vn−2, vn−1, vn} in a finite number of moves with 2n−2 pebbles or less. Thus,
we need to dominate Pn−3 with the remaining

2n+1

(
1− 8−(kn+1)

7

)
+

⌊αn

2

⌋
− 2n−2 = 2(n−3)+1

(
1− 8−(kn−3+1)

7

)

+
⌊αn−3

2

⌋
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pebbles, since ∀n, kn = kn−3 + 1 and αn = αn−3. This number of pebbles is
enough to dominate Pn−3 by hypothesis. Thus,

2n+1

(
1− 8−(kn+1)

7

)
+

⌊αn

2

⌋
≤ ψ(Pn) ≤ 2n+1

(
1− 8−(kn+1)

7

)
+

⌊αn

2

⌋
.

3.4 Domination cover pebbling for Cycles

(This section was originally drafted by James Gardner and Alberto Teguia
but revised by the author.) To determine the value of ψ(Cn) the cycle on n
vertices, we begin by proving that placing the pebbles on one vertex gives
the largest domination cover pebbling number.

Lemma 3.4.1. The maximum value of ψ(Cn) is obtained by placing all the pebbles
on one vertex.

Proof. Let P = P1, P2, . . . be the set of the sets of vertices with pebbles in
the original configuration, with each Pi = v1, v2, . . . consisting of adjacent
pebbled vertices and each Pi not adjacent to any other Pk. The minimum
distance between any P1, Pi ∈ P is 2. Assume the maximum number of
pebbles necessary to cover dominate the graph is φ pebbles. We can dom-
inate the graph with φ pebbles in the disconnected configuration and we
assume this is the worst case. If we would have placed all the pebbles on
P1, we would have required more pebbles to reach Pi, leaving a contradic-
tion. Thus |P| = 1.

Now let P consist of the vertices that have pebbles on them. Since P
is connected we now consider when |P| > 2. We let P = {p1, p2, . . . , pk},
where p1 and pk are the exterior vertices of P. We assume we can cover
dominate Cn with φ pebbles and assume this is maximum necessary. We
conclude that after the graph has been cover dominated there are either
(1) adjacent vertices with pebbles, or (2) vertices with more than two peb-
bles. If there are not any vertices satisfying (1) or (2), then we could have
increased φ by moving the pebbles on p1, pk ∈ P to either p2 or pk−1, re-
spectively. Thus either (1) or (2) occurs, but these pebbles are unnecessary.
We could have cover-dominated with less than φ pebbles. Now consider
when |P| = 2. Clearly the worst case is placing φ− 1 pebbles on p1 and 1
on p2, where p1, p2 ∈ P, since it cost more pebbles to reach the p2 side of the
cycle. We can still dominate Cn with φ pebbles. We would have needed at



Domination cover pebbling for Cycles 31

least 2 more pebbles in order to dominate the vertex va on the v2 side of the
cycle, where d(v1, va) = 2. Thus, φ is not the maximum number of pebbles
necessary, raising a contradiction. The statement follows, since |P| = 1 is
the worst case.

Since placing all the pebbles on a single vertex is the worst case, we now
determine the value of ψ(Cn).

Theorem 3.5. Let Cn be a cycle on n vertices. If n = 2k + 1,

ψ(Cn) = 2m+2

(
1− 8−(km+1)

7

)
+ φ1(m)

and if n = 2k,

ψ(Cn) = 2m+1

(
1− 8−(km+1)

7

)
+ 2m

(
1− 8−(km−1+1)

7

)
+ φ2(m),

where φ1(m) = bαm/2c − |αm − 1|, φ2(m) = bαm/2c + bαm−1/2c − |αm −
1||αm−1 − 1|, m− 2 ≡ αm (mod 3), and m− 2 = αm + 3km.

Proof. By Lemma 3.4.1 we assume all ψ(Cn) pebbles are on v1 ∈ Cn. If
n = 2k + 1, there are two identical paths to cover. We can cover these
with 2ψ(Pm) pebbles. We notice that we may have dominated vertex v1
twice. |αm − 1| = 1 if v1 is dominated twice. If n = 2k, there are two paths
P1, P2 ∈ Cn with |P2| = |P1| − 1. Thus we can cover these two paths with
ψ(Pm) + ψ(Pm−1). Likewise in this case, we may have dominated vertex v1
twice. |αm − 1||αm−1 − 1| = 1 if v1 is dominated twice. Thus we compute
the domination cover pebbling number as follows. When n = 2k + 1

ψ(Cn) = 2ψ(Pm)− |αm − 1|
= 2m+1((1− 8−(km+1))/7) + bαm/2c − |αm − 1|

and if n = 2k,

ψ(Cn) = ψ(Pm) + ψ(Pm−1)− |αm − 1||αm−1 − 1|
= 2m+1((1− 8−(km+1))/7) + 2m((1− 8−(km−1+1))/7)

+ bαm/2c+ bαm−1/2c − |αm − 1||αm−1 − 1|.

The theorem follows.
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3.5 Binary Trees

In this section, we will compute the domination cover pebbling number
for the family of complete binary trees. Since the first few trees can be
dominated more efficiently than the general case, we will consider them
separately.

Definition 3.5.1. A complete binary tree, denoted by Bn is a binary tree that is
of height n, with 2i vertices a distance i from the root. Each vertex of Bn has two
children, except for the set of 2n vertices that are distance n away from the root,
each of which have no children.

Theorem 3.6. For Bn described above, ψ(B0) = 1, ψ(B1) = 2, ψ(B2) = 11, and
ψ(B3) = 81.

Proof. Clearly, ψ(B0) = 1. Since B1 is just a path on 3 vertices, ψ(B1) = 2.
Now, the general formula for Bn, which we will state later in this section,
predicts ψ(B2) = 12, but actually, ψ(B2) = 11. In the figure below, we de-
scribe a configuration of 10 pebbles on B2 that does not force a domination
cover solution.
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Figure 3.1: A configuration of 10 pebbles on B2 that does not force a domi-
nation cover solution.

We will now show that ψ(B2) ≤ 11. Given a B2, arbitrarily place 11
pebbles on it. Consider the following three subcases based on the number
of pebbles on each of the two B1’s connected to the root of B2.

Case 1: Suppose there are at least two pebbles on each of the two B1’s.
It takes at most two pebbles for each of the B1’s to be dominated. Hence,
after dominating each of the B1’s there are seven pebbles left. If there is a
pebble on either of the two root vertices of the two disjoint copies of B1,
then we have dominated the root of B2. Otherwise, move a pebble to the
root of one of the B1’s, thus dominating the root vertex of B2. This process
induces a domination cover solution of B2, completing this case.
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Case 2: Suppose that neither B1 contains two or more pebbles. Then
there are at least 9 pebbles on the root of B2. Pebble the root of each of the
B1’s, and this case is complete.

Case 3: Suppose that one copy of B1 contains two or more pebbles, call
it B∗1 , and the other copy does not. Then all of the pebbles on B∗1 except for
two can be used to move pebbles to the root of B2. The 8 pebbles that can
be moved from B∗1 are sufficient to get a pair of pebbles on the root. This
pair can then dominate the other B1, and the case is complete.

We next make a similar argument for B3, because the distance between
the top and the bottom of the tree is not large enough for the general method
to apply. We now show that ψ(B3) = 81. First, we have constructed below
a configuration of 80 pebbles that does not produce a domination cover
pebbling.
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Figure 3.2: A configuration of 80 pebbles on B3 that does not force a domi-
nation cover-solution.

Now suppose that we are given a configuration of 81 pebbles on B3. We
wish to force a domination cover pebbling on B3. If there are fewer than 11
pebbles on each of the two disjoint B2 subtrees in B3, then we can use the
61 pebbles on the root vertex to produce a domination cover pebbling. If
there are at least 11 pebbles on both of the disjoint B2 subtrees, then with
the 59 remaining pebbles, we can dominate the root vertex.

Next, consider the case when only one of the two disjoint B2 subgraphs,
call it B∗2 , contains at least 11 pebbles. There are at most 70 pebbles some-
where on the graph that can be used to dominate the other B2, call it B′2,
and the root vertex. Notice that two single pebbles on the bottom row of
B′2, each with a different parent, does not decrease the number of pebbles
required to dominate B′2 where all the pebbles are located at the root. Let c
be the number of pebbles in B′2 that are not part of the two aforementioned
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vertices on the bottom row. In order to dominate B′2, we require at most
8− b pebbles on the root vertex. If b ≥ 1 we can move enough pebbles to
the root vertex from B∗2 , so that we can dominate B′2 and leave a pebble on
the root vertex. Similarly, if b = 0 and there is a pebble initially on the root
vertex, we are finished.

Suppose that b = 0 and there is no pebble initially on the root vertex.
There are then at least 79 pebbles in B∗2 . Suppose there at least two vertices,
call them v1 and v2, that contain at least two pebbles, with the condition
that these vertices are not adjacent to the same parent in the bottom row. If
either v1 or v2 is not on the bottom row, then move a pair of pebbles from
a vi that is not on the bottom row to dominate the root vertex. This leaves
77 pebbles, 64 of which can be used to move 8 pebbles to the root. These 8
pebbles on the root vertex will dominate B′2, and the remaining 13 pebbles
will dominate B∗2 .

If v1 and v2 are on bottom rows of different parents, it is possible to
dominate B∗2 with 4 pebbles, by moving a pebble to the parent of each pair
of children in the bottom row of B∗2 . The remaining 75 pebbles will be able
to force 8 pebbles to be at the root, along with another pebble to dominate
the root. If there is only one vertex with at least two pebbles on it, call it v3,
then it contains at least 75 pebbles, which happens when there is one pebble
on every other vertex of B∗2 . Using at most 64 pebbles, place 8 pebbles on
the root vertex. With the remaining 15 pebbles we must dominate B∗2 as
well as the root vertex. To do this, place one pebble on the root of B∗2 unless
it already has a pebble, costing us 4 pebbles. Also, place a pebble on the row
second from the bottom on the vertex, call it v4, that is at least a distance of
2 away from v3 unless this vertex and its children are already dominated.
This costs at most 8 pebbles. (If v3 is the root vertex of B∗2 , then move a pair
of pebbles to each of the two vertices in B∗2 that are on the second from the
bottom row.) There are least three pebbles left, and at most one of them can
be on the vertices that are children of v4. This leaves 2 pebbles to dominate
a path of 3 vertices, and since ψ(B1) = 2, we are finished. Thus, ψ(B3) = 81.

We now state and prove the general theorem for complete binary trees.

Theorem 3.7. For n ≥ 4,

ψ(Bn) = 2n−1 +
b n

3 c
∑
i=0

[23i+1 +
n−3i−2

∑
j=1

2j−123i+2j+1] +
b n+1

3 c
∑
k=1

2n−3k+122n−3k+2 + γ,

with n ≡ 0 mod 3, γ = 2n−1. Otherwise, γ = 0.
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Proof. First we will prove that

ψ(Bn) > 2n−1 +
b n

3 c
∑
i=0

[23i+1 +
n−3i−2

∑
j=1

2j−123i+2j+1]

+
b n+1

3 c
∑
k=1

2n−3k+122n−3k+2 + γ− 1.

Consider the following initial configuration of pebbles. At each of 2n−1 − 1
vertices on the bottom row each of which does not share a parent, place
one pebble. Place all of the remaining pebbles on the remaining vertex in
the bottom row who is unpebbled and so is its sibling. Call this vertex v.
In order to find a domination cover solution for the subtree that is on the
other side of the root vertex it takes ∑

b n+1
3 c

k=1 2n−3k+122n−3k+2 pebbles. In this
configuration, we will make pebbling moves so that one pebble is placed
on every vertex in every third row, starting with the row that is next to
the bottom row. If we consider rows as single vertices, this is analogous to
the configuration of pebbles required to get an optimal domination cover
pebbling bound for Pn.

We leave the details of proving this bound to the reader, but we will
verify the term in the sum that counts the next to bottom row. There are
2n−2 vertices that must have a pebble placed on them. For each vertex,
it takes 22n−1 pebbles from vertex v, for a total of 23n−3 pebbles. This is
the number of pebbles counted in the k = 1 term of the sum. We obtain
2n−3+122n−3+2 = 23n−3, as desired. A similar computation can be per-
formed to verify the first sum. In order to obtain a domination cover so-
lution, one more pebble is needed on vertex v to dominate the other sibling
of v.

We now proceed to prove the bound by induction. Suppose that the
bound for ψ(Bn−1) holds. Notice that if Bn−1 were a case, such as B2 or B3,
where the formula given in the theorem predicted a value for Bn−1 larger
than the actual value, we can assume the bound predicted in the theorem,
and the induction still follows. We now show that ψ(Bn) also holds. As
before, we will consider three cases depending upon whether there are
enough pebbles in each of the two disjoint copies of Bn−1 connected to the
root of Bn. First, suppose that neither copy contains ψ(Bn−1) pebbles. In
this case, there are clearly enough pebbles on the root vertex in order to
construct a domination cover solution.

Next, suppose that both copies contain at least ψ(Bn−1) pebbles. In this
case we can use ψ(Bn−1) pebbles to construct a domination cover pebbling
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for this tree. Now, since most of the pebbles are left, (certainly 22n), the root
vertex can be dominated.

Now, suppose that only one copy of Bn−1, call it B∗n−1, contains at least
ψ(Bn−1) pebbles. Then we move at most all but Bn−1 pebbles, without wast-
ing any pebbles (that is, we do not make pebbling moves that do not con-
tribute to the number of pebbles that can reach the root vertex), in order
to force a domination cover solution of the other Bn−1, call it B′n−1. Let’s
compute D(n) = ψ(Bn)− ψ(Bn−1). We get:

D(n) = 2n−1 +
b n−1

3 c
∑
i=0

[23i+1 +
n−3i−2

∑
j=1

2j−123i+2j+1] +
b n+1

3 c
∑
k=1

2n−3k+122n−3k+2 +

γ−

2n−2 +

b n−2
3 c

∑
i=0

[23i+1 +
n−3i−3

∑
j=1

2j−123i+2j+1] +
b n

3 c
∑
k=1

2n−3k22n−3k




≥ 2n−2 +
b n

3 c
∑
i=0

2n−3i−322n−3i−3 +
7
8

b n+1
3 c

∑
k=1

2n−3k+122n−3k+2 + γ

= 2n−2 +
b n

3 c+1

∑
i=1

23n−6i +
7
8

b n+1
3 c

∑
k=1

23n−6k+3 + γ

≥ 2n−2 +
b n+1

3 c
∑
k=1

23n−6k+3 + γ.

For every 2n extra pebbles on B∗n−1, we can contribute at least one pebble
on the root vertex. Notice that there can be 2n−2 pebbles on the bottom row
of Bn−1, one in every pair, that does not assist the pebbling starting from
the root. Also, any additional pebbles in B′n−1 can substitute for at least

one pebble on the root vertex. Hence, there are at least ∑
b n+1

3 c
k=1 22n−6k+3 + γ

2n

pebbles either on the root vertex or in B∗n−1 such that each pebbles decreases
the need for at least one pebble on the root of the tree. Now, starting from

the root, it takes ∑
b n

3 c
l=1 2n−3l+22n−3l+1 ≤ ∑

b n+1
3 c

k=1 22n−6k+3 pebbles to construct
a domination cover solution of B′n−1. Hence, we can construct a domination
cover solution for the cases where n ≡ 1, 2 mod 3 because the root vertex
is already dominated. For the case when n is a multiple of 3, it is possible
to move a pebble to a vertex adjacent to the root vertex since we have an
gained an additional 2n−1 pebbles from the γ term. This completes the
proof.
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3.6 Diameter 2 Graphs

In the next few sections, we will present structural domination cover peb-
bling results.

Theorem 3.8. For all graphs G of order n with maximum diameter 2, ψ(G) ≤
n− 1.

Proof. First, we will exhibit a graph G such that ψ(G) > n − 2. Consider
the star graph on n vertices, and place a pebble on all of the outer vertices
except one. This configuration of pebbles does not dominate the last outer
vertex. Hence, ψ(G) > n− 2.

Suppose we are given a graph G on n vertices and n − 1 pebbles. To
prove the theorem, we will show that after a sequence of pebbling moves
G can always be dominated by the vertices that contain pebbles. Given an
initial configuration c of n − 1 pebbles, let S1 be the set of vertices v ∈ G
such that c(v) > 1. Suppose that S2 is the set of dominated vertices w ∈ G
such that c(w) = 0 and w is adjacent to an undominated vertex, let S3 be
the set of dominated vertices x ∈ G such that c(x) = 0, and x is not adjacent
to an undominated vertex, and let S4 be the set of vertices y ∈ G such that
y is not dominated.

Notice that if there exists some vertex x ∈ S3, all of the vertices that
are adjacent to it are either also in S3 or contain pebbles. In either case, the
set of unpebbled vertices connected to x in S3 is completely surrounded
by vertices with pebbles on them. Thus, these surrounding vertices form
a dominating set of G, since the diameter of G is at most 2. Hence, if S3 is
nonempty, we are finished, and every vertex of G is an element of S1, S2 or
S4.

For the rest of this proof, let |S1| = a, |S2| = b, and |S4| = c. De-
fine the pairing number, P(c), where c is a configuration of G, as ∑v∈G

max {0, c(v)−1
2 } = b+c−1

2 . For instance, if exactly two pebbles are on a par-
ticular vertex, that vertex contributes 1/2 to P(c), and if three pebbles are
on a particular vertex, that vertex contributes 1 to P(c). For the purposes of
this proof, we use the fact that if P(c) = k then c contains at least dke pairs
of pebbles, which means that we can definitely make dke pebbling moves,
each of which requires a pair of pebbles.

Suppose that b ≤ c. In this case, P(c) ≥ 2b−1
2 . Hence, there are at least

b pairs of pebbles that can be moved from elements in S1 to S2. For each
element of S2, if possible, move a pair of vertices from an element of S1 to an
element of S2. This implies that every element of S2 now contains a pebble,
or there exists some x ∈ L ∈ S2 where L is the set of vertices in S2 that are
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a distance of 2 from all remaining pairs. If the latter is the case, S4 is still
dominated because if there were some vertex y that were only adjacent to
elements in L with respect to S2 then the minimum distance between y and
a vertex with a pair of vertices is 3, a contradiction. However, it may be the
case that the vertex in S1 that y was adjacent to lost its pebbles, and if this is
the case, move a pair of pebbles from S1 so that y is dominated. Since there
were |L| vertices in S2 where it was not possible to move a pair of pebbles,
we have an extra |L| pairs of pebbles. With these |L pairs we can ensure
that the |L| vertices are also dominated if necessary, one for each x ∈ L.
After this process, the graph will be completely dominated.

On the other hand, consider the case when b > c. In order to dominate
G, we must place pebbles on at most c elements of S2. We can apply the ar-
gument from the previous paragraph if there are at least c pairs of pebbles
that we can remove from S1, such that there are at least 3 pebbles on a par-
ticular vertex when a pair is removed from it. In this case, we are finished
because the vertices in S4 are dominated by the c pairs that were moved to
elements of S2. The sets S1 and S2 are dominated because every vertex that
is in S1 still contains pebbles. Thus, there are at most c− 1 pairs of pebbles
that can be removed from S1 with the condition that when a pair of pebbles
is removed, there are at least 3 pebbles on that vertex.

After moving at most c pairs with the condition that we will first remove
pairs from vertices that contain at least 3 pebbles, we know from the previ-
ous two paragraphs that set S4 is dominated. Notice that after this process,
every vertex in S1 is dominated. By the previous paragraph, we know that
there are at least b− c vertices containing exactly two pebbles after the first c
pebbling moves have been made. Once this is completed, we will dominate
the remaining b− c vertices in S2 not pebbled of the domination of S4 and
that are not already dominated by using one of the b− c or more remain-
ing vertices containing exactly 2 pebbles to dominate it. We have enough
vertices containing exactly 2 pebbles because initially, P(c) = b+c−1

2 , and
the first c pebbling moves remove at most 2c−1

2 from P(c), leaving a pairing
number of b−c

2 . At this point in the algorithm, we know that every vertex
with more than one pebble contains exactly two pebbles. Thus there are
exactly b − c vertices in S1 with two pebbles on it. Thus, G is dominated
and therefore ψ(G) ≤ n− 1.

We can apply this theorem to prove a result about the ratio between the
cover pebbling number and the domination cover pebbling number of a
graph. We conjecture that this ratio holds for all graphs, but this proof be
much more difficult because we cannot rely on structural bounds that are
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simple. Instead, we need to find some invariant process that relates cover
pebbling to domination cover pebbling.

Theorem 3.9. For all graphs G of order n with diameter 2, λ(G)/ψ(G) ≥ 3.

Proof. First, suppose that the minimum degree of a vertex of G is less than
or equal to d n−1

2 e. By the previous theorem, we know that the maximum
value of ψ(G) is n− 1. Place 3n− 3 pebbles on any vertex v that has a de-
gree less than d n−1

2 e. It takes 2 pebbles to cover-pebble each vertex adjacent
to v, at most d n−1

2 e, and all the remaining vertices require 4 pebbles. Since
there are at least as many vertices a distance of 2 away from v as there
are a distance of 1 away from G, 3n − 3 pebbles or more are required to
cover pebble all of the vertices except for v. Thus for this class of graphs,
λ(G) > 3n− 3 ≥ 3ψ(G).

Now suppose that the minimum degree k of a vertex in G is greater than
d n−1

2 e. In this case, we will prove that ψ(G) ≤ d n
2 + 1e. For each vertex that

is pebbled in such a graph at least d n−1
2 + 1e vertices are dominated. For

every new pebbled vertex, the number of vertices dominated increases by
at least one, and for every pair of pebbles added to a vertex, the number
of vertices dominated increases by at least 2. Thus, the maximum number
of pebbles needed to cover-dominate G is ψ(G) ≤ d n

2 + 1e. The minimum
number of pebbles needed to cover pebble a graph with minimum diame-
ter k is 2k + 1 + 4(n− k). So, for n ≥ 4, since k ≤ n− 2, 2n + 5 ≥ 3d n

2 + 1e.
If n = 3, the only graph of diameter 2 is the path graph, where ψ(P3) = 2
and λ(P3) = 7. Thus, for all graphs G of diameter 2, λ(G)/ψ(G) ≥ 3.

We now prove a more general bound for graphs of diameter d.

3.7 Graphs of Diameter d

(This section is joint work with Nathaniel Watson.)

Theorem 3.10. Let G be a graph of diameter d ≥ 3 and order n. Then ψ(G) ≤
2d−2(n− 2) + 1

Proof. First, we define the clumping number χ of a configuration c′ by

χ(c′) = ∑
v∈G

2d−2 max
(⌊

c′(v)− 1
2d−2

⌋
, 0

)
.

Thus, the clumping number counts the number of pebbles in a configura-
tion which are part of disjoint “clumps” of size 2d−2 on a single vertex, with
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one pebble on each occupied vertex ignored. Also, given a configuration c′,
we will say a vertex v ∈ G is dominated by c′ if v is adjacent to some vertex
of G on which c′ is nonzero.

Now let c be a configuration on G of size at least 2d−2(n− 2)+ 1. We will
show that c is domination-cover-solvable (henceforth, we shall simply say
solvable) by giving a recursively defined algorithm for solving c through
a sequence of pebbling moves. First, we make some definitions to begin
the algorithm (We adopt the convention that G is a graph and V and W
are subsets of V(G) and v ∈ V(G) then d(v, W) = minw∈W d(v, w) and
d(V, W) = minv∈V d(v, W).) Also, for any set S ⊆ V(G) we of course let
SC = V(G) \ S.

• c0 = c.

• A0 = {v ∈ G : c(v) > 0}.

• B0 = {v ∈ G : c(v) ≥ 2d−2 + 1}.

• C0 = V(G)− A0.

• D0 = ∅.

We will describe our algorithm by defining cn, An, Bn, Cn, and Dn recur-
sively. At each step, we will need to make sure a few conditions hold, to
ensure that the next step of the algorithm may be performed. For each m,
we will insist that:

1. For every v ∈ Cm ∪ Dm, cm(v) = 0 and for every v ∈ Am cm(v) > 0.

2. χ(cm) ≥ 2d−2(|Cm| − 1).

3. |Cm| ≤ |C0| −m.

4. Bm = {v ∈ G : cm(v) ≥ 2d−2 + 1}.

5. If both Bm 6= ∅ and Dm 6= ∅, d(Bm, Dm) = d ; If Dm 6= ∅, there always
exists some v ∈ G such that d(v, Dm) = d, even if Bm = ∅.

6. Am, Cm, and Dm are pairwise disjoint and Am ∪ Cm ∪ Dm = V(G).

7. Every vertex of Dm is dominated by cm.

8. There exists a sequence of pebbling moves transforming c to cm.
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Note by 1, 4, and 6, we will always have Bm ⊆ Am. Also, by 1, 6, and 7,
every vertex of G which is not dominated by cm is in Cm. For m = 0, only
condition 2 is not immediately clear. To see this, note that

χ(c) = ∑
v∈G

2d−2 max
(⌊

c(v)− 1
2d−2

⌋
, 0

)

= ∑
v∈A0

2d−2
⌊

c(v)− 1
2d−2

⌋

≥ ∑
v∈A0

2d−2
(

c(v)
2d−2 − 1

)
.

and using the fact that the size of c is at least 2d−2(n− 2) + 1, and |C0| =
n− |A0|

χ(c) ≥ (2d−2(n− 2) + 1)− 2d−2|A0| = 2d−2(|C0| − 2) + 1.

From the definition of χ it is apparent that 2d−2| χ(c). Therefore, we indeed
must have

χ(c) = χ(c0) ≥ 2d−2(|C0| − 1).

Suppose for some n − 1 > 0 we have defined cn−1, An−1, Bn−1, Cn−1,
and Dn−1 and the above conditions hold when m = n− 1.

We shall assume that there is some vertex in Cn−1 which is not domi-
nated by cn−1, for otherwise, by conditions 6, 7 and 8, c is solvable and we
are done. Thus |Cn−1| ≥ 1. but suppose |Cn−1| = 1. Call this single ver-
tex v. Since it is non-dominated, it is adjacent to only uncovered vertices.
These vertices cannot be in Cn−1 for |Cn−1| = 1, and they are not in An−1,
because every vertex in An−1 is covered by property 1. So every vertex
adjacent to v is in Dn−1. Choose some element in Bn−1 and call it w (and
thus by 5, d(w, Dn−1) = d or, if Bn−1, invoke property 5 to choose a w for
which d(w, Dm) = d. Any path from w to v passes through one of the ver-
tices in Dn−1 which is adjacent to v, and is thus of length at least d + 1, so
d(w, v) ≥ d + 1, contradicting the assumption that G has radius d. We have
now shown that, if Cn−1 has a non-dominated vertex, then |Cn−1| ≥ 2. In
this case, we will have χ(cm) ≥ 2d−2, ensuring the existence of some clump
of size 2d−2, and thus, that Bn−1 is non-empty. Thus, we will always implic-
itly assume that Bn−1 6= ∅

Case 1: d(Bn−1, Cn−1) ≤ d− 2
In this case, we choose v′ ∈ Bn−1 and w′ ∈ Cn−1 for which d(v′, w′) ≤

d− 2 and move 2d(v′,w′) pebbles from v′ to w′, leaving one pebble on w′ and
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at least one on v′. We let cn be the configuration of pebbles resulting from
this move. Let Cn = Cn−1 \w′. Thus |Cn| = |Cn−1| − 1 ≤ |C0| − (m− 1)− 1
and we see that condition 3 holds when m = n. Furthermore, We have used
at most one clump of 2d−2 pebbles so

χ(cn) ≥ χ(cn−1)− 2d−2 ≥ 2d−2(|Cn−1| − 1)− 2d−2 = 2d−2(|Cn| − 1)

and therefore condition 2 holds for n. Also, we let An = An−1 ∪ {w′}, let
Cn = Cn−1 w′, and Dn = Dn−1 (now, clearly condition 6 holds.) We again
let Bn = {v ∈ G : cn(v) ≥ 2d−2 + 1}, which simply means that we have
possible removed v′ from Bn−1 if v′ now has less than 2d−2 + 1 pebbles.
Thus Bn ⊆ Bn−1, and now 1, 4, 5, 7, and, 8 are all easily seen to hold for
m = n.

Case 2: d(Bn−1, Cn−1) ≥ d− 1.
If every vertex in Cn−1 is dominated by An−1, we are done. Otherwise,

let w′ be some non-dominated vertex in Cn−1. Of course, w′ is at distance
d− 1 or d from Bn−1, but suppose d(Bn−1, w′) = d− 1. Then w′ is adjacent
to some (non-covered) vertex w′′ at distance d − 2 from Bn−1. By 1, every
vertex of G which is non-covered, (that is, for which cn−1 = 0) is in Cn−1 ∪
Dn−1. But d(Bn−1, Cn−1) ≥ d − 1 and by 5, d(Bn−1, Dn−1) = d so w′′ ∈
Cn−1 ∪ Dn−1 is impossible. This contradiction means that d(w′, Bn−1) 6=
d − 1 and so d(w′, Bn−1) = d. Choose some vertex in Bn−1 and call it v′.
We know d(v′, w′) = d so consider some path of length d from v′ to w′.
Let v∗ be the unique point on this path for which d(v∗, v′ = d − 2). Thus
v∗ /∈ Cn−1 ∪ Dn−1 and v∗ ∈ An−1, and also d(v∗, w′) = 2. Let w′′ be some
vertex which is adjacent to both v∗ and w′ so that d(v′, w′′) = d− 1. Then
because w′′ is uncovered (else w′ would be dominated,) it must be in Cn−1.
This means that v∗ /∈ Bn−1 by condition 5.

We now move one clump of 2d−2 pebbles from v′ to v∗, adding one
pebble to v∗, which now, by condition 1, has at least two pebbles. We then
move two pebbles from v∗ and cover w′′ with one pebble. We let cn be the
configuration resulting from these moves. We let Dn = Dn−1 ∪ {w′} and
we again let Bn = {v ∈ G : cn(v) ≥ 2d−2 + 1}, which just means we have
possibly removed v′ from Bn−1, so Bn ⊆ Bn−1. If now cn(v∗) = 0, We let
An = An−1 ∪ {w′′} \ v∗} and Cn = Cn−1 ∪ {v∗} \ {w′, w′′}. Otherwise, if
cn(v∗) > 0 is still true, we let An = An−1 ∪ {w′′} and Cn = Cn−1 \ {w′, w′′}.
This ensures that 1 and 6 still hold for m = n. Also, |Cn| ≤ |Cn−1| − 1 ≤
|C0| − (m− 1)− 1 and so condition 3 holds for m = n. Also, we have used
only one clump of 2d−2 pebbles, because v∗ /∈ Bn−1 so by using a pebble
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from v∗, we could not have destroyed a clump. So

χ(cn) = χ(cn−1)− 2d−2 ≥ 2d−2(|Cn−1| − 1)− 2d−2 ≥ 2d−2(|Cn| − 1)

and therefore condition 2 holds for n. Condition 5 also still holds for m = n
because we have added only the vertex w′ to Dn−1 and d(Bn−1, w′) = d,
so d(Bn−1, Dn) = d and also by the fact that Bn ⊆ Bn−1. If Bn = ∅, then
certainly d(v′, Dn) = d because v′ ∈ Bn−1. To see condition 7 is still true,
note that to get Dn we have only added w′ to Dn−1, and certainly, w′ is ad-
jacent to w′′, which is covered by cn so w′ is dominated by cn. Also, the only
previously covered vertex of G which is now uncovered is (possibly) v∗ but
d(v∗, Bn−1) = d− 2, and so v∗ is not adjacent to any vertex in Dn−1 for, by
5, d(Bn−1, Dn−1) = d. Thus, by possibly uncovering v∗, we did not cause
any vertex in Dn−1 to become non-dominated, so 7 still holds for m = n.
That conditions 4 and 8 still hold for m = n is easily seen.

The algorithm continues as long as there is some non-dominated vertex
in Cn. By condition 3, it must terminate after at most |C0| steps, because
when n = |C0|, we would have |Cn| = 0, and certainly there could be no
non-dominated vertex in Cn. Thus, the algorithm eventually stops, having
created some cm which dominates every vertex of G. By property 8, cm is
reachable from c by pebbling moves, so c must be solvable.





Chapter 4

Vertex Neighbor Integrity
Domination Cover Pebbling

4.1 Vertex Neighbor Integrity DCP

Cozzens and Wu (6) created a graph parameter called the vertex neighbor
integrity, or VNI, that has been the subject of numerous studies. We proceed
to describe this parameter with the definitions of Cozzens and Wu (6). Let
G = (V, E) be a graph and u be a vertex of G. The open neighborhood of u is
N(u) = {v ∈ V(G)|{u, v} ∈ E(G)}; the closed neighborhood of u is N[u] =
{u} ∪ N(u). Analogously, for any S ⊆ V(G), define the open neighborhood
N(S) = ∪u∈SN(u) and the closed neighborhood N[S] = ∪u∈SN[u]. A vertex
u ∈ V(G) is subverted by removing the closed neighborhood N[u] from G.
Notice that this subversion is equivalent to the removal of a dominating set
from G. For a set of vertices S ⊆ V(G), the vertex subversion strategy S is
applied by subverting each of the vertices of S from G. Define the survival
subgraph to the the subgraph left after the subversion strategy is applied to
G. The order of G is defined to be |V(G)|.
Definition 4.1.1. The vertex neighbor integrity of a graph G is defined as

VNI(G) = min
S⊆V(G)

{|S|+ ω(G \ S)},

where w(H) is the order of the largest connected component in the graph H.

We apply a variant of subversion in order to describe how VNI calcu-
lations relate to domination cover pebbling. Let Ωω(G) be the minimum
number of pebbles required such that it is always possible to construct an
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incomplete domination cover pebbling of G, where disjoint undominated
components of G can have order at most ω. This corresponds to the ω(G)
term in the VNI computation. Notice that domination cover pebbling cor-
responds to the case when ω = 0.

4.2 Basic Results

Theorem 4.1. For ω ≥ 0, ΩωKn = 1.

When a pebble is placed on Kn, the entire graph is dominated. The
result follows.

Theorem 4.2. For s1 ≥ s2 ≥ · · · ≥ sr, let Ks1,s2,...,sr be the complete r-partite
graph with s1, s2, . . . , sr vertices in vertex classes c1, c2, . . . , cr respectively. Then
for ω ≥ 1, Ωω(Ks1,s2,...,sr) = 1.

Proof. Place a pebble on any vertex in ci. All the vertices in the other ci’s are
dominated. The other vertices in c1 that are undominated are disjoint from
each other. Thus, the result follows.

Theorem 4.3. For ω ≥ 1, n ≥ ω + 3, Ωω(Wn) = n− 2−ω, where Wn denotes
the wheel graph on n vertices.

Proof. First, we will show that Ωω(Wn) > n− 3− ω. Place a single pebble
on each of n − 3− ω consecutive outer vertices so that all of the pebbled
vertices form a path. This leaves a connected undominated set of size ω + 1.
Hence, Ωω(Wn) > n− 3− ω. Now, suppose that we place n− 2− ω peb-
bles on Wn. If any vertices have a pair of pebbles on them, the entire graph
can be dominated by moving a single pebble to the hub vertex. Hence,
each vertex can contain only one pebble. Since every outer vertex is of
degree 3, at least 3 vertices must be dominated but unpebbled before any
other vertices can be undominated. Hence, in order to obtain an undomi-
nated set of size ω + 1, there must be 4 + ω vertices that are unpebbled. By
the pigeonhole principle, we obtain a contradiction because there are not
enough vertices for this constraint to hold. Thus, for ω ≥ 1, n ≥ ω + 3,
Ωω(Wn) = n− 2−ω.
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4.3 Graphs of Diameter 2 and 3

Theorem 4.4. Let G be a graph of diameter 2 with n vertices. For ω ≥ 1 ,
Ωω(G) ≤ n− 1−ω.

Proof. To show that Ωω(G) ≥ n− 2− ω consider the following family of
graphs which is a modification of the star graph.
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Figure 4.1: An example of the construction for n = 9, ω = 1.

By placing a single pebble on each of the tendrils of the star that are not
connected to any other tendrils, the domination set that results still has a set
of undominated vertices that is at least size ω. Hence, Ω(G) > n− 2−ω.

Let G be a graph with n vertices. Suppose there is an arbitrary config-
uration of pebbles c(G) that contains exactly n − 1− ω pebbles. We now
show that a domination cover pebbling of G can be constructed such that
the maximum order of an undominated component of G is ω.

Let A be the set of all vertices a ∈ G such that vertex a contains a single
pebble. Let B be the set of vertices b ∈ G such that vertex b contains two
or more pebbles. Let C be the set of vertices of all c ∈ G such that c is
dominated but contains no pebbles. Let D be the set of all vertices in G
such that if d ∈ G, then vertex d is undominated. Thus, all vertices in D are
a distance of 2 from every element of A ∪ B.

We now describe a process that forces n− ω vertices to be dominated.
Let F be the set of vertices that are forced to be dominated and will remain
dominated throughout the process. Since we never move pebbles from
vertices with a single pebble on them, we have forced all of the vertices in
A to be dominated. Thus for all a ∈ A, a ∈ F. If D is empty, then we have
dominated the entire graph and the proof is complete. So suppose there
exists some vertex v that is in D. Since G has a diameter of 2, then v can be
dominated by moving a pair of pebbles from any vertex in B that still has
at least 2 vertices on them.
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For every vertex v dominated in such a manner, two vertices become
elements of F, namely v, and the empty vertex that the pair of pebbles
moved to in order to dominate v. Perform this process repeatedly until the
entire graph is dominated or there is only one vertex v∗, that has exactly
2 or 3 pebbles left on it and no other vertices have contain more than one
pebble. Notice that the only vertices in F that are unpebbled are those that
are a distance of two from every pair of vertices. Except for v∗, the vertices
in B now either have zero or one pebble on it. If a vertex in B has one pebble
on it, then that vertex also gets put into F. So far, for every pebble of the
initial configuration of G except for the ones remaining on v∗, one pebble
has forced at least one vertex to be in F.

First, consider the case where v∗ has two pebbles. If there are n − ω
vertices already in L, we are then finished because the maximum number of
undominated vertices left is ω. Also notice that the only unpebbled vertices
in F are those that are a distance of two away from the set of all pairs.
Since the graph is undominated, there exists some vertex, d′ in D that is
undominated. In this case, moving the last pair of pebbles to dominate
a vertex means that we have forced 3 verties not in F to be dominated,
namely d′, v∗ and a vertex not already in F connecting them. Thus, since
we have dominated at least n−ω total vertices, one vertex for each pebble
plus an additional vertex, the largest undominated set possible is of size ω,
and this case is complete.

If v∗ has 3 pebbles and there is only one undominated vertex left, then
moving a pair of pebbles to dominate v∗ dominates the entire graph. Oth-
erwise, there are at least two vertices that are undominated. If there is some
common unpebbled vertex, x, that would dominate at least two undomi-
nated vertices, then using the last pair of pebbles to move a pebble to x will
force at least 4 vertices to be dominated that are not members of F. These
vertices are v∗, x, and two undominated vertices a distance of two away
from v∗. Thus, after this operation, at least n− ω vertices are dominated.
If there is no common unpebbled vertex, then there are at least two unpeb-
bled vertices of distance 1 from v∗ that have not been placed in F. Notice
that the only unpebbled vertices that have been forced are those that are
a distance of 2 away from the set of all pairs. So take the pair of pebbles
and place a pebble on a vertex that forces two more vertices to be placed
in F. The remaining pebble on v∗ will force v∗ and at least one more ver-
tex adjacent to v∗ that is empty and has not been forced to be dominated.
Again, at least n−ω vertices are dominated, whence there cannot exist an
undominated component of G that contains ω + 1 or more vertices, and the
proof is complete.
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We conclude this section by conjecturing an analogous result for graphs
of diameter 3, along with a valid lower-bound construction for this conjec-
ture.

Conjecture 4.3.1. Let G be a graph of diameter 3 with n vertices. For i ≥ 1 ,
Ω(G) ≤ b 3

2 (n− 2−ω) + 1c.
To see that this result is reasonable, we will show that Ωi(G) > b 3

2 (n−
2− ω)c. Consider the following family of graphs that are of size b 3

2(n −
3−ω) + 1c but contain an undominated component of order ω + 1. Take a
Kω+1 and attach each of the ω vertices to some other vertex v. Connect v to
each vertex of a Kd n−ω−2

2 e, call it H. Connect each of the remaining b n−ω−2
2 c

vertices to a vertex of H, so that each vertex in H has only one tendril off
it. Now, place three pebbles on each of the tendril vertices, and if there is
one vertex in H without a tendril, place one pebble on it. This is a total
of 3b n−ω−2

2 c (+1 if n− ω − 2 is odd) pebbles in this configuration, which
is equivalent to b 3

2(n − 2 − ω)c. Since it is not possible to dominate the
vertices in Kω+1, the graph still has an undominated component of order
ω + 1. Thus, Ωi(G) > b 3

2 (n− 2−ω)c.

Figure 4.2: An example of the construction for n = 14, ω = 3.





Chapter 5

Deep Graphs

5.1 Introduction

In this chapter, we will consider another pebbling property that has inter-
esting characteristics. In 2004, Hetzel (17) introduced the concept of deep
graphs. A graph is deep if for each positive integer n ≤ π(G), there ex-
ists an induced subgraph H of G such that π(H) = n. A simple class of
deep graphs of diameter 1 is the family of complete graphs. For exam-
ple, in Kn, the complete graph on n vertices, there clearly exist an induced
Kn−1, Kn−2, . . . , and K1. In this chapter, we will extend this definition in
order to answer natural questions about deep graphs.

One classification of graphs that has been useful in obtaining results
for various pebbling problems is considering graphs of Class 0. A graph
G is Class 0 if its pebbling number is equal to |V(G)|. We can extend the
definitions of Class 0 and deep to say that a graph is Class 0 deep if a graph G
is deep and π(G) = |G|. In fact, we can extend this definition even more by
saying that a graph G is profound if it is deep and it is possible to construct
G by a series of induced subgraphs H1 ⊂ H2 ⊂ · · · ⊂ Hπ(G), each of which
are deep. Finally, applying this definition to Class 0 graphs, we say that a
graph G is Class 0 profound if it is Class 0 deep and G can be constructed
by a series of induced subsets, H1 ⊂ H2 ⊂ · · · ⊂ H|G|, each of which are
Class 0 deep. Notice that if G is profound, then it must be Class 0 profound
because we remove a vertex from G between every subgraph, and there are
only |G| vertices in the graph.
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5.2 Basic Results

In this section, we will describe some basic results that Hetzel proved about
deep graphs. (17) We now state a necessary condition for deep graphs G
where π(G) ≥ 3.

Theorem 5.1. There exists a K3 in every deep graph G where π(G) ≥ 3.

Proof. Since K3 is the only graph with a pebbling number of 3, it is neces-
sary to be included in any deep graph with at least 3 vertices.

In addition, Hetzel (17) creates the following construction:

Theorem 5.2. It is possible to construct a deep graph with arbitrary diameter, n.

Proof. Consider the following construction. Take a path of length n > 2.
Take 2n−1 − 1 additional vertices, and, using these vertices and the last 2
vertices of the path, build an almost complete graph, making every possible
connection among these 2n−1 − 1 + 3 vertices except do not connect the
third to last vertex of the path with the last vertex of the path. There are
other, less complex examples of such graphs, which contain O(n) edges
instead of O(n2) edges. We outline one such example.

We simplify this construction by considering a path of length n− 1 and
attaching to it a star with 2n−1 + 2 outer vertices, where two of the outer ver-
tices of the star are connected to each other, forming a K3. This is certainly
deep because for every vertex of the star that we remove, the pebbling num-
ber of the graph decreases by one. Once we remove all the vertices of the
star, we can remove one vertex of the path and then remove vertices of the
star as needed to decrease the pebbling number even further. Notice that to
create a graph with pebbling number 3, we only use the center of the star
and the two outer vertices of the star connected to each other, thus creating
a K3.
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Figure 5.1: An example of the arbitrary-diameter graph construction for
n=3.



Graph Constructions 53

In the next section, we present constructions describing various prop-
erties of deep graphs, such as an arbitrary diameter Class 0 deep graph.
We conclude the paper in the following section by showing that G(n, p) is
Class 0 profound as n → ∞.

5.3 Graph Constructions

Given a graph G, a property of a G is monotonically increasing when adding
edges to G preserves the property. If deep graphs were monotonically in-
creasing, then we could apply a variant of the FKG inequality that applies
to graphs. The FKG inequality is a probabilistic theorem used to under-
stand correlations between probabilities. For our purposes, we only require
the following theorem dealing with properties of graphs. (1)

Theorem 5.3. Let Q1, Q2, Q3 and Q4 be graph properties, where Q1 and Q2 are
monotonically increasing, and Q3 and Q4 are monotonically decreasing. Let G =
(V, E) be a random graph on V obtained by picking every edge, independently,
with probability p. Then the following statements hold:

Pr(G ∈ Q1 ∩Q2) ≥ Pr(G ∈ Q1)× Pr(G ∈ Q2),

Pr(G ∈ Q3 ∩Q4) ≥ Pr(G ∈ Q3)× Pr(G ∈ Q4),

Pr(G ∈ Q1 ∩Q3) ≤ Pr(G ∈ Q1)× Pr(G ∈ Q3).

This would take care of dependency problems when considering results
concerning random graphs that involve both deep graphs and other graph
properties. However, we can prove the following statement:

Theorem 5.4. Deepness is not a monotonic property.

Proof. Consider the graphs G1 and G2 as shown.
First we will show that G1 is deep. We can see that π(G1) = 11. We now

will show that the G1 is deep but G2 is not. The following table describes
which vertices must be removed in order to obtain a subgraph whose peb-
bling number is n.

π(H) Vertices to Remove π(H) Vertices to Remove

10 4 5 1, 2, 3
9 4, 5 4 1, 2, 3, 4
8 3, 4, 5 3 1, 4, 5, 7
7 1 2 1, 2, 3, 4, 5
6 1, 2 1 1, 2, 3, 4, 5, 6
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Figure 5.2: This is G1, which is deep and G2, which is not.

Now, we must show that G2 is not deep. Notice that π(G2) = 8. Fur-
ther, unless we remove either vertex 1 or 7 we will always have a graph
of diameter 3, which forces a pebbling number of at least 8. Thus, we will
consider the cases when we remove either vertex 1 or 7. First, consider the
case where vertex 1 is removed. Just removing vertex 1 gives a pebbling
number of 6. If we remove any vertex of the K5 subgraph, then the peb-
bling number of the remaining graph is at most 6. If we also remove vertex
1, then the remaining graph is a Class 0 profound graph whose pebbling
number is at most 5. Therefore, we cannot obtain a pebbling number of 7
by removing vertex 1.

Now, suppose that vertex 7 is removed. Just removing this vertex gives
a pebbling number of 6. Similarly, if any vertex of the K5 subgraph is re-
moved, the pebbling number will still be at most 6. Also, if we remove
both vertex 1 and 7 the pebbling number of the remaining graph is at most
5. Thus, we cannot obtain a pebbling number of 7 by removing vertex 7,
and we conclude that G2 is not deep.

Theorem 5.5. Not all Class 0 deep graphs are Class 0 profound.

Proof. Consider the following Class 0 graph, call it G3. We first show that
this graph is Class 0 deep. Since this graph is Class 0, we know that π(G3) =
|G3| = 6. For other values of n we have:
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Figure 5.3: This is G3, a Class 0 deep graph that is not Class 0 profound.

π(H) Vertices to Remove

5 6
4 1, 2, 6
3 3, 4, 5
2 3, 4, 5, 6
1 2, 3, 4, 5, 6

Next, we prove that G3 is not Class 0 profound. If we remove any of
the five outer vertices (1,2,3,4 or 5), the graph has a diameter of 3, implying
that the pebbling number is at least 8 for such subgraphs. Now, removing
vertex 6 leaves a 5-cycle, which has a pebbling number of 5, but when an-
other vertex is removed from the cycle, the remaining graph is a path of 4
vertices, whose pebbling number is 8. Hence, it is not possible to construct
a chain of subgraphs H1 ⊂ H2 ⊂ · · · ⊂ H6 such that Hi is a graph with
i vertices that is Class 0. Hence, not all Class 0 deep graphs are Class 0
profound.

Recall in (17), a deep graph with arbitrary diameter was constructed.
We now present the following theorem.

Theorem 5.6. There exists a graph with arbitrary diameter that is Class 0 deep.

Proof. Suppose we want to construct a Class 0 profound graph of diameter
k. Now, take k + 1 sets, labeled p1, . . . , pk+1 each containing 22k+3 vertices.
Connect every vertex of p1 to every vertex of p2 and every vertex of pk to
every vertex of pk+1. For all other sets pi, connect every vertex of pi to
every vertex of pi−1 and pi+1. Also, connect two vertices of pd k

2 e. This can
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be thought of as the cartesian product of a path of length k and a set of 22k+3

disconnected vertices, with the addition of an edge in order to produce a
K3. The diameter of this graph is certainly k. The connectivity of this graph
is at least 22k+3. Thus, this graph is Class 0 (8). This graph is also Class 0
profound because when we remove vertices one at a time, starting at the
two end sets of 22k+3 vertices and moving inward, we always have a Class
0 graph.

Another relevant lower bound to determine is the minimum number of
edges of a Class 0 profound graph. Consider the following construction of
Mn, a Class 0 profound graph with a minimal number of edges. Take a K3,
with vertices m1, m2, and m3. Connect m4 to m1 and m3, connect m5 to m1
and m4, and in general connect mi to m1 and mi−1, for i ≥ 4. This constructs
a Class 0 profound graph with 2n− 3 edges.

This idea leads to the following result:

Theorem 5.7. Any Class 0 profound graph must contain at least 2n− 3 edges.

Proof. First, given a Class 0 profound graph G with order at least 3, there
cannot be any vertices with degree 1, because otherwise we could place
three pebbles on such a vertex, call it v, and one pebble on every other ver-
tex of G except for two vertices and still not be able to pebble the unpebbled
vertex a distance of 2 away from v. Now, in the removal of every vertex of
G for n ≥ 3, since every vertex has degree at least 2, at least two edges are
removed with the removal of every vertex except for the last two vertices,
which must share at least one edge. This implies that at least 2n− 3 vertices
are required for this construction. We will use this fact in the next section.

5.4 Random Graphs

Another reason for the study of Class 0 profound graphs instead of deep
graphs in probabilistic investigations are that they are monotonic. That is,
given a Class 0 profound graph G, by adding edges to G to make G′, we
observe that G′ is Class 0 profound. This is apparent because the pebbling
number of a graph is a monotonically decreasing property and at every
point in the induced sequence of subgraphs that makes G Class 0 profound,
the subgraph already has the minimum pebbling number. Thus, if we can
find a subgraph of a random graph that is Class 0 profound, then G is also
Class 0 profound. This is the basis for this section.
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Let G(n, p) be a random graph on n vertices where each edge is placed
independently with probability p.

Theorem 5.8. The probability that G(n, p), where p = 1
log log n , is a Class 0

profound graph approaches 1 almost surely as n → ∞.

Proof. Recall that a graph is always Class 0 if the diameter is at most 5 and
κ(G) ≥ 213, where κ(G) denotes the vertex-connectivity of G (8). We will
construct a diameter 5 graph that is Class 0 profound with probability 1 as
n → ∞.

Let p = 1
log log n . From (14) we know that the largest clique size of G(n, p)

is k = 2 logb n − 2 logb logb n + 2 logb
( e

2

)
+ 1 as n → ∞, where b = 1/p.

Further, given some β there exists an α such that as n ≥ β, the probability
of a clique of size k is at least 1− α. Let this largest clique be Kmax. So we
can assume there exists a complete graph of size k in G(n, p). For simplicity
in this instance, suppose that k = logb n.

Next, we will determine the number of vertices of G that connect to at
least 213 vertices of Kmax. We know that the number of vertices of Kmax
that each vertex of G connects to can be described by a binomial distribu-
tion with expectation p log n. Let X be the random variable that counts the
number of vertices that a particular vertex of G is connected to in Kmax.
We will use the Chernoff tail approximation to determine the probability
that a given vertex connects to fewer than 213 vertices of Kmax. Here is the
theorem in a general form:

Theorem 5.9. Let X1, X2, . . . , Xn be independent Poisson trials with Pr(Xi =
1) = pi. Then if X is the sum of the Xi’s and if µ is E[X], for any δ ∈ (0, 1]:

(1) Pr[X < (1− δ)µ] <

(
e−δ

(1− δ)1−δ

)µ

.

Thus, applying the Chernoff tail approximation, we obtain the follow-
ing (Notice that as n → ∞, δ approaches 1):

P(X < 213) < e−
logb n

log log n (δ)2/2

= e
− log n

log log log n
1

log log n (δ)2/2.

Now, as n → ∞, by applying L’Hopital’s rule twice, we obtain that limn→∞
logb n

log log n = ∞. Also note that as n → ∞, that δ2

2 is at least 1/3.

So, for p = 1
log log n the expected number of vertices that have fewer

than 213 neighbors in Kmax is E′ = n(e
− logb n

log log log n
1

3 log log n ). Hence, the expected
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number of vertices that have at least 213 neighbors in Kmax is E = n(1−
e

− logb n
log log log n

1
3 log log n )− k. Notice that as n → ∞, the proportion of vertices that

do not have at least 213 neighbors in Kmax approaches 0.

The variance of E is at most [n(1− e
log n

log log log n
1

3 log log n )− k]( 1
log log n )(1). Thus,

the standard deviation of E is at most
√

n. We obtain this variance by the
formula np(1− p). Thus, given some γ > 0, there exists an A such that
Pr( The number of vertices with at least 213 connections to Kmax is at least
n− E′ − A

√
n) > 1− γ.

Let F be the set of vertices that either are in Kmax or connect to at least
213 vertices of Kmax. Now, suppose there are E′ + A

√
n vertices not in F,

and call this set H. We compute the probability that each vertex not in F
connects to fewer than 213 vertices of F via Chernoff’s approximation. Let X
be the random variable that counts the number of vertices that a particular
vertex of H is connected to in F. Notice that again we have a binomial
distribution with expectation 1

log log n (F− A
√

n). Again, δ is a constant from
0 to 1, and as n → ∞, δ → 1. Applying the approximation, we obtain:

P(X < 213) < e−
γ2
2 ( 1

log log n )(F−A
√

n).

Notice that since F À A
√

n or log log n, this probability clearly approaches
zero as n → ∞. Let r be the expected number of vertices in R, the set of
vertices of E′, where for each e′ ∈ R, X < 213. Then r, as n → ∞ is equal to

(E′)e−
1
3 ( 1

log log n )(F−A
√

n). As n → ∞ this expectation approaches 0. So given
an η > 0 there exists an n = λ such that the probability that r < 1 (that is,
there is no vertex that does not connect to 213 vertices) is at least 1− η.

Before we continue this analysis, we must notice that the structures we
have created are not independent, though in our analysis, we treat each
property as independent. In actuality, there is a positive correlation be-
tween the events. First, notice the vertices of the clique are more likely to
have a higher number of edges than average. Thus the number of vertices
in the graph that connect to 213 of them will be higher than average. Finally,
the vertices connecting to E will have more edges connected to E than to
vertices not in E or Kmax by this same reasoning.

Notice that the graph we have constructed out of G(n, p), where p =
1

log log n has connectivity 213 and diameter at most 5. Then by the theorem
of Czygrinow et al (8), the graph is Class 0. This graph is Class 0 profound
because we can successively remove vertices, starting with vertices in E,
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then the vertices in F not in Kmax, and finally the vertices in Kmax, and still
have a graph that is Class 0.

We now show that the probability that G exists approaches 1 as n → ∞.
Notice that G is constructed through three separate constructions, namely,
first the clique, then the other vertices in F and finally the vertices in H. Let
L, M and N be the events that these three events occur. By the arguments
presented, P(L ∩ M ∩ N) ≤ P(L) + P(M) + P(N) − 2 = (1 − α) + (1 −
γ) + (1− η) = 3− α− γ− η. Let µ = α + γ + η. Now, as n → ∞, since
α, γ and η are arbitrary and can approach 0, P(L ∩ M ∩ N) → 1 as n → ∞.
Therefore with p = 1

log log n , almost all graphs are Class 0 profound. Notice
this also implies that if p is some fixed positive real number, then it also
holds that almost all graphs are Class 0 profound. Indeed, any value for p
that is asymptotically smaller than log n would also work.

Theorem 5.10. The probability that G(n, p), where p ≤ 1
n.5+ε , is a Class 0 pro-

found graph approaches 0 almost surely as n → ∞.

Proof. Let G = G(n, p), where each edge is placed independently with
probability p. Let Mn be the Class 0 profound graph with exactly 2n − 3
edges and n vertices. Given a graph with 2r− 3 edges, there are r! ways to
arrange the edges in such a way that an Mr is created. There are r choices
for the hub vertex (the vertex of degree r− 1), and there are (r−1)!

2 ways to
arrange the other vertices up to isomorphism. Then the expected number
of graphs Mr in G can be calculated as follows:

E(Mr) =
(

n
r

)
p2r−3

(
r!
2

)

< nr p2r−3 = nr
(

1
n.5+ε

)2r−3

.

Since Class 0 profoundness is a monotonic property, we can drop the (1−
p) term because even if some more edges in Mr are present, the graph is
still Class 0 profound. Notice, as n → ∞ and r → ∞, that E(Mr) → 0. For
any other graph with at least 2r − 2 vertices, this expectation will also go
to zero. Thus, since there does not exist a subgraph of size r that is Class 0
profound, the entire graph must almost surely can not be Class 0 profound.





Chapter 6

Threshold Results for Cover
Pebbling

6.1 Introduction

At the end of the last chapter, we considered probabilistic questions relat-
ing to deep graphs. Professors Glenn Hurlbert and Zsuzsanna Szaniszlo,
in personal communications with probabilist Anant Godbole, wanted to
know whether any probabilistic results could be obtained related to cover
pebbling. As part of (15) Godbole, Watson and Yerger obtain a probabilistic
threshold result for cover pebbling the complete graph, though the proofs
ultimately used for the threshold part of the paper came from work by
Godbole. Watson and Yerger used more elementary techniques to obtain
the same results, but there were some flaws in the analysis that led to God-
bole’s more elegant presentation.

This section is an attempt to understand these techniques more com-
pletely by recreating Godbole’s proofs with additional exposition. Before
discussing the specifics of cover pebbling questions I have considered, a
brief exposition explaining probability thresholds will be presented. Fol-
lowing this background information, the probability threshold results will
be presented.

6.2 Probability Thresholds

To understand what a probability threshold is in the context of graph the-
ory, we will recount an example of Erdős and Renyi presented in (10) and
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later retold in (1). Before we begin, we will provide some relevant defini-
tions. Given a random graph, G(n, p), let n be the number of vertices of the
graph and let each edge of the graph have probability p of occurring. Also,
the event of each particular edge occurring is independent of the existence
of other edges. Consider a property of G(n, p), for instance that G is con-
nected, call it A. The probability that G(n, p) satisfies property A is denoted
by Pr[G(n, p)| = A]. If the function is monotonic, then the probability that
this property occurs is also monotonic.

Suppose that A is the property that G is triangle-free. That is, G is
triangle-free if there is no K3 in G(n, p). Suppose that X is the number
of triangles that are present in G(n, p). Since the existence of an edge is an
independent event, we know the probability of any edge occurring is p3.
There are (n

3) possible triangles, so by applying linearity of expectation, we
see that E[X] = (n

3)p3.
Now suppose that p = c

n . Then we see that as n → ∞,

lim
n→∞

E[X] = lim
n→∞

(
n
3

)
p3 =

c3

6
.

According to (1), the distribution of this expectation is asymptotically
Poisson, so we can say that

lim
n→∞

Pr[G(n, p)| = A] = lim
n→∞

Pr[X = 0] = e−
c3
6 .

So, G(n, p) almost always has a triangle when c is large and very un-
likely to have a triangle when c is small. In fact, as c approaches 0 the
probability of a triangle is 1 and if c approaches infinity, the probability of a
triangle is 0. Notice that if c were anything but a constant, if limn→∞ c = ∞,
then the event would almost never happen, and if limn→∞ c = ∞, the
event would almost always happen. There is something special going on at
p = c/n, namely that it acts as a threshold. Once the threshold of a graph
property is reached, the property is very likely to occur, but the property
is very unlikely before the threshold is reached. Rigorously speaking, con-
sider the following definition, taken from (1).

Definition 6.2.1. r(n) is called a threshold function for a graph theoretic property
A if

(i)When p(n) ¿ r(n), lim
n→∞

Pr[G(n, p)| = A] = 0.

(ii)When p(n) À r(n), lim
n→∞

Pr[G(n, p)| = A] = 1.

or vice versa.
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Now we are ready to consider threshold problems related to cover peb-
bling.

6.3 Preliminaries

Throughout this chapter we will be concerned with placing pebbles on a
complete graph and determining the probability of the existence of a cover
solution. The pebbles are placed on the graph via a function called a con-
figuration, denoted by C. The total number of pebbles placed on a graph
is called the weight of the graph, call it t. Historically, the distribution of
random objects has been described in two ways, and the notation used is
derived from usage in the quantum mechanics community.

First, suppose that all distributions of pebbles are equally likely. This
is the Bose Einstein configuration of pebbles. This means that if there are
n vertices on graph G with weight t, there are (n+t−1

t ) equally likely con-
figurations of pebbles. So any distribution of pebbles is likely as any other
distribution of pebbles. As an example, consider the following two distri-
butions of pebbles:

u u u u u u
6 0 0 2 2 2

Figure 6.1: An example of two equivalent Bose Einstein distributions.

On the other hand, if we assume that the pebbles are distinguishable,
then we have a different probability distribution. In this case, there are
nl configurations, each with different probability. In our example above,
the configuration on the right occurs 90 = 6!

2!2!2! times more often than the
example on the left. This distribution is called the Maxwell Boltzmann prob-
ability distribution. Little if anything has been done with Maxwell Boltz-
mann pebbling in other papers. For the purposes of the thesis, we will
compute probability thresholds for both distributions.
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6.4 Proof of the Maxwell Boltzmann Threshold

In this section, we will compute the probability threshold for cover peb-
bling the complete graph on n vertices placing pebbles on the graph via
the Maxwell Boltzmann distribution described in the previous section. Be-
fore constructing a proof for the threshold result itself, we will prove some
useful lemmas that give necessary and sufficient conditions for the cover-
solvability of the complete graph.

Suppose that X = Xn,t is the number of vertices that an odd number
of pebbles are placed. Colloquially, we say that X is the number of odd
stacks. The heuristic reason why these odd stacks are important is because
we “save” a pebble by having the vertex have the right parity, for if we
have exactly two pebbles on a vertex, it is optimal to leave both pebbles on
the vertex even though only one is necessary for a cover-solution.

Theorem 6.1. (Watson and Yerger) A configuration of t pebbles on the n vertices
of Kn is cover solvable if and only if

X + t ≥ 2n.

Proof. Suppose that C is a configuration that is cover solvable. Thus, after
a sequence of pebbling moves, each previously unpebbled vertex has two
pebbles associated with it - one on it, and one that was removed from the
game. In the same light, any vertex that previously had a non-zero and
even number of pebbles on it must have at least two pebbles left on it.
However, any vertex that previously had an odd number of pebbles on it
now must have at least one pebble on it (not two!). Thus, if E denotes the
number of pebbles that initially had an even number of pebbles on them, it
must be the case that t ≥ 2E + X. This is equivalent to our condition.

On the other hand, if C is not cover solvable, then after a series of peb-
bling moves, we must reach a point where there are unpebbled vertices.
Each vertex initially covered in E or unpebbled is associated with two peb-
bles, and each vertex in X is associated with one pebble. Thus, t < 2E + X.
This completes the proof.

We now offer an alternate, more concise, proof of this theorem.

Proof. Again, suppose that C is a configuration of pebbles. Let Yi be the
number of vertices with i pebbles, where 0 ≤ i ≤ t. Notice that a vertex can
cover exactly i other vertices if it contains exactly 2i + 1 or 2i + 2 pebbles.
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Now, the configuration C is a cover solution if and only if

∑
i≥0

i(Y2i+1 + Y2i+2) ≥ Y0.

This can be expanded to look closer to our desired form. So we get:

∑
i≥0

(2i + 1)Y2i+1 + ∑
i≥0

(2i + 2)Y2i+2 ≥ 2Y0 + ∑
i≥0

Y2i+1 + 2 ∑
i≥0

Y2i+2.

Even more suggestive is:

∑
i≥0

(2i + 1)Y2i+1 + ∑
i≥0

(2i + 2)Y2i+2 ≥ 2(Y0 + ∑
i≥0

Y2i+2) + ∑
i≥0

Y2i+1.

This is equivalent to t ≤ 2E + X, completing the proof.

Before we prove our threshold result, we will provide some evidence
for its discovery in a heuristic argument. In doing so we make the assump-
tion that X is sharply concentrated around E(X) if X ∼ E(X). So suppose
that a cover solution to Kn exists when E(X) ≥ 2n− t. Recall that X simply
counts the number of odd stacks, so X = ∑n

j=1 Ij, where Ij = 1 if vertex j
contains an odd stack of pebbles, and Ij = 0 if vertex j does not. We can
now compute E(X). By linearity of expectation we have:

E(X) = nP(I1 = 1)

= n ∑
jodd

(
t
j

)
(

1
n
)j(1− 1

n
)t−j.

The terms of the sum can be explained by noting that there are (t
j) ways to

place j vertices on a vertex out of t pebbles. At each of these vertices, there
must be j pebbles on it, and t− j pebbles not on it. This gives the terms of
the sums. Rearranging and simplifying using the binomial expansion, we
obtain:

E(X) =
n
2
(1− (1− 2

n
))t.

In order for E(X) to satisfy the necessary and sufficient condition for a
cover solution, E(X) ≥ 2n− t. Thus, a cover solution exists if

t− n
2
(1− 2

n
)t ≥ 3n

2
.
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If we look for a solution for t to first order, then we will parameterize
this equation by letting t = An. Now, a cover solution exists if

A− 1
2
(1− 2

n
)An ≥ 3

2
.

But notice that (1− 2/n)n ∼ e−2, so we can guess that the threshold,
call it A0, occurs at the point where

A− 1
2

e−2A =
3
2

.

It turns out that A0 = 1.5238 . . ..

6.5 Threshold via Tchebychev’s Inequality

One of the ways the threshold can be obtained is via the second-moment
method, which is based on Tchebychev’s inequality. We now recount the
statement of this theorem:

Theorem 6.2. Let X be a random variable and let λ > 0. Then,

P(|X−E(X)| ≥ λ) ≤ V(X)
λ2 .

Recall that we computed E(X) in the last section, so we will now com-
pute V(X), which is the variance of X. We now compute V(X).

V(X) = V(
n

∑
j=1

Ij).

Recall that the variance of a sum of random variables is not just the sum
of the variances. In this case, a covariance term must also be computed.
Specifically this entails computing E(Ii Ij). Therefore,

V(
n

∑
j=1

Ij) =
n

∑
j=1

V(Ij) + ∑
i 6=j

(E(Ii Ij)−E(Ii)E(Ij).

We already can compute the first term from the results from the last section,
so

n

∑
j=1

V(Ij) = nP(I1 = 1)(1−P(I1 = 1))

=
n
4
(1− (1− 2

n
)2t).
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Now, we compute the covariance term of the sum. Specifically, we must
compute E(Ii Ij), which is just n(n− 1)P(Ii Ij = 1). We only want to count
configurations when both stack i and j are odd, but all we have is an ex-
pression that is more general. This expression for P(Ii Ij = 1) is:

A = ∑
r,s odd

(
t

r, s, t− r− s

) (
1
n

)r (
1
n

)s (
1− 2

n

)t−r−s

.

We see this is just an application of the multinomial distribution. Godbole
splits this sum up in a creative way so that only the cases when r and s are
odd are counted.

A =
1
4
(A1 − A2 − A3 + A4) where,

A1 = r, s
(

t
r, s, t− r− s

) (
1
n

)r (
1
n

)s (
1− 2

n

)t−r−s

A2 = r, s
(

t
r, s, t− r− s

) (
1
n

)r (
− 1

n

)s (
1− 2

n

)t−r−s

A3 = r, s
(

t
r, s, t− r− s

) (
− 1

n

)r (
1
n

)s (
1− 2

n

)t−r−s

A4 = r, s
(

t
r, s, t− r− s

) (
− 1

n

)r (
− 1

n

)s (
1− 2

n

)t−r−s

.

We can see that this works by looking at the four cases of parity for r
and s. Notice, that if r and s are odd, A1 and A4 are positive and A2 and A3
are negative. However, if say, r is even and s is odd, then A1 and −A3 are
positive, and −A2 and A4 are negative. Notice that the absolute value of
each of the Ai’s are exactly the same, so in the case where r is even and s is
odd, we obtain a cancelation. An analogous argument holds for the other
two parity cases.

Again, applying the binomial theorem, we obtain that

P(Ii Ij = 1) =
1
4

(
1 +

(
1− 4

n

)t

− 2
(

1− 2
n

)t
)

.

Now, we can compute the covariance term. This means we must subtract
E(Ii))E(Ij) from E(Ii Ij), where i 6= j. With some manipulations, we see
that

Cov(Ii, Ij) =
1
4

((
1− 4

n

)t

−
(

1− 2
n

)2t
)

.
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Therefore, we can now compute the variance. Thus,

V(X) =
n
4

(
1−

(
1− 2

n

)2t
)

+
n(n− 1)

4

((
1− 4

n

)t

−
(

1− 2
n

)2t
)

.

Given that we now know the mean and the variance term, we can use
the second moment approximation to obtain a threshold for the Maxwell
Boltzmann distribution. Now we will prove the following theorem:

Theorem 6.3. Consider t distinct pebbles that are thrown onto the vertices of the
complete graph Kn on n vertices according to the Maxwell Boltzmann distribution.
Set A0 = 1.5238 . . .. Then

t = A0n + φ(n)
√

n ∼ P(Kn is cover solvable ) → 1 as n → ∞.

and

t = A0n− φ(n)
√

n ∼ P(Kn is cover solvable ) → 0 as n → ∞.

where φ(n) → ∞ is arbitrary.

Proof. Our goal is to show that P(X ≥ 2n− t) → 1 as n → ∞. Let t be of
the form, t = A0n + φ(n)

√
n. We want to find the value of P(X ≥ 2n− t).

Subtracting E(X) from both sides, we see that:

P(X ≥ 2n− t) = P

(
X−E(X) ≥ 2n− t− n

2

(
1−

(
1− 2

n

)t
))

.

Substituting for t = A0n + φ(n)
√

n, we obtain:

= P

(
X−E(X) ≥ 3

2
n− A0n− φ(n)

√
n− n

2

(
1− 2

n

)A0n+φ(n)
√

n
)

.

Now, recall that A0 satisfied the equation A0 + 1
2 e−2A = 3

2 . Therefore, in
our equation, we can substitute 3n

2 by A0n + n
2 e−2A. This gives us:

= P

(
X−E(X) ≥ −n

2
e−2A0 − φ(n)

√
n +

n
2

(
1− 2

n

)A0n+φ(n)
√

n
)

.

Continuing to be clever, we now use the well-known inequality 1− x ≤
e−x. If x = 2

n , then we can substitute e
−2
n for 1− 2

n to obtain:

≥ P

(
X−E(X) ≥ −n

2
e−2A0 − φ(n)

√
n +

n
2

(
exp {−2A0 − 2φ(n)√

n
}
))

.
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This simplifies to:

= P

(
X−E(X) ≥ n

2
e−2A0

(
exp {−2φ(n)√

n
} − 1

)
− φ(n)

√
n
)

.

We now use a lesser known inequality, e−x − 1 ≤ −x/(1 + x) to get the
next line of the proof. Specifically, the term exp {− 2φ(n)√

n } − 1 is in the form
e−x − 1. After the use of this inequality, we have:

≥ P

(
X−E(X) ≥ n

2
e−2A0 − 2φ(n)√

n
− 1(1 + o(1))− φ(n)

√
n
)

= P
(

X−E(X) ≥ −φ(n)
√

n(1 + e−2A0(1 + o(1))
)

.

Taking the absolute value of X−E(X), we get to a usable answer, namely

≥ P
(
|X−E(X)| ≤ φ(n)

√
n(1 + e−2A0(1 + o(1))

)
.

Before completing the manipulations required to obtain the threshold,
we must look at the variance to see how concentrated the data is. It turns
out that we can show V(X) = Θ(n), and so X is concentrated with high
probability in some interval of length Ω(

√
n) around E(X). Recall the

meanings of these various asymptotic notations. Θ(n) is an asymptotically
tight upper and lower bound, Ω(n) is an asymptotic lower bound, O(n) is
an asymptotic upper bound. Also o(n) is a non-asymptotically tight upper
bound.

The variance term calculated before was:

V(X) =
n
4

(
1−

(
1− 2

n

)2t
)

+
n(n− 1)

4

((
1− 4

n

)t

−
(

1− 2
n

)2t
)

.

For some constant, call it K, the first term of this variance can be simpli-
fied to n

4 (1 + K(1 + o(1))). Let us now focus on the remaining part of the
variance term. Expanding out the last exponent, we get:

n(n− 1)
4

((
1− 4

n

)t

−
(

1− 2
n

)2t
)

=

n(n− 1)
4

((
1− 4

n

)t

−
(

1− 4
n

+
4
n2

)t
)

.
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This second expression can be bounded using the inequality t(b− a)at−1 ≤
bt − at ≤ t(b− a)bt−1 to obtain an asymptotic bound for the second part of
the sum. So

n(n− 1)
4

((
1− 4

n

)t

−
(

1− 4
n

+
4
n2

)t
)

≤ n(n−1)
4

((
1− 4

n + 4
n2

)t − (
1− 4

n

)t
)

= n(n−1)
4

(
1− 4

n + 4
n2 − 1 + 4

n

)t (
1− 4

n + Θ
( 1

n2

))t−1

= n(n−1)
4

4t
n2

(
1− 4

n + Θ
( 1

n2

))t−1

= Θ(t) = Θ(n).

Thus, V(X) = Θ(n). Now, if K is a constant, we can apply Tchebychev’s
inequality, to get that

P(X ≥ 2n− t) ≥ P(|X−E(X)| ≤ K×√nφ(n) ≥ 1− 1
K2φ2(n)

.

Notice as n → ∞, this probability approaches 1. This proves one of the two
parts of the threshold. The proof for the other direction of the threshold is
analogous to this one.

6.6 Bose Einstein Cover Pebbling Threshold

In this section, we will begin to derive the threshold for Bose Einstein cover
pebbling. At the present time there are issues with the proof, but we can
describe some important preliminary ideas. For Maxwell Boltzmann dis-
tributions, it was difficult to obtain an explicit formula for the probability
of the number of odd stacks. However, we can get a nice closed form Bose
Einstein cover pebbling.

Theorem 6.4. Let t be the number of pebbles placed on Kn and let x be the number
of odd stacks. Suppose that t and x have the same parity and that x ≥ min t, n.
Then,

P(X = x) =
(n

x)(
t−x

2 +n−1
n−1 )

n + t− 1
n− 1.
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Proof. If t and x have the same parity, we can place pebbles on Kn in a way
that combinatorially explains the preceding identity. First, place one pebble
on each of the x vertices that are odd stacks. Then, with the remaining
t − x pebbles, we can place t−x

2 indistinguishable pairs of pebbles on the
n vertices. This accounts for the numerator of the preceding expression
and counts the total number of configurations of pebbles with x odd stacks
and t pebbles. The denominator of the theorem counts the total number of
configurations possible given any number of odd stacks. This is derived
from the classic combinatorial “stars and bars” interpretation, where there
are n− 1 lines dividing a set of t pebbles for a total of n + t− 1 spaces.

Recall that in Bose Einstein pebbling each of the (n+t−1
n−1 ) configurations

are just as likely. In this case, there is no obvious sequential process that
describes how the pebbles are placed. However, if we recast the problem
in another probabilistic viewpoint, it turns out that we can describe Bose
Einstein pebbling via a sequential process. Instead of “throwing balls into
boxes” (15) we “draw balls from boxes”. This process can be modeled in a
procedure known as Polya sampling.

In Polya sampling, we begin with a box that contains one ball each of
n colors. When a ball is chosen from the box, it is recorded and then that
ball as well as another ball of that same color is placed into the box. In this
case order matters, that is, the sequence of balls selected influences subse-
quent ball selections. It would be wonderful if the number of times a ball
of color i was selected corresponded to the number of pebbles placed on
vertex i. This seems unlikely because the order of the ball/pebble selection
matters. Surprisingly, however, it turns out this procedure does allow the
probability of each configuration of pebbles to be equal.

Theorem 6.5. Let Xj be the number of times the color j is drawn among the t
draws. Then for any x1, x2 . . . , xn where ∑ xj = t,

P(X1 = x1, X2 = x2, . . . , Xn = xn) =
1

(n+t−1
t )

.

Proof. First suppose the balls are drawn from the box so that the first x1
balls are color X1, the next x2 balls are colored X2 and so forth. Call this
event B and notice that the order the balls were chosen is part of the event.
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Then

P(B) =
(1 · 2 · · · x1)(1 · 2 · · · x2) · · · (1 · 2 · · · xn)

(n)(n + 1) · · · (n + t− 1)

=
x1!x2! . . . xn!

(n)(n + 1) · · · (n + t− 1)
.

Notice that this probability is the same regardless of the order the balls
are drawn in. The probabilities of the denominator will remain the same
because the first ball is drawn out of n balls, the next ball is drawn out
of n + 1 and so forth. To see that the numerator is the same regardless of
order, notice that when the kth ball of a particular color is drawn, there are k
balls in the box. Thus, regardless of order, the component of the numerator
associated with X1 is x1!.

To finish the proof we must compute P(X1 = x1, X2 = x2, . . . , Xn = xn).
We can order the selection of pebbles in

t!
x1!x2! · · · xn!

ways. Multiplying this by the probability that a particular configuration
occurs will equal the probability we desire. Let C be the event that X1 =
x1, X2 = x2, . . . , Xn = xn. Then

P(C) =
t!

x1!x2! · · · xn!
· x1!x2! . . . xn!
(n)(n + 1) · · · (n + t− 1)

=
1

(n+t−1
t )

.

This completes the proof of the theorem.

Before stating the theorem that computes the Bose Einstein cover peb-
bling threshold, we will describe a recent probabilistic technique, called the
method of bounded differences. This is also called the Azuma-Hoeffding
inequality. This inequality is based on a probabilistic concept called a mar-
tingale.

Definition 6.6.1. A martingale is a sequence X0, . . . Xm of random variables so
that for 0 ≤ i < m,

E[Xi+1|Xi] = Xi.
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Martingales can be applied to describe random graph theoretic pro-
cesses, understand deviations from means, such as the Chernoff bounds
discussed in Chapter 5, and even in a recent paper of Bollobas that de-
scribes a bound for the chromatic number of a graph.

Let (Ω,F , P) be a probability space where {Yn} is a sequence of random
variables on the probability space, which is not necessarily independent.
For our application of the Azuma-Hoeffding inequality, the draws made
via Polya sampling is the sequence of random variables {Yn}. More gener-
ally, for a collection of random variables {τi}i = 1n, a sequence of random
variables X0, X1, . . . , Xm is a martingale sequence with respect to {τi}i = 1n

E[Xi+1|τ0, τ1, . . . , τi] = Xi.

Now, let X = Xt = X(Y1, . . . , Yt) be the number of even stacks of
pebbles. Also, consider the filtration, essentially a sequence of σ-algebras,
which is just a set of subsets of F . Recall the following definition of a σ-
algebra.

Definition 6.6.2. A σ-algebra is a set of subsets of Ω that satisfy the following
three properties:
1. The empty set is in F .
2. If A is in F , then so is the complement of A.
3. If An is a sequence of elements of F , then the union of the An’s is in F .

So, F 0 = {∅, Ω}, and in general F i = σ(Y1, . . . , Yi). Also, denote EiX
as the conditional expectation of X with respect to F i, and let di = EiX −
Ei−1X. This sequence (di,F i) is called a Martingale difference sequence.
On one side of the Azuma-Hoeffding inequality, we have X − E(X), and
in the language of the Martingale difference sequence, it is just ∑t

i=1 di. We
can finally state the inequality. (1)

Theorem 6.6. For all λ > 0,

P(|X−E(X)| ≥ λ) ≥ 2 exp
{ −λ2

2 ∑ ||di||2∞

}
.

We’re still not finished with analysis notation and definitions. Define
s = ||Z||∞ as the essential supremum of Z(ω). For the purposes of this
thesis, we will simply say that the essential supremum is just the smallest
number for which s only exceeds Z(ω) on a set of measure zero.

We can directly use the inequality by manipulating di terms. This al-
lows us to determine a bound for the interval that describes the location of
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the concentration for the number of odd stacks in Bose-Einstein pebbling.
Suppose that Y∗i is an independent copy of Yi. Then,

Ei−1X(Y1, . . . , Yt) = EiX(Y1, . . . , Yi−1, Y∗i , Yi+1, . . . , Yt).

We see this since the probability of each vertex being an even stack is equiv-
alent. Now, we know that di is just the following difference:

di = Ei(X(Y1, . . . , Yt)− X(Y1, . . . , Yi−1, Y∗i , Yi+1, . . . , Yt)).

This implies that

||di||∞ = ||Ei(X(Y1, . . . , Yt)− X(Y1, . . . , Yi−1, Y∗i , Yi+1, . . . , Yt))||∞
≤ ||X(Y1, . . . , Yt)− X(Y1, . . . , Yi−1, Y∗i , Yi+1, . . . , Yt)||∞.

Notice that this last term is at most two, since by adding or removing one
pebble, we can change the number of even stacks by at most two. So, using
this and the Azuma-Hoeffding inequality we see that

P(|X−E(X)| ≥ λ) ≤ 2e−
λ2
8t .

With this at hand we can do some more computations and manipulations
to obtain the threshold result. This result will be formally completed by
Godbole in May. Hence, to conclude this section, we state the result.

Theorem 6.7. Consider t distinct pebbles that are placed on the vertices of the
complete graph Kn according to the Bose Einstein distribution. Then, with γ rep-
resenting the golden ratio (1 +

√
5)/2,

t = γn + ϕ(n)
√

n ∼ P(Kn is cover solvable) → 1 (n → ∞)

and

t = γn− ϕ(n)
√

n ∼ P(Kn is cover solvable) → 0 (n → ∞),

where ϕ(n) → ∞ is arbitrary.



Chapter 7

Conclusion

We examined a wide variety of extensions to graph pebbling, which in-
cluded structural, probabilistic and computational results in cover peb-
bling, domination cover pebbling and deep graphs. These results can serve
as starting points to many more complex investigations in pebbling because
most of the results are the first of their kind. The cover pebbling threshold
result for the complete graph is one such example. Also, Nathaniel Wat-
son is currently working on other complexity issues with cover pebbling
and extending the results proved in the thesis. Questions about domina-
tion cover pebbling and its relationship to the vertex neighbor integrity of
a graph remain quite open and would be a suitable topic for further re-
search.

Another interesting characteristic of pebbling problems is that they form
new links between areas of mathematics, such as additive number theory
and graph theory. Domination cover pebbling serves as a connection be-
tween graph domination, a substantial subfield of graph theory and peb-
bling, a new but rapidly growing field on its own. Deep graphs help us
to understand more about the structure of Class 0 graphs, which may be
useful in trying to finally prove Graham’s conjecture. Complexity results
link graph pebbling to the theory of computation. Finally, the well-known
relationships between probability theory, graph theory and combinatorics
are highlighted in the cover pebbling and deep graph threshold results.

7.1 Conclusion
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