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Chapter 1

Introduction

Mathematical concepts have aided the progression of many different fields
of study. Math is not only helpful in science and engineering, but also in
the humanities and social sciences. Therefore, it seemed quite natural to
apply my preliminary work with set intersections to voting theory, and
that application has helped to focus my thesis. Rather than studying set
intersections in general, I am attempting to study set intersections and what
they mean in a voting situation. This can lead to better ways to model
preferences and to predict which campaign platforms will be most popular.
Because I feel that allowing people to only vote for one candidate results in
a loss of too much information, I consider approval voting, where people
can vote for as many platforms as they like.

1.1 Definitions

If we are concerned with a single issue where opinions range from one
extreme to another, we can represent voters’ opinions using a linear system.
Consider the set [0, 1] ⊂ R and assign 0 to one extreme view and 1 to the
other. Then every view, or platform, in between can also be represented
by a real number between 0 and 1. See Figure 1.1 for an example of how
we might label the interval in terms of voting preferences. Let the set of
platforms for whom person i will vote for be represented by the set Ai. For
convenience, we can distribute the sets along the vertical axis, as shown in
Figure 1.2.

For the purpose of creating a realistic model, we require that Ai be a
closed interval (or the empty set). Thus, if person i will vote for platforms
p and q, he will vote for a platform which is intermediate.
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Figure 1.1: One Method of Labeling the Unit Interval

A society, S, is a group of voters together with the platforms they can
agree with, which we call X. The order of a society, |S|, is the number of
voters in the society. A (k, n)- society is a society such that for any subset of
n voters, there is at least one platform that at least k of them can agree upon.
Notice that the order of a (k, n)-society is at least n. To further describe the
society, we say a (k, n, t)-society is a (k, n)-society with order t.

Figure 1.2: Linear Graph of a (2, 3, 6)-Society

The agreement number of a platform, a(p), is the number of voters who
approve of platform p. The agreement number a(S) of a society S is the max-
imum agreement number over all platforms in X, so a(S) = maxp∈ X a(p).
The agreement proportion of S is simply the agreement number of S divided
by the order of S, or a(S)/|S|. This concept is useful when we are inter-
ested in percentages of the population rather than the number of voters.
The agreement set of S consists of platforms that receive a(S) votes. Notice
that Figure 1.3 shows a society with agreement number 4, and the shaded
rectangles cover the agreement set. It is again important to remember that
the vertical axis only makes the graph easier for us to interpret and has no
mathematical meaning. Finally, we say that a society is super-agreeable if
a(S) = |S|.

The distance between voters, d(a, b), is the minimum number of other
voters v1, v2, . . . , vd(a,b) required such that Aa ∩ Av1 6= {}, Av1 ∩ Av2 6=
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Figure 1.3: Agreement Set of a Society with Agreement Number Four

{}, . . . , Avd(a,b) ∩ Ab 6= {}. In Figure 1.3, we see that the distance between
voters 2 and 3, for example, is 1, because there are no platforms that both
2 and 3 will vote for, but 2 and 3 both have platforms in common with
voter 1. If no set of voters will satisfy this condition, we say d(a, b) = ∞. If
d(a, b) = 0, then we say the voters are adjacent. In Figure 1.3, for instance,
we see that voters 1 and 2 are adjacent. Upon closer inspection, we realize
that voter 1 is actually adjacent to every other voter.

1.2 Background

We realize that a society is simply a set of voters, so work concerning set
intersections can be applied to this problem. The most well known the-
orem in this area is Helly’s theorem [1], proven in 1923. Helly’s theorem
states that given t convex sets in Rd, if every d + 1 of them intersect at a
common point, then they all intersect at a common point. The KKM lemma
[10], proven in 1929, is similar to Helly’s theorem, but is concerned with
set intersections on simplices. A more recent theorem, proven by Neider-
maier and Su in a paper still in progress, generalizes Helly’s theorem to
non-convex sets on trees. These theorems gave me a good place to start re-
search, as I could see how they applied to a linear representation of voting
theory.

1.3 Motivation

The concept of agreeable societies of voters is useful in voting theory for
many reasons. For instance, it can be used to determine the minimum num-
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ber of platforms that are necessary such that everyone has some platform
of which he or she approves. It can also lead to comparisons of voters in
those societies in an attempt to determine what kind of people approve of
certain platforms. Thus, using these modeling techniques, politicians can
attempt to satisfy the greatest number of voters possible.

Another application of this is in consensus theory. Consensus theory is
related to voting theory in that it is used for decision making when opinions
may not agree. However, consensus theory is more flexible than voting
theory, and it attempts to use more information than is generally available
in voting theory. Consensus theory tends to be used in a managerial setting.
Although it encompasses more than voting theory does, the results of this
thesis may be quite useful to consensus theory in general.

Additionally, since this thesis stemmed from work in a variety of other
areas, it seems certain that conclusions formed in the context of voting the-
ory will be applicable to many other branches of mathematics.

In Chapter 2, we consider methods of using graphs to explore the prop-
erties of different societies, and in Chapter 3, we examine this idea more
thoroughly. Chapter 4 introduces concepts related to the piercing number
of a graph and explains how the piercing number and agreement number
are related. Chapter 5 considers a possible generalization of convexity. In
this chapter, we find a necessary and sufficient condition for a set to be 3-
convex, but unfortunately, 3-convex sets do not model societies in a realistic
way. We draw conclusions, both mathematical and otherwise, in Chapter 6.



Chapter 2

Graphs

2.1 Representations with Graphs

We now examine methods of pictorially representing the agreeableness of a
society. Consider a (k, n, t)-society, and let each vertex in an agreement graph
G represent a voter. Draw an edge between two voters if the voters are
adjacent. We notice that a super-agreeable society will produce a complete
graph. Additionally, if d(a, b) = ∞, then there is no path from a to b, so we
say that a and b are in different components of the agreement graph.

Figure 2.1: Agreement Graph of the (2, 3, 6)-Society from Figure 1.3

Theorem 2.1 (Helly). A (2, 2, t)-society must contain at least one platform that
all t voters will vote for.

This follows as a consequence of Helly’s theorem for dimension 1. It
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also results from a theorem Niedermaier and Su proved for set coverings
of trees in a paper still in progress. Below I will give an alternate proof from
a different viewpoint.

Proof: Since each voter agrees on at least one platform with every other
voter, we see that the sets Ai must be non-empty. Thus, each Ai is a non-
empty closed interval in [0, 1]. We notice that n = mini{max{p ∈ Ai}} ≥
maxi{min{p ∈ Ai}} = m, because all Ai are adjacent and must share at
least one platform p. Therefore, all intervals contain the platforms in the
non-empty interval [m, n], so there is at least one platform that all voters
will vote for.

Figure 2.2: Linear Graph of a (2, 2, 6)-Society

2.2 Properties of Agreement Graphs

Theorem 2.2. The agreement graph of a (k, n)-society has no more than n− k + 1
disjoint components.

Proof: Consider a graph G with at least n − k + 2 disjoint components,
and let S be the set of vertices such that we choose one vertex from each
component and k − 2 other arbitrary vertices. Then there are no more than
k − 1 vertices of S in a single component of G. Since voters in distinct com-
ponents will not agree to vote for any particular platform, there is no set of
k voters who will all vote for the same platform, so no choice of n voters is
such that k of those voters will agree on a platform. Therefore, the agree-
ment graph of a (k, n)-society has no more than n − k + 1 disjoint compo-
nents.

An example may help make this reasoning even more clear. We see
that Figure 2.3 has 2 components. I claim that this is a (2, 3, 6)-society. We
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can assume the contrary and attempt to find three vertices such that no
pair is adjacent. First, choose an arbitrary vertex v, which must be in some
triangle. Since triangles are complete, any other vertex in that triangle is
adjacent to v, so we must choose a vertex w in the other triangle. However,
we have now chosen vertices from each triangle, so we cannot find a third
vertex such that it is not adjacent to either of the first two. Thus, this is a
(2, 3, 6)-society, and we see that it has n − k + 1 = 2 components.

We can then consider this (2, 3, 6)-society with an additional vertex in a
new component, as shown in Figure 2.4. Is this a (2, 3, 7)-society? We see
that it is not, because the three circled vertices form a set of three vertices
such that no two are adjacent. The addition of a third component is what
made the difference, since all sets of three independent vertices involve
the new component. Thus, we see that the agreement graph cannot have
n− k + 2 = 3 components. This reasoning generalizes to any choice of k, n,
and t such that k ≤ n ≤ t.

Figure 2.3: Agreement Graph of a (2, 3, 6)-Society with Two Components

Figure 2.4: Agreement Graph of a Similar Society with Three Components

Corollary 2.1. The agreement number of a (k, n, t)-society is at least dt/(n− k +
1)e. In particular, the agreement number of a (2, 3, t)-society is at least dt/2e.
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Proof: By Theorem 2.2, we know the agreement graph of a (k, n, t)-
society has no more than n − k + 1 disjoint components. Therefore, since
every voter must be in some component, by the pigeonhole principle, there
must be some component with at least dt/(n− k + 1)e voters. In particular,
the agreement proportion of a (2, 3, t)-society is at least 1

2 , so there must be
at least one platform that at least half of the population will vote for.

These results are extremely reminiscent of the piercing number of a set
of sets [7]. Although they were developed independently, the piercing
number and the agreement number are related. The piercing number of
a society of sets is the minimum number of points required such that every
set contains at least one point. We notice that the agreement number of a
society is equivalent to the maximum number of sets that can be taken care
of with a single point. Thus, if there are n sets in a society and the agree-
ment number of the society is k, we know that the piercing number is less
than or equal to n − k + 1.



Chapter 3

Set Intersections, Perfect
Graphs, and Voting in
Agreeable Societies

I spent the summer of 2005 at Harvey Mudd College, doing research with
Professor Su. We co-authored a paper with Robin Thomas, Serguei Norine,
and Paul Wollan that pertains to this thesis. The paper is currently being
prepared for submission for publication, and it is included here in its com-
plete form.

3.1 Introduction

When is agreement possible? An important aspect of group decision-making
is the question of how a group makes a choice when individual preferences
may differ. Clearly, people cannot all have their “ideal” preferences, i.e, the
options that they most desire, if those ideal preferences are different. How-
ever, for the sake of agreement, people may be willing to accept as a group
choice an option that is merely “close” to their ideal preferences.

A good example of such a situation is voting for candidates along a
political spectrum. We normally think of this spectrum as one-dimensional,
with conservative positions on the right and liberal positions on the left, as
in Figure 3.1. While we may represent our ideal preference at some point x
on this interval, we might be willing to vote for a candidate that positions
himself at some point close to x.

In this article, we ask the following: given such preference sets on a
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Figure 3.1: Labeling the Unit Interval for Bipartisan Politics

political spectrum, when can we guarantee the existence of some fraction
(say, a majority) of the population who would agree on some candidate?
By “agree”, we mean in the sense of approval voting, in which voters declare
which candidates they find acceptable.

Approval voting has not yet been adopted for political elections in the
United States. However, many scientific and mathematical societies, such
as the Mathematical Association of America and the American Mathemat-
ical Society, use approval voting for their elections. Additionally, countries
other than the United States have used approval voting or an equivalent
system. For details, see Brams and Fishburn [4], who give many reasons
why they believe approval voting is advantageous. In what follows, our
study of agreeability will help us understand when we can guarantee a ma-
jority under approval voting.

Suppose that approval voting were used in the 2003 California guberna-
torial recall election, with 135 candidates in the mix [5]. We might imagine
these candidates positioned at 135 points on the line. If each California
voter approved of candidates within some range of positions (call this the
voter’s approval set), we might wonder if and when there might be a point
on the interval covered by a majority of the voter approval sets, i.e., a plat-
form on which a majority of the voters agree.

An extremely strong condition that guarantees this (and quite a bit
more) is that every pair of voters agrees on some platform, i.e., each pair of
approval sets has a non-empty intersection. If this condition is met, call the
society of voters super-agreeable. This local condition guarantees a strong
global property, namely, that there is a platform of which every voter ap-
proves! As we shall see in Theorem 3.3, this is a consequence of Helly’s
theorem about intersections of convex sets.

In this article, we consider a variety of similar theorems. For instance,
we relax the condition above and call a society agreeable if among every 3
voters, there is some pair of voters who agree on some platform. Then we
prove the following:

Theorem 3.1 (The Agreeable Society Theorem). In an agreeable society, there
is a platform which has the approval of a majority of voters, i.e., a winning plat-
form.
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For example, Figure 3.2 shows approval sets for an agreeable society of
six voters, and indeed there are platforms of which a majority of voters ap-
prove. As another application of our theorem, consider a situation in which
each voter’s approval set spans 1/3 of the total interval. Then the theorem
above guarantees a winning platform. We also consider other degrees of
agreeability and prove more general results in Theorems 3.5 and 3.9.

As we shall see, these questions motivate the study of theorems about
set intersections and perfect graphs, since they have natural interpretations
in this voting context.

3.2 Definitions

In this section, we fix some terminology and explain some of the basic con-
cepts upon which our results rely. Let us suppose that the set of possible
preferences is modeled by a set X, called the spectrum. Each element of the
spectrum is a platform. Assume that there is a finite set of voters, and each
voter v has an approval set Av of platforms. The set X together with all the
approval sets of all voters will be called a society. Of particular interest to
us will be the case where X = [0, 1]. The political spectrum is often mod-
eled this way, but this is by no means limited to politics. Another situation
that is well-described by this model is preferences over a single issue where
opinions range from one extreme to another— with 0 as one extreme view
and 1 as the other. See Figure 3.1 for an example of how we might label the
interval in terms of voting preferences.

In Figure 3.2, for ease of display, we have separated the approval sets
vertically so that they can be distinguished.

Figure 3.2: Linear Graph of a (2, 3, 6)-Society

A society is (k, m)-agreeable, where 1 ≤ k ≤ m are integers, if it has at
least m voters, and for any subset of m voters, there is at least one platform
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that at least k of them can agree upon. For a society S, the agreement number
of a platform, a(p), is the number of voters in S who approve of platform
p. The agreement number a(S) of a society S is the maximum agreement
number over all platforms in the spectrum, so

a(S) = max
p∈X

a(p).

Note that a society is super-agreeable if a(S) = |S|. The agreement pro-
portion of S is simply the agreement number of S divided by the order of S,
or a(S)/|S|. This concept is useful when we are interested in percentages
of the population rather than the number of voters. The agreement set of S
consists of platforms that receive a(S) votes, and this is a subset of X, the
set of all possible platforms of which voters can approve. Figure 3.3 shows
a society with agreement number 4, and the shaded rectangles cover the
agreement set. The agreement number of a platform, a(p), is the number of
voters who approve of platform p.

Figure 3.3: Agreement Set of a Society with Agreement Number Four

3.3 Helly’s Theorem and Super-Agreeable Societies

Let us say that a society is Rd-convex if the spectrum is Rd and each ap-
proval set is a closed convex subset of Rd. Note that a linear society is an
R1-convex society. In case of Rd-convex societies, work concerning set in-
tersections can be applied to the agreement number problem. The most
well known theorem in this area is Helly’s theorem. This theorem was
proven by Helly in 1913, but the result was not published until 1921, by
Radon [14].
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Theorem 3.2 (Helly). Given t convex sets in Rd where d < t, if every d + 1 of
them intersect at a common point, then they all intersect at a common point.

Note that in dimension 1, Helly’s condition for approval sets is equiva-
lent to the condition for a super-agreeable society. The conclusion of Helly’s
theorem therefore has a nice interpretation:

Theorem 3.3 (The Super-Agreeable Society Theorem). A (2, 2)-agreeable so-
ciety must contain at least one platform that is acceptable to all voters.

A proof of Helly’s theorem for general d may be found in [11], but below
we give an alternate proof for the case d = 1, e.g., Theorem 3.3.

Proof. Since each voter agrees on at least one platform with every other
voter, we see that the sets Ai must be non-empty. Thus, each Ai is a non-
empty closed interval in [0, 1]. Let x = maxi{min{p ∈ Ai}} and y =
minj{max{p ∈ Aj}}.

Figure 3.4: Linear Graph of a (2, 2, 6)-Society

We claim that x ≤ y. Why? Let i be the voter whose approval set
minimum is maximal, and let j be the voter whose approval set maximum
is minimal. Note that i and j are adjacent, and the only way this could be
the case is if x ≤ y.

Therefore, all approval sets contain the platforms in the non-empty in-
terval [x, y], so there is at least one platform that all voters will vote for.

Besides Helly’s theorem, another famous theorem about set intersec-
tions is the KKM lemma [10], which is concerned with set intersections on
simplices. More recently, Niedermaier and Su [12] proved a set intersec-
tion theorem on trees that generalizes both Helly’s theorem and the KKM
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lemma to this context. Since a line is a tree, Theorem 3.3 for d = 1 can also
be proved from their results.

Here is an example demonstrating that the convexity assumption is es-
sential. Let n ≥ 2 be an integer and let the spectrum of a society S con-
sist of all 2-element subsets of {1, 2, . . . , n}. Let S have n voters numbered
1, 2, . . . , n, and let the approval set of voter i consist precisely of those 2-
element subsets of {1, 2, . . . , n} that include i. Then S is a (2, 2)-agreeable
society with agreement number 2, which is in sharp contrast with Theo-
rem 3.3.

3.4 Graph Representations

If we are to understand other kinds of agreeability beyond super-agreeability,
it will be helpful to examine methods of pictorially representing the agree-
ableness of a society. A graph G consists of a finite set V(G) of vertices and
a set E(G) of 2-element subsets of V(G), called edges. If e = {u, v} is an
edge, then we say that u, v are the ends of e, and that u and v are adjacent in
G. We use uv as another notation for the edge e.

Given a society S, we construct an agreement graph G of S by letting each
vertex represent a voter and drawing an edge between two voters if the
voters are adjacent, meaning that there is some candidate of which they
both approve. Note that a super-agreeable society will produce a complete
graph. Also, the distance between two voters (as defined earlier) is just the
graph distance in the agreement graph. Moreover, if d(a, b) = ∞, then there
is no path from a to b, so we say that a and b are in different components of
the agreement graph.

We now have some tools with which to study (k, m)-agreeability.

Theorem 3.4. The agreement graph of a (k, m, n)-society has no more than m −
k + 1 disjoint components.

Proof. Consider a graph G with at least m− k + 2 disjoint components, and
let S be the set of vertices such that we choose one vertex from each compo-
nent and k − 2 other arbitrary vertices. Then there are no more than k − 1
vertices of S in a single component of G. Since voters in distinct compo-
nents will not agree to vote for any particular platform, there is no set of
k voters who will all vote for the same platform, so no choice of m vot-
ers is such that k of those voters will agree on a platform. Therefore, the
agreement graph has no more than m − k + 1 disjoint components.
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Figure 3.5: Agreement Graph of a (2, 3, 6)-Society

An example may help make this reasoning even more clear. We see
that Figure 3.6 has 2 components. We claim that this is a (2, 3, 6)-society.
We can assume the contrary and attempt to find three vertices such that no
pair is adjacent. First, choose an arbitrary vertex v, which must be in some
triangle. Since triangles are complete, any other vertex in that triangle is
adjacent to v, so we must choose a vertex w in the other triangle. However,
we have now chosen vertices from each triangle, so we cannot find a third
vertex such that it is not adjacent to either of the first two. Thus, this is a
(2, 3, 6)-society, and we see that it has m − k + 1 = 2 components.

Figure 3.6: Agreement Graph of a (2, 3, 6)-Society with Two Components

We can then consider this (2, 3, 6)-society with an additional vertex in a
new component, as shown in Figure 3.7. Is this a (2, 3, 7)-society? We see
that it is not, because the three circled vertices form a set of three vertices
such that no two are adjacent. The addition of a third component is what
made the difference, since all sets of three independent vertices involve
the new component. Thus, we see that the agreement graph cannot have
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m − k + 2 = 3 components. This reasoning generalizes to any choice of
m, k, and n such that k ≤ m ≤ n.

Figure 3.7: Agreement Graph of a Similar Society with Three Components

Theorem 3.5. The agreement number of a (k, m, n)-society is at least dn/(m −
k + 1)e. In particular, the agreement number of a (2, 3, n)-society is at least
dn/2e.

Proof. By Theorem 3.4, we know the agreement graph of a (k, m, n)-society
has no more than m − k + 1 disjoint components. Therefore, since every
voter must be in some component, by the pigeonhole principle, there must
be some component with at least dn/(m − k + 1)e voters. In particular, the
agreement proportion of a (2, 3, n)-society is at least 1

2 , so there must be at
least one platform that at least half of the population will vote for.

These results are reminiscent of the piercing number Π of a collection of
sets [7]. Although they were developed independently, the piercing num-
ber and the agreement number are related. The piercing number of a collec-
tion of sets is the minimum number of points required such that every set
contains at least one of those points. Note that the agreement number of a
society is equivalent to the maximum number of sets that can be pierced by
a single point. Thus, if there are n sets in a society S, then Π ≤ n− a(S) + 1.
Additionally, since the piercing number is the smallest number of points
such that each set contains at least one point and the agreement number is
the largest number of sets that can be pierced by one point, the total number
of sets must be at least the agreement number times the piercing number.
In other words, Π ≥ n/a(S).
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3.5 Interval Graphs and Perfect Graphs

The chromatic number of a graph G, written as χ(G), is the minimum num-
ber of colors necessary to color vertices such that no adjacent vertices have
the same color. This can tell us information about relationships between
voters’ preference sets. In general, the chromatic number of an agreement
graph rises as the agreeability of the society rises.

The clique number of G, written ω(G), is the greatest integer n such that
Kn ⊂ G. In an agreement graph, the clique number is the agreement num-
ber of the society. Notice that in all cases, χ(G) ≥ ω(G).

A graph G is called an interval graph if every vertex x represents a real
interval Ix and xy ∈ E(G) if and only if Ix ∩ Iy 6= ∅. We notice that because
we restrict voters to approving of contiguous closed intervals (or the empty
set), agreement graphs are interval graphs.

Given a cycle on n vertices, an edge e is a chord if it is adjacent to two
vertices of the cycle but is not in the cycle itself. If a graph G is such that any
cycle of length greater than three has a chord, it is a chordal graph, sometimes
called a triangulated graph.

Theorem 3.6. Interval graphs are chordal.

Proof. We prove the contrapositive: if a graph is not chordal, it cannot be
an interval graph. Let G be a non-chordal graph, so there is some cycle C of
order n > 3 such that C contains no chords. Label the vertices of the cycle
v1, v2, . . . , vn such that v1 is adjacent to vn, which we write as v1 ∼ vn, and
vi ∼ vi+1 for i ∈ {1, 2, . . . , n − 1}. Assume by way of contradiction that
G is an interval graph, and let Ii = [ai, bi] be the interval corresponding to
vertex vi. Without loss of generality, assume a1 ≤ ai for all i ∈ {2, 3, . . . , n}.
Because [a1, b1] ∩ [a2, b2] 6= ∅, [a2, b2] ∩ [a3, b3] 6= ∅, and [a1, b1] ∩ [a3, b3] =
∅, we see that a1 ≤ a2 ≤ b1 < b2. By symmetry, ai ≤ ai+1 ≤ bi < bi+1 for
all i ∈ {1, 2, . . . , n − 2}.

We know an−1 ≤ an, so a1 < an. Thus, since In−1 ∩ In 6= ∅, an ≤ bn−1 ≤
bn. Also, since I1 ∩ In 6= ∅ but I1 ∩ In−1 = ∅, we know an ≤ bn−1 ≤
a1, which is a contradiction. Therefore, G is not an interval graph, so all
interval graphs must be chordal graphs.

Theorems 3.7 and 3.8 and their proofs are adapted from Diestel’s Graph
Theory [6]. We first introduce some terminology. Note that pasting graphs
G1 and G2 along a subgraph S ⊂ (G1 ∩ G2) means that we essentially over-
lap some of the identical parts of G1 and G2. In Figure 3.8, S is composed
of edges in blue and their associated vertices, and the two graphs on the
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left are pasted along S to produce the graph on the right. Additionally, an
induced cycle is simply a cycle with no chords. Note that for S ⊂ V(G), we
write G[S] to mean the graph induced by S, so G[S] contains all vertices in
S and all edges in G that have both endpoints in S. Finally, a minimal sepa-
rating set between vertices x and y consists of the fewest number of vertices
that we must remove such that x and y are in different components of the
resulting graph.

Figure 3.8: Two Graphs Pasted Along a Common Subgraph

Theorem 3.7. A graph G is chordal if and only if it can be constructed recursively
by pasting two chordal graphs along a complete graph.

Proof. Let G be a graph constructed of two chordal graphs, G1 and G2,
pasted along a complete subgraph S ⊂ (G1 ∩ G2) and let C be a cycle in
G. If C ∩ (G − G1) and C ∩ (G − G2) are both non-empty, then the cycle
must contain at least two disjoint edges of S. However, S is a complete
graph, so the vertices in those two disjoint edges are all adjacent. Thus, C
contains a chord. Therefore, any induced cycle of G must be a subset of
either G1 or G2. By definition, this means any induced cycle of G is an in-
duced cycle of G1 or G2, which are chordal graphs. Thus, all induced cycles
of G are triangles, so G is chordal.

We prove the other direction by induction. Let G be a chordal graph. If
|G| = 1, the construction is trivial. In fact, if G is complete, the construction
is trivial, since all induced cycles of a complete graph are triangles. Thus,
we assume G is not complete, |G| > 1, and all chordal graphs smaller than
G can be constructed in the manner specified. Because G is not complete,
we can find two vertices, x and y, that are not adjacent. Let M ⊂ V(G)
be a minimal separating set between x and y, and consider G − M. Let
X be the component of G − M containing x. Let G1 = G[M ∪ V(X)] and
G2 = G − X. Then G can be constructed by pasting G1 and G2 along G[M].
Since G1 and G2 are both induced subgraphs of G, they must be chordal,
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by the inductive hypothesis. Thus, we simply need to show that G[M] is
complete.

Suppose the contrary, that G[M] is not complete. Then we can find two
non-adjacent vertices in G[M], which we’ll label a and b. Because G[M] is
a minimal separating set, each must be adjacent to some vertex in X. Since
X is a single component, there must be some minimal path P between a
and b contained entirely in X, which is in G1. Similarly, there must be
some minimal path P′ between a and b contained entirely in the compo-
nent containing y, which is in G2. Thus, P ∪ P′ is a cycle of length at least
4. However, since this is constructed from minimal paths, this cycle has no
chords, which contradicts the fact that G is chordal. Thus, we cannot find
non-adjacent vertices in G[M], so G[M] is complete. Therefore, we can con-
struct an arbitrary chordal graph G by taking two chordal graphs, G1 and
G2, and pasting them along a complete graph, G[M].

If every induced subgraph H of a graph G is such that χ(H) = ω(H),
then G is a perfect graph. Perfect graphs have applications in many branches
of mathematics and computer science, since they have a more precise struc-
ture than graphs in general. This structure can be used in proofs, as in
Theorem 3.9.

Theorem 3.8. Chordal graphs are perfect.

Proof. Complete graphs are perfect, and by Theorem 3.7, we can construct
any chordal graph by pasting two chordal graphs along a complete graph.
Thus, we simply show that two perfect graphs pasted along a complete
graph yields a perfect graph.

Let G1 and G2 be perfect graphs and S be a complete graph contained
in both G1 and G2. We show that G, which results from pasting G1 and G2
along S, is perfect. Let H be some induced subgraph of G. If we can show
that χ(H) = ω(H), then G is perfect.

By definition, χ(H) ≥ ω(H), so we simply show χ(H) ≤ ω(H). Let
H1 = G1 ∩H and H2 = G2 ∩H, and let S′ = S∩H. Because H is an induced
subgraph, all chords are included, so since S is complete, S′ is complete.
Thus, H is made by pasting H1 and H2 along S′. Because the Hi are induced
subgraphs of the Gi, they are perfect, so they can be colored with ω(Hi)
colors. Since S′ is complete, we relabel colors if necessary and can color
H with max{ω(H1), ω(H2)} colors. However, we see that m ≤ ω(H), so
χ(H) ≤ ω(H), as desired. Thus, χ(H) = ω(H), so G is perfect.
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3.6 (k, m)-Agreeable Societies

We now use the concept of a perfect graph to allow us to prove that the
agreement number of a (k, m, n)-society is at least (k − 1)n/(m − 1).

Theorem 3.9 (The (k, m)-Agreeable Society Theorem). If G is the agreement
graph of a (k, m, n)-society, then

ω(G) ≥
(

k − 1
m − 1

)
n.

In other words, in a (k, m)-agreeable society, there is some platform whose agree-
ment proportion is at least (k − 1)/(m − 1).

Note that this extends the Agreeable Society Theorem (in which k =
2, m = 3 and the guaranteed agreement proportion is 1/2) and the Super-
Agreeable Society Theorem (in which k = m and the guaranteed agreee-
ment proportion is 1).

Proof. Because agreement graphs are perfect, χ(G) = ω(G), so we can
color G using ω colors. Additionally, since G contains a Kk, we know that
ω(G) ≥ k. Thus, we can consider the k − 1 largest color classes, which
we’ll call {C1, C2, . . . , Ck−1}. Let A =

⋃k−1
i=1 Ci. The average order of a color

class is n/ω, so the order of the union of the k − 1 largest color classes is
at least n(k − 1)/ω. Thus, |A| ≥ n(k − 1)/ω. Because A can be colored
with only k − 1 colors, no k members of A agree. Since this is a (k, m, n)-
society, we know that |A| < m. Thus, m − 1 ≥ n(k − 1)/ω. Therefore,
ω ≥ (k − 1)n/(m − 1).

If we compare this bound to dn/(m − k + 1)e, the bound found in The-
orem 3.5, we see that if k = 2 or k = m, then the bounds are the same.
Otherwise, 2 < k < m, so (k − 1)n/(m − 1) is generally a better lower
bound on the agreement number of a (k, m, n)-society.

3.7 Speculation and Open Questions

As we have seen, set intersection theorems can provide a useful frame-
work to model and understand the relationships between preference sets
in many social contexts.

Additionally, recent results in discrete geometry have social interpreta-
tions. The piercing number [7] of approval sets can be interpreted as the
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minimum number of platforms that are necessary such that everyone has
some platform of which he or she approves.

We suggest several directions which the reader may wish to explore.
Thus far, we have considered approval voting on a single issue with in-

finitely many platforms. It is interesting to consider how to extend these
conclusions to different situations. For example, what if we only had a
finite number of platforms, rather than a continuous spectrum? Alterna-
tively, we might wish to allow platforms to lie on a plane or a d-dimen-
sional cube rather than a line, to more accurately represent multiple issues.
Which of these theorems still apply, and which could be extended?

A quick examination shows us that Theorem 3.3 works in d dimensions
if we have a (d, d)-agreeable society (with convex approval sets) instead
of a (2, 2)-agreeable society. This is simply due to Helly’s theorem [14].
However, extending the other theorems to the d-dimensional context or
the discrete setting may be more difficult.

Additionally, we must examine our initial assumptions. While convex-
ity seems to be a rational assumption in the linear case, in multiple di-
mensions, there are additional considerations that may need to be made.
We have also assumed that voters place candidates along the spectrum in
exactly the same manner, but people will not necessarily agree that one
platform is more conservative than another.

The original concept of an agreement graph could be applied to d-di-
mensional preferences, but we would like to be able to indicate that, for
example, two people’s preferences are the same in d− 1 dimensions. To do
so, one may wish to consider an agreement graph with weighted edges.

Finally, we might wonder about the agreement parameters k and m for
various issues which affect us personally. For instance, a society consid-
ering outlawing murder would probably be much more agreeable than
that same society considering tax reform. Not only do the issues matter,
however, but also the societies. Groups of similar people seem likely to
be more agreeable than groups consisting of a more diverse population.
Currently, we can empirically measure these parameters only by surveying
large numbers of people about their preferences. It is interesting to specu-
late about methods for estimating k and m from limited data.





Chapter 4

Convex Sets with k of Every m
Meeting

During the summer of 2005, Professor Su and I wrote another paper per-
taining to this thesis, which looks at the same subject from a different angle.
The paper is included here in its complete form.

4.1 Introduction

In this article, we consider d-dimensional convex sets on a d-plane such
that k out of every m intersect. We ask when we can guarantee that some
fraction (say, a majority) of the sets will intersect and how many points {pi}
are needed such that every set contains at least one point pi. Much of this
work was inspired by the study of approval voting [3].

In a previous paper [3], we considered the d = 1 case. By Helly’s the-
orem [14], for instance, if d = 1 and k = m = 2, then all sets have a non-
empty intersection. By the (k, m)-Agreeable Society Theorem [3], if there
are n sets, then some

(
k−1
m−1

)
n sets will have a non-empty intersection.

In this paper, rather than considering the maximum number of sets that
have a non-empty intersection, which is the agreement number a(S), we fo-
cus on the minimum number of points needed such that every set contains
some point, called the piercing number Π(S). This concept was considered
in depth in a series of papers by Alon and Kleitman, beginning with a
paper from 1992 [2]. We develop relationships between these two num-
bers, the most notable being that a(S) + Π(S) ≤ n + 1 (Theorem 4.2) and
a(S)Π(S) ≥ n (Theorem 4.3).
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4.2 Definitions

In this section, we fix some terminology and explain some of the basic con-
cepts upon which our results rely.

We begin by considering intersections of closed convex sets in dimen-
sion 1. In Figure 4.1, for ease of display, we have separated the sets {Ai}
vertically so that they can be distinguished.

Figure 4.1: Linear Graph of a (2, 3, 6)-Society

We define a (k, m, n)-society as a collection of n sets such that for any
subset of m sets, there are at least k sets with a non-empty intersection.
Notice that k ≤ m ≤ n. Unless otherwise specified, we assume k ≥ 2. If the
order of the society does not matter, we simply call it a (k, m)-society.

Due to the nature of (k, m)-societies, the following three statements are
always true. These facts are easily verifiable and allow us to use the knowl-
edge we have to generate bounds on societies for which we do not yet have
information.

1. A (k, m)-society is a (k − 1, m)-society

2. A (k, m)-society is a (k, m + 1)-society

3. A (k, m)-society is a (k − 1, m − 1)-society

The agreement number of a point p in X, our set of platforms, is a(p),
which is the number of sets which contain p. The agreement number a(S) of
a society S is the maximum agreement number over all points in X, so

a(S) = max
p∈X

a(p).
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Finally, the agreement set of S consists of points that are contained in a(S)
sets. Figure 4.2 shows a society with agreement number 4, and the shaded
rectangles cover the agreement set.

Figure 4.2: Agreement Set of a Society with Agreement Number Four

The piercing number of a collection C of sets, Π(C), is the minimum num-
ber of points necessary such that every set contains at least one point. A
piercing set of C is a collection of points such that every set in C contains
at least one point in the collection. If we wish to emphasize that C is d-
dimensional, we write the piercing number as Πd(C). We sometimes need
to know the largest possible piercing number given certain conditions, such
as for a (k, m)-society. In this case, we write Π(k, m) or, to be more explicit,
Πd(k, m). In certain cases, Πd(k, m) depends on n, the total number of sets;
the remainder of the time, it depends solely on d, k, and m.

Figure 4.3 depicts a collection of three sets such that each two intersect,
but the intersection of all three sets is empty. This means that the piercing
number must be at least two, and indeed, two points that pierce all sets are
shown in the figure.

The distance between sets, d(a, b), is the minimum number c such that
there are sets v1, v2, . . . , vc for which the following intersections are all non-
empty: Aa ∩ Av1 , Av1 ∩ Av2 , . . . , Avc ∩ Ab.

In Figure 4.2, we see that the distance between sets 2 and 3, for example,
is 1, because their intersection is empty, but sets 2 and 3 both have points in
common with set 1. If no collection of sets will satisfy this condition, we say
d(a, b) = ∞. If d(a, b) = 0, then we say the sets are adjacent. In Figure 4.2,
for instance, we see that sets 1 and 2 are adjacent. Upon closer inspection,
we realize that set 1 is actually adjacent to every other set.
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Figure 4.3: Collection of Sets with Piercing Number Two

4.3 Helly’s Theorem

A society is simply a set of sets, so work concerning set intersections can
be applied to this problem. The most well known theorem in this area is
Helly’s theorem. This theorem was proven by Helly in 1913, but the result
was not published until 1921, by Radon [14]. A proof of Helly’s theorem
may be found in [11].

Theorem 4.1 (Helly). Given t convex sets in Rd where d < t, if every d + 1 of
them intersect at a common point, then they all intersect at a common point.

Besides Helly’s theorem, another famous theorem about set intersec-
tions is the Knaster-Kuratowski-Mazurkiewicz (KKM) lemma [10], which
is concerned with set intersections on simplices. More recently, Nieder-
maier and Su [12] proved a set intersection theorem on trees that general-
izes both Helly’s theorem and the KKM lemma to this context. Since a line
is a tree, their results are applicable to the d = 1 case.

An excellent source of information on Helly’s theorem and related theo-
rems is Wenger’s “Helly-Type Theorems and Geometric Transversals” [17].
This paper includes theorems, explanations, and open problems in the field.

4.4 Relationships Between Agreement and Piercing Num-
bers

In this section, we introduce some theorems that relate the agreement num-
bers and piercing numbers of societies.
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Theorem 4.2. The sum of a society’s agreement number and its piercing number
is no more than the order of the society plus one, so a(S) + Π(S) ≤ n + 1.

Proof. Note that the agreement number of a society is equivalent to the
maximum number of sets that can be pierced by a single point. Thus, if
there are n sets in a society S, we can choose a point p in the intersection of
a(S) sets and then one point for each of the n − a(S) sets not containing p.
Together, these are n − a(S) + 1 points such that each set contains at least
one of those points, so n − a(S) + 1 ≥ Π(S).

Theorem 4.3. The product of a society’s agreement number and its piercing num-
ber is at least the order of the society, so a(S)Π(S) ≥ n.

Proof. We know a(S) represents the largest number of sets that can be pierced
by a single point and Π(S) is the smallest number of points needed to en-
sure that each set contains at least one point. Therefore, there can be no
more sets than a(S)Π(S), which represents the largest number of sets in
this configuration that could ever be pierced by Π(S) points.

One nice property about the piercing number is that there are many
inequalities which follow directly from the definition. For instance,

Theorem 4.4. Πd(k, m) ≥ Πd−1(k, m).

Proof. Given a (k, m)-society in d − 1 dimensions, we consider the (k, m)-
society in d dimensions formed by taking the product of the sets of the
original society and [0, 1]. This new society has the same piercing number
as the original society. Since Πd(k, m) is the maximum possible piercing
number of a (k, m)-society in d dimensions, Πd(k, m) ≥ Πd−1(k, m).

4.5 Piercing Numbers and Agreement Graphs

To further illustrate methods of finding the piercing number of a (k, m, n)-
society, we consider the collection of sets shown in Figure 4.4. Figure 4.4
is a collection of 10 sets such that in any 3 sets, there is some point that is
contained in some 2 of them. In other words, it is a (2, 3, 10)-society, which
we call S.

Theorem 4.5. The society in Figure 4.4 has piercing number 5.
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Figure 4.4: A (2, 3, 10)-Society of Convex Sets

Proof. Note that no point in S is contained in more than three convex sets.
Thus, a(S) = 3. By Theorem 4.3, this means that Π2(S) ≥ d n

a(S)e = d 10
3 e =

4.
Suppose Π2(S) = 4. Since a(S) = 3 and there are 10 sets total, we see

that at least two of the points must pierce three sets each, and that these
sets must be unique. Therefore, these two points must be in the agreement
set and must not be adjacent. Without loss of generality, we can choose
the points shown in Figure 4.5. This leaves four sets which are not pierced
and two points left to place. However, this configuration cannot be pierced
with only two points, so Π2(S) > 4.

We see that the five points where the large triangles meet pierce all of
the sets, so Π2(S) = 5.

If we are to understand other kinds of agreeability, it is helpful to exam-
ine methods of pictorially representing the agreeableness of a society.

We construct an agreement graph G by letting each vertex represent a set
and drawing an edge between two sets if the sets are adjacent. Notice that
the distance between two sets (as defined earlier) is just the graph distance
in the agreement graph. Moreover, if d(a, b) = ∞, then there is no path from
a to b, so we say that a and b are in different components of the agreement
graph.

Agreement graphs do not yield perfect information, as we see later, but
we can determine whether the original graph is a (2, m)-society for any
given m by examining the agreement graph. This is because agreement
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Figure 4.5: A Collection of Ten Sets with Piercing Number Five

graphs show 2-intersections, but not 3-intersections.

Theorem 4.6. The society in Figure 4.4, whose agreement graph is shown in Fig-
ure 4.6, is a (2, 3)-society.

Proof. Suppose the contrary, that we can find three sets that do not share
any points. We first notice that we cannot choose both sets a and 1, because
they have a non-empty intersection. Additionally, sets 1 and 1′ are adja-
cent to the same sets (namely 2, 2′, 5, and 5′). Therefore, choosing set 1 is
equivalent to choosing set 1′, so we can effectively eliminate the vertex 1′

from our agreement graph. By symmetry, we can also eliminate vertices
2′, 3′, 4′, and 5′, so we are left with a 5-cycle. It is trivial to verify that a 5-
cycle meets the (2, 3) condition, and this implies that the society in Figure
4.4 is a (2, 3)-society.

Thus, we see that Π2(2, 3) ≥ 5. Notice that we can similarly construct a
society S of size 2r for r ∈ Z such that Π(S) = r. All societies constructed
in this manner are (2, dr/2e)-societies and have agreement number 3.

This gives lower bounds, but these bounds can be improved signifi-
cantly by considering the example shown in Figure 4.7. We can view each
line segment as a convex set, and we see that every line segment intersects
every other line segment. Additionally, the intersection of three or more of
these sets is always empty, so the agreement number of this society is 2.

Notice that by Theorem 4.3, if we have n such sets and the agreement
number is 2, the piercing number is d n

2 e. In other words, the maximum
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Figure 4.6: Agreement Graph of Figure 4.4

possible piercing number for a (2, 2)-society in the plane is unbounded.
Because (2, m)-societies are (2, 2)-societies for all m ≥ 2, this result extends
to (2, m)-societies, as well.

We can easily extend the example in Figure 4.7 to d > 2 dimensions by
taking the product of each set with [0, 1]d−2. Because we extend each set in
the same manner and directions, the agreement number remains the same.
Thus, we see that Πd(d, m) = d n

2 e for d ≥ 2, m ≥ d.

4.6 Families of Societies

Certain societies of sets yield inequalities for piercing numbers of (k, m)-
societies that can be generalized. For instance, in Figure 4.8, we have a
(3, 7)-society with piercing number 5. However, we can easily generate a
(3, 6)-society with piercing number 4 by using four inner triangles and four
outer triangles arranged in the same manner as those in Figure 4.8, and we
can similarly create a (3, 8)-society with piercing number 6 by using six in-
ner and six outer triangles. Let societies of this type as described be denoted
by Cm, where Cm is a (3, m)-society. In fact, in this family, n is uniquely
determined by m, namely, n = b 3m

4 c. Therefore, these are (3, m, 2b 3m
4 c)

-societies.
In general, Cm has n triple intersections, and these intersections are one

of two types. A Type I intersection is the intersection of two large triangles
and one small triangle, such as the intersection of triangles 2, 3, and 3′. A
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Figure 4.7: (2, 2)-Society with Agreement Number Two

Type II intersection is the intersection of two small triangles and one large
triangle, such as the intersection of triangles 2′, 3, and 3′. Due to symmetry,
we see that there are n

2 intersections of each type.

Theorem 4.7. Π2(Cm) = b 3m
4 c for integer m > 3. Thus, Π2(3, m) ≥ b 3m

4 c for
integer m > 3. In particular, Π2(C7) = 5.

Proof. A key insight in this proof is that for any set i pierced by a point,
there is some set j such that a single point pierces both sets i and j; similarly,
for any sets i and j pierced by a point, there is some set k such that a single
points pierces i, j, and k. Therefore, we may as well place each point in the
piercing set in some triple intersection.

For convenience, we label the large triangles of Cm by 1, 2, . . . , n
2 in a

clockwise manner, and we similarly label the small triangles 1′, 2′, . . . , n
2
′,

in such a way that triangle i′ has an edge contained in an edge of triangle
i′. In Figure 4.8, we have done this for the case n = 10.

Without loss of generality, we choose the intersection of sets 2, 3, and 3′

as a point in our piercing set. We can now ignore sets 2, 3, and 3′, since they
already contain a point in the piercing set. Now consider splitting Figure
4.8 into a chain of triangles, as shown in Figure 4.9. We shall bear in mind
that the solid dot and the dotted dot represent the same point.

We need some point in our piercing set to be contained in 2′, and the
only triple intersections involving 2′ are 1 ∩ 2 ∩ 2′, 1′ ∩ 2 ∩ 2′, and 2′ ∩ 3 ∩
3′. We no longer need to consider 3 and 3′, since they have already been
pierced, so we choose either 1∩ 2∩ 2′ or 1′ ∩ 2∩ 2′ to be in our piercing set.
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Figure 4.8: A (3, 7)-Society with Agreement Number Three and Piercing
Number Five

Figure 4.10 shows the agreement graph of C7, where the dark triangle
represents the point chosen to be in the piercing set and the light triangles
represent the points that could be chosen to be in the piercing set such that
set 2′ is pierced. We see that for each node j in the agreement graph, j
and j′ are interchangeable, in the sense that they are adjacent to the same
nodes. Thus, without loss of generality, we choose 1 ∩ 2 ∩ 2′ to be in our
piercing set. In the same manner, we continue counter-clockwise along the
chain until we have chosen 3 ∩ 4 ∩ 4′. This is a total of b 3m

4 c points, and
it is minimal because we chose an optimal point at each juncture. Thus,
Π2(Cm) = b 3m

4 c, and consequently, Π2(3, m) ≥ b 3m
4 c.

Notice that if we ignore the shading, Figure 4.10 is the same as the agree-
ment graph of Figure 4.4, though the original graphs are different. Thus,
we see that agreement graphs are not unique.

4.7 Summary

In this section, we summarize some results from the literature and some
that we have proved in this paper.

1. 3 ≤ Π2(3, 4) ≤ 13 [9]

2. Π2(3, m) ≥ b 3m
4 c (Theorem 4.7)
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Figure 4.9: A (3, 7)-Society with Three Pierced Sets

3. Πd(d + 1, d + 1) = 1 [14]

4. Π1(2, 3) ≤ b n
2 c+ 1 (Theorem 4.1)

5. Πd(k, m) ≥ Πd−1(k, m) (Theorem 4.4)

6. Πd(k, m) ≤ Πd(k, m + 1)

7. Πd(k, m) ≤ Πd(k − 1, m)

8. Πd(k, m) ≤ Πd(k − 1, m − 1)

Item (1) is the result of a paper by Kleitman, Gyárfás, and Tóth [9],
which focuses on finding Π2(3, 4). The lower bound is found by construct-
ing C4, and the upper bound is found by identifying “special configura-
tions” that can be pierced with at most 5 points. They then show that
any two-dimensional (3, 4)-society contains at most two of these config-
urations, and that the sets in the (3, 4)-society but not in the configurations
can be pierced with at most 3 points.

Notice that (6), (7), and (8) are direct consequences of the three state-
ments in section 4.2.
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Figure 4.10: Agreement Graph of Figure 4.8 with 3 Intersections Shaded

4.8 Cubes

Cubes have many symmetries, so we can study them in order to better
understand polytopes in general. We first examine some basic properties
of cubes. A d-dimensional cube, or d-cube, can be represented as [0, 1]d.
Additionally, d-cubes have 2d vertices and 2d−1d edges. The number of
edges results from choosing one of d dimensions that the edges can be in,
and then choosing one of 2d−1 vertices from which the edge can originate.
Notice that the vertex that the edge must end at is uniquely determined by
the dimension and the originating vertex, so there are exactly 2d−1d edges.

When we let the edges of a d-cube C be sets, the piercing number is 2d−1.
Because there are 2d−1d edges and each vertex is incident with d edges, we
see that the inequality in Theorem 4.3 is a strict equality, since a(S)Π(S) =
n. Figure 4.11 shows a 4-cube pierced with 8 colored points. Each edge is
pierced by exactly one point, so the edges are colored according to which
point pierces them.

One question we may wish to ask is whether cubes are the only con-
figurations of sets such that a(S)Π(S) = n. We see that we need a certain
amount of symmetry, since this equality requires that each point pierce the
same number of sets.

If we consider line segments as sets, we see that an even number of sets
in a path or in a cycle will yield a(S) = 2, Π(S) = n/2, so cubes are not the
only configurations so that a(S)Π(S) = n. Additionally, if a(S) or Π(S) =
1, it must be the case that a(S)Π(S) = n. We see that different types of
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Figure 4.11: Edges of a 4-Dimensional Cube Pierced with Eight Points

configurations have this equality, so we may wish to find a characterization
of all such collections of sets.

We now work through a simple example by using the d-cube. In Ta-
ble 4.1, we view the edges of a d-cube as sets in a collection. In general, there
are 2d−1d such edges, and the piercing number of the d-cube, as shown in
the third column, is 2d−1. The agreement number is simply the dimension
of the cube, since every vertex is incident with one edge in each of the d
directions.

Dimension (k, m) Π(S) a(S) n

0 — 0 0 0
1 — 1 1 1
2 (2, 3) 2 2 4
3 (2, 5) 4 3 12
4 (2, 9) 8 4 32
d (2, 2d−1 + 1) 2d−1 d 2d−1d

Table 4.1: Edges of d-cubes as Sets in a Collection

By examining some of the properties of cubes, we have laid the ground-
work for future explorations of d-dimensional voting spaces.
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4.9 Speculation and Open Questions

One problem with the agreement graph is that it currently only indicates
whether two sets have anything in common. We may wish to see if some
three sets have at least one point in common, and we cannot do this with the
current method. Therefore, one area of future exploration is in the direction
of making an agreement graph that is more helpful with regards to more
than two sets.

Additionally, we might wish to relax requirements and allow voters’
preferences to be any convex d-dimensional figure, rather than restricting
the sets to d-cubes.



Chapter 5

The Prison Warden’s Dilemma:
A Characterization of
3-Convexity

Thus far, we have dealt only with convex sets, as generalizing to any kind
of set yields no significant results. In July of 2005, Tyler Seacrest and I be-
gan discussing generalizations of convexity, to attempt to find non-convex
sets about which conclusions could be drawn. Star-shaped sets, which are
sets S such that for some point p ∈ S, px ⊂ S for all x ∈ S, seem not to
have enough convexity to produce good results, and so we considered sets
S such that for every three points in S, at least one of the line segments
between two of those points is included in S. Following is our paper dis-
cussing these sets, which are commonly known as 3-convex.





Abstract

In this paper, we study properties of m-convex sets in Rn, which are sets
such that for any m points, some line segment between two of them is en-
tirely contained in the set. We give a necessary and sufficient condition for
a set to be 3-convex, namely, that for every point p ∈ S, S is the union of a
star-shaped set centered at p and a convex set.

Suppose a prison has m prisoners, and the warden knows that if any 2
of them can collaborate, they will be to able work out a plan to escape. The
warden can overhear the prisoners, so they cannot communicate verbally,
but he worries that the prisoners might use hand signals to communicate
plans of escape. In what kind of rooms could the warden place prisoners
such that the prisoners cannot see each other?

To answer a question such as the above, we first consider the case where
m = 3.

Definition 5.1. A set S is m-convex if for any m points p1, p2, . . . , pm ∈ S, at
least one of the line segments created by pairs of these points is completely con-
tained inside S.

Thus, if a set is 3-convex, three prisoners cannot be placed such that
they cannot see each other. These 3-convex sets are also known as having
the three-point convexity property P3 [16]. For this paper, note that we work
within the space of closed sets S and in Rn.

We say that two points p1 and p2 see each other with respect to some
set S if the line segment p1 p2 lies entirely within S. A set of points {pα}
is visually independent [8] if no pair of points in the set can see each other.
Additionally, given a set S, we denote the star around a point p ∈ S by Sp;
this is the set of all points in S that can see p.

A set S is locally convex at a point if there exists some neighborhood N
around that point such that N ∩ S is convex. Otherwise, the set is locally
non-convex at that point.

In this paper, we prove the following theorem.
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Figure 5.1: Union of a Star around p and a Convex Set

Theorem 5.1. A closed set S is 3-convex if and only if for every point p ∈ S, S is
the union of Sp and a convex set.

For example, in Figure 5.1, we see that the star is the union of the shaded
star around the point p and the dotted convex set. It is fairly simple to prove
that for a five-pointed star S, any point p is such that S is made of a star-
shaped set centered at p and some convex set. Notice that this figure shows
that a closed, 3-convex set S need not be the union of two convex sets.

Note also that the statement of Theorem 5.1 would be false if the closed
condition were removed. Figure 5.2 is an example of a set that is 3-convex
but not closed, due to a point hole labeled a. Given the point p as shown in
the figure, we see that the figure cannot be written as the union of Sp (the
shaded region in the figure) and a convex set.

Valentine [16] showed that if a closed, connect set in R2 is 3-convex,
then the set is the union of at most 3 convex sets that have a non-empty
intersection, which he proved considering the set of points of local non-
convexity of S. He also claimed that this number could not be improved,
as we showed in Figure 5.1. Other authors have used points of local non-
convexity as a powerful tool for investigating 3-convex sets. Kay and Guay
characterized when 3-convex sets are the union of two convex sets [8]. They
also found that an m-convex set is the union of at most m − 1 star-shaped
sets, a result we improve upon in the case of m = 3. Perles and Shelah
determined that an m-convex set in R2 is the union of at most (m − 1)6

convex sets [13].
To prove Theorem 5.1, we first establish two lemmas.
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Figure 5.2: A Non-Closed Counter Example to Theorem 5.1

Lemma 5.1. Let S be a closed 3-convex set. If P is a convex polytope of dimension
at least two whose boundary lies within S, then the interior of P lies completely
within S.

We provide two proofs for this lemma, the first of which is self-contained
and the second of which relies on previous work by Valentine [16] and Ti-
etze [15].

Proof. For the sake of contradiction, suppose there is some point x in the
interior of P such that x 6∈ S.

Consider a 2-dimensional plane containing x, and set x as the origin.
Let r1, r2, r3, and r4 be the four rays extending from x along the coordinate
axis, as shown by the thick dotted lines in Figure 5.3. We note that some
point of ri is in S, since ri intersects the boundary of P, which is contained
in S. Furthermore, we know that there is some first point of ri that is in S,
since S is closed. We therefore define pi to be the first point along ri that is
contained in S.

By the definition of the pi, the interiors of the line segments p1 p3 and
p2 p4 are disjoint from S. In order to satisfy the 3-convex condition, we
see that either both p1 p2 and p3 p4 must lie entirely within S, or both p1 p4
and p2 p3 must lie entirely within S. Without loss of generality, suppose S
contains both p1 p2 and p3 p4, as in Figure 5.3.

By elementary geometry, we know there must be some ray r5 extend-
ing from x that does not intersect either of the lines containing p1 p2 and
p3 p4. One such ray is shown in Figure 5.3 as a thin dotted line. Let p5
be lim inf(r5 ∩ S), where points are again ordered with respect to distance
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Figure 5.3: Construction Used in the First Proof of Lemma 5.1

from x. Notice that the interiors of the dotted line segments xpi are disjoint
from S.

Let m1 be the midpoint of p1 p2 and m2 be the midpoint of p3 p4. We
claim that p5, m1, and m2 cannot satisfy the 3-convex condition. We see
p5m1 is not contained within S because it would intersect either xp1 or xp2,
(depending on where p5 is located), which were disjoint from S. A simi-
lar argument shows that p5m2 is not contained in S, so by the 3-convexity
property, m1m2 must be in S. However, we easily see that m1m2 intersects
both the interiors of p2 p4 and p1 p3 (the dotted lines in Figure 5.3), which
are not in S. This contradicts the 3-convexity of S.

Alternate proof. Let S be a closed, 3-convex set. From Valentine [16],
we know that such a set is star-shaped with respect to each of its points
of local non-convexity. If S has no points of local non-convexity, then by
Tietze [15], S is convex. Therefore, suppose there is some point p of local
non-convexity, so S is star-shaped with respect to p. Suppose there exists
some point x in the interior of P that is not contained in S.

As shown in Figure 5.4, consider the line containing p and x. We see
that since x is surrounded on all sides by the boundary of P, there must be
some point q on this line such that q is in the boundary of P and x ∈ pq.

Therefore, q ∈ S, but the line segment pq cannot be completely con-
tained in S, since it contains x. This contradicts the fact that S is star-shaped
with respect to p. Therefore, our supposition was incorrect, and no such x
exists. Thus, the interior of P lies inside S.

Lemma 5.2. Let S be a closed 3-convex set. If P is a convex polytope of dimension
at least two whose edges and vertices are completely contained in S, then all of P
is contained in S.
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Figure 5.4: Construction Used in the Alternate Proof of Lemma 5.1

Note that this differs from Lemma 5.1 because we require only the edges
and vertices to be in S, rather than requiring that the entire boundary be
contained in S.

Proof. We shall show, in fact, that the statement is true for the k-faces of
P. Note that if P is of dimension n, then P is an n-face of itself. We prove
the lemma by inducting on k. Suppose that every k-face of P lies inside S.
Notice this is true by supposition for k = 1, the base case. By definition, this
means that the boundary of every k + 1-face lies inside S, as this boundary
consists of k-faces of P. Using Lemma 5.1, we see that the interior of every
k + 1-face lies in S. Then an inductive argument shows that P is contained
in S.

Having established the previous lemmas, we now prove Theorem 5.1.

Proof. Suppose S is closed and 3-convex, and choose an arbitrary point p ∈
S. Let C be S − Sp, so C consists solely of points that cannot be seen by p.
Choose c1, c2 ∈ C, and notice that c1c2 ⊂ S, because c1 p and c2 p are not in
S. This is the case for all points in C. Let C′ be the union of all polytopes
with vertices in C. Clearly, C ⊂ C′ since every point in C is a polytope and
therefore contained within C′. We now show C′ is convex and completely
contained within S; this will show that S is the union of Sp and a convex
set C′.

Figure 5.5 depicts an example of the results of such a process. The set
S is a five-pointed star, and Sp is the shaded portion of the figure. The set
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Figure 5.5: Star-Shaped and Convex Sets in a Five-Pointed Star

C is disconnected, and its two components are striped in our figure. The
set C′ is shown surrounded by a dotted line. While the results of such a
procedure can vary, this example helps provide an idea of the workings of
our proof.

Let a and b be points in C′. By definition, a is in some polytope A with
vertices in C, and b is in some polytope B with vertices in C. Therefore,
both a and b are in the polytope defined by the union of the vertices of A
and B. Since a and b are in a polytope contained in C′, we know ab ⊂ C′.
Therefore C′ is convex.

Consider an arbitrary point x ∈ C′, which is by definition in some poly-
tope P with vertices in C. Notice that every edge of P is contained in S,
because line segments between two points of C must be in S. Therefore,
P is a polytope whose edge set is in a 3-convex set S. By Lemma 5.2, P is
completely contained in S, so x ∈ S. Therefore, C′ ⊂ S.

We now prove the contrapositive: suppose that for a closed set S and
any point p ∈ S, S is the union of a star-shaped set centered at p and a
convex set C. We shall show that S is 3-convex. Choose three arbitrary
points, p1, p2, and p3, and consider Sp1 . If pi is in Sp1 for i = 2 or 3, then
p1 pi ∈ S. Otherwise, both p2 and p3 are in the convex set C, so p2 p3 ∈ S.
Thus, for three arbitrary points, at least one of the lines connecting some
two of those points must lie entirely in S.

Notice that this proof is valid for all finite dimensions, though our ex-
amples consider sets in the plane.

We have thus far considered 3-convex sets, but we may wish to consider
m-convex sets. Consider the following example.
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Figure 5.6: A Regular Seven-Pointed Star

Theorem 5.2. The regular seven-pointed star S shown in Figure 5.6 is 4-convex.

Proof. Suppose by contradiction that there are 4 visually independent points
in S. Let Gi be the dark gray region associated with vertex i, and let Hi be
the entire shaded region associated with vertex i, as illustrated in Figure
5.7. Notice that the star of any point in Gi contains all of the shaded region
Hi. Additionally, note that the union of the Gi covers S, so any point must
be in at least one Gi. Without loss of generality, suppose we choose a point
p1 in G1. We can see that H1 ⊂ Sp1 , so since we choose our next point from
S − Sp1 , p2 cannot be in H1. In fact, we see from the picture that the next
point must be in at least one of G2, G3, G6, and G7, and without loss of gen-
erality, we can assume that the next point is in at least one of G2 and G3.
If p2 ∈ G3, then since S − (H1 ∪ H3) is a convex set, we know p3 and p4,
which must be in S − (H1 ∪ H3), can see each other, which is a contradic-
tion. However, if p2 ∈ G2, S− (H1 ∪ H2) is still a convex set, so by the same
principle, p3 and p4 are not visually independent. Thus, we cannot choose
four points that are visually independent in this figure, so it is 4-convex.

Is there an analog to Theorem 5.1 for 4-convex sets, or even for m-
convex sets in general?
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Figure 5.7: Regions in a Regular Seven-Pointed Star
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5.1 Discussion

While we were successful in proving an interesting theorem concerning
the nature of 3-convex sets, further study revealed no useful applications
of these sets to voting theory. This certainly does not mean that there are
no applications, but there do not appear to be applications that extend pre-
vious results in a natural manner.
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Conclusions

During this year of research, I have found that graph theory is an excellent
tool with which to explore the concepts of voting theory. I have formed a
structure in which voting can be studied, using one-dimensional represen-
tations of voters’ views, and I have invented and adapted terminology to
facilitate my work. I have applied prior theorems, such as Helly’s theorem
[1], to this area, and I have also developed some theorems of my own.

By working with Professor Robin Thomas, Professor Su, and Tyler Sea-
crest, I have deepened my understanding of certain areas of graph theory
and convexity. I have considered various generalizations of the convex-
ity argument and concluded that non-convex sets are not good ways of
modeling people’s preference sets, either in terms of realism or in terms of
drawing conclusions.

While working, I have been amazed at the connections between differ-
ent areas of mathematics. I have found material from my Social Choice
and Decision Making class and my Graph Theory class very helpful, and
to my surprise, I found that knowledge gained from my Topology class
was also useful for voting theory. Additionally, the importance of viewing
problems from different perspectives has been impressed upon me several
times, both by academic papers and by other people with whom I share my
ideas.

Another important lesson I have learned during my thesis is that ques-
tions can be either deceptively simple or deceptively complex. For exam-
ple, I was surprised that Kleitman et al. [9] wrote an entire paper on what
I call (4, 3, t)-societies, as this is an extremely specialized case. However,
after further study, I realized that even that single case was quite hard.
In fact, their investigations have not yet unearthed proof of a tight bound
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of the maximum possible piercing number of a (4, 3, t)-society. They cur-
rently have an example of a (4, 3, 6)-society with a piercing number of three,
which is shown in Figure 6.1, and a proof that the piercing number cannot
be greater than 13.

Figure 6.1: A (3, 4, 6)-Society with Piercing Number Three

Notice that the example that has been found is not trivial, and it is ex-
pected that if an example of a (4, 3, t)-society with a piercing number of
four can be found, it will be even more complicated. This society consists
of the three large shaded triangles and the three shaded triangles inside the
center large triangle. We see that at each vertex of the center large triangle,
three sets meet, but since the remaining three do not all intersect, the pierc-
ing number cannot be two. However, we see that the three vertices of the
center triangle form a set of three points such that each triangle contains at
least one point, so the piercing number must be three. Note that this prob-
lem deals with convex sets in general, so they do not have to be triangles
or even polygons; this is merely an example.

I have also learned a lot about submitting papers to research journals.
My paper with Tyler Seacrest has already been reviewed, and some of the
reviewers’ comments have proven to be quite helpful. On the other hand,
some of the comments have been cryptic or have shown that the reviewer
did not fully understand parts of the paper, so we have attempted to clarify
those parts.

Perhaps the most important thing that I learned while writing this thesis
is that ideas in one field can lead to advances in other fields, even if those
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fields may not seem to be related. I have also learned the importance of
getting a fresh perspective on ideas by explaining them to others.
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