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Abstract

A discrete Fourier transform, or DFT, is an isomorphism from a group alge-
bra to a direct sum of matrix algebras. An algorithm that efficiently applies
a DFT is called a fast Fourier transform, or FFT. The concept of a DFT will
be introduced and examined from both a general and algebraic perspective.
We will then present and analyze a specific FFT for the symmetric group.
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Chapter 1

Introduction

1.1 History of the Fast Fourier Transform

As with many other areas of modern mathematics, the fast Fourier trans-
form owes its seed to the work of Gauss. At the beginning of the 19th
century, Gauss was studying celestial orbits, specifically that of the aster-
oid Ceres. Ceres had suddenly vanished from astronomers’ telescopes, and
Gauss wanted to determine its path from previously known points. In or-
der to do this he needed to interpolate the periodic orbit on n points. Due
to the lack of advanced computational tools, this calculation would have
to be done by hand and would require approximately n2 arithmetic opera-
tions. Gauss was able to reduce his task by determining how to build the
n-point interpolation from two n

2 point interpolations using a divide-and-
conquer approach. Unfortunately, Gauss’s work on this problem was never
published. It was only in the middle of the 20th century, when Cooley and
Tukey rediscovered and extended this type of algorithm, that Gauss’ origi-
nal work was revealed [8].

Cooley and Tukey’s rediscovery was itself an interesting bit of history.
In 1963, the Cold War was raging. In an attempt to curb rising tensions, a
ban on nuclear testing for both sides was proposed. However, before the
United States was willing to commit to this treaty, it was necessary that they
have a method of detecting nuclear testing without having to physically
visit the Soviet facilities. One idea was to use an offshore seismic detector
to determine if nuclear tests were being performed. John Tukey, a member
of Kennedy’s Science Advisory Committee, began working on a method
of analyzing the seismological time series data obtained from these detec-
tors. He successfully came up with the mathematical methods necessary to
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do this. The actual implementation of these methods was charged to James
Cooley under the guise of a more general problem due to security concerns.
Cooley then proceeded to successfully code the algorithm. In 1965, Cooley
and Tukey presented a paper with their results and the Cooley-Tukey fast
Fourier transform, or FFT, was born. The algorithm was immediately and
successfully applied to a variety of other problems and disciplines, helped
by the parallel development of significantly more powerful analog to dig-
ital converters which had the power to produce digitized samples of time-
varying voltage at hundreds of thousands of samples a second. A central
reason that the FFT became such a widely used algorithm was that it was
not patented and thus placed in the public domain immediately, allowing
all researchers to access it and perhaps greatly hastening its maturation [9].

1.2 The Cooley-Tukey FFT for the Cyclic Group

We will examine DFTs for the cyclic group G = Z/nZ. The two main ap-
proaches to FFTs are decimation-in-time and decimation-in-frequency al-
gorithms. The decimation-in-time approach was that originally pioneered
by Cooley and Tukey in their 1965 paper. The terms come from the fact that
one type of algorithm works by decomposing the time domain (the space
where the data is found) while the other decomposes the frequency space
(the space that contains the image of the DFT). The difference will become
more apparent when we present an example of the two side by side.

We demonstrate how the Cooley-Tukey is performed on Z/nZ for the
case n = pq. This technique is easily generalizable to more factors. The pre-
sentation here is based on that given in [10] and [11]. The general idea will
be to rewrite the Fourier transform on Z/nZ using the Fourier transform
on the subgroup qZ/nZ ∼= Z/pZ through the use of a change of variables.
Let f ∈ CZ/nZ be a complex vector. Let D be the DFT. The kth component
of D( f ) = f̂ is given by the formula

f̂ (k) =
n−1

∑
j=0

f (j)e2πijk/n. (1)

The goal of the change of variables is to transform this one-dimensional
formula into a two-dimensional formula which thus can be computed in
two parts.

Define the variables j1, j2, k1, k2 as follows:

j = j1q + j2, 0 ≤ j1 < p, 0 ≤ j2 < q;
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k = k2 p + k1, 0 ≤ k2 < p, 0 ≤ k2 < q.

We can then rewrite (1) as

f̂ (k2 p + k1) =
q−1

∑
j2=0

e2πij2(k2 p+k1)/n
p−1

∑
j1=0

e2πij1k1/p f (j1q + j2).

To emphasize the fact that we are changing variables to a two-dimensional
system, we will denote f (j1q + j2) by f (j1, j2). We can compute f̂ in two
stages. In the first stage, we calculate for each k1 and j2 the inner sum

f̃ (k1, j2) =
p−1

∑
j1=0

e2πij1k1/p f (j1, j2).

This will require at most p2q operations. In the second stage, for each k1
and k2 we calculate the outer sum

f̂ (k1, k2) =
q−1

∑
j2=0

e2πij2(k2 p+k1)/n f̃ (k1, j2).

This will require an additional q2 p operations, for a total of (p + q)pq op-
erations. This is a clear savings over the (pq)2 operations that would be
required to compute the transform directly. The first stage is essentially a
DFT on the subgroup qZ/nZ ∼= Z/pZ relative to the multiples of q, while
the second stage is essentially of a DFT on Z/qZ. If n has additional fac-
tors, n = abcde, then we could simply set n = (abc)(de) and then apply the
same procedure on the smaller DFTs. In general, if n = p1...pm, then the
algorithm requires roughly n ∑i pi operations.

1.3 The Gentleman-Sande FFT for the Cyclic Group

We will briefly present the other major algorithm for abelian groups, the
Gentleman-Sande. The Gentleman-Sande FFT works by decimating the fre-
quency space rather than the time domain. On the cyclic group, it is equiv-
alent to the Cooley-Tukey in terms of efficiency. On a deeper level, how-
ever, it operates using some very different ideas. The Gentleman-Sande
FFT is not well understood in a general setting and lacks a solid algebraic
framework. We introduce it here to contrast the way it breaks up the sums
with the Cooley-Tukey; the presentation is based on that in the original
Gentleman-Sande paper [4].
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As with the Cooley-Tukey FFT, we consider the case where we are deal-
ing with Z/nZ. This time let n = ABC have three factors. Write t = a +
bA + cAB and t̂ = ĉ + b̂C + âBC, where 0 ≤ a, â ≤ A− 1, 0 ≤ b, b̂ ≤ B− 1,
and 0 ≤ c, ĉ ≤ C− 1. Then we have

f̂ (ĉ + b̂C + âBC)

=
A−1

∑
a=0

B−1

∑
b=0

C−1

∑
c=0

f (a + bA + cAB)e2πi((ĉ+b̂C+âBC)(a+bA+cAB)/ABC))

=
A−1

∑
a=0

e2πia(ĉ+b̂C+âBC)/ABC
B−1

∑
b=0

e2πi(b(ĉ+b̂C))/BC
C−1

∑
c=0

e2πicĉ/C f (a + bA + cAB).

This is the Cooley-Tukey version. The Gentleman-Sande method changes
this by factoring on the hatted variables instead, yielding

A−1

∑
a=0

e2πiaâ/A
B−1

∑
b=0

e2πi(b̂(a+bA))/AB
C−1

∑
c=0

e2πi(ĉ(a+bA+cAB))/ABC f (a + bA + cAB).

The algebra is tedious but it illustrates the practical difference between the
two algorithms. When we move to more general cases, the basic algebraic
trick of factoring different sets of variables may become a much deeper
idea.

1.4 Overview

The discrete Fourier transform has been extensively studied since Cooley
and Tukey first published their results in the 1960s. Discrete Fourier trans-
forms have a wide range of application, from digital signal processing to
quantum computing to analyzing data in voting theory. The goal in this
section was to present a brief overview of the history and classical usage of
the DFT. In Chapter 2, we will go into the algebraic theory behind the gener-
alized discrete Fourier transform. Finally in Chapter 3 we will present and
analyze an algorithm that efficiently implements a discrete Fourier trans-
form for the symmetric group Sn.



Chapter 2

Theoretical Background

2.1 The Algebraic DFT

We will now examine the DFT from a group theoretic perspective. The
reader is assumed to be familiar with the basic theory of modules and rep-
resentations - a good reference for these is [3]. Consider a continuous peri-
odic function

f : R → C

sampled at n evenly spaced points x0, x1, ..., xn−1 in a single period. The
specific time period that these points are sampled at is not particularly rel-
evant, as the Fourier coefficients will always be the same up to phase-shifts
and magnitude [1]. This means that the DFT is invariant under cyclic shifts
of the points {x0, ..., xn−1}. These cyclic shifts can be seen as the action of
the group Z/nZ. The same action occurs if we replaced each xi with the
element i ∈ Z/nZ. Thus we can treat the points x0, ..., xn−1 as the elements
of Z/nZ, allowing us to treat the function f as a function from Z/nZ to C.
In fact, we can view f as an element of an object known as a group algebra.
This is explored with greater depth in [1].

Definition 2.1.1. Let G be a finite group with elements {g1, g2, ..., gn}. The
group algebra CG is defined to be the set of all formal sums of the form

n

∑
i=1

αigi, where αi ∈ C.

We define addition in the group algebra by
n

∑
i=1

αigi +
n

∑
i=1

βigi =
n

∑
i=1

(αi + βi)gi.
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Multiplication by a scalar (in C) is given by

c
n

∑
i=1

αigi =
n

∑
i=1

(cαi)gi,

and multiplication in general is given by

∑
i=1

αigi

n

∑
i=1

βigi =
n

∑
k=1

( ∑
i,j,gi gj=gk

αiβ j)gk.

We can interpret CG as the set of all complex valued functions on G.
Each coefficient αi in the sum can be thought of as f (gi). By viewing f as
an element of a group algebra we can use techniques from representation
theory to interpret the DFT. This also gives us the capability to generalize
the classical DFT to any group G.

Theorem 2.1.1. (Mashke) Let G be a finite group. Every matrix representation

D : G → GLn(C)

is equivalent to a direct sum of irreducible representations.

Any such representation corresponds to a CG-module, and any CG-
module corresponds to some representation. Thus if we have an arbitrary
CG-module V, Maschke’s theorem tells us that we can write

V ∼= ⊕h
i=1(Ri)ni

where h is the number of conjugacy classes in G, R1, ..., Rh are the distinct
irreducible representations of G, and (Ri)ni indicates that there are ni iso-
morphic copies of Ri in V.

Definition 2.1.2. Let V be a CG-module, and suppose

V ∼= ⊕h
i=1(Ri)ni .

Then the spaces formed by each Rni
i are the isotypic components of V.

Note that we may consider CG as a CG-module by having it act on
itself from the left [3]. The isotypic components correspond to minimal
two-sided ideals of CG and the individual Ri’s are minimal left ideals. If
we consider our function f ∈ CG, this result tells us that we can write f as
the sum of elements in each of these components,

f = (r11 + ... + r1n1) + ... + (rh1 + ... + rhnh) rij ∈ Ri.

We can extend this idea, viewing CG as the direct sum of an algebra con-
sisting of block diagonal matrices as the following theorem demonstrates.
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Theorem 2.1.2. (Wedderburn) The group algebra CG of a finite group G is
isomorphic to an algebra of block diagonal matrices:

CG ∼=
h⊕

j=1

Cdj×dj .

The number h of blocks is equal to the number of conjugacy classes of G.

This theorem will allow us to formally define the generalized DFT.

Definition 2.1.3. Every isomorphism

D : CG → ⊕h
j=1Cdj×dj

is a discrete Fourier transform, or DFT for G. The space CG is often referred to
as the time domain and ⊕h

j=1Cdj×dj as the frequency space.

The Fourier coefficients of f ∈ CG are the coefficients in the matrix
D( f ). An in-depth look at the motivation and proof of Wedderburn’s the-
orem can be found in [1] and [3].

The basis for CG is fixed. We will use the usual basis that corresponds
to the group elements of G. However, since we can pick a variety of bases
for ⊕h

i=1Cdj×dj , a DFT is not unique. Thus for each choice of basis we have
a different DFT. We can view the DFT as a |G| × |G| matrix D. The columns
of D correspond to the elements of G.

We note that D can be decomposed into irreducible representations Dj

where Dj is defined as the component of D that maps CG to Cdj×dj , so

D = ⊕Dj.

Viewing D as a matrix, the rows of D can be parameterized using Dj:⋃
1≤j≤h

{(j, k, l)|1 ≤ k, l ≤ dj}

where (j, k, l) corresponds to the position (k, l) in Dj. We can explicitly
describe the entries in D as

D(j,k,l),g = Dj(g)kl

(see [1]). It is also useful to think about D as a linear transformation. When
D is applied to f ∈ CG, we get

D f = f̂
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where the components of f̂ are the Fourier coefficients that we want to cal-
culate. More explicitly, if we have f ∈ CG, then f is a function with domain
G and range C. We can calculate the Fourier coefficients corresponding to
the kth irreducible representation by

f̂ (Dj) = ∑
g∈G

f (g)Dj(g).

We can calculate each individual entry,

f̂ (Djik) = ∑
g∈G

f (x)Dik(x)

We can also calculate the inverse transform.

f (x) =
1
|G|

h

∑
j=1

dj Tr( f̂ (Dj)Dj(g−1))

(see [10]). This conception of the Fourier transform easily allows us to place
some bounds on the number of arithmetic operations required. Because
applying the DFT is simply a matrix-vector product, we know that we will
use no more then 2|G|2 arithmetic operations to apply the DFT. An algo-
rithm which efficiently computes the Fourier transform called a fast Fourier
transform or FFT. FFT research seeks to find algorithms which can reduce
the bound 2|G|2 on the number of required operations.

2.2 Re-interpretation of the Cooley-Tukey

We will re-examine the Cooley-Tukey FFT described in the previous chap-
ter from a group-theoretic perspective. Consider G = Z/nZ. Abelian
groups are significantly easier to analyze because all of their irreducible
representations are 1-dimensional. We want to use the DFT for Z/nZ when
we have a periodic continuous complex-valued function f sampled at n
points. In this example we will again consider n = pq. We can view f as an
element in CZn. The kth component of f̂ is given by the formula

f̂ (k) =
n−1

∑
j=0

f (j)e2πijk/n. (1)

The key here is in how we view the change in variables

ĵ = j1q + j2, 0 ≤ j1 < p, 0 ≤ j2 < q;
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k̂ = k2 p + k1, 0 ≤ k2 < p, 0 ≤ k2 < q.

We can view this as a factorization of the element j ∈ Z/nZ as the sum of
j1q ∈ qZ/nZ with the coset representative j2. We write G = Z/nZ and
H = qZ/nZ. The first change of variables then becomes

g = y + h, y ∈ Y, h ∈ H

where Y is the set of coset representatives of Z/nZ. The way that we can
see the second change of variables (the one involving k) is by considering
the restriction of representations. Since H ≤ G, a representation of G re-
stricted to H results in a representation of H. Going back to the n = pq
case, note that

e2πij1q(k2 p+k1)/n = e2πij1k1/p.

The equality follows because if we look at

2πij1q(k2 p + k1)/n = (2πij1qk2 pn + 2πij1qk1)/n,

the first term has a factor of q in it and is therefore 0 (mod q). The second
term becomes 2πij1qk1/n = 2πij1k1 p since q/n = p. Thus we have

f̂ (k2 p + k1) =
q−1

∑
j2=0

e2πij2(k2 p+k1)/n
p−1

∑
j1=0

e2πij1k1/p f (j1q + j2). (2)

The use of subgroup restriction will be a crucial point in constructing the
FFT algorithm we present in Chapter 3.

2.3 Seminormal Representations

We will now examine the concept of a seminormal basis and the corre-
sponding concept of a seminormal representation. In the end we want to
apply this to the symmetric group, though the basics of this theory hold for
all groups in general. The presentation here will closely follow that given
by Ram in [7].

Let 1 = G0 ≤ G1 ≤ ... ≤ Gn = G be a subgroup chain of finite groups.
Let V be an irreducible CG-module. If we consider the restriction of V to
the group Gn−1, then we can write

V = V1 ⊕ ...⊕Vk

where each Vi is an irreducible CGn−1-module. We can repeat this process
for each Vi, decomposing them into irreducible modules for CGn−2, CGn−3,
and so on.
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Definition 2.3.1. A seminormal basis of V with respect to the subgroup chain
G0 ≤ G1 ≤ ... ≤ Gn is a basis B = {b1, ..., br} such that there exists a partition
of B into subsets B1, ..., Bk with Vi = span (Bi) and

V = V1 ⊕ ...⊕Vk.

(See [7]). It is important to notice that we have an ’=’ sign rather then ’∼=’. It
is also required that there exists a partition of each Bi into subsets which equal
the decomposition with restriction to Gn−2, and so on down the subgroup chain.
We can say that B is an adapted basis to the particular subgroup chain since it is
dependent on the specific choice for that chain. Note that as we go from Gi to Gi−1
in the chain, the partitions become more and more refined.

Example 2.3.1. Let G = Z/6Z. Consider the subgroup chain

1 ≤ 3Z/6Z ≤ Z/6Z.

We explicitly describe a seminormal basis. Let ω be a primitive 6th root of unity
(for example, ω = 1+i

√
3

2 ). We define the jth basis element bj as

bj =



ω0

ω j

ω2j

ω3j

ω4j

ω5j

 .

Note that ω3 = −1 and ω6 = 1. The basis elements are

b0 =



1
1
1
1
1
1

 b1 =



1
ω
ω2

−1
ω4

ω5

 b2 =



1
ω2

ω4

1
ω2

ω4



b3 =



1
−1
1
−1
1
−1

 b4 =



1
ω4

ω2

1
ω4

ω2

 b5 =



1
ω5

ω4

−1
ω2

ω

 .
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Each of these basis elements span a 1-dimensional irreducible representation. The
entries are ordered such that the first entry corresponds to the element 0̄, the second
to 1̄, etc. Note that 3Z/6Z is generated by the element 3̄. Thus when we consider
the action of 3̄ on the entries, we note that it permutes the elements by shifting each
by three. Under this action, we have that

b0 → b0, b1 → −b1, b2 → b2,

b3 → −b3, b4 → b4, b5 → −b5.

It is clear that 3Z/6Z ∼= Z/2Z, where 3̄ gets mapped to 1̄. The basis for Z/2Z

consists of

b′0 =
[

1
1

]
b′1 =

[
1
−1

]
.

Note that the action of 3̄ on {b0, b2, b4} is equivalent to the action of 1̄ on b′0, and
the action of 3̄ on {b1, b3, b5} is equivalent to the action of 1̄ on b′1.

The representation corresponding to the seminormal basis is known as
the seminormal representation. The fact that choosing a seminormal basis
allows the restrictions to induce a partition on the basis will be vital when
we introduce an algorithm that efficiently applies the seminormal DFT in
the next chapter.

2.4 The Seminormal Representation of the Symmetric
Group

In [7], Ram presents an in-depth discussion of the seminormal representa-
tions for the Weyl groups as well as the explicit construction of their repre-
sentations. Because much of the general theory is not directly relevant to
our results, we will only cover the materiel relating to the symmetric group
in this section.

We know that the number of irreducible representations of a group is
equal to the number of conjugacy classes of that group. In the case of G =
Sn, the number of conjugacy classes is exactly the number of partitions of n.
By using the partitions of 1, 2, ..., n − 1, n for the subgroup chain 1 ≤ S1 ≤
... ≤ Sn we will be able to build a diagram known as a Young lattice that
serves to index these partitions and restrictions based on the partitions of
the positive integers. We first introduce some definitions and terminology.
The presentation here is based on that of Sagan in [13].

If λ = (λ1, ..., λk) is a partition of n, then we write λ a n.
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Definition 2.4.1. Suppose λ = (λ1, ..., λk) a n. The Ferrers diagram or shape
of λ is an array of cells into k left-justified rows with row i containing λi cells for
all i.

We can identify any particular cell by its coordinates (i, j).

Example 2.4.1. The Ferrers diagram corresponding to the partition (4, 3, 2) is

.

The Ferrers diagram corresponding to the partition (1, 1, 1, 1) is

.

Definition 2.4.2. Suppose λ a n. A Young tableau t of shape λ, is an array
obtained by bijectively placing the numbers 1, 2, ...n in the boxes of the Ferrers
diagram for λ.

Example 2.4.2. One possible Young tableau of shape (3, 3, 2, 1) is

5
7
3
4

1
9
8

2
6

Definition 2.4.3. Suppose λ ` n. A standard Young tableau t of shape λ is a
Young tableau of shape λ such that the entries in any row or column are strictly
increasing.

Example 2.4.3. Consider the shape (3, 2, 1). Then

1
4
6

2
5

3

is a standard Young tableaux. However,

3
1
2

5
4

6
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is not a standard Young tableaux since, for example, the entries in the second
column are not strictly increasing.

If we have a Young tableau of shape λ, we will denote it tλ. Note that
since there are n boxes to fill with numbers in tλ and upon filling a box we
have exactly one less number to choose from in filling the next, there are
precisely n! Young tableaux for any shape λ a n. The Young lattice is a
graded, directed diagram of the Young tableaux corresponding to each Sm
in the subgroup chain 1 = S1 ≤ S2 ≤ ... ≤ Sn. The Young lattice serves
to index the irreducible representations of Sn and describe the manner in
which they restrict under each subgroup in the chain. We will demonstrate
this with an example.

@
@

�
�

@
@

�
�

@
@

�
�

n = 3

n = 2

n = 1

Figure 1. The Young lattice for S3

Example 2.4.4. Figure 1 shows the Young lattice for S3. A Ferrers diagram in row
k corresponds to an irreducible representation of Sk. Each of those representations
is equal, under restriction, to a direct sum of all of the representations that are
connected to it from below. For example, the representation corresponding to

restricts to a direct sum of the representations corresponding to

and

.

We have a line between two shapes at different levels if the shape at the higher level
can be constructed by adding a single block. Recall that Ferrers diagrams must be
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left-justified, so we can only add blocks below and to the right of existing blocks.
For instance, on the level n = 4 the shape

would connect up to the following two shapes in the level n = 5:

.

It is important to note that the restrictions are all multiplicity free in this case.
If we have a representation Rλ corresponding to some shape λ then the stan-

dard Young tableaux of shape λ each correspond to a basis element of Rλ - this is
demonstrated in great detail in [13]. In fact, the entries in the standard Young
tableaux tell us how that basis element is going to restrict down. Consider the
standard Young tableau (for S4)

1
2
3

4

.

Then when we restrict to S3, we drop the box containing a 4 and get

1
2
3 .

However, if we started with
1
2
4

3

then when we restrict we would end up with

1
2

3
.

We will make use of this idea in the next chapter.

We can now use the Young lattice to help us compute the seminormal
representations and therefore the seminormal DFT for Sn. We will use the
technique described in [5] to perform this computation explicitly for S3.
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Definition 2.4.4. Let tλ
i be a standard Young tableau. Then the axial distance

between a and b, where a and b are numbers in the tableau, is defined to be the
signed number of moves required to go from a to b, where a move is defined as
going to an adjacent cell. A move up or to the right is positive, a move down or
to the left is negative. Denote the axial distance between two entries a and b as
di(a, b).

Example 2.4.5. Consider the standard Young tableaux

1
3
5

2
4

.

Then
d(1, 2) = 1

d(2, 5) = −3

d(1, 4) = −2

d(4, 1) = 2.

One more definition is necessary before we can begin some computa-
tions.

Definition 2.4.5. We define the last letter ordering of the standard Young tableaux
by showing how to compare any two tableaux. Let tλ

i and tλ
j be two standard Young

tableaux for n. If the entry n occurs in a higher row in tλ
i than in tλ

j , then tλ
i occurs

before tλ
j in the ordering. If n occurs in the same row in both tableaux, then repeat

the comparison for the entry n− 1 and so on.

Example 2.4.6. Consider the shape

.

This shape has five associated standard Young tableaux:

1
2
3

4
5

1
3
5

2
4

1
3
4

2
5

1
2
5

3
4

1
2
4

3
5

.
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Then the last letter ordering is:

1
2
3

4
5

,

1
2
4

3
5

,

1
3
4

2
5

,

1
2
5

3
4

,

1
3
5

2
4

.

We now want to construct the seminormal representation for Sn. We
will do this by calculating all the seminormal representations (with respect
to each shape λ) for the elements in a generating set GSn = {s1, ..., sr} for Sn.
If x is any element in Sn, we have x = st1 ...stl where sti ∈ S; note that each
element in this product is not necessarily distinct. If Dλ(s1), ..., Dλ(sr) are
the representations with respect to λ of the generating set, we can compute
Dλ(x) as

Dλ(x) = Dλ(st1 ...stl ) = Dλ(st1)...Dλ(stl )

since Dλ is a homomorphism.
A convenient generating set for Sn is the set GSn = {(1, 2), (2, 3), ..., (n−

1, n)}. We will now calculate the representations Dλ. Let tλ
1 , ..., tλ

m be the
standard Young tableaux arranged in last letter order. Then we compute
Dλ((j− 1, j)) as follows:

1. Dλ
ii((j− 1, j)) = 1 if tλ

i contains j− 1 and j in the same row.

2. Dλ
ii((j− 1, j)) = −1 if tλ

i contains j− 1 and j in the same column.

3. If i < k and tλ
i = (j− 1, j)tλ

k , then we have the following submatrix:[
Dλ

ii((j− 1, j)) Dλ
ik((j− 1, j))

Dλ
ki((j− 1, j)) Dλ

kk((j− 1, j))

]
=

[
−di(j− 1, j)−1 1− di(j− 1, j)−2

1 di(j− 1, j)−1

]
.

Note that in the seminormal DFT, each column corresponds to a group ele-
ment and each row to an entry of a representation. Thus once we have com-
puted all of the representations for all of the elements in Sn, we construct
the seminormal DFT simply by placing the entries from each representation
in the corresponding location in the DFT matrix. This will become clearer
when we go through an example.

Example 2.4.7. We will construct the seminormal DFT for S3. The generating
set for S3 is simply {(12), (23)}. We first examine the irreducible representation
for S3 corresponding to

.



The Seminormal Representation of the Symmetric Group 17

Note that there is only one standard Young tableau for this shape, specifically

1 2 3 .

Since all of the entries are in the same row, when we use the formula given above
on (12) and (23) we simply get one dimensional matrices with a 1 as their only
entry. Thus the representations for all of the elements in S3 corresponding to this
shape are simply the 1 × 1 matrix

[1].

The second irreducible representation corresponds to the shape

.

There are two standard Young tableaux for this shape, given in last letter order:

1
2

3 1
3

2
.

Using our formula, we get that

D(2,1)((12)) =
[
−1 0
0 1

]
and

D(2,1)((23)) =
[ 1

2
3
4

1 − 1
2

]
.

Then by using the identities

(12) ∗ (23) = (132),

(23) ∗ (12) = (123),

(12) ∗ (12) = 1,

(123) ∗ (12) = (13),

we can compute the remaining representations corresponding to this shape:

D(2,1)((123)) =
[
− 1

2 − 3
4

1 − 1
2

]
.

D(2,1)((132)) =
[
− 1

2
3
4

−1 − 1
2

]
.
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D(2,1)(1) =
[

1 0
0 1

]
.

D(2,1)(13) =
[ 1

2 − 3
4

−1 − 1
2

]
.

Finally, we consider the representation D(1,1,1) corresponding to

.

The only standard Young tableau we have is

1
2
3 .

Since all elements are in the same column, for both (12) and (23) we get 1 × 1
matrices with a −1. Then the corresponding matrices for the remaining elements
are:

D(1,1,1)((123)) = [1],

D(1,1,1)((132)) = [1],

D(1,1,1)(1) = [1],

D(1,1,1)(13) = [−1].

We are now ready to construct the seminormal DFT for S3. As stated earlier,
each column of DFTS3 will correspond to an element of S3. The group ordering of
the columns we will use is 1, (12), (13), (132), (23), (123). This is based on the
right cosets of S2 in S3 with coset representatives 1, (13), (23). The rows corre-
spond to the entries in each representation, the first row to the representation D(3),
the second row to the first entry in D(2,1), etc. Thus we have that

DFTS3 =



1 1 1 1 1 1
1 −1 1

2 − 1
2

1
2 − 1

2
0 0 − 3

4
3
4

3
4 − 3

4
0 0 −1 −1 1 1
1 1 − 1

2 − 1
2 − 1

2 − 1
2

1 −1 −1 1 −1 1

 .

We now have prepared the theoretical tools necessary to understand the
FFT algorithm that will be constructed and analyzed in the next chapter.



Chapter 3

The Algorithm

3.1 A General Framework

Let G be a finite group, and let H be a subgroup of G. We may write CG as
a direct sum of irreducible CG-modules:

CG ∼= R1 ⊕ R2 ⊕ ...⊕ Rk.

If we view CG as a CH-module, each of the irreducible modules decom-
pose into irreducible CH-modules:

CG ↓H= (R11 ⊕ ...⊕ R1a1)⊕ ...⊕ (Rk1 ⊕ ...⊕ Rkak)

where Rij occurs in the decomposition of Ri. Then with respect to some
subgroup Gr of H, we could repeat this process. Therefore if we have a
subgroup chain 0 = G1 ≤ ... ≤ Gr ≤ H ≤ G we can recursively apply this
process to create a decomposition with respect to each group in the chain:

CG ∼= R1 ⊕ R2 ⊕ ...⊕ Rk

CG ↓H∼= (R11 ⊕ ...⊕ R1a1)⊕ ...⊕ (Rk1 ⊕ ...⊕ Rkak)

CG ↓Gr
∼= (R111 ⊕ ...R11b1)⊕ ...⊕ (Rkak1 ⊕ ...⊕ Rkakbk)

...

We will make this clearer with an example.
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Example 3.1.1. Consider G = S4. Recall that we may use a Young lattice to
encode how the irreducible representations of Sn decompose with respect to a semi-
normal basis. There are five possible Young diagrams for S4:

and three possible Young diagrams for S3:

.

We will use these Young diagrams directly in order to demonstrate the decomposi-
tion of CS4 with restriction to S3 and S2.

CS4
∼= ⊕ ( )3 ⊕ ( )2 ⊕ ( )3 ⊕

CS4 ↓S3
∼= ⊕ ( ⊕ )3 ⊕ ( )2 ⊕ ( ⊕ )3 ⊕

CS4 ↓S2
∼= ⊕ (( ⊕ )⊕ )3 ⊕ ( ⊕ )2

⊕(( ⊕ ⊕ )3 ⊕ .

We can clearly see here with the help of the Young diagrams how each represen-
tation restricts to a sum of irreducible representations of the next group in the
subgroup chain. In the next section, we will take advantage of the structure that
these restrictions create to develop a matrix factorization of the DFT for Sn.

We will now use this structure to construct an algorithm that applies
the DFT of G by expressing it as a product of matrix factors.
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3.2 Matrix Factorization

Using the theoretical tools that we have examined in the previous sections,
we now turn our attention to the development of an FFT for G. Let G be
a group and let H ≤ G. Let DFTG denote a DFT for G. Consider the
matrix DH, where DH is a block diagonal matrix of dimension |G| where
each block is equal to DFTH. The goal here will be to assume that we have
applied the matrix DH already and to use that information to our advantage
in applying DFTG.

Recall that the columns of DFTG correspond to elements of G. If we
order the elements based on the right cosets of H, we can factor DFTG by
computing the product

FG = DFTGD−1
H

where

DH =


DFTH 0

DFTH
...

0 DFTH

 .

We emphasize the column ordering used in DFTG, since each copy of
DFTH corresponds to a Hgb coset, where gb is a coset representative for H
in G. Thus we can write

DFTG = FGDH.

This idea can be generalized to a subgroup chain. If G0 = 0 ≤ G1 ≤ ... ≤
Gn = G, the overall factorization would look like

DFTG = FG ∗

FGn−1 0
...

0 FGn−1

 FGn−2 0
...

0 FGn−2

 ...

1 0
...

0 1

 .

Note that the final identity matrix occurs because the final group in the
subgroup chain is the trivial group, whose only irreducible representation
is the one dimensional trivial representation.

Example 3.2.1. We will give the factorization when G = S3 with respect to the
natural subgroup chain S1 ≤ S2 ≤ S3. The group element ordering we will use
for the columns of DFTS3 will be

1, (12), (13), (132), (23), (123).
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Note that this is based on the right cosets of S2 in S3, using coset representatives
1, (13), and (23). In general we can construct the cosets of Sn−1 in Sn by using
the elements (1n), (2n), ..., (n− 1n) as representatives. The DFT for S3 is

DFTS3 =



1 1 1 1 1 1
1 −1 1

2 − 1
2

1
2 − 1

2
0 0 − 3

4
3
4

3
4 − 3

4
0 0 −1 −1 1 1
1 1 − 1

2 − 1
2 − 1

2 − 1
2

1 −1 −1 1 −1 1

 .

The DFT for S2 is

DFTS2 =
[

1 1
1 −1

]
.

We can solve for the intermediate FS3 in DFTS3 = FS3 DS2 by calculating FS3 =
DFTS3 D−1

S2
. Thus the factorization becomes

1 1 1 1 1 1
1 −1 1

2 − 1
2

1
2 − 1

2
0 0 − 3

4
3
4

3
4 − 3

4
0 0 −1 −1 1 1
1 1 − 1

2 − 1
2 − 1

2 − 1
2

1 −1 −1 1 −1 1



=



1 0 1 0 1 0
0 1 0 1

2 0 1
2

0 0 0 − 3
4 0 3

4
0 0 −1 0 1 0
1 0 − 1

2 0 − 1
2 0

0 1 0 −1 0 −1





1 1 0 0 0 0
1 −1 0 0 0 0
0 0 1 1 0 0
0 0 1 −1 0 0
0 0 0 0 1 1
0 0 0 0 1 −1

 .

We will now discuss the connection between these matrices and the
more general algebraic structure discussed in the previous section. Assume
we want to apply the DFT to some function f ∈ CG given in the usual basis
based on the elements of G. The DFT for G can then be viewed as a change
of basis to the basis that we have chosen for the frequency space. The re-
striction of the decompositions of CG with respect to some subgroup chain
allows us to choose a seminormal basis, using the manner of restriction to
build up the necessary partitions that go along with the seminormal basis.
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If we build the DFT using the irreducible representations that are adapted
to the a given chain of subgroups, the DFT for G can be viewed as a change
of basis to the seminormal basis.

Let B be a seminormal basis for CG, and let H ≤ G. Let R1, ..., Rk be
the irreducible representations for H. We know that when we consider the
restriction of CG as a CH-module, we end up with multiple isomorphic
copies of the Ri in the decomposition of CG. Due to the right coset struc-
ture, if we have

CH ∼= R1 ⊕ ...⊕ Rk

then we can decompose CG restricted to a CH-module as

CG ↓H∼= (R1 ⊕ ...⊕ Rk)[G:H].

For each copy of Ri there exists a partition of B into sets B1, ..., Bm such that
Ri = span(Bi) for all i. DFTH acts as a change of basis onto the part of B
that spans the Ri. Thus each block in the matrix DH acts locally as a change
in basis onto a copy of that subset of the seminormal basis B. We can view
DH as an intermediate change in basis. The matrix FG will then change
the basis from that intermediate basis to the seminormal basis B. Thus
when we look at the full factorization corresponding to some subgroup
chain, each of the FGj blocks functions as an intermediate change of basis,
so the factorization becomes a series of change in basis that result in the
final desired basis.

This can be seen in Example 1.1 when we factor the DFT for S3. Each
block in the matrix DS2 acts like the change of basis onto the seminormal
basis for S2 on a S2-dimensional subspace of CS3. However, with respect to
S3 this certainly is not the seminormal basis for S3, so the matrix FS3 is used
to complete the change of basis.

3.3 Developing an upper bound

We want to develop a bound on the number of operations required to apply
the matrix factorization to an arbitrary vector. Note that the efficiency of
this algorithm is dependent on the FGi s, so in order to determine a bound
we need to understand their structure and interaction with each other.

We will take a recursive approach to this task. Having done all the
necessary work to reach a certain point, how much more work do we need
to do to finish the computation? Consider the situation where we have
applied DH to a vector and now wish to determine the additional number
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of operations required to apply DFTG, taking advantage of the fact that DH
has already done much of the work for us. In other words, if

DFTG = FGDH

then we need to know how many arithmetic operations it will take to apply
FG.

We need to develop some notation to help talk about the manner in
which the irreducible representatives of G restrict with respect to H. Note
that rather then looking at CG acting on itself as we have been, we will
consider a general CG-module V. We will next consider a lengthy example
that will give us a extremely useful way in which to discuss the irreducible
representations, their restrictions, and how they act at each point in a sub-
group chain.

Example 3.3.1. Let us consider a specific (if somewhat contrived) example that
will help illustrate several key points, useful in the proof of our upcoming theorem.
Let V be a representation of G and let T1, T2, T3, T4 be irreducible representations
of G with dimensions

dT1 = 1, dT2 = 3, dT3 = 4, dT4 = 2

such that
V ∼= T1

1 ⊕ T3
2 ⊕ T2

3 ⊕ T4
4 .

Let H be a subgroup of G with irreducible representations R1, R2, and R3 with
dimensions

dR1 = 1, dR2 = 2, dR3 = 3.

Upon restriction to H, let

T1
∼= R1, T2 ∼= R1 ⊕ R2, T3 ∼= R2 ⊕ R3, T4

∼= R3.

We consider the two copies of T3. Let α ∈ CG. We can write the component of α
corresponding to the copies of T3 as a block diagonal matrix

[α]T3 =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


.
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We note that since the two blocks are isomorphic (as they both correspond to T3),
we can choose a basis {b1, b2, b3, b4, b5, b6, b7, b8} such that the two block are equal.
But then we can encode the action of α on some element in T3 by the action of the
basis elements. Since the basis elements are chosen such that the two blocks are
equal, we know that they will act the same on the top four entries of a vector as the
bottom four entries. That means we could view the action on the top four and the
bottom four entries simultaneously. We can encode this action by considering the
action of an appropriate matrix on the following object:

∗ ∗
∗ ∗
∗ ∗
∗ ∗

 .

Each ? can be thought of as corresponding to one of the basis elements bi. Extend-
ing this idea to all the representations of V, we can then write

V ∼=
[
?
]

T1
⊕

? ? ?
? ? ?
? ? ?


T2

⊕


? ?
? ?
? ?
? ?


T3

⊕
[
? ? ? ?
? ? ? ?

]
T4

.

We next want to construct an operator that projects onto all of the basis elements
of a given type. To consider a specific example, lets say that we want to project
onto all of the basis elements that correspond to the first row of T2. The operator
will consist of the direct sums of matrices which act on the matrix encoding that
we have just given for V. We can write this operator, ∆(1)

T2
as

∆(1)
T2

=
[
0
]

T1
⊕

1 0 0
0 0 0
0 0 0


T2

⊕


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


T3

⊕
[

0 0
0 0

]
T4

.

Note that this operator is equivalent to a primitive idempotent of V. Now consider
the irreducible representation R2 of H. Note that there are two elements in the
basis for R2; we will encode them with the symbols � and • respectively. Then we
can identify all the copies of R2 in terms of the basis elements � and • as

V ∼=
[
?
]

T1
⊕

? ? ?
� � �
• • •


T2

⊕


� � �
• • •
? ? ?
? ? ?


T3

⊕
[
��
••

]
T4

.
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If we wanted to project onto the basis elements of type �, we could construct an
element ∆(1)

R2
:

∆(1)
R2

=
[
0
]

T1
⊕

0 0 0
1 0 0
0 0 0


T2

⊕


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


T3

⊕
[

1 0
0 0

]
T4

.

This element is the sum of three primitive idempotents of V.

We can use this idea to calculate the number of arithmetic operations
required to project onto a seminormal basis for G assuming that we have
done all the work in a subgroup chain 1 ≤ ... ≤ H ≤ G up to H.

Example 3.3.2. Consider the space that ∆(1)
R2

(from Example 3.3.1) is projecting
onto. Assume that we have already computed this projection, and we want to
determine the number of arithmetic operations that will be required to separate the
� into those corresponding with T2, T3, and T4. Note that the dimension of this
space is 8, as it is generated by the number of � basis elements. Then in order to
seperate the �s corresponding to T2, T3, and T4 we will have to apply an 8 × 8
matrix which will require at most 82 = 64 operations. The same thought process
applies for the •-type basis elements, giving us at most 82 ∗ dR2 = 82 ∗ 2 = 128
total arithmetic operations. If we repeated this computation for all the Ti, then we
would have an upper bound on the number of operations required to project onto
the seminormal basis for V.

We need to make precise the notion of the � and • entries that occur in
Example 3.3.1 .

Definition 3.3.1. Let G be a finite group and let G0 ≤ G1 ≤ ... ≤ Gn = G be
a subgroup chain. Let V be a CG-module, and let B be a seminormal basis for V.
Let RGi

1 , ..., RGi
ni be the irreducible representations of Gi and let

RGi
j = span({b0, ..., bmij})

where {b0, ..., bmij ⊂ B. Note that if we consider V as a CGi module, then there
will be multiple isomorphic copies of RG1

j . Assume that we have constructed the
matrix encoding of V as described in Example 3.3.1, and identified each copy of bk
for all k. Note that we are in effect identifying particular rows of the encoding, as
the copies of bl will always occupy a full row by construction Then let the opera-
tor ∆(bk)

R
Gi
j

be defined as the direct sum of matrices that act on the objects given in



Developing an upper bound 27

the encoding that projects onto the space of the entries corresponding to bk. The
explicit construction of ∆(bk)

R
Gi
j

is done by placing 1s in the appropriate locations on

the diagonals and 0s everywhere else. ∆(bk)

R
Gi
j

will be a sum of primitive idempotents

of CG, and as i decreases the number of primitive idempotents in the sum will
increase.

Definition 3.3.2. Let V be a CG-module and let B be a seminormal basis for V.
Consider the subgroup chain G0 ≤ G1 ≤ ... ≤ Gn = G. Let b ∈ B. Then for each
Gi in the chain, by construction there exists an operator ∆(bk)

R
Gi
j

that projects onto a

space whose span includes b. Let the type of b be the n-tuple whose ith entry is
∆(bk)

R
Gi
j

.

We illustrate the definition of type with a specific example.

Example 3.3.3. Consider the subgroup chain

S2 ≤ S3 ≤ S4.

We have already examined the decomposition of CS4 with restriction to S3, so we
will not repeat the full details here. We will denote all representations and basis el-
ements directly by their associated Young diagrams and standard Young tableaux.
Since the Young lattice gives us an indexing scheme for the representations and
basis elements of Sn, when we consider the type of a basis element for Sn we may
bijectively replace the ∆-operators with the basis elements they project onto. Let B
be the seminormal basis associated with CS4, and let b ∈ B. We could look at all b
with type

(
1
2 ,

1
2

3
).

Note that with respect to CS4, there can be multiple basis elements with the same
type. Consider the basis elements corresponding to the standard Young tableaux

1
2

3
4

and
1
2
4

3

.
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When we restrict down, we drop the box with a 4 in it, so both of these basis
elements look like

1
2

3

with restriction to S3. Thus they both would have type (
1
2 ,

1
2

3
).

Using these examples we may now present and prove a theorem that
gives an upper bound to the number of arithmetic operations required by
our algorithm.

Theorem 3.3.1. Let G be a group and let H ≤ G. Let the irreducible representa-
tions of G be given by T1, ..., Th and the irreducible representations of H be given
by R1, ..., Rk. Let V be a CG-module. For each Rj, let the number of times Rj
appears in a decomposition of any Ti under restriction to a CH-module be denoted
Υj. Let dj denote the dimension of Rj. Let LV(G) be the number of arithmetic
operations required to compute the change of basis onto the seminormal basis of V
with respect to the subgroup chain H ≤ G. Then

LV(G) ≤
k

∑
j=1

(Υj)2dj + LV(H).

Proof. We may write
V = ⊕h

i=1Tni
i .

Let B be a seminormal basis for V. When we restrict V as CH-module, for
each Ti in the decomposition of V we may write

Ti = Rc1 ⊕ ...⊕ Rcm

where {Rc1 , ...Rcm} ⊂ {R1, ..., Rk}. Consider a specific irreducible represen-
tation for H, Rj with dimension dj. Then

Rj = span({b1, b2, ..., bdj})

for a set of basis elements Bj = {b1, b2, ..., bdj} ⊂ B by definition of a semi-
normal basis adapted to the subgroup chain H ≤ G. Consider bk ∈ Bj

and let its type be given by (∆(bk)
Rj

). By construction, the operator ∆(bk)
Rj

will
project onto all basis elements of that type. There will be one basis element
of type (∆(bk)

Rj
) for each copy of Ri in the decomposition of V restricted to H,

so there will be Υj total such basis elements. Then consider the space that
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∆(bk)
Rj

projects onto. Note that we are assuming we have already computed
this projection - the number of operations required to do so is contained in
the term LV(H). We must now take this space and project it such that we
can separate the basis elements of type ((∆(bk)

Rj
) into those that appear in

the decomposition of T1, T2, and so on in order to compute the change of
basis onto the seminormal basis of V. At worst, the number of arithmetic
operations is bounded by the dimension of the space (since we will have an
Υj × Υj matrix), so we have no more then Υ2

j arithmetic operations for this
step of the calculation. Repeating this step for all bk ∈ Bj yields the same
number of arithmetic operations for each, so relative to the representation
Rj we need Υ2

j dj arithmetic operations. We then sum over all Rj; adding the
term LV(H) yields an upper bound on the number of arithmetic operations
as

LV(G) ≤
k

∑
j=1

(Υj)2dj + LV(H).

Since the DFT is a change of basis onto the seminormal basis, we have
determined a bound on the number of operations required to go up a step
in the factoring chain in our algorithm. In the case where V = CG, acting
on itself as a CG-module, we get a much nicer statement.

Corollary 3.3.1. Let G be a group and let H ≤ G. Let the irreducible represen-
tations of H be given by T1, ..., Tk, and let their respective dimensions be given
by d1, ..., dk. Let LCG(G) be the number of operations required to compute DFTG
with respect to CG. Then

LCG(G) ≤
k

∑
i=1

([G : H]di)2di + LCG(H).

Proof. Note that since we have CG acting on itself, we can induce a right
coset structure with respect to H. Let R1, ..., Rk be the irreducible represen-
tations of H with respective dimensions d1, ..., dk. Thus when we consider
the decomposition of CG with restriction to H, we end up with

CG ∼= (Rd1
1 ⊕ Rd2

2 ...⊕ Rdk
k )[G:H].

Therefore if we consider any individual representation Ri, we know that its
multiplicity in CG is Υi = [G : H]di. Thus by Theorem 3.1, we have

LCG(G) ≤
k

∑
i=1

([G : H]di)2di + LCG(H).
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Thus we now have a theoretical bound on the number of operations our
algorithm requires at each step of the subgroup chain.

Example 3.3.4. Consider the DFT for S3. The key ’factor’ that determines how
fast we can apply the DFT will be the number of non-zero terms in the factoriza-
tion compared with the number of non-zero terms in the original DFT. Strictly in
terms of zero and non zero terms, we can write the factorization as

• • • • • •
• • • • • •

• • • •
• • • •

• • • • • •
• • • • • •

 =



• • •
• • •

• •
• •

• • •
• • •





• •
• •

• •
• •

• •
• •

 .

The number of non-zero entries in DFTS3 is 32. The number of non-zero entries in
the factorization is 28. This does not seem like much of an improvement; however
we will see in the next section that as n increases we save a great deal of time over
directly computing the DFT.

3.4 Analyzing the Running Time

We will now analyze the bound given by Corollary 3.3.1. We will mostly
look at the case where G = Sn but some of the results apply to a general
group. Our goal is come up with a reasonable assertion as to an upper
bound of the total number of operations required by the algorithm.

Lemma 3.4.1. Let G be a finite group and let d1, ..., dk denote the dimensions of
the distinct irreducible representations of G. Then

k

∑
i=1

d3
i ≤ |G|3/2.

Proof. Let D = max({d1, ..., dk}). We know that D ≤ |G|1/2. It follows that

k

∑
i=1

d3
i ≤

k

∑
i=1

d2
i D.
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But since ∑k
i=1 d2

i = |G|, we have

k

∑
i=1

d2
i D ≤ |G|1/2|G| = |G|3/2

and the lemma follows.

If we apply this lemma to the result from Theorem 3.3.1, we get that

L(G) ≤
k

∑
i=1

([G : H]di)2di + [G : H]L(H) = [G : H]2
k

∑
i=1

d3
i + [G : H]L(H)

=
|G|2
|H|2

k

∑
i=1

d3
i + [G : H]L(H) ≤ |G|2

|H|2 |H|
3/2 + [G : H]L(H)

= |G|[G : H]|H|1/2 + [G : H]L(H). (1)

This is a more convenient form to handle. We consider a couple examples.

Example 3.4.1. Let G = Sn and H = Sn−1. Then applying (1) we get that

L(Sn) ≤ |Sn|[Sn : Sn−1]|Sn−1|1/2 + [Sn : Sn−1]L(Sn−1)

= n2((n− 1)!3/2) + nL(Sn−1).

Example 3.4.2. Let G be an abelian group with H ≤ G. Note that for an abelian
group, all the irreducible representations are of dimension one. Thus we have

k

∑
i=1

d3
i =

k

∑
i=1

13 =
k

∑
i=1

12 =
k

∑
i=1

d2
i = |G|.

Then

L(G) ≤ [G : H]2
k

∑
i=1

d3
i + [G : H]L(H)

=
|G|2
|H|2 |H|+ [G : H]L(H) = |G|[G : H] + [G : H]L(H)

= [G : H](|G|+ L(H)).
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We now give a form of the result shown in Corollary 3.3.1 that will
be slightly easier to use when calculating L(G). First we introduce a little
notation. For any group G, if the dimensions of the irreducible representa-
tions of G are given by d1, ..., dk then let d3(G) = ∑k

i=1 d3
i . Given a subgroup

chain 0 = G0 ≤ ... ≤ Gn = G, let ρn = [Gn : Gn−1]. Then given groups
Gn−1 ≤ Gn with d1, ..., dk being the dimensions of the irreducible represen-
tations of Gn−1, we have that

L(Gn) ≤
k

∑
i=1

(ρndi)2di + ρnL(Gn−1) = ρ2
nd3(Gn−1) + ρnL(Gn−1)

= ρn(L(Gn−1) + ρnd3(Gn−1)).

Let B(Gn) be the upper bound given in the above expression, so

B(Gn) = ρn(L(Gn−1) + ρnd3(Gn−1)).

We use this expression to examine B(Sn) for some small values of n. By
analyzing those results we will be able to come up with an upper bound
for the running time of the algorithm for those values of n.

We first note that the FFT on Sn will require at minimum n! opera-
tions. For example, we know that the row in the DFT corresponding to
the identity representation consists of all 1′s; therefore the application of
the DFT will require at minimum one addition and one multiplication per
1. Since there are n! 1s, we have at least n! total operations. However, our
total operation count will not be just n!, but rather q(n)n! for some func-
tion q. Since the real distinction between the running times of different
algorithms comes from the function q, it becomes easier to compare the
operation counts if we normalize all our data by n!. We can then fit the
normalized data to a known function to create an upper bound on the op-
eration count. The values B(Sn)/n! for small n are shown in Table 3.1. This
is a significant improvement over directly computing the DFT for Sn, which
would require n!2 operations, normalized by n! to simply n!, also shown in
Table 3.1.

We plot the data from Table 3.1 in Figure 3.1. Due to the growth of n!,
graphing our data against n! is impractical so we will simply leave that
information in tabular format.

The plot suggests an exponential growth. This is compared to en in
Figure 3.2.

Note that the lines connecting the points for B(Sn)/n! in Figure 3.2 are
simply straight edges joining the points and are not meant to imply a func-
tion fitted to B(Sn)/n!. Clearly B(Sn)/n! grows noticeably slower then en



Analyzing the Running Time 33

n B(Sn)/n! n!

1 1 1
2 2 2
3 6 6
4 11.67 24
5 25 120
6 54.80 720
7 133.12 5040
8 340.16 40320
9 906 362880

10 2554 3628800

Table 3.1: Values of B(Sn)/n! for n ≤ 10.

Figure 3.1: Graph of B(Sn)/n! for n ≤ 10

for n ≤ 10. By having the program Kaleidagraph perform a curve fit on
our data, we see that the curve given by

f (x) = .36e.86n

fits our data very closely, as demonstrated in Figure 3.2. This suggests that
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Figure 3.2: Graph of B(Sn)/n! compared with en for n ≤ 10

the operation count for Sn, n ≤ 10 can be approximated by .36e.86nn!.
We compare our results to two known bounds. In [2], Clausen and

Baum present an algorithm where the upper bound on the operation count
is .5(n3 + n2)n!. We plot our results against that bound in Figure 3.4.

In his paper The Efficient Computation of Fourier Transforms on the Sym-
metric Group [6], David Maslen presents an algorithm with the following
bound:

L(Sn) ≤ 1.5(n− 1)n(n!).

We plot the upper bound for our algorithm against Maslen’s upper bound
for n ≤ 10 in Figure 3.5. Notice that for n ≤ 6, the algorithms have nearly
an identical bound. However, for 7 ≤ n ≤ 10 the exponential growth rate
of our algorithm catches up and the operation count is significantly worse
for our algorithm compared to Maslen’s.
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Figure 3.3: Graph of B(Sn)/n! compared with f (n) for n ≤ 10
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Figure 3.4: Graph of B(Sn)/n! compared with .5(n3 + n2)
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Figure 3.5: Graph of B(Sn)/n! compared with 1.5(n− 1)n





Chapter 4

Conclusions and Future Work

One of the advantages to the algorithm that we have described in Chap-
ter 3 is that, despite the deep theoretical mechanisms behind it, it seems to
be easily implementable. Much of the work is simply the precomputation
of the DFT matrices, for which we have a fairly straightforward method
of construction. After that all that is required is the computation of a se-
ries of matrix vector products. Another advantage of the algorithm is that,
despite the fact that several other published algorithms outperform it for
n ≥ 7, it maintains essentially the same efficiency for small values of n. For
applications that do not require the use of the larger symmetric groups the
algorithm is of practical value.

There are several directions that future research in this area could take.
One is to study the structures of the matrices produced by the factorization
and see if there is a way to further reduce the bound of operations we gave
in the Theorem 3.3.1. By simply counting the non-zero entries in the fac-
torizations for S4 and S3, it appears that the upper bound given in theorem
can be improved upon.

Another direction is to consider the use of two-sided cosets rather than
the single-sided cosets that were used in this discussion. The major con-
straint in terms of having to use additional arithmetic operations in our
algorithm is that we are unable to project onto less then every basis ele-
ment of a given type, so the spaces that we project onto are quite large.
However, by using two-sided cosets it should be possible to construct ele-
ments that not only project onto every basis element of a given type but that
distinguish between the various elements of the same type. This would sig-
nificantly reduce the operation count. Previous work done by several stu-
dents of Professor Michael Orrison of Harvey Mudd College suggests the
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possibility that this type of algorithm could have order O(n2n!) operations,
which is the same order of efficiency that Maslen’s algorithm, the current
fastest known for the symmetric group, achieves [6].



Appendix A

Calculation of Representations
and Factors for S4

A.1 Factorization of the DFT of S4

Given here is the factorization of DFTS4 in terms of the non-zero entries of
the matrices. DFTS4 has 464 non-zero entries. The combined number of
non-zero entries of the three factors in the factorization is 257.

DS4 =


• • • • • • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • • • • • •


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=



• • • •
• • • • • •

• • • • • •
• • •• •

• • • • • •
• • • • • •

• • • • •
• •

• • •
• • • •

• • • • • •
• • • • • •

• • • • • • •
• • • • • • • • • • • •

• • • • • • • • •
• • • • • •
• • • • •
• • • • •
• • • • •

• • • • •
• • • • • •

• • • • • •
• • • • • • • • • • • •




• • •
• • •

• •
• •

• • •
• • •

• • •
• • •

• •
• •

• • •
• • •

• • •
• • •

• •
• •

• • •
• • •

• • •
• • •

• •
• •

• • •
• • •




• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •

• •
• •



.



Seminormal Representations for S4 43

A.2 Seminormal Representations for S4

Tables 1 and 2 give the seminormal representations for all of the elements of
S4. The irreducible representations of S4 correspond to the Young diagrams
for n = 4 which are listed as follows:

R1 = , R2 = , R3 = ,

R4 = , R5 = .
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Table A.1: Seminormal representations for elements of S4
s ∈ S4 DR1 (s) DR2 (s) DR3 (s) DR4 (s) DR5 (s)

1
[
1
] 1 0 0

0 1 0
0 0 1

 [
1 0
0 1

] 1 0 0
0 1 0
0 0 1

 [
1

]
(12)

[
1
] −1 0 0

0 1 0
0 0 1

 [
−1 0
0 1

] −1 0 0
0 −1 0
0 0 1

 [
−1

]
(13)

[
1
] 1/2 −3/4 0

−1 −1/2 0
0 0 1

 [
1/2 −3/4
−1 −1/2

] −1 0 0
0 1/2 −3/4
0 −1 −1/2

 [
−1

]
(132)

[
1
] −1/2 −3/4 0

0 1 −1/2
0 0 1

 [
−1/2 −3/4

1 −1/2

] 1 0 0
0 −1/2 −3/4
0 1 −1/2

 [
1

]
1

[
1
] 1/2 3/4 0

1 −1/2 0
0 0 1

 [
1/2 3/4

1 −1/2

] −1 0 0
0 1/2 3/4
0 1 −1/2

 [
−1

]
(123)

[
1
] −1/2 3/4 0

−1 −1/2 0
0 0 1

 [
−1/2 3/4
−1 −1/2

] 1 0 0
0 −1/2 3/4
0 −1 −1/2

 [
1

]
(14)

[
1
]  1/2 −1/4 −2/3

−1/3 5/6 −4/9
−1 −1/2 −1/3

 [
−1/2 −3/4
−1 1/2

]  1/3 −4/9 2/3
−1/2 −5/6 −1/4

1 −1/3 −1/2

 [
−1

]
(124)

[
1
] −1/2 1/4 2/3

−1/3 5/6 −4/9
−1 −1/2 −1/3

 [
1/2 3/4
−1 1/2

] −1/3 4/9 −2/3
1/2 5/6 1/4

1 −1/3 −1/2

 [
1

]
(134)

[
1
]  1/2 −3/4 0

−1/3 −1/6 8/9
−1 −1/2 −1/3

 [
1/2 −3/4

1 1/2

] −1/3 4/9 −2/3
−1 −1/6 1/4
0 1 1/2

 [
1

]
(1324)

[
1
]  0 −1/2 2/3

2/3 −2/3 −4/90
−1 −1/2 −1/3

 [
−1 0
0 1

]  1/3 −4/9 2/3
−1/2 2/3 1/2
−1 −2/3 0

 [
−1

]
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Table A.2: Seminormal representations for elements of S4
s ∈ S4 DR1 (s) DR2 (s) DR3 (s) DR4 (s) DR5 (s)

(14)(23)
[
1
]  0 1/2 −2/3

2/3 −2/3 −4/9
−1 −1/2 −1/3

 [
1 0
0 1

] −1/3 4/9 −2/3
1/2 −2/3 −1/2
−1 −2/3 0

 [
1

]
(1234)

[
1
] −1/2 3/4 0

−1/3 −1/6 8/9
−1 −1/2 −1/3

 [
−1/2 3/4

1 1/2

] 1/3 −4/9 2/3
1 1/6 −1/4
0 1 1/2

 [
−1

]
(24)

[
1
] 1/2 1/4 2/3

1/3 5/6 −4/9
1 −1/2 −1/3

 [
−1/2 3/4

1 1/2

]  1/3 −4/9 −2/3
−1/2 −5/6 1/4
−1 1/3 −1/2

 [
−1

]
(142)

[
1
] −1/2 −1/4 −2/3

1/3 5/6 −4/9
1 −1/2 −1/3

 [
1/2 −3/4

1 1/2

] −1/3 4/9 2/3
1/2 5/6 −1/4
−1 1/3 −1/2

 [
1

]
(13)(24)

[
1
]  0 −1/2 2/3

−2/3 −2/3 −4/9
1 −1/2 −1/3

 [
−1 0
0 −1

] −1/3 4/9 2/3
1/2 −2/3 1/2

1 2/3 0

 [
1
]

(1342)
[
1
] −1/2 −3/4 0

1/3 −1/6 8/9
1 −1/2 −1/3

 [
−1/2 −3/4
−1 1/2

] 1/3 4/9 −2/3
1 1/6 1/4
0 −1 1/2

 [
−1

]
(243)

[
1
] 1/2 3/4 0

1/3 −1/6 8/9
1 −1/2 −1/3

 [
1/2 3/4
−1 1/2

] −1/3 4/9 2/3
−1 −1/6 −1/4
0 −1 1/2

 [
1

]
(1423)

[
1
]  0 1/2 −2/3

−2/3 −2/3 −4/9
1 −1/2 −1/3

 [
1 0
0 −1

]  1/3 −4/9 −2/3
−1/2 2/3 −1/2

1 2/3 0

 [
−1

]
(34)

[
1
] 1 0 0

0 1/3 8/9
0 1 −1/3

 [
1 0
0 −1

] 1/3 8/9 0
1 −1/3 0
0 0 −1

 [
−1

]
(12)(34)

[
1
] −1 0 0

0 1/3 8/9
0 1 −1/3

 [
−1 0
0 −1

] −1/3 −8/9 0
0 −1 1/3
0 0 −1

 [
1

]
(143)

[
1
] 1/2 −1/4 −2/3

−1 −1/6 −4/9
0 1 −1/3

 [
1/2 3/4
−1 1/2

] −1/3 8/9 0
1/2 −1/6 3/4
−1 1/3 1/2

 [
1
]

(1432)
[
1
] −1/2 −1/4 −2/3

1 −1/6 −4/9
0 1 −1/3

 [
−1/2 3/4

1 1/2

]  1/3 8/9 0
−1/2 1/6 3/4

1 −1/3 1/2

 [
−1

]
(243)

[
1
] 1/2 1/4 2/3

1 −1/6 −4/9
0 1 −1/3

 [
1/2 −3/4

1 1/2

] −1/3 −8/9 0
1/2 −1/6 −3/4

1 −1/3 1/2

 [
1

]
(1243)

[
1
] −1/2 1/4 2/3

−1 −1/6 −4/9
0 1 −1/3

 [
−1/2 −3/4
−1 1/2

]  1/3 8/9 0
−1/2 1/6 −3/4
−1 1/3 1/2

 [
−1

]
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