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Abstract

There are two main aims of this thesis. The first is to further develop and
demonstrate applications of the combinatorial interpretation of continued
fractions introduced in [Benjamin and Quinn, 2003]. The second is to inves-
tigate the theory of negative continued fractions, a relatively unresearched
topic. That is, discuss the ways in which they are similar to and different
from the regular class, describe how to convert between the two forms, and
show that the central theorems concerning regular continued fractions also
apply to the negative ones.
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Chapter 1

Introduction to Continued
Fractions

Continued fractions have been well-studied and have a rich history. They
first appeared in the 16th century, although Brezinski [1991] argues that
related concepts can be traced back to antiquity. Here we reproduce the
basic definitions and theorems.

1.1 Notation and Basic Theory

Definition 1. A finite continued fraction is an expression of the form

a0 +
b1

a1 +
b2

a2 +
b3

. . . + bn
an

. (1.1)

Usually ai and bi are integers, although they can be real numbers, com-
plex numbers, polynomials, etc.

Definition 2. A regular continued fraction is one in which

• bk = 1 for all k

• a0 is an integer

• a1, a2, . . . are positive integers.



2 Introduction to Continued Fractions

For regular continued fractions we use the notation

[a0, a1, . . . , an] = a0 +
1

a1 +
1

. . . + 1
an

. (1.2)

The coefficients ak are known as the partial quotients of the regular con-
tinued fraction.

Perhaps the most basic fact about continued fractions is that they serve
as rational approximations to real numbers, in the same way that decimal
expansions do. For decimal expansions, this is summed up by the follow-
ing propositions:

• If d1, d2, . . . are integers in the range 0 ≤ di ≤ 9, then the series

∞

∑
i=1

di

10i

converges to some x ∈ [0, 1].

• For all x ∈ [0, 1], there exist d1, d2, . . ., 0 ≤ di ≤ 9, such that

∞

∑
i=1

di

10i = x.

The representation is unique for irrational x, and for rational x there
are at most two such representations.

For regular continued fractions, it is well known [Rockett and Szüsz,
1992] that analogous theorems hold.

Theorem 3. Let a0, a1, . . . satisfy the criteria for a regular continued fraction.
Then the sequence

{cn} = [a0, a1, . . . , an]

always converges to some x ∈ R. This limit is known as the infinite continued
fraction [a0, a1, . . .] and is always an irrational number. The rational numbers cn
are known as the convergents or approximants.

Theorem 4. If x is an irrational number, then there exist unique a0, a1, . . ., satis-
fying the criteria for a regular continued fraction, such that

lim
n→∞

[a0, a1, . . . , an] = x.
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If x is rational, then x has exactly 2 finite representations:

x = [a0, . . . , an]

for some ai, with an ≥ 2 (or n = 0); and

x = [a0, . . . , an − 1, 1].

The main idea for proving existence in Theorem 4 is that, given a real
number x, the partial quotients for x may be calculated using the following
“truncate down and reciprocate” algorithm.

1. Let x0 = x, k = 0.

2. Let ak = bxkc.

3. If xk is an integer, then terminate.

4. Otherwise, compute the truncated and reciprocated number

xk+1 =
1

xk − ak

5. Set k = k + 1 and go back to step 2.

The invariant that makes this algorithm work is that each time we com-
pute xk in step 4 (or in step 1), we have x = [a0, a1, . . . , ak−1, xk]. To see this,
note that it is initially true in step 1 (since x = [x0] = [x]). Now, assume that
x = [a0, . . . , ak−1, xk] for some k. We now compute ak+1 and xk+1 in steps 2
and 4 (respectively), and solving for xk we have xk = ak + 1

xk+1
. Therefore,

x = [a0, . . . , ak−1, xk] = [a0, . . . , ak−1, ak +
1

xk+1
] = [a0, . . . , ak−1, ak, xk+1]

as desired.
If x is rational, then the algorithm will eventually terminate at step 3.

Otherwise it will never terminate, but we can use it to compute as many
partial quotients ak as we desire.

Example: Using the algorithm, we can calculate the first few partial
quotients for π = 3.14159 . . .:

a0 = 3 x1 = 1
.14159... = 7.0625 . . . π = 3 + 1

x1

a1 = 7 x2 = 1
.0625... = 15.9966 . . . π = 3 + 1

7+ 1
x2

a2 = 15 x3 = 1
.9966... = 1.0034 . . . π = 3 + 1

7+ 1
15+ 1

x3
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Continuing in this manner, we have π = [3, 7, 15, 1, . . .]. Therefore, the
first convergents for π are c0 = 3, c1 = [3, 7] = 22

7 , c2 = [3, 7, 15] = 333
106 , c3 =

[3, 7, 15, 1] = 355
113 . These rational numbers give very close approximations

to π.
Although the next two theorems are typically used for the purpose of

proving the previous two, they are of interest to us in their own right. This
first theorem shows how to compute [a0, . . . , an] “forwards,” rather than
backwards as order of operations would suggest.

Theorem 5. Define Ak, Bk recursively as follows:

A−1 = 1, B−1 = 0
A0 = a0, B0 = 1

Ak = ak Ak−1 + Ak−2
Bk = akBk−1 + Bk−2

(k ≥ 1).

Then
[a0, a1, . . . , ak] =

Ak

Bk

in lowest terms.

Theorem 6. If Ak and Bk are defined as above, then

AkBk−1 − Ak−1Bk = (−1)k−1.

Equivalently,
Ak

Bk
− Ak−1

Bk−1
=

(−1)k−1

BkBk−1
. (1.3)

Theorem 6 shows that, since Bk increases at least as fast as the Fibonacci
numbers, { Ak

Bk
} converges at least exponentially. It also shows that the con-

vergents alternately approximate the limit from above and below.
In the next chapter, we will prove more general versions of these two

theorems using a combinatorial approach.

1.2 Negative Continued fractions

In this paper we investigate an alternative definition, which is similar to
the regular continued fraction in many ways.

Definition 7. A negative continued fraction is one in which
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• bk = −1 for all k

• a0 is an integer

• a1, a2, . . . are integers ≥ 2.

For negative continued fractions we use the notation

[a0, a1, . . . , an]− = a0 −
1

a1 −
1

. . . − 1
an

. (1.4)

Negative continued fractions arise naturally if we change the “truncate
down and reciprocate” algorithm from the previous section to “truncate
up and reciprocate.” That is, if we change steps 2 and 4 to use the ceiling
instead of the floor as follows:

1. Let x0 = x, k = 0.

2. Let ak = dxke.

3. If xk is an integer, then terminate.

4. Otherwise, compute the truncated and reciprocated number

xk+1 =
1

ak − xk

5. Set k = k + 1 and go back to step 2.

This algorithm computes the partial quotients ak in such a way that
x = [a0, a1, . . .]−, which means that Theorem 4 has a direct analogue for
negative continued fractions. Also, Theorem 3 (convergence) is no less el-
ementary for negative continued fractions than for regular ones. We shall
see that the other two theorems from the previous section carry over to
negative continued fractions, as well.





Chapter 2

Combinatorial Interpretation
of Continued Fractions

2.1 Square-and-domino tilings

We now define the main combinatorial object in this paper, which is a
square-and-domino tiling. In this chapter, we shall see that the weighted
versions of these tilings are directly related to continued fractions. Once
we have developed some facts about tilings and proved their connection to
continued fractions, we will be in a position to analyze continued fractions
from a combinatorial standpoint.

This approach is based on chapter 4 of [Benjamin and Quinn, 2003],
but in this paper we significantly extend these ideas. In what follows, we
focus on the new results, giving a rapid treatment of the old results where
necessary.

Definition 8. Let n be a nonnegative integer. Consider a board of length n, or
“n-board” for short. At our disposal we have square tiles of length 1, and domino
tiles of length 2. A square-and-domino tiling is an arrangement of tiles that
covers the board completely with no overlapping tiles. Let Fn denote the set of all
square-and-domino tilings of the n-board.

Example: When n = 4 there are five square-and-domino tilings, as shown
in Figure 2.1.

Theorem 9. Let F0 = 0, F1 = 1, F2 = 1, F2 = 2, F3 = 3, . . . be the Fibonacci
sequence. Then for all n ≥ −1,

|Fn| = Fn+1.
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Figure 2.1: All five tilings of the 4-board.

a
0

a
1

b
1

b
n

.  .  .

.  .  .

a
n

Figure 2.2: Layout of weights for a weighted tiling.

This theorem explains the notation Fn. It is proved by showing that
|Fn| = |Fn−1|+ |Fn−2|, which follows by considering whether the last tile
is a square or a domino.

2.1.1 Weighted tilings

Next, we introduce the idea of a weighted tiling and some associated nota-
tion. Consider an (n + 1)-board with cells labeled 0 to n. For 1 ≤ k ≤ n, we
also define the kth boundary to be the boundary between cells k− 1 and k.
Since a domino always covers one of these boundaries, we use the phrase
“domino on boundary k” as our standard terminology rather than the more
cumbersome “domino covering cells k− 1 and k.”

To give weights to the board means that we assign real numbers a0, . . . , an
to the cells and real numbers b1, . . . , bn to the boundaries, as shown in Fig-
ure 2.2.

When a weighted board is tiled with squares and dominoes, each tile
is assigned a weight according to its location. That is, a square on cell k
gets weight ak and a domino on boundary k gets weight bk. Using these tile
weights, we make the following definition:

Definition 10. Let a0, b1, a1, b2, . . . , bn, an be the weights of an (n + 1)-board.
Given a tiling T ∈ Fn+1, define its weight w(T) to be the product of the weights
of its tiles. We also define the weighted sum of the tilings in Fn+1 and notate it
as follows:

|0 : n| = ∑
T∈Fn+1

w(T) (2.1)
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Figure 2.3: All the ways to tile the |0 : 3| board.

Whenever we use the notation |0 : n|, the weights a0, b1, . . . , bn, an must
be implied from context when they are not shown explicitly.
Example 1: A simple example is when ai = bi = 1 for all i. Then each tiling
has unit weight, and so |0 : n| = Fn+2 by Theorem 9.
Example 2: When n = 3, there are five possible tilings, whose weights are
shown in Figure 2.3. It follows that

|0 : 3| = a0a1a2a3 + a0a1b3 + a0b2a3 + b1a2a3 + b1b3.

For integers 0 ≤ i ≤ j ≤ n, we also write |i : j| to mean the weighted
sum of the tilings of the sub-board starting at cell i and ending at cell j.
We’ll also denote the sub-board itself as i : j. For example, |i : i| = ai and
|i : i + 1| = aiai+1 + bi+1. It is also consistent and convenient to define
|i : i − 1| = 1 and |i : i − 2| = 0, since we may think of the first quantity
as the empty product (a tiling with no tiles) and the second as the empty
sum (no allowed tilings at all). The identities we prove will still hold using
these conventions.

2.1.2 Weighted Tiling Identities

The two identities in this section will be our most important tools for work-
ing with weighted tilings. The first identity shows how |0 : n| can be com-
puted from |0 : −1| = 1, |0 : −2| = 0, and the following recurrence.

Identity 11. For n ≥ 0,

|0 : n| = an|0 : n− 1|+ bn|0 : n− 2|.

Proof. There are two types of tilings: those that end in a square and those
that end in a domino. Consider the sum of the weights of all tilings ending
in a square. These weights all have a common factor of an which distributes
out of the sum, leaving us with the weights of all the tilings of the 0 : n− 1
sub-board. This gives the an|0 : n − 1| term. The same argument shows
that the weighted sum of all tilings ending in a domino is bn|0 : n− 2|.
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last fault

no faults, n even no faults, n odd

tailswap
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1
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n

b
1
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n

a
0
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b
1

b
n

b
n

a
0

b
1

a
1 a

1

Figure 2.4: Possible and impossible tailswaps

When ai = bi = 1, this becomes Fn+2 = Fn+1 + Fn, the familiar recur-
rence relation for Fibonacci numbers.

There are other forms of this identity. If we consider the first tile rather
than the last, we obtain

|0 : n| = a0|1 : n|+ b1|2 : n|. (2.2)

Also, we can generalize the identity by applying it in the middle of the
board, or noting that it applies equally well to sub-boards. The most gen-
eral version is when we consider whether a domino lies on the kth bound-
ary of an i : j sub-board (for i ≤ k ≤ j):

|i : j| = |i : k− 1||k : j|+ bk|i : k− 2||k + 1 : j| (2.3)

In fact, it is true in general that any theorem about |0 : n| is also a theorem
about |i : j| because there is nothing special about starting the indices at 0.

Next is the “tailswapping” identity, named for the method of its proof.

Identity 12. For n ≥ 1,

|0 : n− 1||1 : n| = |0 : n||1 : n− 1|+ (−1)n
n

∏
i=1

bi.

Proof. It follows from Definition 10 that |0 : n − 1||1 : n| is the weighted
sum of all pairs of tilings in the staggered formation shown on the left side
of Figure 2.4. |0 : n||1 : n − 1| is the same thing for the slightly different
formation on the right side. As before, the weight of a tiling pair is the
product of the weights of all the individual tiles. Let A denote the set of all
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tiling pairs for sub-boards 0 : n− 1 and 1 : n, and let B denote the set of all
tiling pairs for 0 : n and 1 : n− 1.

To prove the theorem, we will show that A and B can almost be put into
a bijective, weight-preserving correspondence. The meaning of “almost” is
that there is precisely one tiling pair left out of the correspondence, as we
shall see.

Recall that for 1 ≤ k ≤ n, we defined the kth boundary to be the bound-
ary between cells k − 1 and k. A tiling pair is said to have a fault line on
the kth boundary if neither tiling in the pair has a domino covering that
boundary. Visually, this means that the tiling pair has a vertical line run-
ning through it, as shown in Figure 2.4.

If a given tiling pair has a fault line, then we define its tail to be the part
that lies past the last fault line. By swapping the top and bottom portions
of the tail, we obtain a map from A to B or B to A as shown in the diagram.
This map is its own inverse because it preserves the location of the last
fault line. It also preserves weight because all the tiles always stay in their
original column.

There is only one fault-free tiling pair: the one consisting of all domi-
noes. Its weight is ∏ bi, and it belongs to A if n is even and B if n is odd.
This accounts for the (−1)n ∏ bi term, completing the proof.

2.1.3 The weighted sum as a determinant

We can also view this weighted sum as the determinant of a certain ma-
trix. Several authors (for instance, Clarke et al. [1999]) use this determinant
instead of a continued fraction. The theorem below shows that the two
approaches are equivalent.

Theorem 13. Let a0, b1, a1, b2, . . . , bn, an be any real numbers. Then

|0 : n| =

∣∣∣∣∣∣∣∣∣∣∣∣

a0 −1 0 · · · 0

b1 a1 −1
...

0 b2 a2 0
...

. . . −1
0 · · · 0 bn an

∣∣∣∣∣∣∣∣∣∣∣∣
.

Since this theorem is not crucial to this paper, its proof may be skipped
on a first reading.



12 Combinatorial Interpretation of Continued Fractions

Proof. Denote this matrix by P, and for−1 ≤ k ≤ n let Pk denote the matrix
formed by removing all the rows and columns of P numbered greater than
k. For instance, P0 = [a0] and Pn = P. P−1 is the empty matrix, whose
determinant is 1 by convention. We wish to show that |0 : k| = Pk for all
−1 ≤ k ≤ n. In particular, |0 : n| = |Pn| = |P|.

To do this, we prove that |0 : k| and Pk satisfy the same initial conditions
and recurrence relation. The initial conditions are trivial: |P−1| = |0 : −1| =
1 and |P0| = |0 : 0| = a0.

For the recurrence relation we shall use DeMorgan’s rule for expanding
a determinant recursively. Examine the following block diagram for the
matrix Pk:

Pk =


Pk−2

−1
bk−1 ak−1 −1

bk ak


Consider taking the determinant of Pk by expanding across the last col-

umn. When we do this there are two nonzero terms. Clearly one of the
terms is ak|Pk−1|. To compute the other term we would start with the co-
efficient −1, add a minus sign as according to the determinant rule, and
multiply by the determinant of the matrix with column k and row k − 1
removed. This matrix has only the single entry bk in its bottom row, so
its determinant is bk|Pk−2|. Altogether we have |Pk| = ak|Pk−1|+ bk|Pk−2|,
which is the same recurrence as Identity 11.

2.2 Continued fractions

2.2.1 General Case

The following theorem gives the connection between continued fractions
and combinatorics. More specifically, it shows how to express a continued
fraction in terms of the weighted sums defined above. This theorem will
allow us to study continued fractions by looking at their corresponding
tilings.

Theorem 14. Let a0, b1, a1, b2, . . . , bn, an be any real numbers. Then

a0 +
b1

a1 +
b2

. . . + bn
an

=
|0 : n|
|1 : n| .
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Furthermore, if ai ∈ Z and bi = ±1, then |0:n|
|1:n| is in lowest terms.

Proof. We prove the stronger-looking theorem that for any 0 ≤ i ≤ j ≤ n,

ai +
bi+1

ai+1 +
bi+2

. . . + bj
aj

=
|i : j|
|i + 1 : j| . (2.4)

The proof is by induction on the length of the continued fraction, i.e.
j− i. In the base case (j = i), we have the trivial equation ai = ai

1 = |i:i|
|i+1:i| .

Now, assume that the formula holds for length less than j− i; then we may
write

ai +
bi+1

ai+1 +
bi+2

. . . + bj
aj

= ai +
bi+1

|i + 1 : j|/|i + 2 : j| =
ai|i + 1 : j|+ bi+1|i + 2 : j|

|i + 1 : j|

=
|i : j|
|i + 1 : j| , (2.5)

where the last equality follows by letting k = i + 1 in Equation (2.3) (the
general version of Identity 11).

For the second part of the theorem, when ai are integers and bi = ±1,
we need to prove that |0 : n| and |1 : n| are relatively prime integers. We
can prove this by induction on n. The base case n = 0 is clear; gcd(a0, 1) =
1. For the inductive step, we can use Equation (3.8) and the Euclidean
Algorithm:

gcd(|0 : n|, |1 : n|) = gcd(a0|1 : n| ± |2 : n|, |1 : n|) = gcd(|2 : n|, |1 : n|),

which equals one by our inductive hypothesis.

Example:
We will use Fibonacci numbers as an example once more. By the previ-

ous theorem, the sequence

1, 1 +
1
1

, 1 +
1

1 + 1
1

, 1 +
1

1 + 1
1+ 1

1

, . . .

may be written in lowest terms as F2/F1, F3/F2, F4/F3, . . .. This is one way
to see that the infinite continued fraction [1, 1, . . .] is equal to the golden
ratio φ.
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At this point, it is worth revisiting Theorems 5 and 6 from Chapter 1,
whose proofs were postponed. In the statements of those theorems, it is
readily seen (from checking the initial conditions and recurrence relation)
that Ak = |0 : k| and Bk = |1 : k|when bi = 1 for all i. Therefore, Theorem 5
is a special case of Theorem 14, and similarly, Theorem 6 is the same special
case of Identity 12.

If x is real number whose regular continued fraction has partial quo-
tients a0, a1, . . ., then by Theorem 14, |0:k|

|1:k| is the kth convergent to x. There-
fore, the equation

|0 : k|
|1 : k| −

|0 : k− 1|
|1 : k− 1| =

(−1)k−1

|1 : k||1 : k− 1|

(which comes from Identity 12) proves that the convergents alternately ap-
proximate x from above and below, as we mentioned in Chapter 1. For
negative continued fractions, we get

|0 : k|
|1 : k| −

|0 : k− 1|
|1 : k− 1| =

1
|1 : k||1 : k− 1| ,

which proves that the convergents of a negative continued fraction always
approximate x from above. We’ll have more to say about this in the next
chapter.

2.2.2 Integer values

So far, we have only assumed that a0, . . . , an, b1, . . . , bn are real numbers.
In fact, there is nothing to stop us from considering them to be complex
numbers or in fact elements of any commutative ring. However, for our
purposes they will usually be integers. When ak, bk are nonnegative inte-
gers, we can give an interpretation for |0 : n| which is even more combi-
natorial; it will be the size of a set rather than just a sum of weights. The
objects in the set are still square-and-domino tilings, but we do away with
the weights and instead allow squares and dominoes to be stacked.

Definition 15. Let a0, . . . , an and b1, . . . , bn be nonnegative integers. We define
a tiling of an (n + 1)-board with height conditions as follows. Every cell from
0 to n is covered by a “stack of squares” or a “stack of dominoes.” Specifically, cell
k can be covered by a stack of squares up to height ak. On boundary k, we allow
dominoes to be stacked up to height bk.
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3 42 5 1 6 1 2

1 3 3 2 430

a
k
:

b
k
:

Figure 2.5: Stacked tilings are valid as long as the stack heights do not
exceed the number ak or bk in that location. The stack of squares on cells 1
and 5 are at their maximum height, as is the stack of dominoes on boundary
3.

Of course, we don’t allow squares to be stacked on top of dominoes or
any other such combinations. Figure 2.5 shows an example of a tiling that
satisfies the given height restrictions.

Theorem 16. For positive integers a0, . . . , an and nonnegative integers b1, . . . , bn,
the number of tilings of an n + 1-board with these height conditions is equal to
|0 : n|.

Proof. For any tiling T ∈ Fn+1, the product of the tiles w(T) gives the num-
ber of different ways to form a height-restricted tiling whose square and
domino stacks occur in the same places as the squares and dominoes (re-
spectively) in T. Thus, by Equation (10), ∑T∈Fn+1

w(T) = |0 : n| gives the
total number of height-restricted tilings overall.

2.2.3 Negative Dominoes

In order to deal with negative continued fractions, we also want to know
how to generalize Theorem 16 to interpret |0 : n| as the size of a set even
when bi < 0.

Before we define the tilings that will make up this set, we first give an
intuitive interpretation. For a moment consider the trivial case bk = 0 for
all k. With no dominoes allowed, it is clear that |0 : n| = ∏n

k=0 ak. Now, for
any given 1 ≤ k ≤ n, letting bk be positive gives us bk more ways to tile the
pair of cells k− 1, k. If we want bk to be negative, then instead of allowing
dominoes, we should impose a restriction on these all-square tilings so that
there will be |bk| fewer ways to tile cells k − 1, k. For instance, we could
disallow the following combination: a maximum height stack in cell k− 1
followed by any stack of height ≤ |bk| in cell k. We establish this restriction
formally in the next definition.
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Definition 17. Let a0, . . . , an be positive integers, and let b1, . . . , bn be integers
satisfying ak > −bk for 1 ≤ k ≤ n. Then we define a mixed tiling of an (n + 1)-
board with height conditions a0, b1, a1, . . . , bn, an as follows. In cell k we allow
stacks of squares up to height ak. If bk ≥ 0 then on boundary k we also allow stacks
of dominoes up to height bk, as usual. If bk < 0 then dominoes are not allowed on
boundary k. Additionally, we impose the following directionality requirement.

1. If bk < 0 and cell k − 1 contains a stack of squares of maximum height
(that is, of height ak−1), then cell k− 1 is called right-facing. We denote a
right-facing cell by→.

2. If bk < 0 and cell k contains a stack of squares of height 1 up to −bk, then
this stack is called left-facing. We denote a left-facing cell by←.

3. The directionality requirement prohibits cells from facing each other; that is,
→← is forbidden.

Let us note a few properties of the directionality requirement. If bk <
0, then on cell k − 1 there is one way to have →, and on cell k there are
|bk| ways to have ←. (This uses the fact that ak ≥ −bk). Therefore, the
directionality requirement prohibits a total of |bk| combinations that give
→←.

Also note that if bk < 0 and bk+1 < 0, then cell k is eligible for both
left-facing and right-facing status. However, the requirement ak > −bk
prohibits it from satisfying both at once. Why? If cell k is right-facing, then
it contains a stack of ak squares. If it is also left-facing, then it contains
a stack of ≤ −bk squares. This implies that ak ≤ −bk, which contradicts
our requirement. So, a stack of squares can be left-facing, right-facing, or
neither, but not both.

We now prove that Theorem 16 generalizes fully to mixed tilings.

Theorem 18. Let a0, . . . , an, b1, . . . , bn are integers satisfying ak ≥ 1, ak > −bk
(1 ≤ k ≤ n). Then the number of mixed tilings of an n + 1-board with these
height conditions is |0 : n|.

Proof. We can show that the number of mixed tilings satisfies the same ini-
tial conditions and recurrence relation as |0 : n|. Let us denote this number
by M(0 : n). We establish the usual conventions of M(0 : −2) = 0 = |0 :
−2| and M(0 : −1) = 1 = |0 : −1|. Now we must prove that for all n ≥ 0,

M(0 : n) = an M(0 : n− 1) + bn M(0 : n− 2).
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Figure 2.6: As bk decreases, the tilings allowed near boundary k become
more restricted.

If bn ≥ 0, then this recurrence is seen by considering whether cell n
contains squares or dominoes, just as before.

The new situation is when bn < 0. In this case, the last cell always con-
tains a square stack up to height an. Therefore there are an M(0 : n− 1) ways
to tile the board, disregarding the directionality requirement on the last two
cells. Next, we must subtract off the tilings that fail the directionality re-
quirement; i.e. those tilings with →← in the last two cells. As discussed
earlier, there are |bk| = −bk ways to have →← in the last two cells, and
M(0, n− 2) ways to tile the rest of the board, for a total of −bn M(0, n− 2)
such tilings. Subtracting these tilings from the over-counted total, we ob-
tain M(0, n) = an M(0, n− 1) + bn M(0, n− 2) as desired.

2.2.4 A word on ak > −bk

This section is somewhat technical and may be omitted on a first reading.
In the above proof, recall that we needed the restriction ak > −bk so that
when bk < 0, the following facts would be true:

1. |bk| is the number of ways to have→← in cells k− 1, k

2. Cell k cannot simultaneously count as both→ and←.
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Now, item 1 above only requires that ak ≥ −bk. Furthermore, item 2
is only relevant if cell k is actually eligible for→ status, which means that
k < n and bk+1 < 0. In the case that k = n or bk+1 ≥ 0, the requirement can
actually be relaxed to ak ≥ −bk without affecting the truth of any proposi-
tions in this paper. To summarize, in place of the restriction ak > −bk (for
1 ≤ k ≤ n) we can use the following, slightly more lenient condition:

ak > −bk − I(bk+1 ≥ 0),

where I(bk+1 ≥ 0) is the indicator function defined as

I(bk+1 ≥ 0) =
{

1, k = n or bk+1 ≥ 0
0, otherwise.

Although this restriction may seem arbitrarily imposed in order to make
certain theorems in this paper true, this condition actually arises naturally
when we consider continued fractions that are built using a generalized
“round and reciprocate” algorithm. We investigate this now.

Suppose we are given some x ∈ R that we want to approximate by a
continued fraction, but this time we are also given a sequence of nonzero
integers b1, b2, . . ., which we want to be the numerators of the continued
fraction. For instance, if bk = 1 for all k, then we are asking for the regular
continued fraction for x, and if bk = −1 for all k, then we are asking for the
negative continued fraction. In this more general situation, we can use the
following algorithm to come up with the partial quotients ak:

1. Let x0 = x, k = 0.

2. If bk+1 > 0, let ak = bxkc. Otherwise, if bk+1 < 0, let ak = dxke.

3. If xk is an integer, then terminate.

4. Let
xk+1 =

bk+1

xk − ak

5. Set k = k + 1 and go back to step 2.

As discussed in Chapter 1, the invariant driving this algorithm is that
each time we compute the newest xk, we have

x = [a0, a1, . . . , ak−1, xk],
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where the continued fraction in the above equation is interpreted to have
numerators given by the {bi} sequence.

In the two special cases of bk = 1 for all k and bk = −1 for all k, the
reader can easily verify that the above algorithm coincides with the ones
presented in Chapter 1. We now prove that the partial quotients output by
this algorithm will always satisfy the restriction we just defined, making it
therefore “natural” in some sense.

Proposition 19. Fix some x ∈ R, and a sequence of nonzero integers b1, b2, . . ..
If ak is a partial quotient calculated by the above algorithm, and k ≥ 1, then

ak > |bk| − I(bk+1 ≥ 0),

where

I(bk+1 ≥ 0) =
{

1, bk+1 ≥ 0
0, otherwise.

Proof. To prove the inequality for some given k̂ ≥ 1, consider the steps
starting from Step 2 when k = k̂− 1.

• Step 2 calculates the unique integer ak̂−1 such that xk̂−1 − ak̂−1 has
magnitude less than 1, and the same sign as bk̂.

• Step 3 does not terminate the algorithm (since we’ve yet to calculate
ak̂).

• Therefore, xk̂ as calculated in Step 4 will be strictly greater than |bk̂|.

• Step 2 of the next iteration will calculate ak̂. No matter what, we’ll
have that ak̂ ≥ bxk̂c ≥ |bk̂|.

• In the case when I(bk̂+1 ≥ 0) = 0, we must also prove that ak̂ ≥
|bk̂|+ 1. This follows from the facts that ak̂ = dxk̂e and xk̂ > bk̂.

Since |bk| ≥ −bk, this proves that the coefficients ak output by the al-
gorithm will meet the restrictions for a mixed tiling. This includes the last
coefficient (if there is one), which is only required to satisfy an ≥ −bn.
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2.2.5 Mixed tilings with bk = ±1

Although the tilings in the previous section allowed |bk| > 1, often we are
only concerned with bk = ±1. For bk = ±1, we adopt another notation
for |0 : n| in which the values ak and bk are expressed explicitly. When
bk = 1 we use the symbol ⊕, and when bk = −1 we use the symbol 	. For
example, the notation

|a0 ⊕ a1 	 a2| (2.6)

means the number of ways to tile a mixed board with height conditions
a0, b1 = 1, a1, b2 = −1, a2.

We prefer a slightly different interpretation for this type of tiling. Recall
that cell k can have ak possible heights of square stacks. If the left boundary
of cell k (i.e. bk) is −1, then one of these stacks gets the label ←, and if
the right boundary is −1, then one of the stacks gets the label→. Instead
of thinking of← and→ as labels that can be applied to square stacks, we
could consider them to be objects unto themselves with which we may tile the
board. Under this interpretation, the maximum height of a square stack in
cell k is no longer ak; it is ak minus the number of negative boundaries of
cell k, which may be 0, 1, or 2.

For example, consider the board |5	 3⊕ 2|. Cell 0 allows square stacks
up to height 4, or→. Cell 1 allows square stacks up to height 2, or←, or the
left half of a domino, which we denote @. Cell 2 allows square stacks up
to height 2, or A. The rule governing these objects is that→← must never
appear together, and @A must always appear together.

Notice that in the situation when ak = 2 and bk = bk+1 = −1, cell k only
allows← or→; never any squares or dominoes at all.



Chapter 3

Continued Fractions and
Combinatorics

In the previous chapter, we defined |0 : n| as a weighted sum of square-
and-domino tilings, and we proved that continued fractions and weighted
sums are related by the formula

[0 : n] =
|0 : n|
|1 : n| .

When a0, . . . , an, b1, . . . , bn are integers subject to the restrictions ak ≥ 1,
ak > −bk, we also gave a combinatorial interpretation for |0 : n| as the num-
ber of mixed tilings with height conditions. We are now ready to prove facts
about continued fractions using combinatorics. This chapter will demon-
strate how this may be done.

In particular, we focus on negative and mixed continued fractions, since
the approach in Benjamin and Quinn’s Proofs That Really Count only ap-
plies to regular continued fractions. This chapter only provides a sample
of the problems we could attack. The Future Work section indicates some
other topics that could be addressed.

3.1 How to Convert between Regs and Negs

If we are going to study negative continued fractions, a natural question to
ask is how they are related to regular continued fractions. For x ∈ R, there
exists, in fact, a direct relationship between the partial quotients for the
regular continued fraction of x and those of the negative continued fraction
of x. In what follows we shall describe and prove this relationship.
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We begin with a theorem that will allow us to convert a small section of
a board that uses dominoes (⊕) into a section that uses arrows (	) without
changing the number of tilings.

Theorem 20. Let a0, a1, . . . , an, b1, . . . , bn be integers satisfying the usual condi-
tions ak ≥ 0 and bk > −ak, and in addition, bk = ±1. Then

| . . . am−1 ⊕ am ⊕ am+1 . . . | =
| . . . (am−1 + 1)	 2	 2	 2︸ ︷︷ ︸

am−1 times

	(am+1 + 1) . . . |. (3.1)

In this equation, the ellipses on the left are placeholders for the unex-
pressed values a0, b1, a1, . . . , bm−1, am−2. These values must be the same for
both sides of the identity. Similar comments apply to the ellipses on the
right.

Proof. We want to find a one-to-one correspondence between tilings of the
first board and of the second. To do so we need a bit of terminology for
board 2. The sequences of 2s is called the arrow region because the only
objects allowed there are← and→. The cell immediately to the left of the
arrow region (with height condition am−1 + 1) is the left border and the cell
to the right is the right border. We now provide a dictionary which we use
to map the cells m− 1, m, and m + 1 of board 1 onto the left border, arrow
region, and right border (respectively) of board 2.

The only object allowed in cell m− 1 of board 1 that is not allowed in
the left border of board 2 is the left half of a domino, which we abbreviate
@. Also, the only object allowed in the left border of board 2 that is not
allowed in cell m− 1 of board 1 is→. This naturally suggests that we use
the rule

@ 7−→ → (3.2)

for this cell. Any other object appearing in cell m − 1 of board 1 may be
replaced by the same object in board 2, including square stacks of equal
heights.

Similarly, we use the rule

A 7−→ ← (3.3)

for cell m + 1. It should be noted that rules 3.2 and 3.3 cannot both be
invoked within the same tiling, because this would require two dominoes
to overlap in cell m.
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For cell m, rules 3.3 and 3.2 force us to use the following in order to
satisfy directionality:

@ 7−→ ← . . .←︸ ︷︷ ︸
am−1

(3.4)

A 7−→ → . . .→︸ ︷︷ ︸
am−1

(3.5)

The remaining possibility is that a stack of squares appears in cell m.
We observe that the number of ways to tile the arrow region is exactly am
because we must begin with some number of ← between 0 and am − 1
inclusive, and the remaining cells (if any) must be →. This suggests that
for a stack of h squares, h , we should use the rule

h 7−→ ← . . .←︸ ︷︷ ︸
h−1

→ . . .→︸ ︷︷ ︸
am−h

. (3.6)

This never breaks directionality because we already covered the cases in
which→ or← appear in the border squares.

The reader may be concerned about the degenerate case am = 1, where
the arrow region is empty. However, this is treated no differently. Since
rules 3.4, 3.5, and 3.6 tell us to put 0 arrows in the arrow region, we will
do exactly that! Moreover, having →← in the left/right borders is still
impossible by the overlapping dominoes argument above.

This completes the description of how to map cells m− 1, m, and m + 1.
Of course the rest of the board is mapped to itself without any changes.
Now that we have defined the correspondence between board 1 and board
2, it is really no more work to see that the correspondence is in fact a bijec-
tion. This is because if we start with a tiling of board 2, we can simply apply
the above rules in reverse to determine a unique tiling of board 1. The only
ambiguity is when the arrow region contains all arrows of the same kind;
this might be mapped onto either half a domino or a stack of squares of
height 1 or am. But, whether or not one more arrow appears in the appro-
priate border square distinguishes which case to apply. For example, when
am−1 = 5, am = 3, and am+1 = 2, 4 ←←← (board 2) must have come from
4 @A (board 1) , whereas 4 ←← 1 must have come from 4 3 1 .

3.1.1 A conversion formula

What we investigate next is that when Theorem 20 is used repeatedly, we
can convert an entire board with bk = 1 to one with bk = −1. First, we note
a simple modification that can be made to the end of a board.
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Identity 21.
|a0 . . . | = |1⊕ (a0 − 1) . . . |, (3.7)

where the ellipses again refer to the unspecified values: b1, a1, b2, . . . , an.

Proof. The correspondence between boards 1 and 2 is very simple. We’ll
say that board 2 begins on cell −1. If cell 0 of board 1 is a maximal stack of
squares, then replace it with a domino covering cells −1 and 0; otherwise
leave it be and add a square in cell −1.

Applied to the other end of the tiling, this identity states

| . . . an| = | . . .⊕ (an − 1)⊕ 1|. (3.8)

Theorem 20 and the above identity give us a procedure for converting
between regular and negative continued fractions.

For example, consider the regular continued fraction

6 +
1

2 + 1
3+ 1

4

.

By Theorem 14, this may be rewritten as

|6⊕ 2⊕ 3⊕ 4|
|2⊕ 3⊕ 4| .

We can now use Theorem 20 and Equation (3.8) to convert these two
reg-boards into similar neg-boards:

|6⊕ 2⊕ 3⊕ 4|
= |6⊕ 2⊕ 3⊕ 3⊕ 1| (Equation 3.8)
= |7	 2	 4⊕ 3⊕ 1| (Theorem 20)
= |7	 2	 5	 2	 2	 2| (Theorem 20),

and
|2⊕ 3⊕ 4|

= |1⊕ 1⊕ 3⊕ 3⊕ 1| (Equation 3.8)
= |2	 4⊕ 3⊕ 1| (Theorem 20)
= |2	 5	 2	 2	 2| (Theorem 20)

Thus we conclude that

6 +
1

2 + 1
3+ 1

4

=
|6⊕ 2⊕ 3⊕ 4|
|2⊕ 3⊕ 4| =

|7	 2	 5	 2	 2	 2|
|2	 5	 2	 2	 2| = 7− 1

2− 1
5− 1

2− 1
2− 1

2

.
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This same procedure can be made to work for any regular continued
fraction. We prove this in the next few theorems. But first, some notation
that should help us.

Definition 22. If a0, . . . , an is a finite sequence of positive integers, then we let
N(a0, . . . , an) be another finite sequence, called the neg-sequence for a0, . . . , an,
defined as

N(a0, . . . , an) = (a0 + 1), 2, . . . , 2︸ ︷︷ ︸
a1−1

, (a2 + 2), 2, . . . , 2︸ ︷︷ ︸
a3−1

, (a4 + 2), . . . .

This sequence ends in either (an + 1) or 2, . . . , 2︸ ︷︷ ︸
an−1

, according to the parity of n. If

a0, a1, . . . is an infinite sequence, we define N(a0, a1, . . .) according to the same
alternating pattern.

Theorem 23. Let a0, . . . , an be a sequence of positive integers. Let the terms of
the neg-sequence N(a0, . . . , an) be denoted as ā0, . . . , āl , and let the terms of the so-
called “alternate neg-sequence” a0, N(a1, a2, . . . , an) be denoted as a0, ā′1, ā′2, . . . , ā′m.
Then

(a)

|a0 ⊕ . . .⊕ an| = |ā0 	 ā1 	 ā2 	 . . .	 āl | = |a0 ⊕ ā′1 	 ā′2 	 . . .	 ā′m|.

(b)

a0 +
1

a1 +
1

. . . + 1
an

= ā0 −
1

ā1 −
1

. . . − 1
āl

= ā′0 +
1

ā′1 −
1

. . . − 1
ā′m

.

Proof of (a). The idea for this proof is demonstrated in the above examples.
Beginning with the board |a0 ⊕ . . .⊕ an|, make the following changes to it:

1. If necessary, apply Equation (3.8) to the right edge so that there are
an even number of ⊕ signs altogether (odd for the alternate neg se-
quence).

2. Starting with the first two⊕ signs (second and third for the alternate),
apply Theorem 20 to this and each subsequent pair to convert them
to 	.
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Proof of (b). By Theorem 14, we need to show that

|a0 ⊕ a1 ⊕ . . .⊕ an| = |ā0 	 ā1 	 . . .	 āl | = |ā′0 ⊕ ā′1 	 . . .	 ā′m|

and
|a1 ⊕ . . .⊕ an| = |ā1 	 . . .	 āl | = |ā′1 	 . . .	 ā′m|.

The first equation is Theorem 23 verbatim. The second equation states that

|a1⊕ a2⊕ . . .⊕ an| = | 2	 . . .	 2︸ ︷︷ ︸
a1−1

	(a2 + 2)	 . . . | = |(a1 + 1)	 2	 . . .	 2︸ ︷︷ ︸
a2−1

	 . . . |,

which is merely a slight variation on Theorem 23. The sequence appearing
on the right is the neg-sequence for a1, . . . , an and the sequence appear-
ing in the middle is the neg-sequence for 1, (a1 − 1), a2, a3, . . . , an, which is
equivalent to a1, . . . , an by Identity 21.

We are now ready to prove the main result of this section, which shows
that the neg-sequence is in fact the sequence of partial quotients for the
negative continued fraction.

Corrolary 24. Let x ∈ R+, and let a0, a1, . . . be the (finite or infinite) sequence
of partial quotients for the regular continued fraction of x. Then the sequence
of partial quotients for the negative continued fraction of x is N(a0, ā1, . . .),
and the sequence of partial quotients for the negative continued fraction of −x
is −a0, N(a1, a2, . . .).

Proof. This follows by taking the limit as n → ∞ in part (b) of the previous
theorem, and noting that

−x = −

a0 +
1

ā′1 −
1
. . .

 = −a0 −
1

ā′1 −
1
. . .
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3.1.2 Convergents

The results we have obtained so far allow us to say quite a bit about the reg-
ular/negative convergents of a continued fraction. We begin with another
corollary that follows from the development in the previous section.

Corrolary 25. Let x ∈ R+, and suppose

• c0, c1, . . . are the convergents for the regular continued fraction of x

• d0, d1, . . . are the convergents for the negative continued fraction of x

• −d′0,−d′1, . . . are the convergents for the negative continued fraction of −x.

Then, for all odd n there exists some m such that cn = dm. For even n, there exists
m such that cn = d′m.

Proof. Let a0, a1, . . . be the sequence of (regular) partial quotients for x. As
in Theorem 23 let ā0, ā1, . . . = N(a0, a1, . . .), and ā′1, ā′2, . . . = N(a1, a2, . . .).
Then, By Corollary 24, we have

ck = [a0, . . . , ak]
dk = [ā0, . . . , āk]−
−d′k = [−a0, ā′1, . . . , ā′k]−

for all k.
Consider an index n. By Theorem 23, we have cn = [a0, . . . , an] =

[N(a0, . . . , an)]−. Suppose that the finite neg-sequence N(a0, . . . , an) has
m + 1 terms. Are these the same as ā0, . . . , ām, the first m + 1 terms of
N(a0, a1 . . .)? A quick look at Definition 22 reveals that they are, except
possibly the last term. If n is even, then ām = an + 2, whereas the last term
of N(a0, . . . , an) is an + 1. However, if n is odd, both sequences end in the
same number of 2s, and are therefore identical. It follows that cn = dm
when n is odd.

A similar argument shows that cn = d′m for n even.

As we know from section 2.2.1, the convergents c0, c1, c2, . . . alternately
underestimate and overestimate x. On the other hand, d0, d1, . . . always
overestimate x. Furthermore, −d′0,−d′1, . . . always overestimate −x, which
means that d′0, d′1, . . . underestimate x. The new information given by the
above corollary is that d0, d1 . . . include c1, c3, . . . as a subsequence, and
d′0, d′1, . . . include c0, c2, . . . as a subsequence. This means that if we write
the negative continued fractions for x and −x, we get all the convergents
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from the regular continued fraction, plus some additional convergents. The
situation is pictured in the diagram below.

x

s
d′0 = c0

qd′1
qd′2 s

d′3 = c2

s
d′4 = c4

sd0 = c1 qd1 sd2 = c3 qd3 qd4 sd5 = c5

This naturally leads to the question: what are the extra convergents that
we obtain from negative continued fractions? Our combinatorial interpre-
tation can answer this question as well. First, an example.

Let x = 2711/1731. The first four convergents for the regular continued
fraction of x are c0 = 1

1 , c1 = 2
1 , c2 = 3

2 , c3 = 11
7 . The first four convergents

for the negative continued fraction of x are d0 = 2
1 , d1 = 5

3 , d2 = 8
5 , d3 = 11

7 .
As expected, the neg-convergents include 2

1 and 11
7 , but they also include

two fractions in between. The sequence of numerators is 2, 5, 8, 11, and the
sequence of denominators is 1, 3, 5, 7, which are both arithmetic progres-
sions. In fact, they are the longest arithmetic progressions (of integers) that
can go from 2 to 11 and from 1 to 7 respectively, such that both progressions
have the same number of terms.

This suggests that, given the reg-convergents 2
1 and 11

7 , we could have
predicted the neg-convergents that appear in between. By calculating

gcd(11− 2, 7− 1) = 3,

we realize that the longest such pair of arithmetic progressions has three
steps, and so we would guess the correct sequence of convergents.

Indeed, we can prove that this works in general. First, we need to use a
result from elementary number theory:

Lemma 26. If a, b, c, d ∈ Z and ab− cd = ±1, then gcd(a− c, b− d) = 1.

Proof. Observe that

(a− c)(b + d) + (a + c)(b− d) = 2(ab− cd) = ±2,

so all we have to show is that a− c and b− d cannot both be even. If they
were, then so would be a + c and b + d, and so the left side of the above



How to Convert between Regs and Negs 29

equation would be divisible by 4 whereas the right side (±2) would not.
This contradiction proves the claim.

Now, the theorem about the “in-between” convergents is as follows.

Theorem 27. Let c2n−1 = p1
q1

, c2n+1 = p2
q2

be two consecutive odd convergents of
the regular continued fraction for x, and let d0, d1, . . . be the sequence of conver-
gents of the negative continued fraction for x. From Corollary 25, c2n−1 = dm for
some m, and c2n+1 = dm+g for some g.

In addition,
g = gcd(p2 − p1, q2 − q1), (3.9)

and the numerators and denominators of dm, dm+1, . . . , dm+g each form an arith-
metic progression.

The analogous result holds when we compare the even convergents c2n, c2n+2
to d′0, d′1, . . . (the neg-convergents to −x).

Proof. Let a0, a1, . . . be the sequence of partial quotients for the regular con-
tinued fraction for x. For 0 ≤ j ≤ g, write dm+j = ej/ f j in lowest terms.
From the previous theorems, we know how to express ej and f j in terms of
the ai as follows.

ej = |(a0 + 1) 	 2 . . . 2 	 . . .	 2 . . . 2 	 (a2n + 2)	 2 . . . 2|
f j = | 2 . . . 2︸ ︷︷ ︸

a1−1

	 . . .	 2 . . . 2︸ ︷︷ ︸
a2n−1−1

	 (a2n + 2)	 2 . . . 2︸ ︷︷ ︸
j

|.

The above notation means that, of the terms within the final brace, only
the first j are present.

First, we show that e0, . . . , eg and f0, . . . , fg are arithmetic progressions.
Using Identity 11 we have, for 2 ≤ j ≤ g,

ej = 2ej−1 − ej−2

⇒ ej − ej−1 = ej−1 − ej−2. (3.10)

Thus, the difference between consecutive terms remains constant. The same
argument holds for f j.

Now, we have to show that g = gcd(p2 − p1, q2 − q1). Recall that p1 =
e0, p2 = eg, q1 = f0, q2 = fg. Also, by the general formula for an arithmetic
progression,

eg = e0 + (e1 − e0)g fg = f0 + ( f1 − f0)g, (3.11)
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so

gcd(p2− p1, q2− q1) = gcd(g(e1− e0), g( f1− f0)) = g gcd(e1− e0, f1− f0).
(3.12)

However, e0/ f0 and e1/ f1 are consecutive convergents of a negative
continued fraction. So, by Identity 12,

e0 f1 − e1 f0 = 1, (3.13)

and therefore gcd(e1 − e0, f1 − f0) = 1 by Lemma 26. This shows that
gcd(p2 − p1, q2 − q1) = g as desired.

For even convergents, the proof is identical except for the fact that the
beginnings of the above tilings look a little different. We leave the details
to the reader.

3.2 An uncounted identity and generalizations

3.2.1 Original identity

Another application of the combinatorial framework for regular and nega-
tive continued fractions is a new proof of the following identity:

Identity 28. Let Fn denote the nth Fibonacci number and Ln denote the nth Lucas
number. Then, for all m, n ∈ Z+,

F(n+1)m

Fnm
= Lm −

(−1)m

Lm − (−1)m

. . .− (−1)m
Lm

,

where the term Lm appears n times in the continued fraction.

This identity (along with many others) appeared in the “Uncounted
identities” section of [Benjamin and Quinn, 2003], challenging the reader
to discover a combinatorial proof where the authors had not yet done so.
By using our new combinatorial interpretation for negative continued frac-
tions, this problem becomes tractable.

First, we want to convert the above identity to a statement about inte-
gers. Using Theorem 14, the right-hand side can be written in lowest terms
as |0:n−1|
|1:n−1| , where ai = Lm and bi = (−1)m+1 for all i. Although

F(n+1)m
Fnm

is not
in lowest terms (in general), one can show that

F(n+1)m/Fm

Fnm/Fm
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is. This leads us to conjecture the following identity, which is equivalent to
the one above, but can be proven by direct combinatorial means.

Identity 29. For all n, m ∈ Z+,

Fnm = |0 : n− 2|Fm,

where the weights of |0 : n− 2| are given by ai = Lm, for 0 ≤ i ≤ n− 2, and
bi = (−1)m+1 for 1 ≤ i ≤ n− 2.

Before proving this identity, we note that it is interesting in its own
right. A well-known fact about Fibonacci numbers is that Fm divides Fnm.
The above identity not only proves this, but also shows that the quotient
is |0 : n− 2|. This quotient can be represented in other forms as well: for
instance, Benjamin and Quinn [2003] proved that

Fnm = Fm

n

∑
j=1

Fj−1
m−1Fm(n−j)+1,

and Benjamin and Rouse [2004] proved that

F(n+1)m = Fm

n

∑
x1=0

n

∑
x2=0
· · ·

n

∑
xm=0

(
n− xm

x1

)(
n− x1

x2

)
· · ·

(
n− xm−1

xm

)
.

In fact, we will be borrowing some of the terminology from this latter paper,
namely “open” and “closed.”

To prove Identity 29, we need to use the combinatorial interpretations
for Fn and Ln. For completeness we briefly state these here, but for more
details see [Benjamin and Quinn, 2003].

Theorem 30. Let n be a positive integer. Then Fn is the number of ways to tile of
an (n− 1)-board with squares and dominoes. (This was Theorem 9.)

Furthermore, Ln is the number of ways to tile a circular ring of length n, called
a Lucas n-bracelet, with squares and dominoes. A tiling of this ring in which a
domino covers cells 0, n is called out-of-phase, and there are Fn−1 such tilings.
Otherwise, the tiling is in-phase, and there are Fn+1 such tilings.

Proof of Identity 29. Our strategy will be to describe two sets whose sizes
are equal to each side of the identity, then find a bijection between the sets.
First we consider the case where m is odd, and then we discuss how the
even case differs.

Set 1: Fnm counts square-and-domino tilings of length nm − 1. How-
ever, for reasons that will become apparent, we always add half a domino



32 Continued Fractions and Combinatorics

Figure 3.1: Example element of Set 1, for n = 3, m = 7.

,

Figure 3.2: Example element of Set 2, for n = 5, m = 7. S is a 7-tiling
beginning with a half-domino, and T is a 4-tiling, consisting of a square, a
(rather large) domino, and another square, where each square is assigned a
7-bracelet.

to the beginning, increasing the length to nm, and we display the tiling in
the format of n rows of length m (even if this causes some dominoes to
appear split apart).

Set 2: Fm|0 : n− 2| Counts pairs of tilings (S, T), where S is an ordinary
Fibonacci tiling of length m − 1, to which we prepend a half-domino as
above, and T is a height-conditioned tiling of length n− 1 where each cell
can have a stack of squares up to height Lm. By mapping the Lm possible
square stack heights onto Lucas m-bracelets, we reinterpret T to consist of
Lucas m-bracelets and dominoes, rather than square stacks and dominoes.

Correspondence: We begin with some additional terminology. The
rows of Set 1 differ from ordinary tilings in that they can have half-dominoes
on either end. Such ends are called open; otherwise they are closed. Also
notice that, since the rows are derived from one continuous tiling, the fol-
lowing continuity properties are satisfied:

1. Row 1 is open on the left (due to our convention of beginning with a
half-domino).

2. For 1 ≤ i < n, row i is open on the right if and only if row i + 1 is
open the left.

3. Row n is closed on the right
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k

k-1

n

Figure 3.3: A tiling split by the dotted line.

We now describe a procedure to convert an element of Set 1 into an
element of Set 2. We envision this procedure as a dotted line that begins
just underneath the last row and moves upwards, eventually ending be-
tween rows 1 and 2. As the line moves, we will prove that it maintains the
following invariant:

(a) The k rows above the line form a continuous Fkm tiling. That is, they
satisfy the three continuity properties above, with k in place of n.

(b) Below the line is a length n− k tiling of Lucas m-bracelets and domi-
noes, as described under Set 2.

We already have noted that (a) is satisfied at the beginning of the proce-
dure (when k = n), and (b) is satisfied vacuously because there is nothing
below the line. At the end of the procedure, when k = 1, we will have an
(m− 1)-tiling above the line and a 0 : n− 2-tiling below it; that is, we will
have an element of Set 2.

Now, we show how to move the dotted line upwards using a reversible
transformation. If there is only one row above the line then we are already
done. Otherwise, this transformation will involve tailswapping the two
rows just above the line. Either this tailswap is possible or it is not.

Let us first consider the case when it is. Due to the continuity property,
the end of row k − 1 matches the beginning of row k. Therefore, after the
tailswap is complete, row k has matched ends. This means that we can join
these ends together to form a Lucas bracelet; it will be out-of-phase if the
ends were open, or in-phase if they were closed. Then we move the dotted
line upward one space as shown, to accommodate the Lucas bracelet we
just created. This preserves all the continuity properties; in particular, 3
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last fault

k-1

k

k-1

k
Fold into

bracelet {

Figure 3.4: Tailswapping example.

fault free

k

k

k-1

k-1

{large

domino

Figure 3.5: The fault-free configuration.

remains true because the closed end moved from row k to row k− 1. (See
Figure 3.4)

Now we consider the case when the pair of rows above the dotted line
is fault-free, making the tailswap impossible. Since m is odd and row k is
closed on the right, this can only occur from the staggered domino forma-
tion in Figure 3.5.

Notice that row k− 1 is closed on the left, so it cannot be the first row. It
follows that k ≥ 3, and row k− 2 is closed on the right. Therefore we may
move the dotted line up two spaces, and we don’t have to worry about
jumping over the “finish line” k = 1 by doing so. As the reader may
have guessed, the staggered formation left below the line is interpreted as
a (large) domino in Set 2.

Because tailswapping is reversible, it follows that the entire procedure
is reversible as well. We can depict any element of Set 2 as above, with
the dotted line at k = 1. Then we move it downwards by applying the
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fault free?

Figure 3.6: When m is even, the fault-free configuration is discontinuous.

2

1 k

k+1

k+2

Figure 3.7: →← cannot be the result of two consecutive tailswaps.

above steps in reverse. That is, if there is a Lucas bracelet just below the
line, then we unhook it, tailswap, and move the line down one space. (The
reader should verify that tailswapping is always possible in this direction.)
If there is a domino, then replace it with the staggered formation and move
the line down two spaces. This completes the proof of the identity for m
odd.

When m is even, we must make a few changes to the proof, but it re-
mains largely the same. The |0 : n − 2| term now has bk = −1, so it rep-
resents a domino-free tiling consisting of Lucas bracelets, where we must
choose a particular one of these bracelets to represent → and another to
represent ←. As one might guess, the all-domino bracelets turn out to be
the right choices; let the in-phase domino bracelet represent→ and let the
out-of-phase domino bracelet dominoes represent←.

The procedure is largely the same as before; the only difference is the
behavior of the exceptional fault-free case. When m is even, the fault-free
arrangement would have to appear as in Figure 3.6.

However, this arrangement fails to satisfy continuity property 2, so it
cannot be encountered. We conclude that tailswaps are always possible
when m is even, so the procedure never uses large dominoes as required.
We also have to check that it cannot leave→← behind. We can prove this
by contradiction; suppose our last two tailswaps resulted in→←. Then we
would have the configuration in Figure 3.7

If we want, we should be able to undo these two tailswaps using the
reverse procedure described earlier. When we attempt this on the above
configuration, the last fault line of the first tailswap occurs at the very end



36 Continued Fractions and Combinatorics

a
m

a
0

a
1

b
1

b
m

.  .  .

.  .  .b
0

Figure 3.8: A periodic board with period m + 1. Any dominoes that are
split between two rows are given the weight b0.

of the rows, meaning that the first trivial exchange of empty tilings. This
leaves us with an impossible second tailswap, contradicting what was just
proved above; that tailswaps are always possible when m is even.

3.2.2 Adding weights

As we have seen throughout this paper, Fibonacci identities are often spe-
cial cases of weighted tiling identities. As it turns out, the Fibonacci and
Lucas numbers in Identity 29 can be generalized by adding weights to the
diagram. When we do this, Identity 29 generalizes to a theorem about peri-
odic continued fractions.

Definition 31. A sequence of weights a0, b1, a1, . . . , bn, an is periodic with pe-
riod m if aj = aj+m and bk = bk+m, for all 0 ≤ j ≤ n−m and 1 ≤ k ≤ n−m.

When defining the weights for an n-board with period m, it is enough
to specify only the weights a0 through am−1 and b1 through bm. However,
we usually refer to bm using the name b0 instead. As shown in Figure 3.8,
we can visualize a periodic board using rows of length m, where tiles in the
same column have the same weight.

Now, consider what happens when we consistently add weights to all
the tilings used in the proof of Identity 29, according to the layout in Fig-
ure 3.8. In this tailswapping-based proof, tiles can only change position
within their original column. Therefore, the Correspondence in the proof
is weight-preserving, provided that we use a periodic board for Set 1.

When we add weights, it also becomes necessary to change the Fm and
|0 : n− 2| terms appearing in the proof. The Fm term just represents row 1,
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which begins with a half-domino; this becomes an ordinary weighted tiling
|1 : m− 1| using the same weights from Set 1.

In Identity 29, the squares of the |0 : n− 2| board corresponded to Lu-
cas bracelets. When we add weights, the in-phase bracelets will have total
weight |0 : m − 1| and the out-of-phase bracelets will have total weight
b0|1 : m − 2|. Therefore Lm, which was the weight of each square in the
|0 : n− 2| board, generalizes to |0 : m− 1|+ b0|1 : m− 2|.

The dominoes of the |0 : n − 2| board corresponded to pairs of rows
that were filled with dominoes in staggered formation. In the weighted
scheme, the weight of such an object is ∏m−1

i=0 bi. Therefore, the (−1)m+1

term generalizes to (−1)m+1 ∏m−1
i=0 bi.

Now, we are finally ready to state the weighted version of Identity 29.

Identity 32. Let a0, . . . , am−1 and b0, . . . , bm−1 be real numbers, and let n, m ∈
Z+. Then,

|1 : nm− 1| = |1 : m− 1||0 : n− 2|

where |1 : nm− 1| represents a periodic board of period m beginning with a half-
domino, using the weights a0, . . . , am−1, b0, . . . , bm−1; |1 : m− 1| is a tiling that
uses the same weights; and |0 : n− 2| has the constant, “composite” weights of
a′k = |0 : m− 1|+ b0|1 : m− 2|, b′k = (−1)m+1 ∏n

i=0 bi for all k.

Proof. As mentioned above, this is just the weighted version of Identity 29.
We leave it to the reader to go through the proof again, verifying that when
all tiles are assigned a weight according to their column, the argument is
still valid.

Let us also prove a variation on the previous identity:

Identity 33. Let a0, . . . , am−1 and b0, . . . , bm−1 be real numbers, and let n, m ∈
Z+. Then,

|0 : nm− 1| = |0 : n− 1|

where |0 : nm − 1| represents a periodic board of period m, using the weights
a0, . . . , am−1, b0, . . . , bm−1; and |0 : n − 1| has the “composite” weights a′0 =
|0 : m − 1|, a′k = |0 : m − 1| + b0|1 : m − 2| for 1 ≤ k ≤ n − 1, and b′k =
(−1)m+1 ∏n

i=0 bi for all 1 ≤ k ≤ n− 1.

Proof. The proof is mostly the same as for Identity 32, with the following
differences:

• The “finish line” is now at k = 0 instead of k = 1.
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• The periodic tiling |0 : nm− 1| no longer begins with a half-domino.
Thus, continuity property 1 is changed to read: Row 1 in closed on the
left.

• When m is odd, we may now encounter the fault-free configuration
(that is, a domino) in rows 1 and 2. Hence it is possible to skip from
k = 2 to k = 0.

• If we do reach k = 1, there is only one row above the dotted line,
so we cannot tailswap. However, according to the new continuity
property, the row k = 1 is closed on both ends, so it folds into an in-
phase Lucas bracelet, and we finish the correspondence by moving
the dotted line up to k = 0. It is not possible to create an out-of-phase
Lucas bracelet in the first row.

3.2.3 Period-compression for periodic continued fractions

Now that we have expressions for the periodic weighted sums |0 : nm− 1|
and |1 : nm− 1| (Identities 32 and 33), we can obtain a theorem about peri-
odic continued fractions by rewriting the quotient |0:nm−1|

|1:nm−1| . For simplicity,
we will only consider regular periodic continued fractions (i.e. bi = 1 for
all i), although negative continued fractions are no harder.

Theorem 34. Let a0, a1, . . . , am−1 be the weights for an infinite periodic continued
fraction of period m, which is written as

[a0, a1, . . . , am−1].

Then,

[a0, a1, . . . , am−1] = [a0, a1, . . . , am−1]±
1

|1 : m− 1|[L, L, . . .]±

where L = |0 : m − 1| + |1 : m − 2|, and the subscript ± denotes a regular
continued fraction when m is odd, and a negative continued fraction when m is
even.

That is, we can write any periodic continued fraction in terms of its
finite continued fraction based on one period, and a periodic continued
fraction with period 1. In a sense, this theorem “compresses” the period to
1.
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Proof. First consider the finite periodic continued fraction where the se-
quence a0, a1, . . . , am−1 is repeated n times, which we denote [(a0, a1, . . . , am−1)n],
and let m be odd. Then, according to identities 32 and 33, and Theorem 14,

[(a0, a1, . . . , am−1)n] =
| |0 : m− 1| ⊕ L⊕ . . .⊕ L |
|1 : m− 1||L⊕ . . .⊕ L| =

[|0 : m− 1|, L, . . . , L]
|1 : m− 1|

=
|0 : m− 1|+ 1

[L,...,L]

|1 : m− 1| = [a0, . . . , am−1] +
1

|1 : m− 1|[L, . . . , L]
,

where each sequence L⊕ . . .⊕ L contains n− 1 Ls. If m is even, then the
plus signs above (of both types!) are replaced by minus signs, and the
regular continued fractions (except for [(a0, a1, . . . , am−1)n] itself) become
negative. The theorem follows from taking the limit as n→ ∞.

This theorem is useful because [L, L, . . .] is easy to compute: it is a pos-
itive number x satisfying x = L + 1

x , and is therefore the positive solu-
tion to x2 − Lx − 1 = 0. Similarly, [L, L, . . .]− is the positive solution to
x2 − Lx + 1 = 0.

Example: Consider [3, 4, 5]. All the relevant calculations are: |0 : 2| =
68, |1 : 2| = 21, |1 : 1| = 4, L = 72, [L, L, . . .] = 36 +

√
1297. Therefore,

[3, 4, 5] =
68
21

+
1

21(36 +
√

1297)
.





Chapter 4

Conclusion and Future Work

In the previous chapter, we were able to use our knowledge of weighted
tilings to use in order to derive results about continued fractions. In par-
ticular, we learned how to convert between regular and negative contin-
ued fractions, the relationships between the convergents, and some results
about periodic continued fractions. If the selection of theorems seems ar-
bitrary, it is only because there is so much that could be done. Nearly any
problem concerning continued fractions could be attacked using this com-
binatorial approach. Some examples are given below.
Periodic continued fractions:

This paper has only scratched the surface of periodic continued frac-
tions. For instance, a commonly encountered theorem is that the quadratic
surds (i.e. the real numbers of degree 2 over Q) are precisely those num-
bers whose continued fraction is eventually periodic. Much of the theory
for periodic continued fractions can be undoubtedly be extended to nega-
tive continued fractions using the approach in this essay.
Two-squares theorems:

Fermat proved the following well-known theorem:

Theorem 35. Let p be a prime. Then

p = x2 + y2

for some integers x, y if and only if p ≡ 1 mod 4.

Several other versions of this theorem have been proven since then. The
following appear in [Nagell, 1964]:

Theorem 36. Let p > 2 be a prime.
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• p can be written as x2 + y2 for some integers x, y if and only if p ≡ 1
mod 4.

• p can be written as x2 + 3y2 if and only if p ≡ 1 mod 6.

• p can be written as x2 + 2y2 if and only if p ≡ 1 or 3 mod 8

• p can be written as x2 + 7y2 if and only if p ≡ 1 or 9 or 11 mod 14.

• p can be written as 2x2 + 3y2 if and only if p ≡ 5 or 11 mod 24

Fermat’s original two-squares theorem has a very neat proof, origi-
nally due to Smith (1826-1883) involving palindromic continued fractions
[Clarke et al., 1999]. The other versions of the theorem may have similar
proofs involving palindromic continued fractions with bk 6= 1.
Quadratic Number Fields

Continued fractions often come up in connection with quadratic num-
ber fields. For instance, Ireland and Rosen [1990] and Zagier [1981] give
some examples of how continued fractions appear when computing class
numbers of these fields. Perhaps there is a combinatorial explanation be-
hind this to be discovered.
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