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Abstract

Kolmogorov complexity is a theory based on the premise that the com-
plexity of a binary string can be measured by its compressibility; that is, a
string’s complexity is the length of the shortest program that produces that
string. We explore applications of this measure to graph theory.
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Chapter 1

Introductory Material

When attempting to characterize the complexity of an object, a useful ques-
tion to ask is: How much information does it contain? In other words, what
is the shortest description we can give the object such that no information
about that object is lost, that is, it can be accurately reproduced? Even es-
tablishing what constitutes a description poses some difficulties. For in-
stance, consider the positive integer n, which is “the least natural number
that cannot be discribed in less than twenty words.” If n exists, we have just
described it in thirteen, contradicting the statement of its definition. This
rather upsetting paradox is not easily resolved and in fact serves as the
basis of an elegant proof of Gödel’s incompleteness result (Li and Vitányi
1997, 169-170). However, for our purposes, problems of this sort can be ig-
nored. Even if n exists, the statement gives no information useful for find-
ing it. We will circumvent the paradox by restricting ourselves to objects
that can be fully characterized by finite strings and limit our descriptions
to those which are sufficient to reproduce the desired object.

Kolmogorov complexity is a measure of the information contained in
the description of an object. Specifically, the Kolmogorov complexity of an
object is the length (literally the number of 1s and 0s) of the shortest binary
string that is sufficient to replicate it. Hence, we have only countably many
describable objects.

It is important to note the distinction here from information theoretic
descriptions. Data transmission (from sender to recipient) relies upon an
agreed upon context for interpretation. This reduces the amount of infor-
mation that must be communicated to reproduce many objects and gen-
erally imposes some limitation on the time complexity of data interpreta-
tion algorithms. For instance, a sender would need only to communicate
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2 bits to encode the integer 7, π, or a binary representation of the Oxford
English Dictionary, provided the recipient knows in advance what those
objects are, and that the sender will be selecting one of them and no oth-
ers. Information theory allows selection of an object from a finite set, thus
the information transmitted is a function of the set size, not the size of the
objects themselves. We allow any encoding of a string so long as it can be
decoded eventually. We will not generally think in terms of a sender and a
recipient, but for the sake of comparison, we would say that the two speak
the same language, but assume they have never communicated, thus a de-
scription must be completely self contained. An analogy more useful to us
is that a description is a program which outputs the object.

The first objection one might raise at this point is that program length
is dependent on language. For instance, some objects are more simply de-
scribed using C++ than say FORTRAN. It turns out the difference in de-
scription length for an object programmed in different languages is bounded
by an additive constant. We will show this result, but must first introduce
some terms and notation useful for formalizing our descriptions and the
measurement of their complexity.

1.1 Definitions and Notation

Remark. A brief treatment of Turing machines, (possibly finite state ma-
chines,) and regular expressions needs to go here.

1.1.1 Definition. By associating inputs and outputs, a Turing machine de-
fines a partial function from n-tuples of integers onto the integers, with
n ≥ 1. We call such a function partial recursive or computable. If the Turing
machine halts for all inputs, then the function computed is defined for all
arguments and is called total recursive, or simply recursive.

Generally speaking, 〈x, y〉 will be used to denote a self-delimiting con-
catenation of the binary representation of x and y. There are many ways
to do this. One method is to double each of the bits of the first string
and place ‘01’ between them. Thus, for x = 1010 and y = 0110 we have
〈x, y〉 = 11001100010110. A computer can determine where x ‘ends’ and y
‘begins’ by finding the first string of zeros with odd length. Thus we use
〈· 〉 as the notation to denote a standard recursive bijective pairing func-
tion. The notation for concatenation of more than two strings is defined
recursively by 〈x, y, z〉 = 〈x, 〈y, z〉〉.
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For some countable set of objects, S, we can assume some standard enu-
meration where x ∈ S is associated with a natural number n(x). We want
to know if there exists another specification for x more space efficient than
n. That is, a method f is a partial function over naturals where n(x) = f (p).
It is convenient to think of p as a program and f as the programming lan-
guage, compiler, and computer. We denote length of a program by l(p).

We say:
C f (x) = min{l(p) : f (p) = n(x)}

where p is the shortest program that generates x (with no input) with re-
spect to some partial function f . We call C f (x) the unconditional Kolmogorov
complexity with respect f . If no such p exists, we say C f (x) = ∞.

If there exists a constant c such that for all x ∈ S, C f (x) ≤ Cg(x) + c,
we say method f minorizes method g, and f and g are equivalent if they
minorize each other. Each x ∈ S might rely on any of the distinct methods
f1, f2, . . . , fr for a minimal Kolmogorov complexity. By reserving the first
log r bits of p to indicate by enumeration of the functions which fi is used
for producing x from p we have a method f minorized by all fi where
c ≈ log r.

1.1.2 Definition. Let C be a subclass of the partial functions over N+. A
function f is universal (or additively optimal) for C if it belongs to C and if
for every function g ∈ C there is a constant c f ,g s.t. C f (x) ≤ Cg(x) + c f ,g for
all x. Here c f ,g depends on f and g but not x(Li and Vitányi 1997, 95).

Note that the above definition is given for single variable functions. We
can extend the definition to encompass functions of multiple arguments by
setting f (x1, x2, . . . , xk) = f (〈x1, x2, . . . , xk〉).

We say additively optimal methods f , g of specifying objects in S are
equivalent in the following way:∣∣C f (x)− Cg(x)

∣∣ ≤ c f ,g

for all x, where c f ,g is a constant depending only on f and g.
There is no universal partial function f for all programs p. However,

there does exist a universal element in the class of partial recursive func-
tions. This is a modest and rather natural restriction of our descriptions, as
there would be little use in attempting to define the information content of
the non-existent output of programs which do not halt. We thus consider
the class of description methods {φ : φ is a partial recursive function}. We
use φ0 to denote the universal description method, which gives us the fol-
lowing definition (Li and Vitányi 1997, 95-97).
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1.1.3 Definition. Let x, y, p be natural numbers. Any partial recursive func-
tion φ, together with program p and input y, such that φ(〈y, p〉) = x, is a
description of x. The complexity Cφ of x conditional to y is defined by

Cφ(x|y) = min{l(p) : φ(〈y, p〉) = x}

and Cφ(x|y) = ∞ if there is no such p. We call p a program to compute x
by φ, given y.

‘
By selecting a fixed φ0 as our reference function for C, we can drop the

subscript to denote the conditional Kolmogorov complexity where C(x|y) =
Cφ0(x|y). Note the unconditional Kolmogorov complexity C(x) = C(x|ε).

1.2 The Invariance Theorem

Finally, we have sufficiently well defined the ideas and most of the nota-
tion necessary to see some powerful theorems and interesting results. The
Invariance Theorem, along with the Incompressibility Theorem and a triv-
ial upper bound given in the next section, though short, elegant and even
simple to prove, form the basis for the whole study of Kolmogorov Com-
plexity, and are sufficient for many important proofs.

1.2.1 Lemma. There is a universal partial recursive function (Li and Vitányi
1997, 96).

Proof. Let φ0 be the function computed by a universal Turing machine U.
Machine U expects input of the format

〈n, p〉 = 11 . . . 1︸ ︷︷ ︸
l(n) times

0np.

The interpretation is that the total program 〈n, p〉 is a two-part code of
which the first part consists of a self-delimiting encoding of Tn and the sec-
ond part is the literally rendered program p. To encode Tn, it is suffices to
provide U with n, where Tn is the nth machine in the standard enumeration
of Turing machines. This way U can parse the binary input into the Tn-part
and the p-part, and subsequently simulate the computation of Tn started
with program p as its input. What happens if U gets the program “0p”? By
convention we can set U = T0 and therefore U(0p) = U(p). Altogether, if
Tn computes partial recursive function φn, then

Cφ0(x) ≤ Cφn(x) + cφn ,
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where cφn can be set to 2l(n) + 1.

This result from computability theory generalizes to the Invariance The-
orem, which considers the complexity of an object x facilitated by an al-
ready specified object y. Recall that Kolmogorov complexity for arbitrarily
many conditionals can be defined by recursive use of the bijective pairing
function.

1.2.1 The Invariance Theorem. There is a universal partial recursive function
φ0 for the class of partial recursive functions to compute x given y. Formally this
says that Cφ0(x|y) ≤ Cφ(x|y) + cφ for all partial recursive functions φ and all x
and y, where cφ is a constant depending on φ but not x or y (Li and Vitányi 1997,
97).

Proof. Let φ0 be the function computed by a universal Turing machine U
such that U started on input 〈y, 〈n, p〉〉 simulates Tn on input 〈y, p〉. That is,
if Tn computes partial recursive function φn, then φ0(〈y, 〈n, p〉〉) = φn(〈y, p〉).
Hence, for all n,

Cφ0(x|y) ≤ Cφn(x|y) + cφn .

By the proposed encoding of Tn, we have that cφn ≤ 2l(n) + 1.

Notice that the universal description method may not give the shortest
description for all x, but no other method gives a shorter description for
more than finitely many cases. We also note a trivial upper bound given by
the following theorems (but omit the proofs).

1.2.2 Theorem. There is a constant c such that for all x and y

C(x) ≤ l(x) + c and C(x|y) ≤ C(x) + c.

(Li and Vitányi 1997, 100)

In the case of objects conditionally belonging to finite sets, we can offer
an improved upper bound with the following theorem and then explore
some simple examples of how the Invariance theorem can be used.

1.2.3 Theorem. Let A ⊂ N×N be recursively enumerable, and y ∈ N. Suppose
Y = {x : (x, y) ∈ A} is finite. Then, for some constant c depending only on A,
for all x ∈ Y, we have C(x|y) ≤ l(|Y|) + c (Li and Vitányi 1997, 103).

1.2.1 Example. Show that C(0n|n) ≤ c, where c is a constant independent
of n.
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Proof. Given n, we can construct a Turing machine M which outputs 0n

regardless of input. By a canonical enumeration of turing machines, M =
Tm, so U(m) = 0n where m is the self delimiting string 1l(m)0m giving us
C(0n|n) = 2 log m + 1 ≤ c.

1.2.2 Example. Show that there are infinite binary sequences ω such that
the length of the shortest program for reference turing machine U to com-
pute the consecutive digits of ω one after another can be significantly shorter
than the length of the shortest program to compute an initial n-length seg-
ment ω1:n of ω, for any large enough n.

Proof. Given program p such that U(p) = π∗, we have C(π) = l(p). We can
define infinitely many distinct infinite sequences by the function π(m) =
πm+1πm+2πm+3 . . . where πi denotes the ith character of the sequence π.
From p, we can construct a Turing machine M such that M(m) = π(m) as
follows. On input m, M runs U(p) dovetailed with code to overwrite the
left most non-blank character on the tape once that character is no longer
necessary for further computation, and does so until the first m characters
of the sequence have been overwritten, after which the output from U(p) is
unaltered. For some canonically enumerated turing machine, M = Tk, thus
U(km) = π(m), giving us a countably infinite set of programs, each of finite
length but generating a distinct infinite sequence. We have C(π(m)) ≤
2 log k + log m + 1.

Unlike the machines generating infinite sequences, a machine V that
encodes the initial n-length segment π(m)1:n of π(m) must cease writing
characters to the input tape after the nth character, or at least delimit the ini-
tial n-length segment from any other characters written. Hence, if V(pn) =
pi(m)1:n the self-delimiting description 1l(n)0n must appear in pn. So for
n � 2l(k) + l(m), C(π(m)1:n) > C(π(m)).

*We treat π as the sequence corresponding to its binary expansion (with
decimal point omitted), rather than a real number. We also assume that the
number of digits of the sequence written to the tape is proportional to the
length of time the program has run, and that after some constant interval
following a character being written to the tape, it is no longer necessary for
computation of latter characters.
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1.3 The Incompressibility Theorem

Now that we have established that a method exists for describing all but
a finite number of x in S with maximal efficiency, what can we infer about
those descriptions? Well, for each n there are 2n binary strings of length n,
but only 2n − 1 descriptions shorter than n. Thus there exists at least one
binary string x of length n with C(x) ≥ n. We then say x is incompressible.

1.3.1 Definition. For each constant c we say a string x is c-incompressible if
C(x) ≥ l(x)− c (Li and Vitányi 1997, 109).

1.3.1 The Incompressibility Theorem. Let c ∈ N+. For each fixed y, every
finite set A of cardinality m has at least m(1− 2−c) + 1 elements x with C(x|y) ≥
log m− c (Li and Vitányi 1997, 109).

Proof. The number of programs of length less than log m− c is

log m−c−1

∑
i=0

2i = 2log m−c − 1

Hence, there are at least m − 2
c + 1 elements in A that have no program of

length less than log m− c.

What we see by this theorem is the fairly surprising result that of all
binary strings of length n, at least half of them can only be compressed by
no more than one digit. Another quarter or more of the strings can only
be compressed by at most 2 digits, and so on. This itself has some rather
counter intuitive results.

For instance, if x is an incompressible string, are all substrings in x also
incompressible? Intuitively, the ability to compress a substring would seem
to give us a means to compress x. We can place a lower bound on substring
v given by C(v) ≥ l(v)−O(log n) but cannot prove C(v) ≥ l(v)−O(1). If
the latter were true, x could contain no long regular subsequences since, for
example, a sequence of k zeroes has complexity O(log k). But for strings of
length n, only a small subset have no regular substrings, which gives us an
easy way to describe them. Thus, for x to be incompressible, it must have
compressible substrings (Li and Vitányi 1997, 110).

Suppose that we know that x is an element of A, a subset of the nat-
ural numbers. We consider the complexity C(x|A). When A has finitely
many elements, it is fairly easily shown (recall the earlier discussion of In-
formation theory and Theorem 1.2.3) that C(x|A) ≤ 2l(|A|) + c where c is
a constant possibly dependent on A, but independent of x. On the other
hand, C(x|N) = C(x), since x is assumed to be a natural number.
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1.3.2 Definition. The randomness deficiency of x relative to A is defined as
δ(x|A) = l(|A|) − C(x|A). It follows that δ(x|A) ≥ −c for some fixed
constant c independent of x (Li and Vitányi 1997, 113).

1.3.2 Theorem. (The above discussion is assumed.) Then, |{x : δ(x|a) ≥ k}| ≤
|A|/2k−1 (Li and Vitányi 1997, 113).

Proof. There are fewer than 2l+1 programs of length less than or equal to
l.

These seemingly simple results prove surprisingly powerful. The In-
compressibility theorem gives rise to the Incompressibility Method, an ele-
gant and versatile proof technique we will use in sequel chapters. Here we
show some more immediate results.

1.3.3 Example. We say x is an n-string if x has length n and x = n00 . . . 0.

1. Show that there is a constant c such that for all n-strings x we have
C(x|n) ≤ c. (Where c depends on the reference Turing machine U
used to define C.)

Proof. We can build a Turing machine M which, given n, finds the
nth binary string given by the lexicographic indexing of all binary
strings, prints the string followed by n− l(n) zeros, and halts. For our
canonical enumeration of Turing machines, M = Tm and C(x|n) =
2l(m) + 1 ≤ c.

2. Show there is a constant c such that C(x|n) ≤ c for all x in the form of
the n-length prefix of nn . . . n.

Proof. We can build a Turing machine M which, given n, finds s, the
nth binary string given by the lexicographic indexing of all binary
strings, and prints the first n characters of the regular expression s∗

and halts. For our canonical enumeration of Turing machines, M =
Tm and C(x|n) = 2l(m) + 1 ≤ c, where c is dependent only on the
reference Turing machine U.

3. Let c be as in Item (1). Consider any string x of length n with C(x|n) � c.
Let y = x00 . . . 0 of length x. Prove that no matter how high its
C(x|l(x)) complexity, for each string x, there exists string y with com-
plexity C(y|x) ≤ c and C(y|l(y)) < c.
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Proof. Given x, we can construct a Turing machine V that finds the
index of the string that matches x given by the lexicographic index-
ing of all binary strings, runs machine M from Item (a) on the result,
prints M’s output, and halts. Thus, given x, our machine’s output is
y. Since V = Tk, some Turing machine in our canonical enumeration,
U(k) = y and C(y|x) = 2l(k) + 1 ≤ cv. But we know from Item (1)
that cv is independent of x and y. Thus cv = c, a constant such that
each string x, no matter how high its C(x|l(x)) complexity, can be
extended to a string y with C(y|l(y)) < c.

1.3.4 Example. Prove that for each binary string x of length n there is a y
equal to x but for one bit such that C(y|n) ≤ n− log n + O(1).

Proof. For a binary string x of length n, let {y1, y2, . . . , yn} be the set of
strings where yi is equal to x except at the ith bit. At least one yi is an
element of a Hamming code of n-length strings.

Since the set of binary strings of length n constituting a Hamming code
is recursive, there is a Turing machine H which will list them. We can enu-
merate the 2n/n elements with lg

(
2n

n

)
= n − lg n bits. Thus given n, we

can construct a Turing machine M which computes output yi on input i by
running H and returning the ith element. Thus, CM(yi|n) = l(i) ≤ n− lg n.
By Theorem 1.2.1, C(y|n) ≤ n− log n + O(1).





Chapter 2

Graph Complexity and the
Incompressibility Method

Canonically, a graph G = (V, E) with n vertices labeled V = {1, 2, . . . , n} is
encoded as a n(n− 1)/2 length string E(G) where each bit corresponds lex-
icographically to a vertex pair. Thus E(G) = e1,2e1,3 . . . e1,ne2,3e2,4 . . . en−1,n
where eu,v = 1 if (u, v) ∈ E and eu,v = 0 otherwise. Thus by vertex relabel-
ing we have n! distinct strings, each encoding some member of an equiva-
lence class of isomorphic graphs. However, the equivalence class has fewer
than n! members if there are automorphisms: multiple vertex labelings that
produce the same string. Formally, we say an automorphism of G = (V, E)
is a permutation π of V such that (π(u), π(v)) ∈ E if and only if (u, v) ∈ E
(Li and Vitányi 1997, 402). As a trivial example, consider the empty graph
on n vertices: all labelings result in the same graph.

Often we encounter problems on unlabeled graphs, such as VERTEX

COVER, that depend only on the graph’s structure. Particularly in the case
of the decision problem, any label information is irrelevant to the solution,
but labels are necessary if we are to use our encoding scheme. (For clarity
we will generally denote unlabeled graphs with Γ and labeled graphs with
G. In some cases, however, we may indicate a graph Γ has been given label
permutation π by Γπ.) The label permutation can be arbitrarily selected,
but it would be gratifying to have our string reflect the graph’s complexity
in some intuitive way. Kolmogorov Complexity is an attractive metric, as it
would seemingly give us a measure based on the graph’s compressibility.
Unfortunately, the compressibility of the string E(G) is clearly very depen-
dent on our label permutation. Consider the labeled graphs G1 and G2 (Fig.
1) isomorphic to an unlabeled graph Γ.
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Figure 2.1: Isomorphic graphs.

The respective labelings give us E(G1) = 1010101010101010101010101010 =
(10)14 and E(G2) = 1101100101100100100001110101. (Note that we are us-
ing operations on regular expressions, not natural numbers.) While E(G2)
may or may not be compressible, E(G1) is clearly very compressible and in
all likelihood the most compressible string in the equivalence class Γ pro-
duces. (Admittedly, our chosen example is contrived. Most graph will be
far less compressible.)

We would like to have the complexity of Γ, which we will abusively
denote by C(Γ), less than or equal to C(E(G1)) + O(1). First, though, we
will consider some known properties of the complexity of labeled graphs.

2.1 Complexity of Labeled Graphs

Consider a class of finite objects (O) parametrized with n, such as n-node
graphs or strings of length n.

2.1.1 Lemma. Let P be a property holding for objects O ∈ O with randomness
deficiency δ(n). Then P holds with probability at least 1 − 1/2δ(n)−1 (Li and
Vitányi 1997, 388).

Proof. There are only ∑
log |O|−δ(n)
i=0 2i programs of length less than or equal

to log |O| − δ(n) and there are |O| objects.

2.1.1 Corollary. A fraction of at least 1 − 1/2δ(n) of all labeled graphs G on n
vertices have a randomness deficiency no greater than δ(n) (or is δ(n)-random)
when C(E(G)|n, δ) ≥ n(n− 1)/2− δ(n) (Li and Vitányi 1997, 397).
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From these results, we can find asymptotic bounds on the complexity
of unlabeled graphs. First, however, we must introduce a new proof tech-
nique.

2.2 The Incompressibility Method

The Incompressibility Theorem, introduced in the previous chapter, gives
us the powerful and elegant proof technique called the incompressibility
method which has applications in many fields. For example, it is known
that any proof using a pumping lemma from formal language theory can
be proven using the more intuitive incompressibility method (See Appen-
dix A for examples).

The incompressibility method is also valuable in combinatorics and graph
theory. Many proofs that rely on the probabalistic method can be proved
using the incompressibility method, often yielding a more concise and in-
tuitive proof. The two methods bear some resemblance, as they are both
non-constructive. However, where the probabilistic method shows that
some element with a particular property must exist, the incompressibil-
ity method shows that most elements must have the property. The methods
are best explained by example, so we begin by considering the celebrated
result from Ramsey Theory, proved by Paul Erdös in 1947, that first popu-
larized the probabilistic method.

Ramsey Theory is an area of discrete mathematics concerned with com-
binatorial objects (such as graphs) in which particular properties must oc-
cur once the scale of the object grows beyond a certain threshold. The clas-
sical problem in Ramsey theory is the party problem, which asks the smallest
number of people R(j, k) that must be in a room to guarantee that at least j
know each other or at least k do not know each other. Here, R(j, k) is called
the Ramsey Number. In graph theoretic terms, R(j, k) is the smallest num-
ber n such that every graph on n vertices contains a clique of size j or an
independent set of size k.

The following is a technical lemma necessary for the probabilistic proof
of the subsequent theorem. The proof of lemma is not particularly instruc-
tive and is thus omitted. (See Propositions 14.1.5 and 14.1.6 in Combinatorial
Mathematics by Douglas West for the proof.)

2.2.1 Lemma. For k ∈ N,
(n

k

)
≤

( ne
k

)k (West 2006, 710).

2.2.1 Theorem. R(k, k) ≥ k2k/2
(

1
e
√

2
− o(1)

)
(West 2006, 711).
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Proof. (Probabistic method.) It is equivalent to show that any red-blue color-
ing of a Kn contains a red Kk or a blue Kk, where we think of the red edges
as corresponding to edges in our graph, and blue edges to those not in the
graph.

We randomly color the edges of the Kn by
(n

2

)
coin flips, with HEADS=RED

and TAILS=BLUE, thus creating the probability space

P(ei,j = RED) = P(ei,j = BLUE) =
1
2

.

Let S be the set of edges of the graph induced by a k-subset of the n
vertices. Let AS be the event that the edges of S are monochromatic. Thus,

P(AS) = 2 · 2−(k
2) = 21−(k

2).

Consider the disjunction
∨

AS over all possible S. For n very large, P (
∨

AS)
would be very difficult to calculate, but we need only to bound this quan-
tity. Thus,

P
(∨

AS

)
≤ ∑

S⊆[n]
P(AS) =

(
n
k

)
21−(k

2)

since there are
(n

k

)
summands. If

(n
k

)
21−(k

2) < 1, then P
(∧

AS
)

> 0, that is,
the event that there is a monochromatic Kk has positive probability. In other
words, we are guaranteed to have a monochromatic Kk when the following
condition is met: (

n
k

)
< 2

k(k−1)
2 −1.

By Lemma 2.2.1, we have that
(n

k

)
< (ne/k)k. Thus it is sufficient to

have that ne/k ≤ 2(k−1)/2, or equivalently n ≤ k2k/2

e
√

2
, giving us the desired

result.

2.2.1 Definition. We say a labeled graph G on vertex set [n] is an incompress-
ible graph if the canonical binary string encoding E(G) has C(E(G)|n) ≥
n(n− 1)/2.

2.2.2 Lemma. Let G be an incompressible graph, and let kG be the size of the
largest clique (or independent set) in G.

kG ≤ 1 + b2 log nc.
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Proof. (Incompressibility method.) Choose an incompressible graph G such
that

C(E(G)|n, p) ≥ n(n− 1)/2 (2.1)

where p is a program that on input n and E′(G) (a compression of E(G)
explained below) outputs E(G).

Without loss of generality, we can assume the largest clique in G is at
least as large as the largest independent set. (We can append a single bit
at the end of our string to indicate whether we are encoding G or the com-
plement of G. The cost of the additional bit drops during calculation as an
O(n−1) term.) Let S be the set of vertices of the largest clique in G. We
attempt to compress E(G) to E′(G) as follows:

1. We add as a prefix to E(G) the list of vertices in S, with each vertex
using dlog ne bits, adding kGdlog ne bits.

2. We delete all the redundant bits in the E(G) part which represent
edges between vertices in S, saving kG(kG − 1)/2 bits.

Thus,

l(E′(G)) = l(E(G))− kG

2
(kG − 1− 2dlog ne). (2.2)

Given n and the program p, we can reconstruct E(G) from E′(G). Hence,

C(E(G)|n, p) ≤ l(E′(G)). (2.3)

Equations (2.1), (2.2), and (2.3) hold only when kG ≤ 1 + b2 log nc.

Theorem 2.2.1 comes as a corollary to this lemma.

Proof. (Incompressibility method.) To describe a clique (or independent set)
of size k in a graph G on n = R(k, k) edges, we need log

(R(k,k)
k

)
bits. By

simple algebra, we find log
(R(k,k)

k

)
≤ k log R(k, k)− log k! bits. Choose G to

be incompressible. Then, k log R(k, k)− log k! ≥ k(k− 1)/2, since otherwise
we can compress G as demonstrated in the proof of Lemma 2.2.2. We use

Stirling’s approximation k! ≈
(

k
e

)k √
2πk and algebraic manipulation to

isolate R(k, k) for the desired result.

Remark. Here will be some exposition on the connection between incom-
pressible and high probability objects and when one proof technique is
likely to be more advantageous than the other. Will mention that this sug-
gests a connection between probability and complexity, pointing toward
the Coding Theorem introduced in Chapter 3.
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2.3 Complexity of Unlabeled Graphs

Remark. The following lemma is my first original result. It relies on the In-
compressibility method, a proof technique which takes the following form:
a property holds for c-incompressible strings x, where l(x) � c; most
strings are c-incompressible; thus the property holds for most strings.

We let 〈Γπ〉 denote the maximally compressed string encoded from Γ
under label permutation π and 〈Γ0〉 denote Γ encoded and compressed un-
der the label permutation which produces the shortest string encoding.

2.3.1 Lemma. There exist unlabeled graphs Γ such that C(Γ|n) ≥ n(n− 1)/2−
O(n log n).

Proof. Consider a graph Γ on n vertices. Labeled under π, we have l(E(Γπ)) =
n(n − 1)/2 and C(E(Gπ)|n) = n(n − 1)/2 − δ(n). We let π be a label
permutation resulting in the string encoding with maximal randomness
deficiency δ(n). Recall we denote the maximally compressed string by
〈Γπ〉 = 〈G0〉.

There are only n! label permutations on n vertices, which we can enu-
merate using O(n log n) bits. By a self-delimiting concatenation of the com-
pressed string 〈G0〉 with the enumeration of a desired permutation ρ, we
have a compression mechanism for any labeled graph G = Γρ with C(E(G)|n) ≤
n(n − 1)/2 − δ(n) + O(n log n). However, most strings are Kolmogorov-
random, thus we know that for most graphs G we have an incompressible
string, that is C(E(G)|n) ≥ n(n − 1)/2 + O(1). So for all but very few G,
we have that δ(n) ∈ O(n log n).

In other words, most graphs, even without labels, cannot be encoded
using less than 2n(n−1) −O(n log n) bits. We would like to show that this
is a tight bound. The following theorem will be necessary. The first proof
of the theorem to use Kolmogorov complexity was found by Buhrman, Li,
and Vitányi (Buhrman et al. 1999b, 596-597). Our proof is modified only
slightly.

Remark. I developed a flawed proof of this theorem which followed similar
reasoning before discovering it had already been proven. (I failed to show
a proper bound on the number of automorphisms.) Upon presenting the
failed proof, Prof. Li directed me to the paper where this proof was first
published. I have tried to retain some of the original arguments I used, and
as a result, the final upper bound on unlabeled graph compressibility is
slightly less precise than in the paper. However, this gave better symmetry
between the upper and lower bounds.
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2.3.1 Theorem. Let gn denote the number of unlabeled graphs on n vertices. Then,

gn ≈
2n(n−1)/2

n!
.

Proof. By inspection, it is easy to see gn ≥ 2n(n−1)/2/n!. We can encode a
graph Γ on n vertices labeled under permutation π with n(n − 1)/2 bits.
There are 2n(n−1)/2 strings of this length, but only n! ≈

√
2πn(n/e)n label

permutations. However, because of automorphisms, there are graphs with
fewer than n! distinct string encodings. Thus, there are strictly more than
2n(n−1)/2/n! equivalence classes.

Let Gn denote the set of all undirected graphs on vertices V = {0, 1, . . . , n−
1}. We partition the set of graphs by Gn = G0

n ∪ G1
n ∪ . . . ∪ Gn

n where Gm
n is

the set of all graphs for which each of m ≤ n vertices are mapped by some
automorphism to a vertex other than itself. Thus, G i

n ∩ G
j
n = ∅ for i 6= j.

For G ∈ Gn, let Aut(G) denote the automorphism class of G and G be the
isomorphism class of G.

(1) For G ∈ Gm
n , |Aut(G)| ≤ nm = 2m lg n since |Aut(G)| ≤

(n
m

)
m! ≤ nm.

Consider each graph G ∈ Gn to have probability P(G) = 2−n(n−1)/2.

(2) By Corollary 2.1.1, if G ∈ Gm
n and C(G|n, m) ≥

(n
2

)
− δ(n, m), then

δ(n, m) ≥ m
( n

2 −
3m
8 − log n

)
.

Let π ∈ Aut(G) move m vertices. Suppose π is the product of k
disjoint cycles of sizes c1, c2, . . . , ck. We can describe π with m log n
bits. For instance, if π moves vertices i1 < v2 < . . . < vm, then we
can list the sequence π(i1), . . . π(im). By sorting the latter sequence,
we can obtain π−1, and thus π.

We select the least numbered vertex from each of the k cycles. For
each of the m − k vertices on the cycles, we can delete the n − m bits
encoding the edges connecting them to static vertices and the m − k
half-bits encoding edges to other cycle vertices. Thus we delete a total
of

k

∑
i=1

(ci − 1)
(

n−m +
m− k

2

)
= (m− k)

(
n− m + k

2

)
bits. Since k ≤ m/2, we have the desired δ(n, m). The difference of
bits added and bits deleted is m

2 (n− 3m
4 )−m log n, as claimed.

Continuing the proof of the theorem:

gn = ∑
G∈Gn

1
|G|

= ∑
G∈Gn

|Aut(G)|
n!

=
2n(n−1)/2

n!
En,
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where we define En to be ∑G∈Gm
n

P(G)|Aut(G)| is the expected size of the
automorphism group of a graph on n vertices. Since En ≥ 1, we have the
lower bound for gn. We note that G1

n = 0 and use (1) and (2) to obtain the
upper bound as follows:

En = ∑n
m=0 P(G ∈ Gm

n ) ·AVEG∈Gm
n
{|Aut(G)|}

≤ 1 +
n
∑

m=2
2−m( n

2−
3m
8 −2 log n)

≤ 1 + 2−(n−4 log n−2),

which proves the theorem: 2n(n−1)/2

n! ≤ gn ≤ 2n(n−1)/2

n! (1 + 2−(n−4 log n−2)).

A corollary of this surprising theorem is our desired result, that our
bound on the compressibility of Kolmogorov random graphs is tight.

2.3.1 Corollary. For an unlabeled graph Γ on n vertices,

C(Γ|n) ≤ n(n− 1)/2−O(n log n).

Proof. There are gn ≈ 2n(n−1)/2

n! distinct undirected, unlabeled graphs on n
vertices. We can enumerate them with n(n− 1)/2−O(n log n) bits.

Remark. Here will be a segue leading into discussion of the coding theorem.
(Recap discussion at end of section 2.2.)



Chapter 3

The Coding Theorem

The goal of this chapter is to prove the Coding theorem, which Li and
Vitányi describe as the surprising result that three “quite different formal-
izations of concepts turn out to be equivalent . . . [suggesting] an inherent
relevance that transcends the realm of pure mathematical abstraction” (Li
and Vitányi 1997, 253). But in order to understand the Coding theorem, it
is necessary to lay considerable groundwork.

3.1 Prefix Complexity

Here we will briefly introduce prefix Kolmogorov complexity, which is de-
fined slightly differently than the plain Kolmogorov complexity we have
been using and has some advantageous properties (but some weaknesses
as well). The difference in the theory lies primarily in the set of functions
we use as the basis of our enumeration of Turing machines.

3.1.1 Definition. A partial recursive prefix function φ : {0, 1}∗ → N is a partial
recursive function such that if φ(p) exists and φ(q) exists, then p is not a
proper prefix of q (Li and Vitányi 1997, 192).

Recall our enumeration of all partial recursive functions φ1, φ2, . . ., which
clearly contains all partial recursive prefix functions. Let T be a Turing ma-
chine from our standard enumeration of Turing machines that computes a
partial recursive function φ. If ψ = φ is a partial recursive prefix function,
we define T′ that computes ψ using T by the algorithm described below.

3.1.2 Definition. A halting input, for T′ is an initial segment x1x2 . . . xk of a
(potentially one-way infinite) binary string x such that T halts after reading
xk but before reading xk+1 (Li and Vitányi 1997, 192-193).
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Algorithm:

① SET p := ε.

② Dovetail all computations of T computing φ(pq), for q ∈ {0, 1}∗.
IF φ(pq) < ∞ is the first halting computation, THEN GO TO ③.

③ IF q = ε, THEN output φ(p) and halt.
ELSE SET x := next input bit; SET p := px; GO TO ②.

By This construction, we have an effective enumeration of prefix ma-
chines T′

1, T′
2, . . . enumerating all, and only, the partial recursive prefix func-

tions ψ1, ψ2, . . . . This allows us to prove an invariance theorem for prefix
complexity.

Recall from Definition 1.1.2 that a function is universal if it is additively
optimal for a class of functions.

3.1.1 Theorem. There exists a universal partial recursive prefix function ψ0 such
that for any partial recursive prefix function ψ, there is a constant cψ such that
Cψ0(x|y) ≤ Cψ(x|y) + cψ, for all x, y ∈ N (Li and Vitányi 1997, 193).

The proof is analogous to that of Theorem 1.2.1.
For each pair of universal partial recursive prefix functions ψ and ψ′,

|Cψ(x|y) − Cψ′(x|y)| ≤ cψ,ψ′ , for all x, y ∈ N and some constant cψ,ψ′ . We
fix one universal partial recursive prefix function ψ0 as and universal prefix
machine U such that U(〈y, 〈n, p〉〉) = T′

n(y, p) as reference and define the
prefix complexity of x conditional to y as K(x|y) = Cψ0(x|y) for all x, y ∈ N

Analogously, K(x) = K(x|ε).

Remark. Put some exposition about the advantages and disadvantages of
prefix complexity here.

3.2 Real-valued Functions

Recall Church’s Thesis, that the class of algorithmically computable numer-
ical functions coincides with the class of partial recursive functions. We
consider the enumeration of partial recursive functions: φ1, φ2, . . . where φi
is computed by Turing machine Ti in the canonical enumeration of Turing
machines. Note that because there are many Turing machines that compute
the same function, there are many φi = φj where i 6= j. Frequently, when
speaking in the context of this standard enumeration (such as in the diag-
onalization proof of the lemma below), we will refer to a partial recursive
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function ψ. It is important not to confuse the function ψ with a name for ψ,
where a name might be an algorithm that computes ψ, a Turing machine
that implements the algorithm, or one of potentially countably infinitely
many integers i where i is an index for ψ if ψ = φi.

3.2.1 Lemma. There is no total recursive function g such that for all x, y, we have
g(x, y) = 1 if φx(y) is defined, and g(x, y) = 0 otherwise (Li and Vitányi 1997,
34).

Proof. Suppose, by way of contradiction, that such a function g exists. Con-
sider a partial recursive function ψ where ψ(x) = 1 if g(x, x) = 0 and is un-
defined otherwise. Let y be an index for ψ in our standard enumeration of
partial recursive functions. Then, φy(y) is defined if and only if g(y, y) = 0,
contrary to the given definition of g.

Now, consider recursive functions of the form g(〈x, k〉) = 〈p, q〉. We can
write g(x, k) = p/q and in this way interpret g as a rational-valued func-
tion, though it is in fact a proper recursive function over the integers. This
provides a means of extending our definitions of recursive and (recursively)
enumerable to real-valued functions.

3.2.1 Definition. A real-valued function f is enumerable if there exists a total
recursive function g(x, k), nondecreasing in k, with f (x) = lim

k→∞
g(x, k). We

say f is co-enumerable if − f is enumerable. The real-valued function f is
recursive if and only if there is a total recursive function g(x, k) such that
| f (x)− g(x, k)| < 1/k (Li and Vitányi 1997, 35).

It may seem strange to use “enumerable” and “recursive” to describe
real valued functions, and the definition for co-enumerable may even seem
frivolous. Classically, the terms are used to describe countable sets that are
recognizable or decidable by a Turing machine, and clearly, we could not
enumerate the values of most real valued functions. However, consider
that a function f : N → R is enumerable, as we have defined it, if the set
{(x, r) : r ≤ f (x), r ∈ Q} is enumerable in the classical sense.

The value of these definitions is that real-valued functions can be classi-
fied by their approximability by recursive functions over the natural num-
bers. An enumerable real-valued function can be “recursively enumerated
from above,” that is it can be approximated from one side, but possibly
without knowing how precisely. True to the classical definition, real-valued
functions that are enumerable and co-enumerable are recursive, and can be
approximated (eventually) to any degree of precision. It may not be obvi-
ous that there are enumerable functions that are not recursive. As a trivial
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example, consider the set K0 = {〈x, y〉 : φx(y) ≤ ∞} (known as the halt-
ing set). Clearly K is enumerable, but Lemma 3.2.1 could be restated as
“The halting set is not recursive,” and the same proof would suffice. The
functions C(x) and K(x), it turns out, are co-enumerable functions but not
recursive, so −C(x) and −K(x) would be non-trivial examples.

3.2.2 Definition. An enumerable function f is universal if there is an effec-
tive enumeration f1, f2, . . . of enumerable functions such that f (〈i, x〉) =
fi(x), for all i, x ∈ N, or fi(x) = ∞ if no maximum exists (Li and Vitányi
1997, 241).

3.2.2 Lemma. There is a universal enumerable function (Li and Vitányi 1997,
241).

Proof. Let φ1, φ2, . . . be the standard enumeration of partial recursive func-
tions. Define for all i the function fi(x) = max

k∈N
{φi(x, k)}.

(This proof is not terribly interesting. I’ll come back to it.)

The same argument holds for co-enumerable functions; however, there
is no universal recursive function.

Define f (x, y) = f (〈x, y〉).

3.2.3 Definition. If f (x, y) ≥ C(x|y) for all x and y, we say f (x, y) is a
majorant of C(x|y) (Li and Vitányi 1997, 241).

All co-enumerable majorants have the following property.

3.2.3 Lemma. Let f (x, y) be co-enumerable. For all x, y we have C(x|y) ≤
f (x, y) + O(1) if and only if |{x : f (x, y) ≤ m}| = O(2m), for all y and m
(Li and Vitányi 1997, 241).

Proof. (This result is interesting, but not necessary for the Coding theorem.
If time permits, I will explicate the proof.)

3.3 Probability and Continuous Sample Spaces

In this and subsequent sections we extend some of the ideas of probability
and complexity developed on the natural numbers to real valued functions.
Recall Kolmogorov’s Axioms of Probability:

1. If A and B are events, then so is the intersection A∩ B, the union A∪ B,
and the difference A− B.
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2. The sample space S is an event. We call S the certain event. The empty
set ∅ is an event. We call ∅ the impossible event.

3. To each event E is assigned a non-negative real number P(E) that we
call the probability of event E.

4. P(S) = 1

5. If A and B are disjoint, then P(A ∪ B) = P(A) + P(B).

6. For a decreasing sequence A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · of events with⋂
n An = ∅ we have lim

n→∞
P(An) = 0.

Remark. The appearance of Kolmogorov’s name above is incidental. Andrei
Kolmogorov was a prolific mathematician (and primarily a probabilist),
and the above axioms are simply standard axioms of probability and not
in some way specialized for complexity theory.

We want to apply the notion of probability for finite sample spaces, say
the outcomes of sequences of fair coin tosses, to continuous sample spaces,
say S = {0, 1}∞. However, we have no proper definition for the probability
of individual elements in S, since the likelihood of selecting an arbitrary
element is necessarily 0 for all but finitely many elements. Thus, we are
limited to defining probability for subsets of S. We begin by considering
sets that are easily described and then can use union, intersection, comple-
ment, and countable union to define many more (though not all) subsets of
S.

3.3.1 Definition. Using the binary expansion of real numbers ω on the half
open interval [0, 1), a cylinder Γx is the set of all real numbers starting with
0.x where x is a finite binary string, that is Γx = {xω : x ∈ {0, 1}n, ω ∈
{0, 1}∞}. Where a real number has two binary expansions, such as 1

2 , which
can be represented as 0.10000 . . . or 0.01111 . . ., we use the representation
with infinitely many zeros (Li and Vitányi 1997, 21).

There are countably many cylinders on a continuous interval. Each
cylinder is an event. Closure of all events under pairwise union, intersec-
tion, and difference forms the set field F . With probability distribution P,
we have the probability field (F , P). Analogously, we can have probabil-
ity measure (F , µ). We denote the uniform distribution (Lebesgue measure)
by λ where λ(Γy) = 2−l(y). An infinite probability field closed under all
countable unions

⋃
An of disjoint events An we call a Borel field.
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Here we will introduce a slightly different notation than that classically
used in measure theory. We wish to develop the ideas over the set of infinite
binary sequences, rather than decimal expansion of real numbers. With
basis B = {0, 1}, we have B∗ and B∞ analogous to N and R, respectively.
A cylinder set Γx ⊆ S is defined by Γx = {ω : ω1:l(x) = x, x ∈ B}. Let
G = {Γx : x ∈ B∗} be the set of all cylinders in S.

3.3.2 Definition. A function µ : G → R defines a probability measure if

1. µ(Γε) = 1

2. µ(Γx) = ∑
b∈B

µ(Γxb).

(Li and Vitányi 1997, 243-244)

Conventionally, we abusively let µ(x) denote µ(Γx).

3.3.3 Definition. A semimeasure µ is a defective measure with

1. µ(ε) ≤ 1

2. µ(x) ≥ ∑
b∈B

µ(xb).

(Li and Vitányi 1997, 244)

3.3.4 Definition. We say a measure (or semimeasure) µ is recursive (enu-
merable) if and only if the function f : N → R given by f (x) = µ(Γx) is
recursive (enumerable). (Li and Vitányi 1997, 245)

We can rectify a semimeasure µ to a proper measure ρ by adding an
element u /∈ B called the undefined element by concentrating the surplus
probability on u by

1. ρ(ε) = 1

2. ρ(xu) = ρ(x)− ∑
b∈B

ρ(xb).

Thus for all x ∈ B∗, we have ρ(x) = µ(x).
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3.4 The Universal Discrete Semimeasure

3.4.1 Definition. A discrete semimeasure is an injective function P : N ↪→ R

that satisfies ∑x∈N P(x) ≤ 1. It is a probability measure if equality holds.

Practically speaking, there is no difference between a discrete measure
and a normal probability measure over the sample space N (hence, the use
of capital italics to denote both). The distinction lies purely in the theoreti-
cal interpretation of the domain. Using the language from measure theory,
we can say the basic set B = N and with sample space S = N = {Γx :
x ∈ N+, l(x) = 1}. The set of cylinders in the correspondence may seem
odd, since there are not many integers of length l(x) = 1, but recall that l
is a function defined on strings, not numbers, and here we are not using
the binary encoding of x as we have in the past. We are encoding the inte-
gers with an alphabet with countably infinitely many symbols, thus every
integer is encoded by a single distinct character. Consequently, no string
representation of an integer is the prefix of another, and the second condi-
tion of our definition for probability measures, that µ(x) = ∑b∈B µ(xb), has
no meaningful interpretation for us, though the first condition is satisfied.

Measure theory primarily concerns measures defined on Borel sets, but
henceforth we will be working merely on cylinder sets, and moreover,
cylinders that are necessarily pairwise disjoint. The discrete sample space,
in some sense, might be thought of as a first order approximation of the
continuous domain. While not necessarily intuitive, the class of (enumer-
able) discrete semimeasures has an important feature: a universal element,
as we will show later.

It is instructive to consider the discrete Lebesgue measure in contrast to
the continuous Lebesque measure λ. With basic set B = N, we have the
function L : N → R given by L(x) = 2−2l(x)−1. We can verify that L is a
probability measure as follows:

∑
x∈N

L(x) = ∑
n∈N

2−n−1 ∑
l(x)=n

2−l(x) = ∑
n∈N

2−n−1 = 1.

It remains that no element of the basic set is reused, so it isn’t partic-
ularly useful to think of l(x) as the number of symbols in x, but simply a
place holder function.

The continuous Lebesgue measure λ is defined on basic set {0, 1} with
λ : {0, 1}∗ → R, where the element x ∈ {0, 1}∗ with the interpretation
that x can be a prefix of another element, or vise versa. Conversely, the
discrete Lebesgue measure L has N for both the basic set and the domain,
thus x ∈ N, and no element can be a prefix of another.
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3.4.2 Example. By our standard integer-string correspondence, 1, 5, 6 ∈ N

map to 0, 10, 11 ∈ {0, 1}∗. Thus, L(1) = 1
4 > L(5) + L(6) = 1

16 + 1
16 . In

terms of cylinder sets, Γ1, Γ5, and Γ6 are pairwise disjoint. However, for the
continuous Lebesgue measure, we have λ(1) = λ(10) + λ(11), and consis-
tently, Γ1 = Γ5 ∪ Γ6 (Li and Vitányi 1997, 246).

A key point here is that the sum over all events in the continuous do-
main diverges while the sum over all events in the discrete domain con-
verges to 1. That is, for continuous measure λ, we have for each n that⋃

l(x)=n Γx = S, thus ∑l(x)=n Γx = 1 for each n, and ∑x∈{0,1}∗ λ(x) = ∞,
while for discrete measure L, we have

⋃
l(x)=n Γx ⊂ S and ∑l(x)=n L(x) =

2−n−1 for each n, and ∑x∈N L(x) = 1.

3.4.3 Definition. Let M be a class of discrete semimeasures. A semimea-
sure P0 is universal (or maximal) for M if P0 ∈ M, and for all P ∈ M, there
exists a constant cp such that for all x ∈ N, we have cpP0(x) ≥ P(x), where
cp may depend on P but not on x (Li and Vitányi 1997, 246).

We say that P0 multiplicatively dominates each P ∈ M. Clearly, there can
be no universal semimeasure that dominates all semimeasures, but in fact,
even the class of total recursive semimeasures has no universal element (Li
and Vitányi 1997, 249). However, the class of enumerable discrete semimea-
sures does have a universal element.

3.4.1 Theorem. There exists a universal enumerable discrete semi-measure. We
denote it by m (Li and Vitányi 1997, 247).

Proof. The proof occurs in two stages. We first demonstrate an effective
enumeration of the class of enumerable discrete semimeasures. This is
achieved by taking the enumeration of all real-valued partial recursive func-
tions and converting them to discrete semimeasures. In the second stage of
the proof, we construct an enumerable discrete semimeasure P0 and show
it to be universal.

STAGE 1: Consider an effective enumeration of all real-valued partial re-
cursive functions ψi, ψ2, . . . .Without loss of generality, we can assume
that each function ψ is approximated by a rational-valued two-argument
function φ′(x, k) = p/q. (Formally speaking, φ′ is actually a single-
argument function where φ(〈x, k〉) = 〈p, q〉, but it is useful to inter-
pret it otherwise.) Without loss of generality, we can modify each φ′

to a rational-valued two-argument partial recursive function by the
following criteria. For all x ∈ N and k > 0,
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• if φ(x, k) < ∞, then φ(x, 1), φ(x, 2), . . . , φ(x, k − 1) < ∞ (this
property is achieved by dovetailing the computation of φ(x, 1)′,
φ(x, 2)′, . . . and assigning the computer values in enumeration
order to φ(x, 1), φ(x, 2), . . .);

• φ(x, k + 1) ≥ φ(x, k) (this property is achieved by essentially the
same dove-tailing strategy used above);

• lim
k→∞

φ(x, k) = lim
k→∞

φ′(x, k) = ψ(x).

The sequence of ψ given by the list of the approximators enumerates
all enumerable real-valued partial recursive functions, and each ap-
proximating function φ defines a discrete semimeasure P via the al-
gorithm below. Note that P(x) in the algorithm is an array that stores
the interim approximations of P during the computation, the nonzero
part of which is always finite.

Algorithm:

① SET P(x) := 0 for all x ∈ N; and SET k := 0.

② SET k := k + 1, and compute φ(1, k), . . . φ(k, k). (If any φ(i, k) is
undefined for 1 ≤ i ≤ k, then P will not change any further and
is trivially a discrete semimeasure.)

③ IF φ(1, k) + · · · + φ(k, k) ≤ 1 THEN SET P(i) := φ(i, k) for all i =
1, 2 . . . , k, ELSE terminate. (This step guarantees that P satisfies
the discrete semimeasure requirements.)

④ GO TO ②.

In the case that ψ is already a discrete semimeasure, then P = ψ and
the algorithm never terminates, but approximates P from below. If
some x and k are encountered such that x ≤ k and φ(x, k) is un-
defined, then the last assigned values of P remain fixed though the
computation runs forever. Because of the condition set by ③, P is a
semimeasure. If the condition in ③ is violated, computation termi-
nates and the approximation is a total recursive semimeasure.

Hence, by running the algorithm on the list φ1, φ2, . . ., we have an ef-
fective enumeration P1, P2, . . . of all, and only, the enumerable discrete
semimeasures.

STAGE 2: We define the partial recursive function P0 as follows:

P0(x) = ∑
n≥1

α(n)Pn(x),
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where α(n) > 0 and ∑n α(n) ≤ 1 for all n. As such, P0 satisfies the
conditions for a discrete semimeasure, since

∑
x≥0

P0(x) = ∑
n≥1

α(n) ∑
x≥0

Pn(x) ≤ ∑
n≥1

α(n) ≤ 1.

The function P0 is enumerable as we can approximate it by the univer-
sal partial recursive function φ0 using the same construction as was
used in STAGE 1, since the Pn(x) are enumerable in n and x. Clearly,
P0 dominates each Pn since P0(x) ≥ α(x)Pn(x). Thus, there are in fact
infinitely many universal enumerable semimeasures. We fix a refer-
ence universal enumerable discrete semimeasure and denote it by m.

3.5 A Priori and Algorithmic Probabilities

3.5.1 A Priori Probability

Let P1, P2, . . . be the effective enumeration of all enumerable semimeasures
constructed in the proof of theorem 3.4.1. We consider an alternate enu-
meration, as follows. We let a prefix machine T accept as input an infinitely
long sequence of coin flips. The probability of generating an initial segment
p is 2−l(p). Thus if T(p) halts, T will halt upon reading only the first l(p)
bits of input, since it is a prefix machine. We let T1, T2, . . . be the standard
enumeration of prefix Turing machines.

For each prefix machine T in our canonical enumeration of prefix ma-
chines, the probability that T computes x on input provided by successive
coin flips is

QT(x) = ∑
T(p)=x

2−l(p). (3.1)

Note that ∑x∈N QT(x) ≤ 1 where equality holds for T if every one-way
infinite sequence contains an initial segment for which T halts. Thus QT(x)
is a discrete semimeasure, and a probability measure if equality holds. We
can approximate QT(x) by the following algorithm. Note that Q(x) is a
local variable used to store the current approximation of Qt(x).

Algorithm:

① SET Q(x) := 0 for all x.
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② Dovetail computations of all programs on T such that at stage k step
k − j of program j is executed. IF the computation of some program
p halts with T(p) = x, THEN GO TO ③.

③ SET Q(x) := Q(x) + 2−l(p) and GO TO ②.

The variable Q(x) of our algorithm approximates QT as given in Equa-
tion (4.3) above for each x. Thus, QT(x) is enumerable. By the canoni-
cal enumeration of prefix machines, our construction gives us an effective
enumeration of only enumerable semimeasures Q1, Q2, . . . . Hence, the P-
enumeration given in the previous theorem lists all elements enumerated
by the Q-enumeration. It has been shown that the Q-enumeration contains
all of the elements in the P-enumeration, that is, all enumerable measures
(Li and Vitányi 1997, 253), but we assume this result without proving it, as
the proof is not necessary for understanding the Coding theorem.

3.5.1 Definition. The universal a priori probability on the positive integers is
defined as

QU(x) = ∑
U(p)=x

2−l(p),

where U is a universal prefix machine (Li and Vitányi 1997, 252).

It is this definition that necessitates the use of prefix complexity rather
than plain Kolmogorov complexity in this discussion. The series ∑p 2−l(p)

converges (to ≤ 1) if the summation is taken over all halting programs p of
any fixed prefix machine, but diverges if taken over all halting programs p
of an universal plain Turing machine.

3.5.2 Algorithmic Probability

The whole of Kolmogorov complexity is premised on the idea that the com-
plexity of an object is a function of how briefly it can be described. Clearly
the brevity of the description depends upon the methods we allow. We
require that a description be sufficient to completely reproduce the object,
thus we quantify the the shortest self-delimiting description of an object x
by K(x). This intuitively leads to the assertion that one object being sim-
pler than another is the same as having a higher probability of occurrence.
Hence, algorithmic probability can be thought of as a mathematical formal-
ization of Occam’s Razor.

3.5.2 Definition. The algorithmic complexity R(x) of x is defined as

R(x) = 2−K(x).
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(Li and Vitányi 1997, 252)

Here we make some simple observations about algorithmic complexity.
Of objects of length n, the simplest object is the string of n zeros. It can be
shown that K(0n) ≤ log n + 2 log log n + c, where c is a constant indepen-
dent of n. Thus, for all x with l(x) ≥ n, we have

R(x) ≥ 1
cn log2 n

.

Conversely, we have for almost all binary sequences y generated by n con-
secutive coin tosses, K(y) ≥ n and R(y) ≤ 1/2n.

3.6 Proof of the Coding Theorem

3.6.1 The Coding Theorem. There is a constant c such that for every x,

− log m(x) = − log Qu(x) = K(x),

with equality up to the additive constant c (Li and Vitányi 1997, 253).

Proof.



Appendix A

Applications of Kolmogorov
Complexity to Algorithms and
Computability

Claim: A 1 head 2-way DFA cannot accept L = {w#w|w ∈ {0, 1}∗}.

Proof. Suppose, by way of contradiction, that our two-way DFA accepts
L. Set x = (01)n with C(n) ≥ l(n) = log log x + O(1). When run on
x#x, after m ≥ 0 complete two-way passes, A enters state q while posi-
tioned at the start of the input string. With no further changes in direction,
δ′(x#x, q) = q f . Let δ′(x#, q) = q′. The length of a description of A initial-
ized to q′ is bounded by some constant c, but gives a constant upper bound
for describing n, which is a contradiction. Thus, our DFA cannot accept
L.

Claim: The average case run-time for binary search has a lower bound
in Ω(log n).

Proof. Suppose we were performing a binary search for string s in a lexico-
graphically sorted one-dimensional array A of n keys where s = A[i] and
C(i) ≥ log n + O(1) (which we know to be true of many i ≤ n for large n).
Without loss of generality, we say s, A[i] ∈ {0, 1}∗. (We will use the nota-
tion s < t to indicate that s precedes t lexicographically, and likewise, s > t
to indicate s follows t.) The binary search is implemented as follows. Set
string p := ε. We initially compare s to A[bn/2c]. If s < A[bn/2c], we set
p := p0 and perform a binary search for s in A[1 : bn/2c]. If s > A[bn/2c],
we set p := p1 and perform a binary search for s in A[dn/2e : n]. We
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return i for s = A[i] and 0 if s is not found. Thus p is a record of the com-
parison results from our search. Using some canonical encoding of Turing
machines, we have the enumeration of a machine M which reads input
string p as a decision record, constructs a balanced binary search tree with
depth l(p) + 1, and returns the index of the node reached by p’s decision
path. Thus, l(〈M〉, p) ≥ C(i) ≥ log n + O(1). Since l(〈M〉) = O(1), we have
that l(p) ≥ log n + O(1).
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