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Abstract

In the 1960s French mathematician George de Rham found a relationship
between two invariants of knots. He found that there exist representations
of the fundamental group of a knot into a group G of upper right triangular
matrices in C with determinant one that is described exactly by the roots
of the Alexander polynomial. I extended this result to find that the repre-
sentations of the fundamental group of a link into G are described by the
multivariable Alexander polynomial of the link.
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Chapter 1

Background

1.1 Definition of a Knot

A knot is a simple closed polygonal curve in R3. Usually we think of a knot
as smooth, imagining there are so many edges that we can no longer see
the vertices. We can also consider multiple knots at the same time. A link
is the finite union of disjoint knots. Thus a knot is simply a link with only
one component. Two knots or links are equivalent if one can be deformed
into the other by a continuous deformation of R3. Thus a knot or link is
actually an equivalence class of such forms.

Throughout this work we will be dealing with knot and link diagrams.
A link diagram is the projection of a link into R2 such that no three points
on the link project onto the same point, and no vertex projects to the same
point as another point on the link. We also indicate the lower strand at each
double point. This allows us to reproduce the link without ambiguity from
the diagram.

We can classify diagrams by a series of three deformations called Rei-
demeister moves, shown in Figure 1.1. A fundamental theorem of knot
theory says that two diagrams represent the same link if and only if they
are related by Reidemeister moves.

A major problem in knot theory is distinguishing between different
knots and links. We can make the deformations described above, but it
is not obvious if two links are in fact equivalent without a lot of work.
Thus, we try to come up with invariants which are independent of the dia-
gram, this means that the invariant will be preserved through Reidemeister
moves. These invariants are useful for telling us if two links are different,
though they usually cannot tell us that two links are the same.
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Figure 1.1: The three types of Reidemeister moves.

1.2 Definition of the Alexander Polynomial

The Alexander Polynomial, ∆(t), is an invariant of oriented links. It was
first defined in 1928 by Alexander and since then has been described in
multiple ways. We will begin by looking at the method described in Liv-
ingston [9]. This requires constructing a matrix from the strands and cross-
ings of the link diagram.

A connected diagram of a link has no components that are not con-
nected by some crossing to the other components. Given a connected link
diagram we can construct the Alexander polynomial as follows:

The unknot has Alexander polynomial 1. For all other knots we arbi-
trarily number the crossings and separately the strands, with consecutive
integers starting at one. Then we construct an n × n matrix where n is the
number of crossings and also strands. Look at each crossing, l, if it is left
handed as in Figure 1.2, then in row l, enter 1− t in column i, -1 in column
j and t in column k. Or if it’s right handed switch the j and k entries. The
remaining entries of this row will be zeros.

Removing the last row and column of this matrix produces a new (n−
1)× (n− 1) matrix called the Alexander matrix. Its determinant is the Alexan-
der polynomial.

Theorem 1: If the Alexander polynomial for a link, K, is computed us-
ing two different choices of diagrams and labeling it will differ by a factor
of ±tk where k ∈ Z.

Proof: We will demonstrate that the Reidemeister moves do not change
the polynomial up to multiples of ±t±i.

We must examine what happens when we change the diagram. Rei-
demeister move I introduces one new crossing and one new strand. This
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Figure 1.2: A left handed crossing labeled to make an Alexander matrix.

changes the matrix by a row and a column, it takes the crossing, n, that
now has the new strand entering it and moves the entry x1 from the old i
column to the new i + 1 column. Then the new crossing has entries of y
and −y where y is either 1 or t, which will correspond to the i and i + 1
columns.  · · · x2 0

... x1
0 · · · y −y


So if we take the new row, multiply by x1/y and add it to row n we will

attain the original n row with an extra 0 on the end. · · · x2 0
... x1 0
0 · · · y −y


This creates a column with all zeros except in the last diagonal entry, so
the determinant can be taken and will change by a multiple of that entry,
which will be ±1 or t.

Reidemeister move II adds two crossings and strands, and thus two
rows and columns. These will take the disrupted arc and split its entries
so one remains in the same location and the other will move into one of
the new columns. Also, the two rows corresponding to new crossings will
both have the 1− t entry in the same column (as they are both on the same
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arc) and will have one of the new columns with a -1 and a t and the other,
which has the above discussed entry will have an additional either -1 or t.

· · · x 0 0
... 0 y
0 1− t t −1 0
0 1− t 0 t −1


Through a series of row and column operations we can recombine the

column that was split and reduce the two new columns to zeros above the
diagonal. The values in the bottom two rows are unimportant because
when we take the determinant we do so following the last two columns
which knock out those rows. Thus we return to the original matrix with
two extra rows and columns that will add factors of ±1 or ±t based on
their diagonal entries.

Arguments similar to those used for moves I and II show that the type
III Reidemeister move does not change the Alexander polynomial except
by factors of ±t±i.

If we change the labeling of the strands or crossings we will essentially
be performing row and column operations, switching them around to fit
the new configuration. If a crossing label is changed we must switch the
columns, if a row label is changed we must switch the rows. �

Further reducing the Alexander matrices produces higher order Alexan-
der polynomials which are also invariants of the knot or link.

The kth order Alexander polynomial is the greatest common divisor of the
determinants of all n − k + 1× n − k + 1 minors of the Alexander matrix,
where n is the number of crossings.

We denote these polynomials as ∆k(t) where i is the order. In fact the
Alexander polynomial ∆(t) can also be denoted as the first order Alexander
polynomial, ∆1(t). It is interesting to note that ∆k | ∆k−1 for all i.

1.3 Example Computation

Let’s do an example construction of the Alexander polynomial. Looking
first at a single component link we will use the trefoil knot shown in Fig-
ure 1.3. We can label the strands and crossings as indicated in the figure.
Then the row corresponding to crossing 1, will be 1− t t −1 . Thus the
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Figure 1.3: The trefoil knot.

entire matrix is  1− t t −1
−1 1− t t
t −1 1− t

 .

We then strike one row and column and take the determinant:

det
(

1− t t
−1 1− t

)
= (1− t)2 + t = t2 − t + 1 = ∆(t).

Figure 1.4: A link with two components.

Now let’s look at the Hopf link with two components, shown in Fig-
ure 1.4. The Hopf link has matrix(

t− 1 1− t
1− t t− 1

)
.
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Note, that when one strand is involved in multiple parts of the crossing we
add together it’s values. So the Alexander polynomial of the Hopf link is
t− 1.

Figure 1.5: The smallest knot with nontrivial second order Alexander poly-
nomial.

Finally, we look at a knot that has nontrivial higher order Alexander
polynomials. Consider the knot 818 in Figure 1.5. This is the smallest knot
with a nontrivial second order Alexander polynomial.

The diagram gives the matrix

t −1 0 0 0 0 1− t 0
0 0 0 0 1− t 0 −1 t
0 0 1− t 0 −1 t 0 0

1− t 0 −1 t 0 0 0 0
0 0 0 1− t 0 −1 t 0
0 1− t 0 −1 t 0 0 0
0 −1 t 0 0 0 0 1− t
t 0 0 0 0 1− t 0 −1


.

Striking out one row and column gives us the polynomial

∆(t) = (t2 − t + 1)(t2 − 3t + 1).

We can also strike one row and column from the Alexander matrix to get
49 different minors, then taking the derivative of each of these and finding
their greatest common divisor we get the polynomial ∆2(t) = t2 − t + 1.
Note that this is a factor of ∆(t). Also, ∆3(t) = 1 which is a factor of ∆2(t).

1.4 The Fundamental Group of a Link

Another invariant of knots and links is the fundamental group of the com-
plement. If the link is embedded in R3 then we look at R3 − K to find the
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fundamental group of link K. The generators for the group are the equiv-
alence classes of loops that begin and end at a fixed point in R3 − K. Two
loops are equivalent if one can be continuously deformed into the other in
the complement of K while keeping the same fixed point.

We can derive a presentation of the fundamental group of an oriented
link from any diagram of the link using an algorithm developed by Wirtinger.
The algorithm proceeds as follows:

First take the diagram and indicate an arrow under each strand, such
that the arrow points in the right handed direction. Label the arrows a, b, c, . . .,
as in Figure 1.6.

Figure 1.6: A left handed crossing with generators a, b, c and relation
aba−1c−1 = 1.

Now, when we look at any crossing we can derive a group relation.
Start at the base of one of the arrows, then follow them around the crossing
until you return to the starting point. Record each arrow crossed, using its
inverse if it was traversed backyards. Set this value equal to 1. This is the
group relation, as demonstrated in Figure 1.6.

So, the arrows are the generators of the group, and the relations are
those derived from the crossings.

Example: Looking once again at the trefoil in Figure 1.7 we see that the
generators are a, b, c. Looking closely at one crossing, we find the relation,
ca = bc. So we get

< a, b, c | ca = bc, ab = bc, ca = ab >,
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Figure 1.7: The trefoil labeled to derive the Wirtinger presentation of the
fundamental group.

which can be simplified to

< a, b | aba = bab > .

The fundamental group is derived from the complement of the link
which tells us that it does not depend on the choice of diagram. Yet, the pre-
sentation as described above is derived from the diagram so it will change
with Reidemeister moves. It is an interesting exercise to show that a dif-
ferent choice of diagram will produce a different presentation of the same
group. The construction relying on the diagram allows us to associate a
group to a link in a purely combinatorial way without any consideration of
topological spaces.

Some useful properties can be derived from the construction described
above.

Proposition 2: All Wirtinger generators assigned to a single component
are conjugate.

Proof: Looking at any given crossing we see that it always takes the
form ab = bc which can be rewritten as a = bcb−1. Thus the generators, a
and c, are conjugate. As we move along a single component each succes-
sive generator is conjugate to the one before it. Thus, every generator on a
component is conjugate to every other one. �

Proposition 3: In the Wirtinger presentation of the knot group one re-
lation is always redundant, which is to say it is a consequence of the other
relations.

Proposition 4: If we abelianize the link group, it reduces to Z ⊕ Z ⊕
· · ·⊕Z where there are as many summands as components. This is because
each conjugacy class is reduced to a = bcb−1 = cbb−1 = c so they are
generated by a single element with no relations, which is Z.
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Finally, since the link group abelianizes to a free abelian group we see
that it has an infinite quotient. Thus, link groups are infinite.





Chapter 2

de Rham’s Representation

2.1 Matrix Groups

A representation of a group, G, is a homomorphism from G into the general
linear group, GL. Representations make it easier to understand what goes
on in the group because matrix multiplication is well understood and fast.

Let us look at the group, G, of linear functions f : C → C such that
f (z) = az + b with a, b ∈ C, and a 6= 0. We may combine two such functions
by composition. If f1 = a1z + b1, and f2 = a2z + b2, then,

f1( f2(z)) = a1(a2z + b2) + b2 = a1a2z + a1b2 + b1 ∈ G.

So, f1 ◦ f2(z) = a12z + b12, where a12 = a1a2 and b12 = a1b2 + b1. Thus, G
is closed under composition. The identity element is id(z) = z. Finally, the
inverse of f (z) = az + b is f−1(z) = z/a− ab which demonstrates that G is
a group.

Another group of interest is the subgroup of upper triangular matrices
of determinant 1 in GL(2, C). We shall call this group G. We can now find
a homomorphism from G to G and back again, ϕ and ψ respectively. Let
ϕ : G → G be defined by

ϕ(az + b) =
( √

a b/
√

a
0 1/

√
a

)
and ψ : G → G by

ψ(
(

a b
0 1/a

)
) = a2z + ab.
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Checking composition we find

ϕ( f1)ϕ( f2) =
( √

a1 b1/
√

a1
0 1/

√
a1

)( √
a2 b2/

√
a2

0 1/
√

a2

)
=

( √
a1a2 b2

√
a1/

√
a2 + b1/

√
a1a2

0 1/
√

a1a2

)
= ϕ( f1 ◦ f2).

Thus ϕ holds under composition and is a homomorphism. By similar tech-
niques we see ψ is also a homomorphism.

Now we wish to show that ϕ and ψ are inverse homomorphisms. So,
we show that ψ(ϕ(az + b)) = id(az + b)

ψ(ϕ(az + b)) = ψ

(( √
a b/

√
a

0 1/
√

a

))
= az + b
= id(az + b).

By a similar argument we get that ϕ(ψ) = id. Thus, ψ and ϕ are inverse ho-
momorphisms. A consequence of this is that ϕ is an isomorphism between
G and G.

Note that the elements of G are in one to one correspondence with C×
C, by az + b → (a, b), which is uncountable. Thus G is not only infinite but
cannot be finitely generated.

2.2 Representations into G
Let K be a knot with fundamental group, Γ, given by the Wirtinger pre-
sentation. As mentioned in Proposition 3, we may assume one relation is
redundant, so we get Γ =< g1, g2, . . . , gn | r1, r2, . . . , rn−1 >. Now we are
interested in finding a representation of Γ into G. In particular, we want
some homomorphism, ρ : Γ → G. Such a homomorphism is determined
by where it sends the generators. So the question becomes, can we assign
matrices to gi such that the relations rj all hold?

A representation ρ : Γ → G is abelian if the image of Γ in G is abelian.
We can consider the trivial case, that in which ρ(gi) = A for some A ∈ G

and all i. The image is an abelian group, specifically the cyclic subgroup of
G generated by A. In fact, this is the only way to get an abelian representa-
tion.
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Lemma 5: If Γ =< g1, g2, . . . , gn | r1, r2, . . . , rn−1 > is the Wirtinger
presentation of a knot group, and ρ : Γ → G is a representation, then ρ is
abelian iff ρ(gi) = A, ∀i and some matrix A ∈ G.

Proof: Suppose ρ is an abelian representation. We can consider the re-
lations coming from a single crossing. If we have the matrices A, B, and C
representing the respective strands, then A = BCB−1. Since ρ is an abelian
representation; A = BB−1C = C. Thus, every generator must be sent to the
same matrix.

Finally, as already noted, if all the generators are sent to the same ma-
trix, then the representation is abelian. �

Such a representation loses all information from the original knot group,
so we are not interested in abelian representations. Consequently, we need
to come up with a collection of matrices in G that do not generate an abelian
subgroup. Let’s try matrices with diagonal entries of 1.

Note that any such matrices commute:(
1 a
0 1

)(
1 b
0 1

)
=
(

1 a + b
0 1

)
=
(

1 b
0 1

)(
1 a
0 1

)
.

Similarly, upper triangular matrices with −1 on the diagonal commute.
Thus, if we do not want an abelian representation we must avoid sending
all of the generators to matrices with 1 or -1 on the diagonal.

So, let’s think some more about the diagonal entries, since we know
they cannot all be ±1. The relations from Γ require that the matrices be
conjugate, what does this do to the eigenvalues?

Lemma 6: Conjugate matrices have the same eigenvalues.
Proof: Let A, B, C be matrices such that A = BCB−1. Then

det(A− λI) = det(BCB−1 − λI)
= det(BCB−1 − λBIB−1)
= det(B(C − λI)B−1)
= det B det(C − λI) det B−1

= det B det B−1 det(C − λI)
= det(C − λI).

Thus, the eigenvalues of conjugate matrices are the same. �
It follows that all of our matrices will have the same eigenvalues, and

thus the same entries on the diagonal. Thus none of the generators may
be sent to a matrix with eigenvalues of 1 or −1. Since the matrices have
determinant 1, we know that the eigenvalues must be reciprocal. So, they
will be m and 1/m, m ∈ C.



14 de Rham’s Representation

Lemma 7: Within a conjugacy class of G, the eigenvalues have fixed
position.

Proof: Let us look at one matrix within our group, A =
(

m a
0 1/m

)
.

Using a generic element, C =
(

x c
0 1/x

)
, we can get from A to any other

element, CAC−1, within the conjugacy class.

CAC−1 =
(

x c
0 1/x

)(
m a
0 1/m

)(
1/x −c

0 x

)
=

(
m x2a + xcm− xc/m
0 1/m

)
.

This construction demonstrates that the diagonal elements of A are never
going to be changed by conjugation. �

Thus, the generators of our knot group are all taken to matrices of the

form
(

m y
0 1/m

)
with some fixed m ∈ C, m 6= ±1 and some varying

y ∈ C.
Two representations, ρ and τ, both from Γ → G, are conjugate if there

exists an inner automorphism, f : G → G, given by f (x) = AxA−1, A ∈ G
such that f ◦ ρ = τ.

If we have ρ(gi) =
(

m ai
0 m−1

)
, we can change ai through conjuga-

tion. Recalling that conjugation by an arbitrary matrix
(

x c
0 1/x

)
creates

the new upper right entry, z,

z = x2ai + xcm− xc/m.

We can choose a value for z, and we can find the corresponding values of
x and c. This determines the element by which we will conjugate to fix one
ai in the representation.

Proposition 8: If ρ and τ are two non-abelian representations of Γ into

G such that ρ(gi) =
(

m ai
0 1/m

)
, and τ(gi) =

(
m bi
0 1/m

)
, with a1 =

b1 = 0, then ρ and τ are conjugate iff there exists d2 6= 0 such that ai = d2bi
with d ∈ C.

Proof: [sketch] Looking at the conjugacy relation of upper right entries
we know that to reach a new entry, z, we get the relation

z = x2ai + xcm− xc/m
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in the upper right entry. But, setting z = 0 we get:

0 = x2ai + xc(m− 1/m)
c(1/m−m) = xai
c/x = ai/(1/m−m).

So, we can preserve the relation, and change c and x by some constant
multiple d. But, when we make this change, every other element ai in the
representation will be scaled by

zi = d2x2ai + dxdcm− dxdc/m = d2z.

Thus, any two representations with a1 = b1 = 0 and ai = d2bi with d ∈ C

are conjugate. �

2.3 Example Construction

Let us first do a simple example of the representation of a fundamental knot
group. Looking at the trefoil knot in Figure 1.3 we can label the arcs A, B, C,
where

A =
(

m a
0 1/m

)
, B =

(
m b
0 1/m

)
, andC =

(
m c
0 1/m

)
.

We know that the fundamental group is < A, B | ABA−1 = B−1 AB >, so,
applying the relation to our matrix generators we find

ABA−1 =
(

m a
0 1/m

)(
m b
0 1/m

)(
1/m −a

0 m

)
B−1 AB =

(
1/m −b

0 m

)(
m a
0 1/m

)(
m b
0 1/m

)
.

Giving us(
m bm2 + a− am2

0 1/m

)
=

(
m b + a/m2 + b/m2

0 1/m

)
.

So, if bm2 + a− am2 = b + a/m2 − b/m2, the relation holds. This equation
is equivalent to

(b− a)(m4 −m2 + 1) = 0,

which is equivalent to (b − a)∆(m2) = 0. Since we know a 6= b (else we
have an abelian representation), we require that m2 be a root of the Alexan-
der polynomial.

Thus for the trefoil, the non-abelian representations to G correspond to
the roots of the Alexander polynomial.
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2.4 Eigenvalues and Roots

We can now claim that the eigenvalues of matrices in the representation are
always derived from the roots of the Alexander Polynomial.

Theorem 9 (De Rham): The non-abelian representations of a knot group,
ΓK into G, correspond to the roots of the Alexander polynomial, ∆(t). For
each root, λ, there are 2kλ representations, up to conjugation, when kλ is
the largest k such that ∆k(λ) 6= 0.

Proof: Let us examine the Livingston method of constructing the Alexan-
der Polynomial. Given any crossing, i (Figure 1.2), we get the ith row of the
Alexander matrix. 

· · ·
1− t t −1 0
· · ·
· · ·


Similarly, looking at the fundamental knot group we can once again

look at the ith crossing. Applying the matrix representation with every el-

ement of the form
( √

t x
0 1/

√
t

)
, where t is fixed across all matrices, and

x varies between matrices, we find the relations. Then, for the ith crossing
we get the relation:

AB = CA,

which yields:( √
t x1

0 1/
√

t

)( √
t x2

0 1/
√

t

)
=

( √
t x3

0 1/
√

t

)( √
t x1

0 1/
√

t

)
(

t x2
√

t + x1/
√

t
0 1/t

)
=

(
t x1

√
t + x3/

√
t

0 1/t

)
.

This demonstrates that, so long as the upper right entries are equal, the
representation will hold. So,

x2
√

t + x1/
√

t = x1
√

t + x3
√

t
x2t + x1 = x1t + x3
x1(1− t) + x2t− x3 = 0.

Looking closely at this result we realize that it is identical to the ith row of
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the Alexander matrix multiplied by a vector with a, b, c, and is equal to 0.
· · ·

1− t t −1 0
· · ·
· · ·




x1
x2
x3
...

 =


0
0
...
0


The equation above includes the matrix which gives us the Alexander ma-
trix but it has been found by applying our representation to the fundamen-
tal group of the knot. To actually get the Alexander polynomial from the
matrix we must be able to eliminate any one row and any one column.

We know by the construction of the fundamental group that any one
of the relations is always a result of the others. So, we can eliminate one
row. Also, using conjugate representations we can fix one x to 0. Since we
are looking for a non-abelian representation we know that not all elements
are the same and conjugating one element to zero scales all remaining ele-
ments, so not all xi will be sent to 0. When we multiply the matrix with the
vector of x values, the column corresponding to the 0 entry will simply be
taken to zero. So, we can remove that column and entry from the vector.

Now we have the Alexander matrix, A∆(t), but we must look at the
rest of the equation to figure out what the t values can be. Since we are
multiplying by a nonzero vector, and since we attain a zero vector, A∆(t)
must be linearly independent. So, det(A∆(t)) = 0 = ∆(t) must hold and t
must be a root of the Alexander polynomial or the relation will not hold.
Thus the diagonal entries,

√
t, 1/

√
t, rely on the Alexander polynomial to

make a representation of the fundamental knot group.
For each of these diagonal entries we can find the dimension of the cor-

responding null space of the matrix by looking at the kth order Alexander
polynomials. If ∆i(t) = 0 then the matrix is linearly dependent, so there
must be at least one redundant column. Thus the k with nonzero ∆k(t)
gives us the number of linearly dependent columns, k, and thus the dimen-
sion of the null space. Since sending one of our xi to zero by conjugation
still gives us freedom to scale the vector, we only need to get each element
in the basis of the null space to find the number of conjugacy classes of the
representation. Thus, we have k distinct conjugacy classes for each diago-
nal entry, and there are 2 of these for each root of ∆(t). So, we get exactly
∑λ 2 ∗ kλ distinct conjugacy classes, where λ are the roots of the Alexan-
der polynomial, and kλ are the largest values for which we have nonzero
∆k(λ). �
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Different Approaches

3.1 Further consideration of the Alexander Polynomial

Recall that there are multiple methods of deriving the Alexander polyno-
mial. We have already looked at the Livingston method. Now let us look
at Alexander’s original method.

Using the Alexander method, we label the regions of the diagram with
ri starting with r0 in the region surrounding the knot. Then, we can arbi-
trarily label the crossings 1 through n and the components K1 through Km.
Once again we get relations from each crossing that can be combined to
produce a matrix. The matrix will have rows corresponding to crossings
and columns corresponding to regions, making an n× (n + 2) matrix. The
relation from any ith crossing (Figure 3.1) is:

tjrk − tjrl + rp − rq,

where the under-crossing strand is part of the jth component. Note that the
rk and rl regions will always be to the right of the under-crossing strand and
rl will be situated counterclockwise from rk. We can then delete any two
columns that represent regions separated by one strand, h. The Alexander
polynomial is the determinant of our new matrix divided by (th − 1).

The process above produces the multivariable Alexander polynomial,
∆(t1, . . . , tm). As with the single variable Alexander polynomial, the mul-
tivariable polynomial is invariant up to multiplication by ±t±1

j depending
on the choice of columns to delete and choice of diagram. If we set all of
the tj = t, and multiply by (t − 1), we get the single variable Alexander
polynomial, ∆(t), discussed earlier.
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Figure 3.1: A crossing labeled to use Alexander’s method of finding the
Alexander polynomial.

3.2 Another Example Computation

Let’s do a couple of examples of the Alexander method of finding the
Alexander polynomial.

Figure 3.2: The Hopf link.

First we will look at the Hopf link (Figure 3.2), which we previously
examined using the Livingston method. Using this method we get the ma-
trix: (

t2 −t2 1 −1
t1 −1 1 −t1

)
.

We can eliminate the first two columns of this matrix. These columns cor-
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respond to adjacent regions separated by component 1. This gives:(
1 −1
1 −t1

)
.

The determinant of this matrix, divided by (t1 − 1), gives us the multivari-
able Alexander polynomial, 1. Furthermore, if we set t1 = t2 = t, we get
the single variable Alexander polynomial from before, t− 1.

Figure 3.3: The link L9n23.

Now let’s look at a more complicated example, the three component
non-alternating link L9n23 (Figure 3.3). For this link we get the matrix:

t2 −t2 1 −1 0 0 0 0 0 0 0
t1 −1 0 0 1 0 0 −t1 0 0 0
0 t2 −1 0 −t2 1 0 0 0 0 0
0 0 −t3 t3 0 1 −1 0 0 0 0
0 0 0 0 −1 1 −t1 t1 0 0 0
t3 0 0 −t3 0 0 1 0 −1 0 0
0 0 0 0 0 0 1 −1 −t2 t2 0
t3 0 0 0 0 0 0 −1 0 1 −t3
1 0 0 0 0 0 0 0 −1 t2 −t2


.

We can delete columns r0 and r1 by crossing component 1. This matrix
produces the Alexander polynomial

∆(t1, t2, t3) = −t3t2
2t1 − t1t2t2

3 + t1t2
2t2

3 + t2 − 1 + t3.
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3.3 The Dehn Presentation

Note that we earlier looked at the Wirtinger presentation of the fundamen-
tal group of the complement of our link. Another useful algorithm creates
the Dehn presentation of the fundamental group. This presentation mir-
rors Alexander’s method of finding the Alexander polynomial by relying
on looking at regions of the diagram instead of looking at the strands of the
knot or link.

To find the Dehn presentation we first label each region with ri as we
did in Section 3.1. Then looking at each crossing individually we find the
relation by marking the left side of the under-crossing strand then setting
the left region times the inverse of the right region equal across the crossing.
For example looking at the crossing in Figure 3.1 we get the relation

rkr−1
q = rlr−1

p .

Thus we find that the regions are the generators and the relations corre-
spond to the crossings as before. In this presentation we use the convention
that the outside region, r0, is the identity element. Also, we find that at least
one of the remaining generators will always be redundant.

This method derives from thinking of the loops that generate the fun-
damental group as traveling down through one region, ri, then back up
through the other, ro.

Let’s look at an example to become familiar with this method.
Example: Looking once again at the Hopf link Figure 3.2 we initially

get two relation and four generators.

r0r−1
3 = r1r−1

2
r0r−1

1 = r3r−1
2

Then set r0 = 1 to get
r−1

3 = r1r−1
2

r−1
1 = r3r−1

2

which gives us r1 = r−1
3 r2. Thus we present the group as

< r2, r3 | r2r3 = r3r2 >

It is important to remember that this presentation is isomorphic to the
presentation described by Wirtinger. So, this is a presentation of the fun-
damental group of the complement space of the link and is guaranteed to
be invariant to changes in diagram. However, the Dehn generators are not
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identical to Wirtinger generators and we lose some of the relations between
them. The Wirtinger presentation has the property that all generators as-
sociated to the same component are conjugate, but we do not have this
property in the Dehn presentation.

3.4 The Degree

We can describe the regions of the knot as having a degree, notated d(ri) =
(d1, . . . , dm). The degree of any region in a link diagram is defined by an m-
tuple, where there are m total components. We define the outer region, r0, to
have degree 0, in all components. To find the degree of another region if we
pass from the right of the strand to its left we add one to that component’s
degree. If we pass left to right we subtract one.

Figure 3.4: The Borromean rings with labeled regions and components.

Example: Looking at the Borromean Rings, Figure 3.4, we can identity
the degree of each region. They will all be 3-tuples because there are three
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components. The degrees are:

d(r0) = (0, 0, 0)
d(r1) = (−1, 0, 0)
d(r2) = (0,−1, 0)
d(r3) = (0, 0,−1)
d(r4) = (−1,−1, 0)
d(r5) = (−1, 0,−1)
d(r6) = (0,−1,−1)
d(r7) = (−1,−1,−1).



Chapter 4

The Multivariable
Representation

4.1 Link Representations and the Multivariable Alexan-
der Polynomial

Recall de Rham found representations of the fundamental group of knots
into G that were described exactly by the roots of the Alexander polyno-
mial. I am looking to find a similar relationship between representations
of the fundamental group of a link into G and the multivariable Alexander
polynomial.

It is fairly easy to find that roots of the Alexander polynomial will give
us representations. If we use the Dehn presentation and Alexander’s method
to produce the multivariable Alexander polynomial we can find the repre-
sentation that we want. Let us suppose that t1, t2, . . . , tm are all nonzero
solutions to the multivariable Alexander polynomial, ∆(t1, t2, . . . , tm) = 0.

Looking at π(K) we get generators ri which correspond to regions of

the link. First, we define td(ri) to be the product of t
dj
j , complex numbers

corresponding to each component raised to the degree associated with that
component. Then we define the representation

ρ(ri) =
(

t−d(ri)/2 Ritd(ri)/2

0 td(ri)/2

)
.

This will only be a valid representation if the relations formed at each cross-
ing hold. So it must be true that

ρ(ri)ρ(r−1
j ) = ρ(rk)ρ(r−1

l )
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for each crossing. So, we must get

ρ(ri)ρ(r−1
j ) =

(
t−d(ri)/2 Ritd(ri)/2

0 td(ri)/2

)(
td(rj)/2 −Rjtd(rj)/2

0 t−d(rj)/2

)
ρ(rk)ρ(r−1

l ) =
(

t−d(rk)/2 Rktd(rk)/2

0 td(rk)/2

)(
td(rl)/2 −Rltd(rl)/2

0 t−d(rl)/2

) ,

such that(
t−1/2

p Rit1/2
p − Rjt−1/2

p
0 t1/2

p

)
=

(
t−1/2

p Rkt1/2
p − Rlt−1/2

p
0 t1/2

p

)
.

The only requirement is that

Rit1/2
p − Rjt−1/2

p = Rkt1/2
p − Rlt−1/2

p

which can be rewritten as

Ritp − Rktp + Rl − Rj = 0.

This correlates exactly with the row in the Alexander matrix. Thus, looking
at all of the crossings we find a system of equations that must be satisfied
for the representation to hold and this system exactly reproduces the matrix
that gives us the Alexander polynomial.

Now, since our ti are solutions to ∆(t1, t2, . . . , tn) = 0 we know that they
must produce a nontrivial solution to this system of equations. Note, if any
ti = 0 then it will not be a valid eigenvalue because t−1

i is undefined, so we
do not include these solutions. So, reducing this matrix by two columns
as in the production of the Alexander polynomial, we will find the linearly
independent system that gave us this solution. In fact the kernel of this ma-
trix will give us the values for the Ri, with the two columns we eliminated
having Ri = 0.

Thus, we know that nonzero solutions to the multivariable Alexander
polynomial give us representations of the fundamental group of a link into
G and the kernel of the matrix gives us the Ri.

4.2 Constraints on the Representation

Now we have established that nonzero roots of the multivariable Alexan-
der polynomial correspond to representations of the fundamental group of
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the link. But, we have to ask, do these roots give us every possible repre-
sentation?

First, let us consider the most general representation. So, let us take all
generators ri ∈ π(K) to elements ρ(ri) ∈ G by:

ρ(ri) =
(

mi ai
0 1/mi

)
with mi 6= 0.

Now, we must recall that we are uninterested in abelian representations.
Lemma 10: Let K be a link and π(K) be the Dehn presentation of its

fundamental group. Then ρ(π(K)) is abelian iff the eigenvalues are all ±1
or the generators all have equal values for the fraction

Rim−1
i

mi −m−1
i

with the exception of the positive and negative identities.
Proof: Let ρ(ri) and ρ(rj) be two arbitrary elements in ρ(π(K)). Then

by definition they are abelian if and only if

ρ(ri)ρ(rj) = ρ(rj)ρ(ri)

so that(
mi Rim−1

i
0 m−1

i

)( mj Rjm−1
j

0 m−1
j

)
=

(
mj Rjm−1

j
0 m−1

j

)(
mi Rim−1

i
0 m−1

i

)
(

mimj mim−1
j Rj + m−1

i m−1
j Ri

0 m−1
i m−1

j

)
=

(
mimj m−1

i mjRi + m−1
i m−1

j Rj

0 m−1
i m−1

j

)
.

This shows us that the representation will be abelian when

mim−1
j Rj + m−1

i m−1
j Ri = m−1

i mjRi + m−1
i m−1

j Rj.

This can be rewritten as

Rim−1
i

mi −m−1
i

=
Rjm−1

j

mj −m−1
j

.

Thus, if this relation holds for all elements the relation will be abelian. But
elements with ±1 in the eigenvalue positions do not fit here, so we must
consider what happens in these cases. Another way to write this relation is

Rjm−1
j (mi −m−1

i ) = Rim−1
i (mj −m−1

j ).
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So, this demonstrates that if the eigenvalues equal ±1 for all generators the
relation will hold as well. The final option is when only some of the gen-
erators have the one eigenvalues. Note, that mi can never equal 0, because
then m−1

i is undefined. So the only way to make the abelian relation is for
Rk = 0 for all mk = ±1, thus allowing the relation to hold for all other
elements.

So, the only possible abelian representations have either every non-
identity generator upholding the relation or every generator having eigen-
values of ±1. �

Now that we know what abelian representations look like we can look
at the most general possible non-abelian representation and find out what
constraints exist on these representations.

We know that the relations imposed at each crossing must hold in G.
Since G is composed of two by two upper right triangular matrices we will
get three equations from each relation, an upper left, upper right, and lower
right. Every crossing creates a relation of the form

rkr−1
l = rpr−1

q .

When we take this to G we get(
mk ak
0 1/mk

)(
1/ml −al

0 ml

)
=
(

mp ap
0 1/mp

)(
1/mq −aq

0 mq

)
(

mkm−1
l akm−1

l −mkal
0 mlm−1

k

)
=
(

mpm−1
q apm−1

q −mpaq

0 mqm−1
p

)
This gives us the three relations

mkm−1
l = mpm−1

q (4.1)

akm−1
l −mkal = apm−1

q −mpaq (4.2)

mlm−1
k = mqm−1

p (4.3)

As noted above if Equation 5.1 is true then Equation 5.3 is trivially true,
because it is the inverse of Equation 5.1. So we must find some constraint
that will force these to be true.

Let us start with the upper left entry. We know from our construction
that mi ∈ C where mi is any arbitrary element, so all mi commute. We
can think about following a single component around the link and find a
relation imposed upon the upper left entry.
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Lemma 11: Let K be a link with Dehn presentation π(K). At any two
points along a component of K we can consider the regions on either side of
K as si on the right and li on the left. Then we find that ml1 m−1

s1
= ml2 m−1

s2
.

Proof: The regions surrounding any two points on K will be connected
by a series of crossing relations. Since there are only four types of crossings
we can learn what the relations across each type of crossing are and use this
to find a relation between all regions.

Let us look at the four possible crossings that a strand can be involved
in. If it is the under-strand as in the generic example above (Figure ??), we
do not have to worry about the orientation of the over strand, because of
the construction of the Dehn presentation. Thus, when we are looking at
an under-strand we find mkm−1

l = mpm−1
q .

If we look at the case when the important strand is on top we must
consider two cases. First we look at the under-strand traveling left to find
mpm−1

k = mqm−1
l which can be rewritten mpm−1

q = mkm−1
l because the

mi commute. The final case is when the under-strand travels right, which
gives us mkm−1

p = mlm−1
q yielding mkm−1

l = mpm−1
q .

Thus, since every type of crossing yields the same relation we know
that at any two points along K the regions will be connected by a series of
the same relation giving us ml1 m−1

s1
= ml2 m−1

s2
. �

We can, in fact, define this value that we found in Lemma 10. We can
define t−1/2

i = mlm−1
s where i indexes the component and ml and ms cor-

respond to the left and right sides of any point along the component as
described above.

Lemma 12: If ri is any region of a link diagram, K, with m components
then for ρ(ri) ∈ G we get mi = t−d(ri)/2 = t−d1(ri)/2

1 t−d2(ri)/2
2 · · · t−dm(ri)/2

m .
Proof: Let K be a link and let ri be any region in the diagram of K. We

can pick some path from r0 to ri. We know that m0 = 1 because ρ(r0) is the
identity matrix.

Note that every time we cross a strand, on component Kj, we get the
relation in Lemma 10: mlm−1

s = t−1/2
j . So, if we cross from left to right we

get that ms = mlt1/2
j which is to say the degree is changed by a factor of

t1/2
j . If we cross from right to left we get ml = mst−1/2

j , so the degree is

increased by a factor of t−1/2
j .

This means that every time the path from r0 to ri crosses a strand it is
incremented by some factor of t−1/2

j . In fact the factor will change following
the same pattern as the degree. Also, no factors outside of the tj will be
introduced because m0 = 1 and crossing each strand must change it only
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by a factor of t−1/2
j . Thus, we can write each mi as

mi = t−d(ri)/2.

�
We get a couple of nice corollaries from this lemma.
Corollary 13: Given four regions of a link, ri, rj, rk, and rl , with d(ri)−

d(rj) = d(rk)− d(rl),
mi

mj
=

mk

ml
.

Proof: Let K be a link with the four regions described above. We know
that

d(ri)− d(rj) = d(rk)− d(rl) = (d1, d2, . . . , dn),

such that
mi = mjt

−d1/2
1 t−d2/2

2 · · · t−dn/2
n

and
mk = mlt

−d1/2
1 t−d2/2

2 · · · t−dn/2
n .

So
mi/mj = mk/ml = t−d1/2

1 t−d2/2
2 · · · t−dn/2

n .

�
Corollary 14: Regions that have the same degree have the same eigen-

values.
Proof: Let ri and rj be regions with the same degree. Then by Corollary

13 since d(ri)− d(r0) = d(rj)− d(r0) = d(ri) we know that mi = mi/m0 =
mj/m0 = mj. Thus the corollary holds. �

Now, we have looked at an arbitrary non-abelian representation of the
fundamental group of a link into G and found that it must hold to certain
constraints. These constraints are

ρ(ri) =
(

t−d(ri)/2 ai
0 td(ri)/2

)
where ai is some complex number. Since ai is some complex number we
can rewrite it as ai = Ritd(ri)/2, where td(rj)/2 is also a complex number.

This is exactly the construction that we used above to find that nonzero
roots of the multivariable Alexander polynomial give us representations of
the fundamental group into G. Thus, this suggests that every non-abelian
representation of the fundamental group of a link must come from solu-
tions to the multivariable Alexander polynomial.
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4.3 Eigenvalues and Roots of Links

I claim we can now prove that the eigenvalues of matrices in the repre-
sentation of links are always derived from the roots of the multivariable
Alexander Polynomial.

Theorem 15: The non-abelian representations of a link group, π(K)
into G, correspond to the roots of the multivariable Alexander polynomial,
∆(ti).

Proof: Let us examine Alexander’s method of constructing the Alexan-
der polynomial.

Figure 4.1: Any ith crossing in a link.

Given any crossing i (Figure 4.1) we get the ith row of the Alexander
matrix 

· · ·
tv −1 −tv 1 0
· · ·
· · ·


Similarly, looking at the fundamental link group we can once again look

at the ith crossing. Every element ρ(ri) must take the form(
t−d(rj)/2 Rjtd(rj)/2

0 td(rj)/2

)
with j indicating the region as discussed above. At the ith crossing we get
the relation

rkr−1
l = rpr−1

q
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with the eigenvalues of rk set to x and x−1, so that the others have eigenval-
ues xt1/2

v , xt1/2
w , and xt1/2

v t1/2
w and their inverses. This gives us

rkr−1
l =

(
x Rkx−1

0 x−1

)(
x−1t−1/2

v −Rlx−1t−1/2
v

0 xt1/2
v

)
rpr−1

q =
(

xt1/2
w Rpx−1t−1/2

w
0 x−1t−1/2

w

)(
x−1t−1/2

v t−1/2
w −Rqx−1t−1/2

v t−1/2
w

0 xt1/2
v t1/2

w

)
yielding(

t−1/2
v Rkt1/2

v − Rlt−1/2
v

0 t1/2
v

)
=
(

t−1/2
v Rpt1/2

v − Rqt−1/2
v

0 t1/2
v

)
.

Demonstrating that our diagonal entries hold and so long as the upper
right entries are equal this representation will work. So

Rkt1/2
v − Rlt−1/2

v = Rpt1/2
v − Rqt−1/2

v
Rktv − Rl = Rptv − Rq

Rktv − Rptv + Rq − Rl = 0

Looking closely at this reveals that every crossing will result in a row of the
Alexander matrix, so we now have the relation:


· · ·
tv −1 −tv 1 0 · · · 0
· · ·
· · ·




0
R1
R2
R3
...

Rn+1


=



0
0
0
0
...
0


So, to find a non-abelian representation we need to find values of the ti and
Ri such that not all Ri = 0.

This is the matrix that gives us the Alexander polynomial but we have
created it from applying our representation to the fundamental group of the
link. To get a nontrivial solution to this matrix equation we must be able to
eliminate two columns to find the solution to the multivariable Alexander
polynomial, which will give us linear independence. We know by the con-
struction of the Dehn presentation that R0 will always equal 0 because r0
maps to the identity matrix, this eliminates one column.

The second column can be eliminated by conjugation. We are free to
conjugate the representation because representations within one conjugacy
class are considered equivalent. So, we want to be able to find some method
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of conjugation across the representation that sends another Ri to zero, with-
out sending all of them to zero. Conjugation within this group only changes
the upper right entry of the matrix and it moves it from Ritd(ri)/2 to

Ai = c(Ritd(ri)/2c + b(td(ri)/2 − t−d(ri)/2)) = 0

when we conjugate by (
c b
0 c−1

)
.

It follow, we can set c = 1 so

b =
Rit−d(ri)/2

t−d(rI)/2 − td(ri)/2
.

But note, this is exactly the value that must be equal in all generators of an
abelian representation, so there must be at least one element for which this
is different. Since not all elements can have td(ri)/2 = ±1 at least one of the
ti must not equal ±1 so an element with degree that differs from d(r0) by
one in the ith entry but does not have eigenvalues ±1 must exist. Thus, we
can conjugate by that element and some element must be different so it will
not be sent to 0, and we have a nontrivial solution following conjugation
and can send our second Ri to 0, getting rid of the second column.

Now to attain a nontrivial solution to this system of equations it must
be linearly independent. This means that the determinant must be zero.
Thus, for this relation to hold ∆(ti) = 0 and the ti must be roots of the
multivariable Alexander polynomial. It is important to note that they must
be nonzero roots, because they must have multiplicative inverses. Thus the
diagonal entries must be t±d(ri)/2, with the tj nonzero roots of the Alexander
polynomial.

This construction also gives us the constraints on the upper right en-
tries. We know that to solve the matrix equation the vector of Ri must be
in the kernel of our matrix. So, each Ri will be determined by the matrix as
well and we can fully describe our representation.

Thus, we have demonstrated that if the eigenvalues correspond to the
roots of the Alexander polynomial we get a representation and that the
representation only occurs if the diagonal entries are roots of the Alexander
polynomial. �
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4.4 The Future

The next step in this work is to determine if the representation correspond-
ing to the multivariable Alexander polynomial gives us more information
for a link than the single variable case. One approach would be to look
at how many conjugacy classes we find with each root. In the single vari-
able case we got conjugacy classes corresponding the dimension of the null
space, but it appears that the relationship is not so simple for the multivari-
able link case. Early research suggests that we may get a different conju-
gacy class for every permitted choice of eigenvalues, which would give us
up to infinitely many conjugacy class per solution. This hints at a wealth of
information that we may be able to begin to understand.
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