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The flow of a thin layer of fluid down an inclined plane is modified by the presence of

insoluble surfactant. For any finite surfactant mass, traveling waves are constructed for

a system of lubrication equations describing the evolution of the free-surface fluid height

and the surfactant concentration. The one-parameter family of solutions is investigated

using perturbation theory with three small parameters: the coefficient of surface tension, the

surfactant diffusivity, and the coefficient of the gravity-driven diffusive spreading of the fluid.

When all three parameters are zero, the nonlinear PDE system is hyperbolic/degenerate-

parabolic, and admits traveling wave solutions in which the free-surface height is piecewise

constant, and the surfactant concentration is piecewise linear and continuous. The jumps and

corners in the traveling waves are regularized when the small parameters are nonzero; their

structure is revealed through a combination of analysis and numerical simulation.

1 Introduction

Coating flows and their applications in physics, engineering, and biology have been the

subject of decades of research, see [22, 23] and references therein. The mathematical

study of these flows of thin liquid films on solid substrates begins with the lubrication

approximation of the Stokes equations. The simplest lubrication model of gravity-driven

flow of a viscous fluid down an inclined plane is the one-dimensional equation [9]

ht +
(

1
3
h3

)
x

= 0, (1.1)

in which h(x, t) is the height of the film at time t and x is measured down the plane.

A more sophisticated model [3, 19, 21] including the additional regularizing effects of

gravity-driven spreading and surface tension is

ht +
(

1
3
h3

)
x

= β
(

1
3
h3hx

)
x

− κ
(

1
3
h3hxxx

)
x
. (1.2)

These equations are written in dimensionless form; the positive parameters β and κ are

given in terms of characteristic length scale L, characteristic film thickness H, density ρ,
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and slope tan θ of the inclined plane,

β = ε cot θ, κ = εγ0/(L
2ρg cos θ), ε = H/L � 1, (1.3)

in which γ0 is surface tension, taken to be constant, and g is the gravitational constant.

In this scaling, the time scale T is proportional to viscosity µ: T = ε−2µ/(Lρg sin θ).

In this article we consider the influence of a driving force in addition to gravity,

provided by the introduction of surfactants [6, 7, 11, 10, 19, 27]. Surfactants are surface

active agents that lower the surface tension of a liquid, creating spatial variations in

surface tension that induce a tangential surface stress known as a Marangoni force [16].

Such forces have also been created in experiments by exploiting the dependence of surface

tension on temperature [4, 5, 20].

The equations modeling thin film flow driven by gravity and the surfactant-induced

Marangoni force are, in dimensionless form,

ht +
(

1
3
h3

)
x

−
(

1
2
h2Γx

)
x

= β
(

1
3
h3hx

)
x

− κ
(

1
3
h3hxxx

)
x

(1.4a)

Γt +
(

1
2
h2Γ

)
x

− (hΓΓx)x = β
(

1
2
h2Γhx

)
x

− κ
(

1
2
h2Γhxxx

)
x
+ δ Γxx. (1.4b)

Here, Γ (x, t) is the concentration of insoluble surfactant on the free surface. The coefficient

δ = µD/(ε2ρgL3 sin θ) is proportional to the inverse of the Peclet number, modeling the

diffusion of surfactant molecules on the surface of the film, with diffusion constant D [27].

The parameters β, κ are given by (1.3), where now γ0 is the maximum surface tension,

occurring when the surfactant concentration is zero. In dimensional terms, we are scaling

the surfactant concentration relative to some fixed concentration that is assumed to be

low in comparison to the maximal value, the critical micelle concentration ΓCMC, i.e.,

0 � Γ � ΓCMC. We take the dimensional relation between surface tension and surfactant

concentration to be linear for small Γ: γ = γ0 −aΓ with positive constant a. These scalings

are slightly different from those used in [6], as we have normalized the coefficient of the

convective terms due to gravity (the second terms in (1.4)) to be one. Note that when

Γ ≡ 0, the system reduces to the single equation (1.2).

System (1.4) is derived by applying the lubrication approximation to the two-

dimensional Stokes equations, as explained in [11]. Integration of the resulting equations

and nondimensionalization lead to an expression for the fluid velocity u(z) parallel to the

inclined plane:

u(z) = − 1
2
(1 − βhx + κhxxx)(z

2 − 2hz) − Γx z for 0 � z � h. (1.5)

Making use of the depth-averaged velocity, the lubrication equation for the conservation

of fluid mass,

ht + (hū)x = 0, ū =
1

h

∫ h

0

u(z) dz, (1.6)

yields equation (1.4a). Transport of insoluble surfactant on the free surface of the fluid is

given by an advection–diffusion equation in terms of the surface velocity,

Γt + (Γuh)x = δ Γxx, uh = u(h), (1.7)
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to yield (1.4b). A detailed derivation of the equations, including details of the non-

dimensionalization, is described in [6]. In the case of a soluble surfactant, transport and

diffusion of surfactant between the free surface and the bulk requires additional equations,

presented in [17, 30], for flow on a horizontal substrate.

In this paper, we investigate the effect of the coefficients β, κ, and δ that control

smoothing or regularizing terms in the system (1.4). The parameters β and κ control

smoothing of h in the height equation (1.4a). While β and κ also appear in the surfactant

concentration equation (1.4b), their effect there is less clear, as they do not directly

smooth Γ . Equation (1.4b) includes two terms describing the diffusion of the surfactant.

On the left-hand side, the degenerate diffusion term (hΓΓx)x comes from the transport of

surfactant by the surface velocity uh. On the right-hand side, the linear term δΓxx models

diffusion of surfactant molecules on the free surface; the dimensionless parameter δ is

independent of the fluid flow, and is proportional to the diffusion constant. For δ = 0, the

degenerate diffusion equation would yield compactly supported solutions having a Γ = 0

interface that propagates at finite speed [15, 25]. The role of the additional diffusion given

by δ in regularizing Γ and in shock formation has raised questions in previous work [24]

that we explore here.

In Section 1.1 we present the ODE system describing the class of traveling wave solutions

that we consider. In [14], a family of traveling waves was found for the unregularized

system with β = δ = κ = 0. These solutions, presented in Section 2, are the starting point

for our analysis of the regularized equations. In Section 3, we study regularization by

second-order terms only, i.e., with κ = 0, β > 0, and δ � 0. We prove the existence of a

one-parameter family of traveling waves, parametrized by Γmax = maxx Γ . We also study

the structure of these waves with asymptotics and numerical simulations in the limits

Γmax → ∞ (Section 3.2), β → 0, δ > 0 (Section 3.3), δ → 0, β � 0 (Section 3.4). Finally, in

Section 4, we consider the role of capillarity, for which κ > 0.

1.1 Traveling wave solutions

We seek traveling wave solutions with speed s,

h(x, t) = h(η), Γ (x, t) = Γ (η), η = x − st. (1.8)

The solution profiles satisfy the system of ODEs

−sh + 1
3
h3 − 1

2
h2 dΓ

dη
= 1

3
βh3 dh

dη
− 1

3
κh3 d

3h

dη3
− kh, (1.9a)

−sΓ + 1
2
h2Γ − hΓ

dΓ

dη
= 1

2
βh2Γ

dh

dη
+ δ

dΓ

dη
− 1

2
κh2Γ

d3h

dη3
− kΓ , (1.9b)

in which kh, kΓ are constants of integration, determined by boundary conditions, which

we take in the form

η → −∞ : h(η) = hL, Γ (η) = 0,

η → ∞ : h(η) = hR, Γ (η) = 0.
(1.9c)
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From boundary conditions (1.9c) and assuming that Γ ′(|η| → ∞) → 0, we deduce that

kΓ = 0. Similarly, the speed s, and the other constant of integration kh are given in terms

of upstream and downstream film heights hL, hR:

s = 1
3

(
h2
L + hLhR + h2

R

)
> 0, kh = 1

3
hLhR(hL + hR) > 0. (1.10)

These constants are independent of higher order regularizing terms occuring on the right

sides of (1.9ab), hence these values apply throughout the paper. Note that the wavespeed

s is independent of whether surfactant is present or not; it is solely determined by the

influence of gravity, and is the speed of a shock (or hydraulic jump) from hL to hR in the

absence of surfactant, as in equation (1.1).

2 Traveling waves with no regularization

We begin our analysis of traveling waves by considering the PDE system with no

regularization. Setting β = κ = δ = 0 reduces system (1.4) to the simpler system studied

in [14]:

ht +
(

1
3
h3

)
x

−
(

1
2
h2Γx

)
x

= 0, (2.1a)

Γt +
(

1
2
h2Γ

)
x

− (hΓΓx)x = 0. (2.1b)

Equation (2.1b) admits the trivial solution, Γ ≡ 0 (i.e. no surfactant present), in which

case, equation (2.1a) reduces to the scalar conservation law for gravity-driven flow (1.1).

The traveling wave equations (1.9ab) with β = κ = δ = 0 reduce to the system

−sh + 1
3
h3 − 1

2
h2 dΓ

dη
= −kh, −sΓ + 1

2
h2Γ − hΓ

dΓ

dη
= 0. (2.2)

For Γ ≡ 0, (2.2)2 is eliminated and (2.2)1 reduces to the polynomial −sh + 1
3
h3 = −kh

which has two positive roots, h = hL and h = hR , corresponding to the imposed boundary

values. For nontrivial Γ , equation (2.2)2 reduces to −s + 1
2
h2 − hΓ ′ = 0; eliminating Γ ′

between the two equations in (2.2) yields a different algebraic condition on values of h:

6sh − h3 = 12kh. (2.3)

This polynomial equation also has two positive real roots, h = h1 and h = h2, with h1 >h2.

These roots both approach hL as hR approaches qcrithL from below, and are complex for

hR > qcrithL. Here, qcrit is the critical value of the ratio q = hR/hL, qcrit = 1
2
(
√

3 − 1), as

identified in [14]. Corresponding values for the surfactant slopes, G ≡ Γ ′, can be given in

terms of heights h1, h2 and s by

G1 =
h2

1 − 2s

2h1
> 0, G2 =

h2
2 − 2s

2h2
< 0, (2.4)

and are thus implicitly determined by upstream and downstream heights hL, hR. These

formulae depend on jump conditions for h, Γ ′, as explained in detail in [14]; these are not

the only solutions of the jump conditions, but are the only ones relevant for the traveling

waves of this paper.
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hR

h2

h1

hL

η

h

η20η1
η

η20η1

1

0

Γ′(η)
Γ(η)

G2

G1

Γ
0

Γmax

Figure 1. The piecewise constant weak traveling solution, (2.5): (left) h(η) profile, (right) Γ ′(η)

profile (dashed), and the piecewise linear profile for Γ (η), (2.6) (solid).

Provided that hR/hL < qcrit, a traveling wave in which h and Γ ′ are piecewise constant

functions can be constructed explicitly [14] (see Figure 1):

h(η) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hL η < η1

h1 η1 < η < 0

h2 0 < η < η2

hR η2 < η

Γ ′(η) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 η < η1

G1 η1 < η < 0

G2 0 < η < η2

0 η2 < η.

(2.5)

The surfactant concentration Γ (η) then includes a constant of integration Γmax � 0:

Γ (η) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 η � η1

Γmax + G1η η1 � η � 0

Γmax + G2η 0 � η � η2

0 η2 � η,

(2.6)

in which η1, η2 are related to Γmax so as to make Γ (η) continuous,

η1 = −Γmax

G1
< 0, η2 = −Γmax

G2
> 0. (2.7)

The total mass of surfactant for this solution is given by

m =

∫ ∞

−∞
Γ dη = 1

2
Γmax(η2 − η1) = 1

2
Γ 2

max

(
G−1

1 − G−1
2

)
� 0. (2.8)

Thus, for given upstream and downstream heights, either the mass or Γmax may be used

to parametrize the family of traveling waves. We refer to these traveling waves, in which

h is piecewise constant and Γ is piecewise linear and continuous, as weak traveling wave

solutions of system (2.1).

For a fixed upstream height hL, the traveling waves exist for a range of downstream

heights hR. At the two extremes of this range, we get limiting profiles. In the limit as the

downstream height hR → 0+, the height h(η) approaches a piecewise constant function

with upstream height hL, one intermediate height h1 =
√

2hL (since h2 → 0+), and hR = 0.

The surfactant concentration Γ (η) approaches a sawtooth function with G1 =
√

2hL/3
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0

Γmax

0 hR h2 hL h1

Γ

h

η = 0

η = η2 η = η1

Figure 2. Representation of the weak solution in the (h, Γ ) phase plane. Horizontal (dashed)

segments correspond to discontinuous jumps in h and Γ ′ (corners of Γ ) at the indicated spatial

positions.

0

1

2

0η1

hL

hR → 0

h(η)
Γ(η)

h1 → √2

G 1 →
 √2

/3

Figure 3. Approaching a degenerate profile for the limit hR → 0: the h2 plateau in the h(η) profile

(solid) vanishes with η2, h2 → 0 while the Γ (η) profile (dashed) approaches a sawtooth shock wave,

with G2 → −∞.

and G2 → −∞; the speed approaches s = h2
L/3. This limiting solution is shown in Figure 3.

A different solution emerges as hR/hL approaches the critical ratio qcrit. In this case, the

surfactant concentration vanishes uniformly with G1 → 0+ and G2 → 0−, and the height

of the film exhibits a single hydrodynamic jump from hL to hR = qcrithL with speed

s = 1
2
h2
L, since h1, h2 → hL. This is a shock wave solution of the single equation (1.1) for

the film height in the absence of surfactant.

2.1 Stability analysis

There are several significant speeds associated with system (2.1) and the solution (2.5).

The speed s of the traveling wave is the speed of the discontinuities in h, Γx. While (2.1ab)

is not a standard hyperbolic system, we can still obtain some insight into stability by

linearizing about the piecewise weak solution. We consider infinitesimal perturbations to

h(η) and Γ (η) in the reference frame moving with the traveling wave,

h ∼ h(η) + h̃(η, t), Γ ∼ Γ (η) + Γ̃ (η, t).
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η2 ηη1 0

t

Figure 4. Wave speeds and parabolic regions in the reference frame moving with the weak

traveling wave: η = x − st. Dashed lines: characteristic speed c; dotted lines: speed v of

perturbations.

The linearized system for h̃(η, t), Γ̃ (η, t) is

h̃t + ch̃η = 1
2
h2 Γ̃ηη,

Γ̃t + vΓ̃η + w ηh̃η = hGη Γ̃ηη − wh̃,
(2.9)

with

c = h2 − hG − s, v = 1
2
h2 − 2hG − s, w = hG − G2, (2.10)

where the h and G appearing in the coefficients and speeds are constant in each of the

four intervals {L, 1, 2, R}, comprising the weak solution (2.5), where we set GL = GR = 0.

In general (2.9) is a parabolic system, but in the intervals L,R we have G = 0 and it

reduces to

h̃t + ch̃η = 1
2
h2 Γ̃ηη,

Γ̃t + vΓ̃η = 0.
(2.11)

This linear system has the general solution

h̃(η, t) = f(η − [h2 − s]t) + g′ (η −
[

1
2
h2 − s

]
t
)
, Γ̃ (η, t) = g

(
η −

[
1
2
h2 − s

]
t
)
, (2.12)

in which f(ζ), g(ξ) are arbitrary functions describing two independent traveling waves. For

hR/hL < qcrit, both families of waves propagate inward toward the shocks at η = η1 and

η = η2 from intervals L and R respectively, see Figure 4. Hence these two shocks form a

structure that is overcompressive: small disturbances in both h and Γ approach the wave

from both ahead and behind the wave. The term overcompressive derives from systems

of hyperbolic conservation laws [26]; although our equations are hyperbolic/degenerate-

parabolic, the term is appropriate here too. Equation (1.1) has classical compressive

shock solutions with a single set of characteristics entering from either side of the

shock. Undercompressive shocks also occur in thin film flow [4] and have all families of

characteristics passing through the shock.
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h

η20η1

h1

hL

h2

hR

0
η20η1

Γmax

0

Γ

η η

Figure 5. A typical traveling wave solution, h(η) (left) and Γ (η) (right), with second-order

regularization, β, δ > 0.

The overcompressive nature of the weak solution is also reflective of its nonuniqueness,

subject to fixed boundary conditions hL, hR . Whereas undercompressive waves appear

only for discrete values of a parameter, such as hL [4], overcompressive waves occur

in continuous one-parameter families for a range of boundary conditions (here for all

Γmax > 0 at each fixed hL, hR).

Unlike the other two shocks, the stability of the shock at η = 0 must be studied through

the coupled parabolic system (2.9) on intervals either side of the shock.1 Hence we might

expect it to have different properties than the outer pair. Indeed we will see that adding

regularizing terms to the system does influence these shocks differently, but preserves the

overcompressive property of having a one-parameter family of solutions.

3 Traveling waves with second-order regularization

In this section we consider the form of traveling wave solutions in the presence of the

second-order regularizing terms from (1.9ab). That is, we take κ = 0 and β, δ > 0 to yield

a second order system of ODEs,

−sh + 1
3
h3 − 1

2
h2 dΓ

dη
= 1

3
βh3 dh

dη
− kh, (3.1a)

−sΓ + 1
2
h2Γ − hΓ

dΓ

dη
= 1

2
βh2Γ

dh

dη
+ δ

dΓ

dη
. (3.1b)

A typical solution is shown in Figure 5. Relative to the weak solution from Section 2, the

solution here has been smoothed at its jumps at η = η1, 0, η2. We describe the structure

of (3.1ab) via phase plane analysis and then consider the smoothing effects introduced by

the β, δ parameters.

3.1 Phase plane analysis for general β, δ > 0

Equations (3.1ab) can be written as a first-order autonomous system in the plane:

β
dh

dη
=

P1(h)Γh + 4δ P0(h)

h3(Γh + 4δ)
(3.2a)

dΓ

dη
=

2sΓ (h − h∗)

h(Γh + 4δ)
, (3.2b)

1 We do not analyze this problem here.
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P0(h)

h
0 hR h2 hL h1

h
0 hR h2 hL h1

0

P1(h)

0

Figure 6. (Left) The polynomial P0(h) and the direction field for monotone increasing/decreasing

solutions on the h-axis, with no surfactant, equation (3.10). (Right) The P1(h) polynomial and the

direction field associated with equation (3.11).

where the constant h∗ in (3.2b) is h∗ = 3kh/s, i.e.,

h∗ =
3hLhR(hL + hR)

h2
L + hLhR + h2

R

, (3.3)

and the cubic polynomials P0(h), P1(h) in (3.2a) are

P0(h) = h3 − 3sh + 3kh, P1(h) = h3 − 6sh + 12kh. (3.4)

Observe that P0(h) factors as

P0(h) = (h − hL)(h − hR)(h + hL + hR). (3.5)

Noting that equation (2.3) for the heights h1 and h2 corresponds to P1(h) = 0 from (3.4),

we can similarly factor P1 when hR/hL < (
√

3 − 1)/2,

P1(h) = (h − h1)(h − h2)(h + h1 + h2). (3.6)

The ordering of the zeros of P0(h) and P1(h) is given in the following lemma (see Figure 6).

Lemma 3.1 For 0 < hR/hL < (
√

3 − 1)/2, the positive zeroes hL, hR of P0(h) and h1, h2 of

P1(h) respectively are ordered as

hR < h2 < h∗ < hL < h1, (3.7)

where h∗ is given by (3.3).

Proof We first show that hR < h∗ < hL. Consider the difference hL − h∗; it can be written

in the form

hL − h∗ =
h3
L

h2
L + hLhR + h2

R

(1 − 2q − 2q2),
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0

2

0 hR h2 hL h1

CR CL

Γ

h

I II III
h = h*

Γ = N(h)

h

Γ

CLCR

0 hR h* hL

2

0

Figure 7. The (h, Γ ) phase portrait of system (3.2ab) for β, δ > 0: (Left) Equilibria (hL, 0), (hR, 0),

some representative solution curves with arrows indicating the direction of flow with η. The singular

trajectories CL, CR partition the space into three regions with bounded heteroclinic orbits existing

in region II. (Right) Trajectories in the phase plane along with the nullclines (dashed curves).

where q = hR/hL. The prefactor is positive and the quadratic is positive for 0 < q <

(
√

3 − 1)/2. Hence hL > h∗. Similarly,

h∗ − hR =
hRh

2
L

h2
L + hLhR + h2

R

(2 + 2q − q2) > 0

over the wider range 0 < q < 1 +
√

3; hence h∗ > hR . It now follows from (3.5)

that P0(h∗) < 0. Moreover, since kh = 1
3
sh∗, P1(h) − P0(h) = 3s(h∗ − h), from (3.4).

Therefore, P1(h∗) = P0(h∗) < 0. Hence, from (3.6) h2 < h∗ < h1. Since P0(hR) = 0,

P1(hR) = P1(hR) − P0(hR) = 3s(h∗ − hR) > 0, so h2 > hR . Similarly, at hL, P0(hL) = 0, so

P1(hL) = P1(hL) − P0(hL) = 3s(h∗ − hL) < 0, so that h1 > hL. �

Physically relevant solutions are contained in the first quadrant, h � 0, Γ � 0; some

representative trajectories are shown in Figure 7. There are two equilibria: (hL, 0) and

(hR, 0). The equilibrium (hL, 0) is an unstable node with eigenvalues

λ1 =
(hL − hR)(2hL + hR)

βh3
L

> 0, λ2 =
s(hL − h∗)

2δ hL
> 0. (3.8)

The equilibrium (hR, 0) is a stable node with eigenvalues

λ1 = − (hL − hR)(2hR + hL)

βh3
R

< 0, λ2 =
s(hR − h∗)

2δ hR
< 0. (3.9)

The global structure of the phase plane can be understood by considering limiting

behaviors for Γ . If there is no surfactant, system (3.1ab) reduces to a single equation for

h(η), on the Γ ≡ 0 invariant line

dh

dη
=

P0(h)

βh3
for Γ = 0, (3.10)
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see Figure 6 (left). In the other extreme, for Γ → ∞, from (3.2a), if h is bounded it must

satisfy

dh

dη
=

P1(h)

βh3
for Γ → ∞. (3.11)

Consequently, we note the existence of two singular solutions, CL which connects (hL, 0)

to (h1,∞), and CR which connects (h2,∞) to (hR, 0), see Figure 7. These trajectories are

separatrices that partition the phase plane into three regions, labeled I, II, III in Figure 7.

All solutions in regions I and II approach (hR, 0) as η → ∞. All solutions in regions II

and III approach (hL, 0) as η → −∞. From region II, any nonnegative bounded solutions

must be heteroclinic orbits connecting the equilibria.

From (3.2b), the Γ -nullcline, where dΓ/dη = 0, is given by the line h = h∗. Hence, the

value of Γ where h = h∗ is the local (and in region II, the global) maximum of Γ (η). This

gives us a very convenient parametrization of all the solutions in region II.

Theorem 3.2 Every heteroclinic orbit from (hL, 0) to (hR, 0) corresponds to a solution of

(3.2ab) with

h(0) = h∗, Γ (0) = Γmax, (3.12)

for some Γmax � 0. Conversely, for every Γmax � 0, there is a heteroclinic orbit from (hL, 0)

to (hR, 0).

Proof Every heteroclinic orbit (h(η), Γ (η)) from (hL, 0) to (hR, 0) crosses h = h∗ at some

value Γmax of Γ . After a suitable translation of the independent variable η, this trajectory

satisfies (3.12).

Conversely, as described above, all bounded solutions are heteroclinic orbits in region

II of the phase plane, connecting (hL, 0) as η → −∞ and (hR, 0) as η → ∞. Since (3.12)

is an ordinary point for the autonomous system (3.2ab), there exists a unique trajectory

that passes through it. Consequently (3.12) defines a heteroclinic solution in region II for

all positive Γmax. �

From (3.2a), the h-nullcline, where dh/dη = 0, is the graph of the rational function,

Γ = N(h) ≡ −4δP0(h)

hP1(h)
. (3.13)

N(h) has zeroes at h = hL, h = hR and vertical asymptotes at h = h1, h = h2, see

Figure 7(right). As shown in Figure 7, the separatrices CL, CR lie to the right of the

components of the h nullcline through (hL, 0), (hR, 0), respectively. Trajectories intersecting

the nullcline at positive Γ have nonmonotone h(η) solution profiles. Using (3.7), it

can be shown that the slope of the nullcline at the equilibrium points, hR and hL, is

positive, N ′(hL,R) > 0. We can determine if heteroclinic solutions intersect the nullcline by

considering their linearized behavior at the equilibria. The eigenvectors corresponding to
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eigenvalues λ1, λ2 (3.8) are

v1 =

(
1

0

)
, v2 =

(
−hLP1(hL)

4δ(hL − hR)(2hL + hR) − 2βsh2
L(hL − h∗)

)
. (3.14)

Hence the linearized solutions for η → −∞ take the form

h(η) ∼ hL + c1e
λ1η − c2hLP1(hL)eλ2η, (3.15)

Γ (η) ∼ c2

[
4δ(hL − hR)(2hL + hR) − 2βsh2

L(hL − h∗)
]
eλ2η.

The eigenvector v1 is parallel to the Γ ≡ 0 invariant line. The slope associated with the

eigenvector v2 is positive if

β

δ
� ρL ≡ 2(hL − hR)(2hL + hR)

sh2
L(hL − h∗)

. (3.16)

Note that this condition is equivalent to

λ1 � λ2

for the eigenvalues in (3.8). That is, as η → −∞ the eλ2η contributions in (3.15) decay more

slowly and ultimately dominate the asymptotic behavior as the equilibrium is approached.

Consequently, solution trajectories with Γ > 0 (i.e. c2 > 0) will approach (hL, 0) along the

v2 vector in the phase plane. Noting that P1(hL) < 0, given any value of c1, for sufficiently

large |η|, as η → −∞, h(η) will approach hL from above. Since h(0) = h∗ < hL, we conclude

that such solutions are nonmonotone and must cross the h-nullcline (see Figure 8(left)).

If condition (3.16) is violated, the slope corresponding to eigenvector v2 is negative, and

since eλ1η > eλ2η for η < 0, trajectories enter (hL, 0) tangent to v1, i.e., tangent to the h-axis,

unless c1 = 0 in (3.15) (in which case, the trajectory is tangent to v2). Correspondingly,

there is a finite range of values of Γmax, 0 � Γmax � Γ crit
max(β/δ), for which the trajectory of

Theorem 3.2 is monotonic decreasing. For Γmax = Γ crit
max(β/δ), the trajectory has c1 = 0 in

(3.15) and is still monotonic. For Γmax > Γ crit
max(β/δ), the trajectory crosses the h-nullcline

and is nonmonotonic as before. These features are shown in Figure 8. The CL separatrix

has similar behavior. At the equilibrium (hL, 0), CL is tangent to v1 if β/δ < ρL, but is

tangent to the h axis (with h > hL) if β/δ > ρL.

Similar to (3.16), the asymptotic behavior as η → ∞ involves a critical ratio relating

the regularizing parameters to the eigenvalues (3.9), i.e., λ1 � λ2:

β

δ
� ρR ≡ 2(hR − hL)(2hR + hL)

sh2
R(hR − h∗)

. (3.17)

Similar to the above arguments, the singular trajectory CR is bounded between the nullcline

and the asymptote h = h2. In this case, although the separatrix CR arrives at (hR, 0) along

either the v2 or v1 eigenvector depending on whether (3.17) is satisfied, this does not lead

to a change in the monotonicity of h(η) as hR is approached; all solutions are monotone

decreasing as they enter the equilibrium (hR, 0).

In the following subsections, we use asymptotic analysis to study the influence of weak

regularization on the ODE system (3.1ab), i.e., the limits δ → 0 and β → 0. The δ, β
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Figure 8. Influence of parameters β, δ on heteroclinic solutions: (Left) for β/δ < ρL all bounded

solutions cross the right nullcline and yield nonmonotone h(η) profiles (see Figure 5 for example),

(Right) for β/δ > ρL there is a critical value Γ crit
max(β/δ) that separates monotone-in-h and non-

monotone solutions, see lower-right for two such typical h(η) profiles.

terms introduce singular perturbations and smoothing that fundamentally change aspects

of the structure of the solutions. For example, consider the behavior near the equilibria

(hL, 0), (hR, 0); the λ2 eigenvalues (see (3.8), (3.9)) diverge such as O(1/δ) → ∞, as δ → 0,

and the λ1 eigenvalues diverge such as O(1/β) → ∞ as β → 0. The behavior with these

singular eigenvalues as |η| → ∞, suggests that these contributions to the solutions reach

zero at finite η. From (3.15), Γ (η) should approach a function with compact support as

δ → 0, since it involves only λ2, while h(η) has exponential decay for |η| → ∞ unless

δ = β = 0. In fact, as remarked in Section 5, solutions with δ = 0 have this property.

In the following subsections, we use matched asymptotics to describe the structure of the

solution for three interesting limits. In presenting asymptotic expansions for solutions in

these various parameter regimes, we use the symbol z to denote a scaled independent

spatial variable in a variety of contexts in order to avoid a proliferation of symbols. The

meaning of z is consistent within each subsection.

3.2 Solution for the Γmax → ∞ limit

We briefly consider the structure of the solutions for fixed β, δ > 0 as Γmax → ∞. This limit

was also studied by the authors for a problem with a quasi-statically growing traveling

wave, driven by a steady rate of influx of surfactant [31].

Define σ = 1/Γmax as the small parameter, for this case σ → 0. Recalling (2.6) and (2.7),

the magnitude (and region of support if δ = 0) of the surfactant profile can be expected

to scale with σ, see Figure 9. Hence, in this section we define z = ση and we rescale the
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Figure 9. Numerical solutions for h(η), Γ (η) for several values of Γmax illustrating the trends for

for the limit σ → 0 (Γmax → ∞). Here δ = 0.1, β = 0.1, hL = 1 and hR = 0.2 with Γmax = 5, 10, 15, 20.

solution as

h = ȟ(z), Γ =
1

σ
Γ̌ (z), η =

z

σ
, (3.18)

where Γ̌ (0) = 1 corresponds to the condition Γ (0) = Γmax of Theorem 3.2. The governing

equations then become

dȟ

dz
=

P1(ȟ) Γ̌ ȟ + 4σδ P0(ȟ)

σβȟ3(Γ̌ ȟ + 4σδ)
,

dΓ̌

dz
=

2sΓ̌ (ȟ − h∗)

ȟ(Γ̌ ȟ + 4σδ)
. (3.19)

Writing the solution as a perturbation expansion,

ȟ = ȟ0(z) + σȟ1(z) + O(σ2), Γ̌ = Γ̌ 0(z) + σΓ̌ 1(z) + O(σ2), (3.20)

and substituting this ansatz into (3.2a) yields that at leading order σ−1P1(ȟ
0) = 0.

Therefore, to leading order, the film height is one of the roots, ȟ0 = h1 or ȟ0 = h2 of P1.

At leading order for Γ̌ we find corresponding constant slopes given by

dΓ̌ 0

dz
=

2s(ȟ0 − h∗)

(ȟ0)
2

. (3.21)

Using algebraic relations from [14], we recognize these slopes as being equivalent to G1, G2

respectively (see (2.4)). Consequently the piecewise-defined leading order solution is

ȟ0(z) =

{
h1, z < 0

h2, z > 0
Γ̌ 0(z) =

{
C− + G1z, z < 0

C+ + G2z, z > 0,
(3.22)

where C± are constants. We show below that these constants in the outer solution are

determined, by matching to the inner solution, to be C− = C+ = 1, so (3.22) recovers the

weak traveling wave solution (2.5), (2.6) on the interval where Γ̌ 0 > 0, see Figure 10(right).

At next order in σ, we obtain an algebraic equation

ȟ1(z) = − 4δP0(ȟ
0)

ȟ0P ′
1(ȟ

0)Γ̌ 0(z)
, (3.23)
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Figure 10. (Left) Traveling waves in the h, Γ phase plane for σ → 0, (Right) rescaled outer

solutions (3.18) for the profiles in Figure 9.

determining ȟ1(z), with ȟ1(|z| → ∞) = O(|z|−1) → 0. Likewise, higher order corrections to

Γ̌ (z) decay algebraically as |z| → ∞.

For β, δ > 0, we expect the solutions (ȟ(z) in particular) to be smooth and continuous,

hence (3.22) cannot be valid at z = 0. To describe the solution structure near η = 0,

we consider perturbation expansions in the original variables (which are inner variables

relative to (3.18)),

h(η) = h0(η) + σh1(η) + O(σ2) Γ (η) =
1

σ
+ Γ 1(η) + σΓ 2(η) + O(σ2).

with conditions h0(0) = h∗ and hn(0) = Γn(0) = 0 for n � 1. To leading order as σ → 0,

(3.2ab) reduce to

dh0

dη
=

P1(h
0)

β(h0)
3
,

dΓ 1

dη
=

2s(h0 − h∗)

(h0)
2

. (3.24)

We note that the structure of this interior boundary layer depends to leading order on

β; this dependence will be explored further in Section 3.3. The parameter δ comes in at

higher orders and hence has a weak influence on the structure of the solution near η = 0.

The equation for h0(η) is decoupled from Γ 1 and describes a unique monotone-decreasing

solution from h1 to h2. Continuing to O(σ), from asymptotic matching of h1(η → ±∞) to

ȟ1(z → 0±), we indeed obtain that Γ̌ 0(0±) = 1 for (3.22), establishing that Γ̌ is continuous

and has max 1.

Outside of the interval (η1, η2), Γ (η) is no longer large and a different representation

is more appropriate, see Section 3.4. For η � η1 and η � η2, h(η) and Γ (η) are O(1); the

structure of the solution describing the connections to Γ → 0 and h → hL, h → hR are

given by the full equations, (3.2ab).

We see that in the limit Γmax → ∞ the separations between 0 and η1, 0 and η2 grow

linearly with Γmax and hence the localized structures of the solution in these neighborhoods

become more independent and clearly defined. In contrast, for Γmax < Γ crit
max (defined in

Section 3.1), these positions are so closely spaced that the regularization due to β, δ

completely eliminates the h1, h2 plateaus (recall curve (b) in Figure 8 (lower right)). In

other words, sufficiently large concentrations of surfactant (as measured by Γmax) are

necessary to generate identifiable h1, h2 height plateaus.
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Figure 11. Trends for β → 0. The dominant effect is on the structure of the jump in h, Γ ′ at η = 0,

shown in the h(η) profile (left) and in the h, Γ phase plane (right). Here hL = 1, hR = 0.2, δ = 0.025

and Γmax = 2 with β = 2−n for n = 0, 1, 2 . . . 6.

3.3 Solution for the β → 0 limit

Figure 11 illustrates the trends seen in numerically computed solutions in the limit of

β → 0 with fixed positive δ. The dominant effect is in decreasing the width of the shock

layer in h at η = 0. We now present analysis to support this observation.

The limit β → 0 is a singular limit of (3.2ab), since it reduces the ODE for h(η)

to an algebraic relation. To leading order, with h ∼ h0(η), Γ ∼ Γ 0(η), we obtain the

differential-algebraic system

Γ 0 = N(h0),
dΓ 0

dη
=

2sΓ 0(h0 − h∗)

h0(Γ 0h0 + 4δ)
, (3.25)

where N(h) is given by (3.13). Hence, the leading order outer solution is defined in terms

of the h-nullcline (3.13). It is convenient to re-write this problem as a first order ODE for

h0(η) by substituting N(h0) into the ODE for Γ 0,

dh0

dη
= M(h0), M(h) ≡ 2sN(h)(h − h∗)

hN ′(h)(hN(h) + 4δ)
. (3.26)

This form makes it clear that (3.25) can produce monotone smooth solutions for (h0, Γ 0)

defined on ranges of h between the zeroes of M(h). In particular, we obtain piecewise

outer solutions defining a monotone increasing h0(η) for hL � h0 < h1 on η < 0 and a

monotone decreasing portion for hR � h0 < h2 on η > 0, (see Figure 12). Since N(h) has

positive slope on these intervals, Γ 0(η) has the same monotonicity as h0(η).

However, the solution of (3.25) cannot connect the two portions of the outer solution

across η = 0 since the h-nullcline gives a clearly unphysical negative surfactant concen-

tration, N(h) < 0, for h2 < h < hL. This difficulty is resolved by seeking a boundary layer

for the inner solution of (3.2ab) in the neighborhood of η = 0. A different representation

of the solution is needed in the neighborhood of η = 0. Consider an inner solution in

terms of z = η/β,

h = ĥ0(z) + βĥ1(z) + O(β2), Γ = Γ̂ 0(z) + βΓ̂ 1(z) + O(β2). (3.27)

Substituting into (3.2b) yields that dΓ/dz = O(β) → 0, hence to leading order Γ is
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Figure 12. Construction of the matched asymptotic solution for β → 0: (Left) h(η) profile from

outer solutions h0
L,R(η) (solid curves) for |z| > 0 and inner solution ĥ0(z) (dashed), and (Right)

similarly in the phase plane where the outer solutions are given by the nullcline Γ = N(h). The

dotted curve corresponds to one of the numerically computed solutions from Figure 11.

constant; Γ̂ 0(z) ≡ Γmax. Consequently, the leading order behavior of h(z) is given by

dĥ0

dz
=

P1(ĥ
0)Γmaxĥ

0 + 4δP0(ĥ
0)

(ĥ0)
3
(Γmaxĥ0 + 4δ)

, ĥ0(0) = h∗. (3.28)

The terms in the numerator and denominator on the right hand side of this ODE are

homogeneously weighted by Γmax and δ. Hence it is convenient to define a ratio of these

parameters,

ν ≡ δ

Γmax
� 0, (3.29)

and re-write (3.28) in terms of this single parameter as

dĥ0

dz
=

P̄ (ĥ0)

(ĥ0)
3
(ĥ0 + 4ν)

, P̄ (h) ≡ hP1(h) + 4νP0(h). (3.30)

The equilibria of (3.28) are the roots of N(ĥ0) = Γmax, corresponding to the positive zeroes

of the fourth-order polynomial P̄ (ĥ0). We now give a lemma with the key properties of

these zeroes:

Lemma 3.3 For each ν � 0, equation (3.30) has exactly two positive equilibria h̄1(ν) and

h̄2(ν) satisfying

hL � h̄1(ν) � h1, h̄1(0) = h1, lim
ν→∞

h̄1(ν) = hL, (3.31a)

hR � h̄2(ν) � h2, h̄2(0) = h2, lim
ν→∞

h̄2(ν) = hR. (3.31b)

Proof We make use of Lemma 3.1 for the ordering (3.7) of the zeroes of P0, P1. From

Figure 6, we see that P̄ (hL) < 0 < P̄ (h1), so that P̄ (h) has a zero h = h̄1(ν) between hL and

h1. Similarly, P̄ (h2) < 0 < P̄ (hR), so that P̄ (h) has a zero h = h̄2(ν) in the interval (hR, h2).
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To prove that h̄1(ν), h̄2(ν) are the only two positive zeroes for each ν > 0, we show

that the fourth degree polynomial P̄ (h) has two negative zeroes. At hM = −(hL + hR),

P0(hM) = 0, see (3.5), so P̄ (hM) = hMP1(hM). From Lemma 3.1, hL + hR < h1 + h2, so

from (3.6) we conclude that P̄ (hM) < 0. Further, note that P̄ (0) = νP̄0(0) > 0, and

P̄ (h) ∼ h4 → +∞ as h → −∞. Consequently, P̄ (h) changes sign precisely twice along the

negative h axis.

Finally, in the limit ν → 0 we have P̄ (h) ∼ hP1(h) with zeroes h1, h2, and for ν → ∞ the

polynomial reduces to P̄ (h) ∼ νP0(h) with zeroes hL, hR . �

Noting that equation (3.30) is a first-order ODE, and since dĥ0/dz < 0 at z = 0

(i.e., P̄ (h∗) < 0), the solution ĥ0(z) is monotone decreasing for all z with limiting behaviors

ĥ0(z → −∞) → h̄1(ν), ĥ0(z → ∞) → h̄2(ν).

In terms of matched asymptotics, these far-field limits of the inner solution give the initial

conditions for the two portions of the leading order outer solution (3.25) on η < 0 and

η > 0,

h0(0−) = h̄1(ν), h0(0+) = h̄2(ν), Γ 0(0) = Γmax. (3.32)

In the limit of large Γmax, we can express these zeroes in terms of perturbation expansions

for ν → 0,

h̄1(ν) = h1 − ν
4P0(h1)

h1P
′
1(h1)

− ν2 8P0(h1)

h2
1P

′
1(h1)2

(
P0(h1)

P ′′
1 (h1)

P ′
1(h1)

+
2P0(h1)

h1
− 2P ′

0(h1)

)
+ O(ν3),

(3.33)

and similarly for h̄2(ν) with all h1 replaced by h2 above. We note that (3.33) agrees with

the expansion for ȟ(0±) given in Section 3.2 up to O(Γ−1
max). The differences between the

limits Γmax → ∞ with β fixed versus β → 0 with Γmax fixed enter at O(Γ−2
max) in these

expansions.

Conditions (3.32) are consistent with the description of the solution executing a fast

jump at Γ = Γmax between the two branches of the slow manifold (the Γ = N(h)

nullcline). More details on the structure of Γ in the inner solution are obtained by going

to next order (see Figure 12),

dΓ̂ 1

dz
=

2s(ĥ0 − h∗)

ĥ0(ĥ0 + 4ν)
, Γ̂ 1(0) = 0, (3.34)

which is included in Figure 12(right).

For completeness we also consider the ν → ∞ limit of (3.30) which to leading order

yields

dĥ0

dz
=

P0(ĥ
0)

(ĥ0)3
. (3.35)

As expected from Lemma 3.3, this equation describes an inner layer with a transition

from hL to hR . Expressing ν → ∞ in terms of our original parameters determines the
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Figure 13. Solutions for β → 0 and ν → ∞: (Left) nested boundary layers for β → 0 and δ → ∞
and (Right) the phase plane representation approaches a three-segment polygonal curve.

relations β � Γmax � δ, where we take Γmax = O(1). A consequence of this is that Γ is

well approximated by the linearized behaviors (3.8, 3.9),

Γ (η) ∼ Γmax

{
exp

(
λL2 η

)
η < 0,

exp
(
λR2 η

)
η > 0,

(3.36)

where the exponential decay rates have λ2 = O(δ−1). Thus in this limit the solution

exhibits nested boundary layers at η = 0: the jump in h occurs on the narrow O(β) layer,

which is nested within the wider O(δ) layer on which Γ decays to zero, see Figure 13.

We conclude by pointing out the equivalence of the limiting values of the β → 0 leading

order outer solution, (h0(η), Γ 0(η)) at η → 0±, with the jump conditions at η = 0 for the

β = 0 weak solution with δ � 0,

−s[h] − 1
2
[h2Γ ′] + 1

3
[h3] = 0, −Γmax[hΓ

′] + 1
2
Γmax[h

2] = δ[Γ ′]. (3.37)

If δ > 0, the jump in h, Γ ′ at η = 0 is the only discontinuity. Recall from (1.7) that the

surface fluid speed is given by uh = 1
2
h2 − hΓx. Consequently, the second jump condition

in (3.37) is

[uh] = ν[Γ ′] < 0.

That is, the spreading associated with diffusion of surfactant on the surface is balanced

by the transport of surfactant toward the discontinuity at η = 0. Moreover, we observe

that this discontinuity is compressive in the sense that the surface velocity, uh(η) satisfies

uh(0
+) < s < uh(0

−).

Next, we examine what occurs in the limit δ → 0.

3.4 Solution for the δ → 0 limit

From Figure 14 we see that the limit δ → 0 manifests a dramatic change in the structure

of the solution near η1 and η2. While the traveling wave again appears to approach the

weak solution of Section 2, we will see that the behavior near the discontinuities takes a

significantly different form than in Section 3.3.
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Figure 14. Trends for δ → 0: (left) Notable changes occur in the numerically computed solution

profiles at η = η1, η2, i.e. where Γ ↘ 0. The inset shows a close-up of the corner layer at η1 for δ → 0.

(Right) The solutions for δ → 0 shown in the (h, Γ ) phase plane. See Figure 15 for corresponding

Γ (η) profiles.

We begin with a regular expansion for the outer solution

h = h0(η) + δh1(η) + O(δ2), Γ = Γ 0(η) + δΓ 1(η) + O(δ2). (3.38)

For Γ > 0, (3.2ab) yield the leading order equations

dh0

dη
=

P1(h
0)

β(h0)
3
,

dΓ 0

dη
=

2s(h0 − h∗)

(h0)
2

, (3.39)

with initial conditions h0(0) = h∗, Γ
0(0) = Γmax. We consider the form of the solution for

η � 0; results for η � 0 follow analogously.

The domain of applicability of (3.39) is limited by the consideration that the surfactant

concentration must be non-negative. For δ = 0, we define the edge of the region of

support of the leading order solution by η̄1, where Γ 0(η̄1) = 0. This finite position can be

obtained by numerical integration of (3.39). Scaling arguments show that

η̄1 = − Γmax

g1(Γmax/β)
, (3.40)

where g1(µ) is numerically observed to be a monotone increasing function and has

g1(µ → ∞) → G1, consistent with (2.7). Γ 0(η) hits zero at η̄1 with finite slope and for

η < η̄1, we take the non-negative truncation, Γ 0(η) ≡ 0. That is, Γ 0 has a corner at η̄1, see

Figure 15(left); we will show that h0(η) also has a corner there, see Figure 14(left). The

influence of finite δ is to regularize this behavior; for δ > 0, dΓ/dη can no longer jump

and hence Γ will lose its compact support, see Figure 15(left). To describe this behavior,

we make use of the asymptotic analysis developed by J. R. King [12, 13] for the solutions

of a regularized porous medium equation.

The analysis begins with the examination of the local structure of the outer solution of

h(η), Γ (η) for η → η̄1 with η � η̄1. To leading order, (3.39) yields

h0(η) ∼ c0 Γ 0(η) ∼ b1(η − η̄1) as η → η̄+
1 , (3.41)

where b1 = 2s(c0 − h∗)/c
2
0 and the positive constant c0 can be obtained numerically by

integrating (3.39) from η = 0. From the results of previous sections, if β → 0 or Γmax → ∞,
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Figure 15. (Left) Numerically computed Γ (η) profiles for δ → 0 (corresponding to the h profiles

from Figure 14). The inset shows a close-up of the corner layer at η1. (Right) The Γ profiles in a

semi-log plot showing convergence to a compactly-supported weak solution as exponentially small

terms decay outside the interval η̄1 < η < η̄2.

we expect c0 → h1 and b1 → G1. For convenience, we will assume these limiting values

apply (using the Γmax → ∞ limit). This simplifies some equations while retaining the same

qualitative form of the local structure of the solution that would hold for any finite Γmax.

Hence we can proceed without significant loss of generality in taking c0 = h1 and b1 = G1.

Proceeding to O(δ), letting ζ = η − η̄1, the local form of the next order equations is

dh1

dζ
∼ P ′

1(h1)

βh3
1

h1(ζ) +
4P0(h1)

βh4
1G1ζ

,
dΓ 1

dζ
∼ −2s(h1 − 2h∗)

h3
1

h1(ζ) − 8s(h1 − h∗)

h3
1G1ζ

. (3.42)

Solving these equations for ζ → 0 yields

h1(ζ) ∼ 4P0(h1)

βh4
1G1

ln ζ + c1, Γ 1(ζ) ∼ −8s(h1 − h∗)

h3
1G1

ln ζ + b2, (3.43)

where c1, b2 are constants determined by the initial conditions on h, Γ . These solutions

are unbounded as ζ → 0, showing the nonuniformity of (3.38) and the need for interior

boundary layers.

King showed that it is convenient to define the location of the interior layer as where

Γ = δ, i.e.

Γ (η) = δ at η = �(δ), (3.44)

where � → η̄1 as δ → 0. Next, we write scaled solutions as

Γ = δ Γ̂ (ξ) h = h1 + δ ĥ(ξ) η = � + δ ξ, (3.45)

which to leading order (Γ̂ ∼ Γ̂ 0 + O(δ), ĥ ∼ ĥ0 + O(δ)) satisfy

dĥ0

dξ
=

4P0(h1)

βh3
1(Γ̂

0h1 + 4)
,

dΓ̂ 0

dξ
=

2s(h1 − h∗)Γ̂
0

h1(Γ̂ 0h1 + 4)
. (3.46)

Integrating the Γ̂ 0 equation and applying the boundary condition Γ̂ (0) = 1, we obtain
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the implicit relation

h2
1Γ̂

0 + 4h1 ln Γ̂ 0 = 2s(h1 − h∗)ξ + h2
1. (3.47)

From this we can obtain the limiting behavior for Γ̂ 0 → ∞,

Γ̂ 0(ξ) ∼ 2s(h1 − h∗)

h2
1

ξ − 4

h1
ln

(
2s(h1 − h∗)

h2
1

ξ

)
+ 1 as ξ → ∞. (3.48)

We then seek the form of the layer position in terms of the expansion

�(δ) ∼ η̄1 + η̄aδ ln δ + η̄bδ, δ → 0, (3.49)

where coefficients η̄a, η̄b are to be determined by matching with the outer solution.

Expanding the outer solution in terms of ξ for ln δ � ξ � 1/δ yields

Γ 0(ξ) + δΓ 1(ξ)

δ
∼ 2s(h1 − h∗)

h2
1

ξ +
2s(h1 − h∗)

h2
1

η̄a ln δ +
2s(h1 − h∗)

h2
1

η̄b − 8s(h1 − h∗)

h3
1G1

ln(δξ).

(3.50)

We proceed to match (3.48) to (3.50) term by term. At O(ln δ) and O(1) respectively we

determine that

η̄a =
8s(h1 − h∗)

h3
1G

2
1

, η̄b =
1

G1

(
1 − 4

h1
ln

[
2s(h1 − h∗)

h2
1

])
. (3.51)

Returning to (3.47), we find the limiting behavior for Γ̂ 0 → 0 is given by

Γ̂ 0(ξ) ∼ exp

(
1
4
h1 +

s(h1 − h∗)

2h1
ξ

)
, as ξ → −∞; (3.52)

this behavior must be matched to the outer solution for |η| � � with Γ = o(δ),

dh

dη
=

P0(h)

βh3
,

dΓ

dη
=

s(h − h∗)Γ

2δ h
. (3.53)

These equations describe the form of Γ (η) that connects (3.52) to the results from linear

stability (3.15), as h transitions from h ∼ h1 to h → hL. Observe that after rescaling ξ,

(3.52) agrees with Γ = O(eλ̂2η) with λ̂2 = s(h1 −h∗)/(2h1δ), and like λ2 in (3.8), λ̂2 = O(δ−1)

as δ → 0. We can conclude that Γ is exponentially small for all |η| � �. These results

clarify how the compactly-supported weak solution for Γ (η) is approached as δ → 0. For

δ = 0, Γ has a corner at η̄1 with the jump in the slope being [Γ ′] ≈ G1 −0. The slope h′(η)

also approaches a jump discontinuity (i.e., a corner for h) with [h′] ≈ 0 − P0(h1)/(βh
3
1).

The leading order outer solution from (3.39, 3.53) can be interpreted as coming from a

piecewise-defined dynamical system:

dh

dη
=

{
P1(h)/βh

3, Γ > 0

P0(h)/βh
3, Γ = 0

dΓ

dη
=

{
2s(h − h∗)/h

2, Γ > 0,

0, Γ = 0.
(3.54)
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In this system, the polynomials P0, P1 continue to play separate roles when δ = 0.

Derivatives of both h and Γ jump at Γ = 0. Initial conditions with Γ > 0 lead to

well-defined compactly-supported solutions, parametrized by Γmax, as in Theorem 3.2.

3.5 Overview of the second-order problem

We have shown that the second-order regularizations in β and δ, while both taking the

forms of singular perturbations, do not dramatically change the global structure of the

traveling wave solutions. As in most singular perturbations problems, corrections are

introduced in boundary layers, at η = 0 or η = η1, η2 respectively, but these alterations do

not change the algebraic relations determined by the far-field boundary conditions that

define the overall form of the limiting weak traveling wave solution (2.5).

The analysis in this section can be put into a single framework with the rescaling

Γ = δΓ̂ (z), h = ĥ(z), η = δz, (3.55)

yielding the system

ρ
dĥ

dz
=

P1(ĥ) Γ̂ ĥ + 4P0(ĥ)

ĥ3(Γ̂ ĥ + 4)
,

dΓ̂

dz
=

2sΓ̂ (ĥ − h∗)

ĥ(Γ̂ ĥ + 4)
, (3.56)

where ρ = β/δ. The initial conditions (3.12) then take the form ĥ(0) = h∗, Γ̂ (0) = ν−1,

where ν = δ/Γmax, recall (3.29). The traveling wave solutions ĥ(z), Γ̂ (z) now explicitly

depend only on two parameters, ν and the ratio ρ. The limit Γmax → ∞ examined in

Section 3.2 is given by ν → 0. The limit β → 0 examined in Section 3.3 is given by ρ → 0.

The behaviour for β → 0 with ν → ∞ was also considered in that section. The limit

δ → 0 examined in Section 3.4 corresponds to ρ → ∞ with ν → 0. All of these limits and

the boundary between monotone and non-monotone h(η) solutions, νcrit(ρ) = δ/Γ crit
max(ρ),

are shown in Figure 16. As described in Section 3.1, all solutions with ρ < ρL are non-

monotone, see (3.16). For ρ → ∞, νcrit = O(ρ−1), identifying a distinguished limit similar

to (3.24).

4 Traveling waves with fourth-order regularization

In this section, we return to the full system including capillary effects (1.9):

−sh + 1
3
h3 − 1

2
h2 dΓ

dη
= 1

3
βh3 dh

dη
− 1

3
κh3 d

3h

dη3
− kh, (4.1a)

−sΓ + 1
2
h2Γ − hΓ

dΓ

dη
= 1

2
βh2Γ

dh

dη
− 1

2
κh2Γ

d3h

dη3
+ δ

dΓ

dη
, (4.1b)

These equations can be rearranged into a fourth-order autonomous system,

κ
d3h

dη3
= β

dh

dη
− P1(h)Γh + 4δ P0(h)

h3(Γh + 4δ)
,

dΓ

dη
=

2sΓ (h − h∗)

h(Γh + 4δ)
, (4.2)

where setting κ = 0 recovers the system of Section 3. Numerical simulations of the full

PDE system (1.4) suggest that traveling wave solutions satisfying (4.2) exist and are stable
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Figure 16. The various limits of the second-order system considered in the subsections of

Section 3 as represented in the (ρ, ν) parameter plane.
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Figure 17. The effect of capillarity: numerical solutions with κ > 0, and β, δ both small.

in one dimension, see Figure 17. In contrast to analysis of the second-order model in

Section 3, full consideration of the existence of weak traveling wave solutions for this

fourth-order system (4.2ab) is more difficult, and parts will be delayed to further work. In

this section, we provide partial results on traveling waves for a reduced version of (4.2)

using numerical solutions together with asymptotics, extending the analysis of Section 3.

In the absence of surfactant, the balance of the competing β, κ regularizations in (1.2)

determines whether the film height profile will take the form of a monotone front or a

capillary ridge [3, 21]. The monotone decreasing front is analogous to the low-surfactant

case, where Γmax < Γ crit
max(β/δ), considered in Section 3.1. To focus attention on the

influence of κ, we take β = 0; this can be interpreted as choosing to study the capillary

ridge in the flow down a vertical wall [19]. With β = 0, we avoid complications associated

with solutions for positive β describing flows down inclined planes with small to finite

angles of inclination (i.e., relatively large β) [21]. Thus for the remainder of this section,
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we consider the system

κ
d3h

dη3
= −P1(h)Γh + 4δ P0(h)

h3(Γh + 4δ)
,

dΓ

dη
=

2sΓ (h − h∗)

h(Γh + 4δ)
. (4.3)

This system has equilibrium points at (h, Γ ) = (hL, 0) and (hR, 0). Linearizing about

heq = {hL, hR}, Γ = 0 yields

d3h̃

dη3
= −P ′

0(heq)

κh3
eq

h̃ − P1(heq)

4κδ h2
eq

Γ̃ ,
dΓ̃

dη
=

s(heq − h∗)

2δ heq
Γ̃ . (4.4)

The equilibrium point (hL, 0) has eigenvalues

λk = −ωk

(
(hL − hR)(2hL + hR)

κh3
L

)1/3

, λ3 =
s(hL − h∗)

2δ hL
, (4.5)

where k = 0, 1, 2 and ω = ei2π/3. That is, it has a single stable direction with λ0 < 0 and

has a three-dimensional unstable manifold WU
L with Re(λ1,2) > 0 and λ3 > 0. Similarly,

(hR, 0) has eigenvalues

λk = ωk

(
(hL − hR)(2hR + hL)

κh3
L

)1/3

, λ3 =
s(hR − h∗)

2δ hR
; (4.6)

it has a three-dimensional stable manifold WS
R (Re(λ1,2) < 0 and λ3 < 0) and a single

unstable direction with λ0 > 0. In particular, as |η| → ∞, h(η) spirals into the equilibria

with decay rates O(κ−1/3) while Γ (η) exhibits monotone exponential behavior with rate

O(δ−1). As in the second-order problem, the linearized structure of Γ (η) is given by a

single eigenmode (here λ3) while the form of h(η) depends on the relative sizes of Re(λ1,2)

vs. λ3 as in (3.16). Heteroclinic orbits connecting equilibria lie in the two-dimensional

intersection of the three-dimensional manifolds, WU
L and WS

R . Consequently, we expect

a one-parameter family of solutions, as in Section 3. These features are seen clearly

in Figures 17 and 18, plots of numerical solutions of the PDE system for κ > 0 and

β > 0, δ > 0 both taken to be small, and nonzero, in order to stabilize the numerical

method. In Figure 17, we show graphs of h and Γ , in which oscillations of h can be

observed. In Figure 18, we show two projections of the four-dimensional (h, hx, hxx, Γ )

phase portrait, with data obtained through finite differences of the numerical PDE solution

of Figure 17. In the left hand plots of Figures 17 and 18, it is possible to follow the

trajectory from hL to hR, relating the oscillations in the graph of h to the spirals in the

phase portrait. In the next subsection, we explain the structure of the phase portraits in

more detail using asymptotics.

4.1 Solutions for κ → 0

In studying the structure of traveling wave solutions of (4.3) for κ → 0, we can take

advantage of similarities to our analysis of (3.2) in Section 3.3. In particular, the leading

order outer solution for (4.3) is the same as equation (3.25) in Section 3.3. The outer

solution consequently consists of smooth monotonic functions for h, Γ , with h connecting
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Figure 18. Phase plots of numerical solutions with κ > 0, and β, δ both small. (Left) (h, h′). (Right)

(h, h′, Γ ). Line styles indicate relative sizes of Γ in the different sections of the curves. The O(Γmax)

section is the inner solution, cf., equation (4.8).

hL to h̄1(ν) and hR to h̄2(ν) (recall that ν = δ/Γmax) for η away from η = 0. Due to the

presence of complex eigenvalues for system (4.4), these solutions have weak oscillatory

structure that enters at O(κ1/3).

To describe the inner solution, a boundary layer at η = 0, we scale η as η = z/κ1/3.

Then, with ĥ(z) = h(η) and Γ̂ (z) = Γ (η), we have

d3ĥ

dz3
= −P1(ĥ) Γ̂ ĥ + 4δ P0(ĥ)

ĥ3(Γ̂ ĥ + 4δ)
,

dΓ̂

dz
= κ1/3 2sΓ̂ (ĥ − h∗)

ĥ(Γ̂ ĥ + 4δ)
. (4.7)

As in the second-order problem, we seek the solution satisfying initial conditions Γ̂ (0) =

Γmax and ĥ(0) = h∗. However, for the current problem, the additional initial conditions

for ĥ′(0) and ĥ′′(0) are not obvious. Writing ĥ, Γ̂ as regular perturbation expansions in

powers of κ1/3 and keeping only leading order terms for κ → 0, ĥ ∼ ĥ0, Γ̂ ∼ Γ̂ 0, we

observe that the leading order surfactant concentration is constant across the boundary

layer, Γ̂ 0(z) ≡ Γmax. Comparable to (3.30), ĥ0(z) satisfies

d3ĥ0

dz3
= − P̄ (ĥ0)

(ĥ0)
3
(ĥ0 + 4ν)

, (4.8)

where P̄ (h) and ν are defined as before. Equation (4.8) is of the general form

d3h

dz3
= G(h).

Nonlinear third-order differential equations of this form have been the subject of numerous

studies, many motivated by different forms of thin film flows [1, 2, 8, 28, 29]. As in (3.30),

this system has the equilibria h̄1 and h̄2. A theorem by Mock [18] establishes the existence

of a heteroclinic orbit from h̄1 to h̄2 under some simple assumptions on G(h). Linearizing

about the equilibria yields the equation h̃′′′ = G′(h̄)h̃ with eigenvalues given by λ3 = G′(h̄).

At h̄1, since G′(h̄1) < 0 so there is one negative and a complex conjugate pair of eigenvalues

with Re(λ1,2) > 0. Consequently, there is a two-dimensional unstable manifold and a one-

dimensional stable manifold associated with h̄1. Similarly, since G′(h̄2) > 0, there is a

two-dimensional stable manifold and a one-dimensional unstable manifold associated
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ȟ2
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Figure 19. (Left) Height profiles for κ → 0. Here hL = 1.0, hR = 0.2, β = 0, δ = 4e − 4, Γmax = 3,

and κ = 2−n × 10−1 for n = 0, 1, 2 . . . 9. (Inset) Data collapse in the inner solution, with z = η/κ1/3.

(Right, with the same data) Rescaled phase plane focusing on the inner solution.

with h̄2. This property of the linearized equations supports the presence of oscillations as

h approaches h̄1,2 starting from η = 0∓, as observed in numerical solutions. This contrasts

with the dominantly monotone approach to h̄1,2 from the outer solution, as described

above, see (3.25); this behavior is consistent with the one dimensional stable/unstable

manifolds of h̄1, h̄2 respectively.

The structure of the solution is further illustrated with the phase plots of PDE simula-

tions, shown in Figures 18 and 19. In Figure 18, the inner and outer solutions are clearly

visible; while Γ = O(δ), the outer solution lies near the invariant plane Γ = 0, spiraling

out of hL, and into hR. As Γ changes from O(δ), and approaches Γmax approximately

linearly, the outer solution lies near the one-dimensional invariant manifolds of h̄1, h̄2. The

inner solution of (4.8) has Γ ≈ Γmax, and this section of the trajectory is nearly horizontal

in the figure.

In Figure 19, where the calculations are performed with small δ and a sequence of

values of κ, the scaling of the inner solution is demonstrated. In the left hand plot, the

entire graph of h is shown for each κ. In the inset, and on the right hand plot, the

profiles collapse under the scaling to show the inner solution, which to leading order is

independent of κ. A consequence of this scaling is that the capillary ridge, corresponding

to the global maximum of h, persists in the limit κ → 0, while the width of the ridge scales

as κ1/3. Correspondingly, in the left plot, the maximum of h (where of course h′ = 0) is

the same for each of the trajectories.

5 Discussion

In this paper, our focus has been the effects of regularizing terms on the weak traveling

wave solution shown in Figure 1. We have identified an array of different behaviors

depending on whether the regularizing terms are second order (with parameters β, δ) or

fourth order (with parameter κ). The interplay between the three parameters is somewhat

subtle, and we have restricted attention to the cases κ = 0, in Section 3, and β = 0, in

Section 4.

In the second-order system of Section 3, with β > 0, δ > 0, but κ = 0, we prove the

existence of a one-parameter family of traveling waves, parametrized by the maximum
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surfactant concentration Γmax, as with the weak traveling wave. We find that as β → 0,

the solution exhibits jumps in the height h and surfactant concentration gradient Γ ′ at

η = 0, where Γ = Γmax. In contrast, as δ → 0, the solution remains continuous, and is

smooth at Γmax, but develops corners in h and Γ at η = η1, η2, which define the edges of

the support of Γ (η) for δ = 0.

When fourth-order surface tension effects dominate (with κ > 0, β = 0 in Section 4),

oscillations occur in parts of the traveling wave. We observe these in numerical simulations,

and provide some analysis of the overall structure in terms of asymptotics, phase portraits,

and dynamical systems. As in Section 3.4, the limit δ → 0 is of great interest for the

fourth-order problem. With δ = 0, Γ (η) has compact support and the ODE system

becomes discontinuous at Γ = 0. We can write the limiting system, as we did for (3.54),

β
dh

dη
− κ

d3h

dη3
=

{
P1(h)/h

3, Γ > 0,

P0(h)/h
3, Γ = 0,

dΓ

dη
=

{
2s(h − h∗)/h

2, Γ > 0,

0, Γ = 0.
(5.1)

Consequently, the equations for Γ and h are coupled only through the switch from Γ = 0

to Γ > 0, and the vector field jumps at such points, corresponding to jumps in Γ ′ and

either h′ (if κ = 0) or h′′′ (if κ > 0).

Jumps suggested by the discontinuous vector field in (5.1) are clearly visible in numerical

simulations. In Figure 20 (left), we show the result of a finite difference numerical

simulation of the solution to the PDE system (1.4ab) with β = 0 and κ > 0, when it has

effectively converged to the traveling wave. In Figure 20(right), the computed derivatives

h′′′(η) and Γ ′(η) are shown to experience jumps at the leading edge of the surfactant

distribution (i.e., where Γ → 0). The magnitudes of these numerical jumps show good

agreement with the predictions from the jump conditions derivable from (5.1), and more

directly from (1.4a), [
1
3
κh3h′′′] =

[
1
2
h2Γ ′].

Finally, we close by noting that when δ > 0 we can re-write system (4.1ab) analogously

to the framework from Section 3.5 using the scaling

Γ = δ Γ̂ (z), h = ĥ(z), η = δz, (5.2)
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leading to the system of ODEs

ρ
dĥ

dz
− τ

d3ĥ

dz3
=

P1(ĥ)Γ̂ ĥ + 4P0(ĥ)

ĥ3(Γ̂ ĥ + 4)
,

dΓ̂

dz
=

2sΓ̂ (ĥ − h∗)

ĥ(Γ̂ ĥ + 4)
, (5.3a)

with parameters

ρ =
β

δ
, τ =

κ

δ3
, (5.3b)

and initial conditions ĥ(0) = h∗, Γ̂ (0) = ν−1 (ν = δ/Γmax). In this context, the analysis of

Section 3 explored the dependence of the solutions on (ρ, ν) for τ = 0, while Section 4

is focused on the case τ > 0 and ρ = 0. It is reasonable to suppose that between these

limiting cases the behavior of the solutions would be similar to the behavior found in the

corresponding section of the paper, and indeed numerical experiments suggest this to be

the case. We conjecture that there is a threshold curve separating two types of behavior:

solutions with a capillary ridge, in which h(η) rises above h = h1, and solutions with no

capillary ridge, in which solutions are bounded above by h1. Such a threshold is observed

in the surfactant-free case studied by Bertozzi and Brenner [3]. It will be of interest to

identify a corresponding threshold for the surfactant-laden traveling waves of this paper.
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