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Abstract

In this paper, we explore the singular values of adjacency matrices {An}
for a particular family {Gn} of graphs, known as broom-trees. The singular
values of a matrix M are defined to be the square roots of the eigenvalues
of the symmetrized matrix MTM. The matrices we are interested in are
the symmetrized adjacency matrices AT

nAn and the symmetrized exponen-
tiated adjacency matrices BT

nBn = (eAn − I)T(eAn − I) of the graphs Gn. The
application of these matrices in the HITS algorithm for Internet searches
suggests that we study whether the largest two eigenvalues of AT

nAn (or
those of BT

nBn) can become close or in fact coincide.
We have shown that for one family of broom-trees, the ratio of the two

largest eigenvalues of BT
nBn as the number n of nodes (more specifically,

the length ` of the graph) goes to infinity is bounded below one. This
bound shows that for these graphs, the second largest eigenvalue remains
bounded away from the largest eigenvalue. For a second family of broom-
trees it is not known whether the same is true. However, we have shown
that for that family a certain later eigenvalue remains bounded away from
the largest eigenvalue. Our last result is a generalization of this latter re-
sult.
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Chapter 1

Introduction

This thesis addresses the multiplicity of the largest, or leading, eigenvalue
of particular n × n matrices in the limit as n → ∞. Chapter 1 contains the
question that will be the main focus of this thesis and an application of
this problem. In Chapter 2 are some examples of the objects we will con-
sider. Chapter 3 is an interesting section on the numbering of the nodes
in a graph. Chapter 4 contains some definitions fundamental to the proofs
in this thesis. In Chapter 5 we show our final results for this problem as
described in the abstract. Chapter 6 has two conjectures on the eigenvalues
of BTB and an open question relating to this thesis. The appendix con-
tains the MATLAB m-file we used to calculate the eigenvalues and leading
eigenvectors of BTB and BBT. The bibliography is annotated to explain the
significance of each reference.

1.1 The Question

A graph G is made up of vertices, or nodes, and edges connecting them.
The corresponding adjacency matrix is denoted A = A(G). See Chapter 2
for examples.

Definition 1.1. A directed graph, or digraph, is a graph whose edges are di-
rected. A simple directed graph is a directed graph having no repeated
edges.

In this thesis, we will consider only simple directed graphs.

Definition 1.2. The adjacency matrix of a simple directed graph is a matrix
A where the aijth entry is 1 if there is a directed edge from vertex i to vertex
j and 0 otherwise. (See Chapter 2 for examples.)
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We will also consider the matrix B defined by

B = eA − I = A + A2/2! + A3/3! + · · · .

We call B the exponentiated adjacency matrix of the graph G. In (Farahat et al.,
2006), it is proven that the matrices BBT and BTB have simple, or nonre-
peated, leading eigenvalues if the graph G is weakly connected. For some
graphs, the leading eigenvalues of AAT and ATA are repeated. (For any
matrix M, MTM and MMT have the same eigenvalues. See Theorem 2.1.)

Definition 1.3. The leading or dominant eigenvalue of a matrix whose eigen-
values are real is the largest eigenvalue of the matrix. Similarly, a leading
eigenvector is an eigenvector in the eigenspace corresponding to the leading
eigenvalue. For an n× n matrix whose eigenvalues are real, we denote the
eigenvalues as

λ1 ≥ λ2 ≥ · · · ≥ λn.

We will use ~vi(M) to denote an eigenvector of M corresponding to λi(M).
The notation α(h, `, b) will denote the ratio λ2/λ1 of BTB corresponding to
the graph Gh,`,b.

Definition 1.4. A simple eigenvalue is one which is not repeated.

As the number of nodes n goes to infinity for a particular family of
graphs, it can be observed that the second leading eigenvalue λ2 = λ2(BTB)
of BTB becomes increasingly close to the leading eigenvalue λ1 = λ1(BTB)
of BTB. As observed in (Farahat et al., 2006), the eigenvalues of BTB are real
and non-negative since BTB is real and symmetric; the same is true for ATA.

Definition 1.5. A matrix M is symmetric if M = MT.

If the ratio of λ2 to λ1 is not bounded above by a number less than
one, then “in the limit” the leading eigenvalue will be repeated. Since this
applies to the eigenvalues of BTB, the same is true for the singular values
of B.

Definition 1.6. (Böttcher and Grudsky, 2000, page 78) The ith singular value
of a matrix M is the square root of the ith eigenvalue of MTM. That is,

σi(M) =
√

λi(MTM).

In this thesis we will mostly discuss the eigenvalues of matrices MTM; we
emphasize that this is equivalent to discussing the singular values of M.



The Question 3

q1

q2
q
3

q4
q

5

q6
q
7

q8
q

9

q10q12q14q11q13q15

����*

HHHHj

-

-

-

-

-

-

����:

����:

-

-

XXXXz

XXXXz

Figure 1.1: The graph Gh,`,b = G2,4,3.

Several authors have found upper bounds for leading eigenvalues of
the adjacency matrices of certain trees and other graphs. For instance,
Hofmeister finds upper bounds for the leading and second leading eigen-
values of an adjacency matrix based on the number of vertices of a tree in
(Hofmeister, 1997). A lower bound on the leading eigenvalue and an up-
per bound on the second leading eigenvalue would put an upper bound
on the ratio of the two. There are also several articles on improved bounds,
bounds on the eigenvalues of other types of graphs, Laplacian eigenvalues,
etc. (See the bibliography.) Böttcher and Grudsky (Böttcher and Grudsky,
2000) discuss bounds on the singular values of Toeplitz matrices T (Defini-
tion 4.1), which are equivalent to bounds on the eigenvalues of TTT. As far
as the author of this thesis knows, no other bounds are known for the eigen-
values of the symmetrized adjacency matrix ATA nor for the eigenvalues of
B or BTB.

We define the degree of a vertex in a directed graph.

Definition 1.7. In a directed graph, the in-degree of a vertex v is the number
of edges pointing to v. The out-degree of a vertex v is the number of edges
pointing away from v. The degree (or total degree) of a vertex v is the sum of
the in-degree and out-degree of v.

We denote by Gh,`,b the family of directed trees that we consider in this
thesis. Here h, `, and b are positive integers. One node in Gh,`,b has out-
degree h and in-degree zero. Each of the h nodes it points to begins a chain
of ` + 1 nodes, each of which has in-degree one and each of which except
the `th has out-degree one. The `th node in each of these chains has out-
degree b.

The example G2,4,3 from this family of trees is shown in Figure 1.1.
When viewing these graphs with the first node at the top and the h han-
dles extending down, they look like brooms with multiple handles. This
is where the name broom-tree graphs comes from. The parameters h, `, and
b that are taken directly from the structure of the graph correspond to the
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Figure 1.2: The ratio λ2/λ1 of BTB for different values of b (Farahat et al.,
2006).

number of handles, the length, and the number of bristles at the end of each
handle of the graph, respectively. We do not consider broom-trees in which
different handles have different numbers of bristles.

For the family of trees Gh,`,b, as ` → ∞, the leading and second leading
eigenvalues of BTB seem to become increasingly close. Specifically, numeri-
cal experiments using Matlab (Farahat et al., 2006) suggest that λ2/λ1 tends
to one for b = 1, 2, and 3. The results can be seen in Figure 1.2. The ques-
tion addressed in this thesis is whether λ2/λ1 does in fact have limit 1, as
` → ∞, for subfamilies of these graphs.

1.2 Application: The HITS Internet Search Algorithm

Internet search engines such as Google and Teoma use particular algo-
rithms to rank web pages based on their relevance to a given search query.
Teoma for instance, which has now merged with Ask.com, uses the Hy-
pertext Induced Topic Search, or HITS, algorithm developed by Kleinberg
in (Kleinberg, 1999). Briefly stated, this algorithm uses the symmetrized
adjacency matrix ATA of the graph of web pages to calculate the rankings
of the pages in the graph. When the leading eigenvalue of ATA is repeated,
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the ranking of these web pages is not unique (Farahat et al., 2006). This im-
plies that the same search query entered at different times, or on a different
computer, could potentially produce web pages ranked in different orders.
To prevent the repetition of the dominant eigenvalue, the matrix BTB can
be used in place of ATA, where B is as defined above (Farahat et al., 2006).

Here is a more detailed explanation of the HITS algorithm. A search
term, or query, is fed into the algorithm by the user. An algorithm that
finds pages that mention the query is used to retrieve the set S consisting
of these pages. This set S is then enlarged to a set T by adding in pages
that link to or are linked to by pages in S. Kleinberg (Kleinberg, 1999) calls
S the root set and T the base set. Typically, T has 3000–5000 pages. (This is
different from Google’s PageRank algorithm in that PageRank first ranks
all of the pages in its database, currently about 8 billion pages of the 11.5
billion indexable pages on the Internet (Gulli and Signorini, 2005), instead
of looking at a subset of the pages (Brin and Page, 1998).) HITS now ranks
the pages of T in the following way. The pages in T and the links between
them are represented by a graph G where the pages in T are the nodes of
G and the hyperlinks between the pages are the (directed) edges of G. The
nodes are numbered.

To each page HITS assigns two nonnegative numbers less than or equal
to one, known as the authority weight and the hub weight of the page.
The authority and hub vectors are normalized column vectors that contain
these values, where the ith entry is the weight for the ith page in G. The
authority weight measures the worth of the information on the webpage
about the given search term. A page that is a good authority would have
an authority weight close to one (since the vectors are normalized); a poor
authority would have an authority weight close to zero. The hub weight
tells whether or not the web page points to good authorities. A hub weight
close to one indicates a good hub.

The authority and hub vectors are initialized uniformly. The initial au-
thority vector~a0 and the initial hub vector~h0 look like

~a0 =~h0 =


1/
√

n
1/
√

n
...

1/
√

n

 ,

where n is the number of nodes of G. The notation~a0(i) (or similarly~h0(i))
denotes the ith entry of the initial authority (hub) vector, which corresponds
to the initial authority (hub) weight of node i. Then the HITS algorithm
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updates the authority vector such that, for node i, the new authority weight
ã1(i) is the sum of the current authority weights of all nodes j that node i
points to:

ã1(i) = ∑
j:j→i

~h0(j),

where j → i means that there is a link from node j to node i. The hub vector
is updated similarly; the new hub weight h̃1(i) for node i is the sum of the
current authority weights of all nodes j that node i points to:

h̃1(i) = ∑
j:i→j

ã1(j).

Both vectors are then normalized so that

~a1 =
ã1

||ã1||
and ~h1 =

h̃1

||h̃1||
.

This iteration is repeated until~hn = ~hn+1 and ~an = ~an+1 up to some toler-
ance level. The sequence of computation is then h0, a1, h1, a2, h2, a3, . . .

Let A denote the adjacency matrix of the graph G. In terms of A, the
algorithm described above can be rewritten as follows. At the kth iteration,

~ak = φk AT~hk−1, (1.1)

~hk = ψk A~ak, (1.2)

where φk, ψk ∈ R+ are normalization constants chosen to ensure

n

∑
i=1

~ak(i)2 =
n

∑
i=1

~hk(i)2 = 1.

Focusing on the authority vector, we deduce from equation (1.1) and equa-
tion (1.2) that

~ak = φkψk−1 ATA~ak−1. (1.3)

Since ATA is a symmetric matrix ((ATA)T = AT(AT)T = ATA), the follow-
ing theorems apply. The proofs of these theorems can be found in (Poole,
2003).

Theorem 1.1 (The Spectral Theorem). Let M be an n × n matrix with real
entries. Then M is symmetric if and only if it is orthogonally diagonalizable. In
particular, a real symmetric matrix M is diagonalizable.



Application: The HITS Internet Search Algorithm 7

In particular, our n× n matrices ATA, AAT, BTB, and BBT each have n
real eigenvalues with full geometric multiplicity.

Theorem 1.2. Let M be an n × n diagonalizable matrix with dominant eigen-
value λ1. Then for most nonzero vectors ~x0, the sequence of vectors ~xk defined
by

~x1 =
M~x0

‖M~x0‖
, ~x2 =

M~x1

‖M~x1‖
, ~x3 =

M~x2

‖M~x20‖ , . . . , ~xk =
M~xk−1

‖M~xk−1‖
, . . .

approaches a dominant eigenvector of M. The vectors ~x0 for which this is not true
have a zero component in the direction of the dominant eigenvector or eigenspace.

This iterative method is called the power method, and this form of the
power method uses Rayleigh quotients (Poole, 2003, page 312). In partic-
ular, the sequence {~ak} determined by equation (1.3) converges to a dom-
inant eigenvector ~v1 of ATA. Similarly, the sequence of hub vectors con-
verges to a dominant eigenvector of AAT.

The ranking of the webpages in T in order from the best to the worst
authority on the given query is read off from the dominant eigenvector ~v1
of ATA found by the power method, as follows. Since the entries of ~v1 are
understood as the authority weights of the webpages in T, if the largest
entry of ~v1 is the ith entry, then the ith webpage is the best authority on
the given query and would be ranked first. The second largest entry of ~v1
corresponds to the webpage that is the second best authority, and so on.

If the dominant eigenvalue λ1(ATA) is repeated, there can be multi-
ple linearly independent eigenvectors associated with this eigenvalue. The
power method will then converge to an eigenvector in this eigenspace, but
the one it converges to depends on the initial vector~a0. Therefore, for Inter-
net search rankings to be unique, it is imperative that the dominant eigen-
value of the matrix used in the iteration be simple. The rate of convergence
of the HITS algorithm also depends on the ratio λ2/λ1 of ATA. The closer
this ratio is to one, the more slowly the algorithm will converge, and vice
versa. So, to have a fast algorithm that yields a unique ranking of web-
pages, it would be good for this ratio always to be less than one.

As noted above, it is shown in (Farahat et al., 2006) that if the HITS al-
gorithm uses the matrix B = eA − I instead of A, the leading eigenvalue of
BTB is simple (assuming G is weakly connected), so λ2(BTB)/λ1(BTB) < 1,
and the modified ”Exponentiated Input to HITS” algorithm yields a unique
authority vector.





Chapter 2

Examples

In this chapter we present five examples of graphs G with their adjacency
matrices A and exponentiated adjacency matrices B. We discuss the related
eigenvalues and eigenvectors. We also present a little more theory. Table 2.1
contains the ratios λ2/λ1 of BTB for the graphs Gh,`,1 where 1 ≤ h ≤ 6,
1 ≤ ` ≤ 12, and b = 1.

The trees Gh,`,b under consideration in this paper are what we call broom
trees. The parameters of these trees are the number of handles, the length
of each handle, and the number of bristles on the end of each handle. (The
name originally came from looking at the trees with the first node at the
top and the handles going down to the bristles, like a set of brooms tied
together at the top.) Figure 2.1 shows an example of the tree G2,3,1 within
this family of trees. This graph has an adjacency matrix that is 9× 9, since
there are n = 9 nodes.
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Figure 2.1: The graph G2,3,1.

This graph is denoted G2,3,1 since it has two handles (h = 2), length
(including the bristle) ` = 3, and one bristle at the end of each handle
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(b = 1). The adjacency matrix for the graph G2,3,1 is

A =



0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


.

The ith row of the adjacency matrix corresponds to the nodes that node i
points to, while the jth column shows the nodes that point to node j. The
exponentiated adjacency matrix is

B =



0 1 1 1/2 1/2 1/3! 1/3! 1/4! 1/4!
0 0 0 1 0 1/2 0 1/3! 0
0 0 0 0 1 0 1/2 0 1/3!
0 0 0 0 0 1 0 1/2 0
0 0 0 0 0 0 1 0 1/2
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


.

The eigenvalues of ATA, in decreasing order, are 2, 1, 1, 1, 1, 1, 1, 0, and 0.
Also, the eigenvalues of BTB, rounded to four decimal places, are 3.1421,
2.0625, 1.6674, 0.9604, 0.8002, 0.5048, 0.4771, 0, and 0. The authority and
hub vectors calculated using the exponentiated adjacency matrix are

~a = ~v1(BTB) =



0
0.4634
0.4634
0.4197
0.4197
0.2886
0.2886
0.1604
0.1604


, ~h = ~v1(BBT) =



0.8215
0.3333
0.3333
0.2081
0.2081
0.0905
0.0905

0
0


.

From these vectors, we can see that if the graph G2,3,1 were the base set T
for a given query with the edges representing the hyperlinks, then nodes 2
and 3 would be the best authorities for that query and node 1 would be the
best hub. The ratio of the second largest to largest eigenvalue, denoted in
general by α(h, `, b) = λ2(BTB)/λ1(BTB), is α(2, 3, 1) = 0.6564.
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A confusion that can easily arise is between the eigenvalues of A and
the eigenvalues of ATA. Note that in all of the examples in this paper, the
eigenvalues of A are identically zero (hence A is nilpotent) while those of
ATA are not all zero. Similarly, the singular values mentioned in this paper
are those of the matrix A; see Definition 1.6 for further clarification.

Definition 2.1. A nilpotent matrix is a square matrix M such that Mn is the
zero matrix for some positive integer n. In fact, a matrix is nilpotent if and
only if its eigenvalues are all zero.

It is also important to note that the eigenvalues of ATA are the same as
the eigenvalues of AAT, and similarly those of BTB are the same as those of
BBT. This is a special case of the following theorem.

Theorem 2.1. For any n × n matrices A and B, AB has the same eigenvalues as
BA.

Proof. As suggested in Exercise 16 (Shifrin and Adams, 2002, §6.1), consider
the 2n× 2n matrix

M =
[

tI A
B tI

]
where t ∈ R. Left-multiply M by either

A′ =
[

tI −A
0 I

]
or B′ =

[
I 0
−B tI

]
to get

A′M =
[

t2 I − AB 0
B tI

]
and B′M =

[
tI A
0 t2 I − BA

]
.

Then, taking determinants in each equation, we obtain

tn det(M) = tn det(t2 I − AB),

tn det(M) = tn det(t2 I − BA).

So AB and BA have the same characteristic polynomial, and thus, the same
eigenvalues.

Note, however, that AB and BA may have different eigenvectors corre-
sponding to the same eigenvalue.

Figure 2.2 shows a broom tree in which b = 2. Here, the adjacency
matrix is 13× 13.
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Figure 2.2: The graph G3,2,2.

The number of handles of this tree is h = 3, the length is ` = 2, and the
number of bristles on each handle is b = 2. The adjacency matrix A of G3,2,2
is

A =



0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0



.

The exponentiated adjacency matrix B is

B =



0 1 1 1 1/2 1/2 1/2 1/3! 1/3! 1/3! 1/3! 1/3! 1/3!
0 0 0 0 1 0 0 1/2 0 0 1/2 0 0
0 0 0 0 0 1 0 0 1/2 0 0 1/2 0
0 0 0 0 0 0 1 0 0 1/2 0 0 1/2
0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0



.

Here, the eigenvalues of ATA are 3, 2, 2, 2, 1, 1, 1, and 0 with multiplicity
six; the eigenvalues of BTB are 4.7014, 2.7808, 2.7808, 2.1105, 0.7192, 0.7192,
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0.6047, and 0 with multiplicity six. The authority and hub vectors are

~a = ~v1(BTB) =



0
0.3915
0.3915
0.3915
0.3050
0.3050
0.3050
0.2086
0.2086
0.2086
0.2086
0.2086
0.2086



, ~h = ~v1(BBT) =



0.8489
0.2369
0.2369
0.2369
0.1924
0.1924
0.1924

0
0
0
0
0
0



.

Again, the best authorities are nodes 2, 3, and 4 and the best hub is node 1.
The ratio of the second largest eigenvalue to the largest eigenvalue of BTB
is α(3, 2, 2) = 0.5915.

h

` 1 2 3 4 5 6

1 0.37162 0.35961 0.25000 0.19098 0.15436 0.12948
2 0.46565 0.53828 0.38680 0.29919 0.24334 0.20488
3 0.56377 0.65641 0.48033 0.37338 0.30431 0.25648
4 0.64665 0.73118 0.53991 0.42036 0.34276 0.28895
5 0.71296 0.77936 0.57824 0.45040 0.36430 0.30965
6 0.76434 0.81223 0.60371 0.47030 0.38353 0.32333
7 0.80427 0.83501 0.62128 0.48399 0.39470 0.33275
8 0.83549 0.85146 0.63383 0.49377 0.40267 0.33947
9 0.86020 0.86368 0.64309 0.50099 0.40856 0.34443

10 0.87994 0.87292 0.65005 0.50641 0.41298 0.34816
11 0.89595 0.88013 0.65546 0.51062 0.41641 0.35106
12 0.90905 0.88580 0.65970 0.51393 0.41911 0.35333

Table 2.1: The ratios α(h, `, 1) = λ2(BTB)/λ1(BTB) for the symmetrized
exponentiated adjacency matrices BTB for graphs Gh,`,1.

Table 2.1 shows the ratios α(h, `, 1) of λ2(BTB) to λ1(BTB) for the graphs
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Gh,`,1 for varying h and `. For instance, the entry 0.30431 for ` = 3 and h = 5
means that for the graph G5,3,1 with five handles of length three including
the one bristle, the ratio α(5, 3, 1) = λ2(BTB)/λ1(BTB) of the largest two
eigenvalues of BTB is 0.30431. It is interesting to note that this ratio tends
to decrease along a row (that is, as the number of handles increases) and
increase along a column (as the length of the handles increases). However,
from ` = 2 to ` = 9, this ratio increases as h increases from one to two.

We present three more examples of graphs and the corresponding ma-
trices and eigenvalues.

r1
r2
r

3

r 4

r 6r 5

r 7

������1

PPPPPPq

������:

XXXXXXz

������:

XXXXXXz

Figure 2.3: A binary tree.

Figure 2.3 shows a binary tree. This tree fits into our family of broom-
tree graphs and is the one denoted by G2,1,2. The associated matrices and
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the eigenvalues of ATA and BTB are as follows.

A =



0 1 1 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, B =



0 1 1 .5 .5 .5 .5
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

ATA =



0 0 0 0 0 0 0
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 1 0 1 0
0 0 0 0 1 0 1


, BTB =



0 0 0 0 0 0 0
0 1 1 .5 .5 .5 .5
0 1 1 .5 .5 .5 .5
0 .5 .5 1.25 .25 1.25 .25
0 .5 .5 .25 1.25 .25 1.25
0 .5 .5 1.25 .25 1.25 .25
0 .5 .5 .25 1.25 .25 1.25


,

AAT =



2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, BBT =



3 1 1 0 0 0 0
1 2 0 0 0 0 0
1 0 2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

λ(ATA) = {2, 2, 2, 0, 0, 0, 0}, λ(BTB) = {4, 2, 1, 0, 0, 0, 0}.

The ratio of the largest two eigenvalues of ATA is 1 while this ratio for BTB
is 0.5. This is an example where the HITS algorithm could return improper
weights for the ranked web pages using ATA but not using BTB, since the
largest eigenvalue is repeated in the first case and not in the second.

The example shown in Figure 2.4 is a slightly modified version of the
previous one. We will call this tree the 3-2 tree for reasons that are clear
from the figure.

r1
r2
r
3

r 4r 6r 8r 5

r 7

������1

PPPPPPq

������:
-XXXXXXz

������:

XXXXXXz

Figure 2.4: A 3-2 tree.
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Again, the associated matrices and eigenvalues are below.

A =



0 1 1 0 0 0 0 0
0 0 0 1 0 1 0 1
0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, B =



0 1 1 .5 .5 .5 .5 .5
0 0 0 1 0 1 0 1
0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

ATA =



0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 0 1 0 1
0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 1
0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 1


,

BTB =



0 0 0 0 0 0 0 0
0 1 1 .5 .5 .5 .5 .5
0 1 1 .5 .5 .5 .5 .5
0 .5 .5 1.25 .25 1.25 .25 1.25
0 .5 .5 .25 1.25 .25 1.25 .25
0 .5 .5 1.25 .25 1.25 .25 1.25
0 .5 .5 .25 1.25 .25 1.25 .25
0 .5 .5 1.25 .25 1.25 .25 1.25


,

AAT =



2 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, BBT =



3.25 1.5 1 0 0 0 0 0
1.5 3 0 0 0 0 0 0
1 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

λ(ATA) = {3, 2, 2, 0, 0, 0, 0, 0}, λ(BTB) = {4.8316, 2.3708, 1.0476, 0, 0, 0, 0, 0}.

The ratio of the largest two eigenvalues is 0.6667 for ATA and is 0.4907
for BTB.

The last example is a diamond (Figure 2.5). The associated adjacency
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Figure 2.5: A diamond.

matrices and eigenvalues are

A =


0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

 , B =


0 1 1 1
0 0 0 1
0 0 0 1
0 0 0 0

 ,

ATA =


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 , BTB =


0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 3

 ,

AAT =


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 , BBT =


3 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

 ,

λ(ATA) = {2, 2, 0, 0}, λ(BTB) = {4, 1, 0, 0}.

It is interesting to note that the symmetries of the diamond graph are also
apparent in the symmetries of the matrices. The shape of the graph remains
the same whether it is reflected across the horizontal or vertical axis. This
is also apparent algebraically:

BTB = W(BBT)W,

ATA = W(AAT)W
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where

W =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .



Chapter 3

Renumbering of Nodes
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Figure 3.1: A numbering of the graph G2,1,1.

The reader may wonder: what is the significance of the way the nodes
are numbered? The numbering convention we have used throughout this
paper is for convenience only. Renumbering the nodes of any graph should
not change the eigenvalues of the adjacency matrix. For our graphs, it
makes sense that renumbering the nodes should permute the rows of the
dominant eigenvectors of BTB and BBT since the ith entry in the eigenvector
corresponds to the authority or hub weight of node i. It turns out that the
effect of renumbering the graph is to permute the columns and rows of the
adjacency matrix using a permutation matrix, which encodes the changes
made in the renumbering.

Definition 3.1. A permutation matrix is a matrix obtained by permuting the
rows (or columns) of an n× n identity matrix.

It follows from the definition that a permutation matrix is nonsingular
and the determinant is always ±1. In addition, if the permutation of the
rows of the identity matrix is identical to the permutation of the columns,
the permutation matrix P satisfies PTP = PPT = I.
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Figure 3.2: Example 1.

It is helpful to look at specific examples. Let A be the adjacency matrix
of the graph in Figure 3.1, with the numbering shown there, so that

A =


0 1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 .

In Example 1 (Figure 3.2), we have swapped the numbers of nodes 1 and 2
and the numbers of nodes 3 and 5. This will swap the corresponding rows
and columns of the adjacency matrix. The process by which this happens is
a pre- and post-multiplication of the adjacency matrix by the corresponding
permutation matrix, that is, if A′ is the permuted adjacency matrix, then
A = PA′P. For this example,

A′ =


0 0 0 1 0
1 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0

 and P =


0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

 .

It is the case that, for the permutation matrices which encode the renum-
bering of a tree, A′ = PAP since P = P−1. If P2 6= I, then the matrix PAP is
not an adjacency matrix for a tree. So P must be symmetric and involutory
if it encodes a renumbering of a tree.

Definition 3.2. An involutory matrix is a square matrix M such that M2 = I.
An involutory matrix is its own inverse matrix.

It is easy to show that the characteristic polynomials of a matrix M and
its permuted matrix M′ are the same, which implies that the eigenvalues of
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M and M′ are equal:

det(M − λI) = det(PM′P− λPP)
= det(P(M′ − λI)P)

= det(P)2 det(M′ − λI)

= (±1)2 det(M′ − λI)
= det(M′ − λI).
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Figure 3.3: Example 2.

Figure 3.3 shows the nodes of the same tree numbered in reverse order.
Again we can see that P2 = I. This example has

A′ =


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 1 0

 and P =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 .

Again, we have that A = PA′P.
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Figure 3.4: Example 3.

In our last example, shown in Figure 3.4, we consider a renumbering
of the same tree where the swapping is of more than two nodes. Here, we
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have cycled nodes 1, 2, and 3. In this case, we can write the permutation of
A by A′ = Pr APc where Pr is a permutation of rows corresponding to the
desired row swaps in A and Pc is the column permutation matrix. Fortu-
nately, there is still a way to find one P that is symmetric and involutory
where A = PA′P. Here, the matrices are

A′ =


0 0 0 1 0
0 0 0 0 1
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0

 , P =


0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

 ,

Pr =


0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 , Pc =


0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

 .

With the properties of these permutation matrices, we can also show
some interesting results about ATA, B = eA − I, and BTB.

Theorem 3.1. Let P be a permutation matrix that is involutory, and let A be the
adjacency matrix of a graph Gh,`,b. If A = PA′P, then ATA = P(A′)T(A′)P and
(A′)T(A′) = PATAP.

Proof. Let A = PA′P. Then

ATA = (PA′P)T(PA′P)

= (P(A′)TP)(PA′P)

= P(A′)TPPA′P

= P(A′)T(A′)P.

Since P is involutory, (A′)T(A′) = PATAP.

Theorem 3.2. Let P be a permutation matrix that is involutory and A be the
adjacency matrix corresponding to a graph Gh,`,b and B = eA − I. If A′ = PAP,
then PBP = B′, B = PB′P, and BTB = P(B′)T(B′)P.
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Proof. Let A = PA′P. Then

PBP = P(eA − I)P

= P(A +
1
2!

A2 +
1
3!

A3 + · · · )P

= PAP +
1
2!

PAPPAP +
1
3!

PAPPAPPAP + · · ·

= A′ +
1
2!

(A′)2 +
1
3!

(A′)3 + · · ·

= eA′ − I
= B′.

B = PB′P follows from P being involutory and BTB = P(B′)T(B′)P follows
as in the proof of Theorem 3.1.

To summarize, when the nodes of a broom-tree graph are renumbered,
the new adjacency matrix A′ is related to the old adjacency matrix A by a
pre- and post-multiplication by the appropriate permutation matrix. The
matrices A and A′ have the same eigenvalues; the same is true for the two
matrices ATA and (A′)T(A′), and for the two matrices B = eA − I and
B′ = eA′ − I, and for the two matrices BTB and (B′)T(B′). The entries of
the leading eigenvectors of BTB and of (B′)T(B′) are permuted in the same
way as the numbers of the nodes, so that a given entry always corresponds
to the same node.





Chapter 4

Toeplitz Matrices

In this chapter we introduce Toeplitz matrices, both finite and infinite, and
present some of their properties. We use the following definitions and the-
orems to give upper bounds for the ratios described in the theorems of
Chapter 5.

Definition 4.1. A Toeplitz matrix is a square matrix which has constant val-
ues along negative-sloping diagonals, i.e., a matrix of the form

Tn(a) =


a0 a−1 a−2 · · · a−n+1
a1 a0 a−1

a2 a1 a0
. . .

...
...

. . . . . . a−1
an−1 · · · a1 a0

 (4.1)

for 2n − 1 real or complex numbers ak, k = −n + 1, . . . ,−1, 0, 1, . . . , n − 1,
or for an infinite matrix

T(a) =


a0 a−1 a−2 · · ·
a1 a0 a−1 · · ·
a2 a1 a0 · · ·
...

...
...

. . .

 . (4.2)

Before defining the symbol of a Toeplitz matrix, we recall that L∞ of
a space X denotes the space of essentially bounded complex-valued func-
tions on X, with the L∞-norm (see for example (Folland, 1999)). Also `2 is
the space of square-summable sequences of complex numbers:

`2 :=

{
{an} ∈ C|

∞

∑
n=1

a2
n < ∞

}
,
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with the `2-norm defined by

‖{an}‖2 :=

(
∞

∑
n=1

a2
n

)1/2

.

Definition 4.2. (Böttcher and Grudsky, 2000, page 3) If there is a function a
in L∞ of the unit circle satisfying

an =
1

2π

∫ 2π

0
a(eiθ)e−inθdθ, n ∈ Z, (4.3)

for an in equations (4.1) and (4.2), then this function is unique. We there-
fore denote the matrix (4.2) and the operator it induces on `2 by T(a). The
function a in this context is referred to as the symbol of the Toeplitz matrix
or operator T(a). The symbol for any Toeplitz matrix with entries {an} is

a(eiθ) =
∞

∑
n=−∞

aneniθ ,

or

a(z) =
∞

∑
n=−∞

anzn,

where z := eiθ .

Definition 4.3. The operator norm of a linear operator T : V → W, where V
and W are normed vector spaces, is the largest factor by which T stretches
an element of V:

‖T‖ = sup
‖v‖=1

‖Tv‖.

When T is given by a matrix, Tv = Mv, and ‖v‖ is the `2-norm, then ‖T‖ is
the largest singular value of M. That is,

σ1(M) =
√

λ1(MTM) = ‖M‖.

For a Toeplitz matrix, the operator norm is equal to the maximum of the
absolute value of the symbol for all unit vectors, as stated in (Böttcher and
Grudsky, 2000, equation (1.12)).

Definition 4.4. Let Mn be an n × n matrix. A principal submatrix Mn−1 of
Mn is obtained by omitting one row and the corresponding column of Mn.
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Definition 4.5. (Böttcher and Grudsky, 2000, page 79) For j ∈ {0, 1, . . . , n},
let F (n)

j denote the collection of all n× n matrices of rank at most j. The jth
approximation number aj(Mn) of an n× n matrix Mn is defined by

aj(Mn) = dist(Mn,F (n)
j ) := min{‖Mn − Fn‖ : Fn ∈ F (n)

j }.

It is easy to see that ‖Mn‖ = a0(Mn) ≥ a1(Mn) ≥ · · · ≥ an(Mn) = 0.

The next two equations are also used to prove Theorems 5.1 and 5.2.
Equations (4.4) and (4.5) are equations (1.12) and (2.12) in (Böttcher and
Grudsky, 2000), respectively. Let Tn(a) be the n × n Toeplitz matrix with
symbol a, let T(a) be the infinite Toeplitz matrix obtained by extending
Tn indefinitely to the right and downward, and let ‖ · ‖∞ be the L∞-norm.
Then

‖T(a)‖ess = ‖a‖∞ (4.4)

and
lim
n→∞

‖Tn(a)‖ = ‖T(a)‖. (4.5)

The following theorem is used in the proof of Theorem 5.1.

Theorem 4.1. (Böttcher and Grudsky, 2000, page 79) If Mn is an n × n matrix,
then

σj(Mn) = aj−1(Mn)

for every j ∈ {1, 2, . . . , n}. (Note: The indexing we use in this thesis is slightly
different from that used in (Böttcher and Grudsky, 2000).)

Here is an interesting theorem relating the eigenvalues of a matrix to
the eigenvalues of a principal submatrix of that matrix.

Theorem 4.2. (Cauchy’s Interlace Theorem, (Fisk, 2005)) If M is a Hermitian
matrix and N is a principal submatrix of M, then the eigenvalues of N interlace
the eigenvalues of M. That is, if λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of M
and µ2 ≥ µ3 ≥ · · · ≥ µn are the eigenvalues of N, then

λ1 ≥ µ2 ≥ λ2 ≥ · · · ≥ µn−1 ≥ λn−1 ≥ µn ≥ λn.

We recall that a square matrix M is Hermitian if it is self-adjoint, that is,
if M is equal to its conjugate transpose MH.





Chapter 5

Results: Bounds on Ratios of
Eigenvalues

In this chapter we begin by proving three useful lemmas about the struc-
ture of matrices of the form ATA and AAT. The heart of the chapter is
the following three results. First, for the broom-tree graphs Gh,`,1, with h
handles, one bristle at the end of each handle, and length ` increasing to
infinity, the ratio λ2(BTB)/λ1(BTB) of the second to the first eigenvalues
of the symmetrized exponentiated adjacency matrix BTB remains bounded
above by a constant less than one. Second, for the broom-tree graphs Gh,`,2,
with h handles, two bristles at the end of each handle, and length ` in-
creasing to infinity, the ratio λh+2(BTB)/λ1(BTB) of the (h + 2)nd to the first
eigenvalues of BTB remains bounded below one. Third, for the broom tree
Gh,`,b, with h handles, b bristles at the end of each handle, and length ` in-
creasing to infinity, the ratio λh(b−1)+2/λ1 of the (h(b− 1) + 2)nd to the first
eigenvalues of BTB remains bounded below one. In Chapter 6 we discuss
the open question of the behavior as ` → ∞ of the ratio λ2(BTB)/λ1(BTB)
when b ≥ 2.

5.1 Useful Lemmas

The following lemmas are results that aid in the calculation of the entries
in the types of matrices we are interested in studying.
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Lemma 5.1. For every n×m matrix M,

(MT M)ij = coli M · colj M,

(MMT)ij = rowi M · rowj M.

Proof. Let ~v1, . . . ,~vm denote the columns of M so that

M = [~v1 ~v2 · · · ~vm] ,

MT =


~v1

T

~v2
T

...
~vm

T

 .

Therefore, by simple matrix multiplication, (MT M)ij = ~vi
T~vj = ~vi · ~vj

where ~vi is the ith column of M. The second part of the proof is identi-
cal except the row and column vectors are reversed.

Lemma 5.2. Let Gh,`,1 be the broom-tree graph with h handles of length ` with
only one bristle at the end of each handle. Let A be the adjacency matrix of Gh,`,1.
Then AAT is diagonal, and so the eigenvalues of AAT are its diagonal entries.

Proof. By Lemma 5.1, the entries of AAT are the dot products of the rows.
Since there is no more than one 1 in each column of A, (row i) · (row j) = 0
when i 6= j. Therefore, the only possible nonzero entries of AAT are when
i = j, yielding exactly the entries on the main diagonal of AAT. So AAT

is diagonal. (The fact that the eigenvalues are on the diagonal is a result of
basic linear algebra.)

Lemma 5.3. Let Gh,`,1 be the broom-tree graph with h handles of length ` and
only one bristle at the end of each handle, b = 1. Let A be the adjacency matrix of
Gh,`,1. Then the entries of ATA are 0’s and 1’s, and ATA is block-diagonal of the
specific form shown below.

Proof. Using Lemma 5.1, we can construct the following formula for the
entries of ATA:

(ATA)ij =

{
1, if column i of A = column j of A;
0, otherwise.

Therefore, since columns 2 through h + 1 are the same (they have a one
in the first row and zeros everywhere else), there will be an h × h matrix
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whose entries are all ones, in the position after the first row and column,
and ones will run down the rest of the diagonal of ATA. The remaining
entries of ATA are zero. That is, ATA will look like

ATA =



0 0 · · · 0
0 1 · · · 1 0

... 1
...

... 1 · · · 1
...

1
. . . 0

0 0 · · · 0 1


.

5.2 Graphs With One Bristle

In this section we establish an upper bound, strictly less than one, for the
ratio λ2(BTB)/λ1(BTB), when the number of handles in the broom tree is
fixed at h ≥ 2, the number of bristles on each handle is fixed at b = 1, and
the length ` of the handles tends to infinity.

t1

t2
t3

t
h + 1

th` + 2

th` + 3

th(` + 1) + 1

· · ·

· · ·

· · ·

...
...

�
�

�
�

�
��

��
����*

@
@

@
@

@
@R

-

-

-

-

-

-

Figure 5.1: The graph Gh,`,1.

Theorem 5.1 was proven for broom trees with two handles, h = 2, by
Estelle Basor and Kent Morrison of California Polytechnic State University,
San Luis Obispo. I have modified the proof to extend to any h ≥ 2.
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Theorem 5.1. Let Gh,`,1 be the directed graph shown in Figure 5.1 where h is fixed
and b = 1. Also let λj(M) denote the jth largest eigenvalue of an n × n matrix
M and let B = eA − I where A is the adjacency matrix corresponding to Gh,`,1.
Then, for ` sufficiently large,

λ2(BTB)
λ1(BTB)

< 0.94430081

for all natural numbers h and `. In particular, for fixed h as ` → ∞, the ratio
λ2(BTB)/λ1(BTB) remains bounded above by a constant less than one.

Proof. The n× n adjacency matrix for Gh,`,1 is

A =



0 1 · · · 1 0 0 · · · 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
...

. . .
...

0 0 0 0 0 1 0
0 0 · · · 0 0 0 · · · 0 1
0 0 0 0 0 0 0
...

...
0 0 · · · 0 0 0 · · · 0 0


where n = h(` + 1) + 1 is the number of nodes of G. There are h ones in the
first row corresponding to the links from node 1 to the h handles in Gh,`,1.
The matrix Bh,`,1 = eA − I is

Bh,`,1 =



0 1 · · · 1 1
2 · · · 1

2
1
3! · · · 1

3! · · · 1
m! · · · 1

m!
0 · · · · · · 0 1 · · · 0 1

2 · · · 0 · · · 1
(m−1)! · · · 0

...
. . .

...
. . .

...
. . .

...
1 0 · · · 1

2
1

(m−1)!
0 · · · · · · 0
...

...
0 · · · · · · 0


.

Again, in the first row, each non-zero entry is repeated h times, because the
graph has h handles.

We begin by obtaining a lower bound for the largest singular value of
Bh,`,1. Take a unit vector x ∈ Rn such that ‖Bh,`,1‖ = ‖Bh,`,1x‖. Now we let



Graphs With One Bristle 33

y = [x1, x2, . . . , xn, 0, . . . , 0]T ∈ Rn+h. Then ‖Bh,`,1x‖ = ‖Bh,`+1,1y‖. There-
fore, since ‖y‖ = 1, we obtain

‖Bh,`,1‖ = ‖Bh,`,1x‖
= ‖Bh,`+1,1y‖
≤ ‖Bh,`+1,1‖‖y‖
= ‖Bh,`+1,1‖.

By a similar argument, ‖Bh,`,1‖ ≤ ‖Bh+1,`,1‖. Using MATLAB, we find that
‖B2,3,1‖ ≈ 1.77261 > 1.77. Since the operator norm of a matrix is its largest
singular value,

σ1(B2,3,1) =
√

λ1(BT
2,3,1B2,3,1) > 1.77

for h ≥ 2 and ` ≥ 3.
Next we obtain an upper bound for the second largest singular value

of Bh,`,1. Let the lower right principal submatrix of Bh,`,1 be denoted Tn.
Note that Tn is a Toeplitz matrix of size h(` + 1) × h(` + 1). The matrix
representation of the Toeplitz operator T is the infinite matrix obtained by
extending Tn indefinitely to the right and downward. Let z = eiθ . The
symbol for T is the function

z−h +
1
2

z−2h + · · ·+ 1
m!

z−mh + · · · = e1/zh − 1 (m = 1, 2, 3, . . . )

since a(eiθ) = a(z) = e1/zh − 1 is the function satisfying equation (4.3) for
the entries of Tn. Then from Definition 4.5 and Theorem 4.1, we get the
following relations for an n× n matrix Mn:

σ2(Mn) = a1(Mn) = dist(Mn,F (n)
1 ) := min{‖Mn − Fn‖ : Fn ∈ F (n)

1 }.

This says that the second singular value σ2(Bh,`,1) is the distance from Bh,`,1
to the set of matrices of rank at most one. Now, we can write Bh,`,1 as the
sum of a rank one matrix and an augmented Toeplitz matrix. The rank one
matrix is the n× n matrix, where n is the number of nodes of Gh,`,1, that has
the same first row as Bh,`,1 and zeros for all other entries. The augmented
Toeplitz matrix, denoted Cn, is the Toeplitz matrix Tn with an additional
row of zeros at the top and column of zeros on the left. Therefore

Bh,`,1 =
[

rank one
matrix

]
+


0 0 · · · 0
0
... Tn
0

 ,
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and so

Bh,`,1 −
[

rank one
matrix

]
= Cn.

Thus ‖Cn‖ ≥ σ2(Bh,`,1). But ‖Cn‖ = ‖Tn‖ since the matrices Cn and
Tn differ only by a row and column of zeros. Equations (4.4) and (4.5) in
(Böttcher and Grudsky, 2000) imply that, for z ∈ C,

lim
n→∞

‖Tn‖ = ‖T‖ = max
|z|=1

|e1/zh − 1|.

We now show that the maximum value is e− 1, and that it occurs at z = 1.
Let fh(z) = ez−h − 1. Then, since z = eiθ is complex,

fh(eiθ) = ee−ihθ − 1.

Let

gh(θ) := | fh(θ)|2 = e(e−ihθ+eihθ) − eeihθ − ee−ihθ
+ 1.

Then

g′h(θ) = iheihθee−ihθ − ihe−ihθeeihθ
.

So g′h(θ) = 0 if and only if

ee−ihθ
ei2hθ = eeihθ

.

Equivalently,

ei2hθ = e(eihθ−e−ihθ) = e2i sin(hθ),
2ihθ = 2i sin(hθ) + 2ikπ, k ∈ Z,

hθ = sin(hθ) + kπ,

and so

θ =
kπ

h
, k ∈ Z.

Now

fh(eikπ/h) =

{
e− 1, if k is even;
e−1 − 1, if k is odd.
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Therefore
max
|z|=1

|e1/zh − 1| = e− 1,

independent of the value of h.
We conclude that, for n sufficiently large, ‖Tn‖ ≤ e − 1 < 1.72. There-

fore, by Definition 4.3, σ2(Bh,`,1) ≤ ‖Cn‖ = ‖Tn‖ < 1.72.

These results imply that

σ2(Bh,`,1)
σ1(Bh,`,1)

<
1.72
1.77

= 0.97175141 . . .

and by Definition 1.6,

λ2(Bh,`,1
TBh,`,1)

λ1(Bh,`,1
TBh,`,1)

< 0.94430081.

This theorem says that the lowest curve in Figure 1.2 (where b = 1) does
remain bounded by a constant less than one as ` → ∞.

5.3 Graphs With Two Bristles

Generalizing the ideas in the previous section, I have proved the following
theorem for broom-tree graphs with b = 2. This theorem says that for a
fixed h as ` → ∞, the ratio λh+2/λ1 of BTB is bounded above by a constant
less than one.

Theorem 5.2. Let Gh,`,2 be the directed graph shown in Figure 5.2 where h is
fixed and b = 2. As usual let λi(M) denote the ith largest eigenvalue of an n × n
matrix M and let B = eA − I where A is the adjacency matrix of Gh,`,2. Then, for
` sufficiently large,

λh+2(BTB)
λ1(BTB)

< 0.85512776.

Proof. The adjacency matrix for Gh,`,2 is
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Figure 5.2: The graph Gh,`,2.

A =



0 1 . . . 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 0
... 0 1 0

...
1

. . .
1 0 . . . 0 1

1 0 . . . 0 1
. . . . . .

1 0 . . . 0 1
0 . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . . . 0
...

...
...

0 . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . . . 0



.

The exponentiated adjacency matrix Bh,`,2 = eA − I, where there are h
of each non-zero value in the first row except for the last value where there
are 2h entries of this value, is
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B =



0 1 . . . 1 1
2! . . . 1

2!
1
3! . . . 1

3! . . . . . . . . . . . . 1
(`+b−1)!

... 1 1
2!

1
3!

1 1
2!

1
3!

. . . . . . . . .
1

m! 0 . . . 0 1
m!

. . . . . .
1

m! 0 . . . 0 1
m!

...
...

1 0 . . . 0 1
. . . . . .

1 0 . . . 0 1
0 . . . . . . . . 0

...
...

...
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . . . 0



.

By the corresponding argument in the proof of Theorem 5.1, we have
that ‖Bh,`,2‖ ≤ ‖Bh,`+1,2‖ and ‖Bh,`,2‖ ≤ ‖Bh+1,`,2‖ for all h ≥ 1 and ` ≥ 1.
Using MATLAB, we find that ‖B2,3,2‖ ≈ 1.8705 > 1.86. Therefore, since

σ1(B2,3,2) =
√

λ1(BT
2,3,2B2,3,2) > 1.86,

we obtain

λ1(BT
h,`,2Bh,`,2) ≥ λ1(BT

2,3,2B2,3,2) > 3.46

for all h ≥ 2 and ` ≥ 3.
Now, Bh,`,2 can be written as the sum of a Toeplitz matrix and a rank

h + 1 matrix. It is easiest to see by an example; we show this sum for the
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graph G2,3,2:

B2,3,2 =



0 0 1 0 1
2! 0 1

3! 0 1
4! 0 1

4!
0 0 0 1 0 1

2! 0 1
3! 0 1

4! 0
0 0 0 0 1 0 1

2! 0 1
3! 0 1

4!
0 0 0 0 0 1 0 1

2! 0 1
3! 0

0 0 0 0 0 0 1 0 1
2! 0 1

3!
0 0 0 0 0 0 0 1 0 1

2! 0
0 0 0 0 0 0 0 0 1 0 1

2!
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



+



0 1 0 1
2! 0 1

3! 0 1
4! 0 1

4! 0
0 0 0 0 0 0 0 0 0 − 1

8 0
0 0 0 0 0 0 0 0 0 0 − 1

8
0 0 0 0 0 0 0 0 0 − 1

3 0
0 0 0 0 0 0 0 0 0 0 − 1

3
0 0 0 0 0 0 0 0 0 − 1

2 0
0 0 0 0 0 0 0 0 0 0 − 1

2
0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



.

The differences between this example and the general case h ≥ 2 are the
number of zeros before the first one in the first row and the number of
zeros between each of the nonzero terms in each row. The terms in the
last h columns of the rank h + 1 matrix are terms in the sequence given by
a0 = 1, an = 1

(n+1)! −
1
n! for n ≥ 1. Then, if Tn (n being the number of nodes

in Gh,`,2) represents the Toeplitz part of Bh,`,2, we have

Tn = Bh,`,2 −
[

rank h + 1
matrix

]
.

Notice that here Tn is n × n, while the Tn in the proof of Theorem 5.1 was
(n− 1)× (n− 1).

From Definition 4.5 and Theorem 4.1,

σh+2(Mn) = ah+1(Mn)

= dist(Mn, F (n)
h+1) (5.1)

:= min{‖Mn − Fn‖ : Fn ∈ F
(n)
h+1}.
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In particular, for Mn = Bh,`,2, we obtain the inequality

σh+2(Bh,`,2) ≤ ‖Bh,`,2 −
[

rank h + 1
matrix

]
‖

= ‖Tn‖,

since the quantity ‖Bh,`,2 −
[

rank h + 1
matrix

]
‖ falls into the set over which we

are minimizing in equation 5.1.
The symbol (Definition 4.2) for T, the infinite matrix obtained by ex-

tending Tn indefinitely to the right and downward, is

z−h +
1
2!

z−2h + · · ·+ 1
m!

z−mh + · · · = e1/zh − 1 (m = 1, 2, 3, . . . ).

Again, equations (4.4) and (4.5) from (Böttcher and Grudsky, 2000) imply
that

lim
n→∞

‖Tn‖ = ‖T‖ = max
|z|=1

|e1/zh − 1| = e− 1,

where the maximum value e − 1 occurs at z = 1 as shown in the proof of
the previous theorem. So, for ` sufficiently large, ‖Tn‖ ≤ e − 1 < 1.72 and
σh+2(Bh,`,2) ≤ ‖Tn‖ < 1.72. Therefore

σh+2(Bh,`,2)
σ1(Bh,`,2)

<
1.72
1.86

≈ 0.92473118,

and so

λh+2(BT
h,`,2Bh,`,2)

λ1(BT
h,`,2Bh,`,2)

< 0.85512776

for ` sufficiently large.

To summarize, Theorem 5.2 shows that for b = 2 and fixed h ≥ 2,
the ratio of the (h + 2)nd to the first eigenvalue of BTB remains bounded
above by a constant less than one as the length ` of the graph Gh,`,2 tends to
infinity.

5.4 Graphs with Multiple Bristles

We conclude with our most general result, which subsumes Theorems 5.1
and 5.2 as special cases. This theorem says that for fixed h and b as ` → ∞,
the ratio λh(b−1)+2/λ1 of BTB is bounded above by a constant less than one.
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Theorem 5.3. Let Gh,`,b be the general broom-tree graph with h handles, b bristles,
and length `. Fix h ≥ 2 and b ≥ 1. As usual let λj(M) denote the jth largest
eigenvalue of an n × n matrix M, and let B = eA − I where A is the adjacency
matrix of Gh,`,b. Then there is a constant c0 = c0(h, b) < 1 such that for `
sufficiently large,

λh(b−1)+2(BTB)
λ1(BTB)

< c0 < 1.

Proof. The proof is almost exactly the same as that of Theorem 5.2. We
sketch the main points.

First, ‖Bh,`,b‖ ≤ ‖Bh,`,b+1‖ for all b ≥ 1 by the same argument used
earlier for the cases of increasing h and increasing `. Using MATLAB we
find ‖B2,3,1‖ ≈ 1.77261 > 1.77. Hence,

λ1(BT
h,`,bBh,`,b) > 1.772

for all h ≥ 2, ` ≥ 3, and b ≥ 1.
Careful analysis of the form of Bh,`,b shows that Bh,`,b can be written as

the sum of a Toeplitz matrix Tn and a matrix of rank h(b − 1) + 1. So, as
before,

σh(b−1)+2(Bh,`,b) ≤ ‖Tn‖.

The symbol of the corresponding infinite matrix T is the same as that in
Theorem 5.2, and so again

‖Tn‖ ≤ e− 1 < 1.72.

Thus
λh(b−1)+2(BTB)

λ1(BTB)
<

1.722

1.772 ≈ 0.94430081,

for ` sufficiently large.



Chapter 6

Open Questions and Future
Work

Here we discuss some potential future work.

6.1 Two Conjectures About λ1 and λ2

From observations made when calculating the ratios λ2/λ1, I propose the
following conjectures. We do not examine these conjectures for b > 1.

Conjecture 6.1. Consider the graph Gh,`,1 with b = 1. Fix h. Then there is a
constant c such that

λ1(BTB) ≤ c

for all `.

This conjecture says that as ` → ∞, the leading eigenvalue of BTB ap-
proaches or is equal to c.

Conjecture 6.2. Let Gh,`,1 denote the broom-tree graph with h handles of length
` with one bristle at the end of each handle (b = 1). As usual let λi(M) denote
the ith largest eigenvalue of an n× n matrix M and let B = eA − I where A is the
adjacency matrix of Gh,`,1. Fix `. Then

λ2(BTB) = λ1(B̃TB̃),

where B̃ is the lower right principal submatrix of B, and λ2(BTB) is independent
of h. Further, for h > 1, the multiplicity of λ2(BTB) is h− 1.
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h

1 2 3 4

` λ1 m λ2 m λ2 m λ2 m

1 1.6404 1 1 1 1 2 1 3
2 2.0625 1 1.6404 1 1.6404 2 1.6404 3
3 2.3247 1 2.0625 1 2.0625 2 2.0625 3
4 2.4913 1 2.3247 1 2.3247 2 2.3247 3

Table 6.1: Leading or second leading eigenvalues and their multiplicities m
of BTB for the graph Gh,`,1 with different values of h and `.

Table 6.1 shows leading eigenvalues of BTB for graphs with h = 1 and
the second leading eigenvalues of BTB for graphs with h = 2, 3, 4. The
pattern is made clear from this table. The following describes a possible
approach to proving this conjecture. The idea is that the second leading
eigenvalue of BTB can be obtained by removing the first node of Gh,`,1 and
finding the leading eigenvalue of BTB for the new graph.

6.2 Back to the Original Question

Our original goal was to find upper bounds, strictly less than one, for the
ratio λ2/λ1 of the second eigenvalue to the first eigenvalue of the matrix
BTB = (eA − I)T(eA − I) for broom-tree graphs, as the length ` goes to in-
finity. We achieved this goal for broom-tree graphs with any number h ≥ 2
of handles, and with only one bristle (b = 1) at the end of each handle (The-
orem 5.1). For broom-tree graphs with more bristles (b ≥ 2), we obtained
instead upper bounds on the ratio λh(b−1)+2/λ1 involving a specific later
eigenvalue of BTB (Theorems 5.2 and 5.3). Why does the method of proof
used for Theorem 5.1 not extend to obtain a bound on λ2/λ1 when b ≥ 2?

The technique for finding a lower bound for the leading eigenvalue of
BTB for the graph in Figure 5.2 is analogous to the technique used to find
the lower bound in the proof of Theorem 5.1. I will show why the technique
for finding an upper bound for the second leading eigenvalue used in that
proof will not hold when b ≥ 2.

From the theory contained in the proof of Theorem 5.1, we can estimate
the operator norm of any Bh,`,b for large enough `. For example, using
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MATLAB we find that ‖B2,3,2‖ = 1.870499 > 1.87. It is, at this point, unclear
whether these values are strictly increasing as the variables h, `, and b are
increasing.

The problem with the second part of the proof when b > 1 is that, be-
cause of the structure of the graph Gh,`,b, there is no way to write Bh,`,b as
the sum of a Toeplitz matrix and a rank one matrix. Numerical methods
might help to find a useful upper bound on λ2(BTB) for different values of
b. Other linear algebra theory such as the Lanczos method might also help
to find such a bound.

My intuition is that for b ≥ 2, the ratio λ2/λ1 of BTB probably does tend
to one as ` goes to infinity. For now, this remains an open question.





Appendix A

MATLAB Code to Determine
Eigenvalues and Eigenvectors

I wrote this m-file for MATLAB (with the aid of Keith Soleberg) to make
the calculations of the eigenvalues and dominant eigenvectors of BTB and
BBT faster and easier. The file takes the parameters h, `, and b of the broom
tree as inputs and returns the eigenvalues of BTB, which are the same as the
eigenvalues of BBT by Theorem 2.1, as well as the dominant eigenvectors
associated with BTB and BBT which correspond to the authority and hub
vectors discussed in the introduction.

1 function xx=lambda(H,L,B)
2

3 %find size of A
4 n=H*(L+B)+1;
5

6 %A=n by n zero matrix
7 A=zeros(n);
8

9 %define nonzero entries in first row of A
10 A(1,2:H+1)=ones(1,H);
11

12 %define nonzero entries in rows 2 through h(l−1)
13 for k=H+2:H*L+1
14 A(k−H,k)=1;
15 end
16

17 %define nonzero entries on first slope of bristle part
18 for m=2:H*L+1
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19 A(m,m+H)=1;
20 end
21

22 %define nonzero entries on remaining slopes of bristle part
23 for q=1:B−1
24 for p=2:H+1
25 A(H*(L−1)+p,H*(L+1)+p+(q−1)*H)=1;
26 end
27 end
28

29 %calculate B
30 V=expm(A)−eye(n);
31

32 %calculate eigenvalues and vectors of BBˆT
33 [B,D]=eig(V*V.');
34

35 %put eigenvalues in a row vector
36 E=zeros(1,n);
37 for j=1:n
38 E(1,j)=D(j,j);
39 end

40 display('Eigenvalues of BBT are:')
41 E
42

43 %find placement of largest eigenvalue of BBˆT
44 [F,G]=max(E);
45 display('Dominant Eigenvector of BBˆT');
46 B(:,G)
47

48 %find eigenvalues and vectors of BˆTB
49 [J,K]=eig(V.'*V);
50 M=zeros(1,n);
51 for j=1:n
52 M(1,j)=K(j,j);
53 end
54

55 %find placement of largest eigenvalue of BˆTB
56 [P,Q]=max(M);

57 display('Dominant Eigenvector of BT B');
58 J(:,Q)
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