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Abstract

This paper explores some properties of subtropical arithmetic, which is the
extended real line R = R ∪ {−∞, ∞} considered under the binary opera-
tions min(·, ·) and max(·, ·). We begin by examining some results in trop-
ical polynomials. We then consider subtropical polynomials and subtropi-
cal geometry, drawing on tropical geometry for motivation. Last, we derive
a complete classification of subtropical endomorphisms up to equivalence
with respect to the coarsest topologies making these endomorphisms con-
tinuous.
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Chapter 1

Introduction

Subtropical arithmetic is an arithmetic system on the extended real line
R := R∪ {−∞, ∞}. The operations consist of the two binary operators
a ∧ b := min(a, b) and a ∨ b := max(a, b), which are defined for all a, b ∈ R

in the usual way. We shall refer to the abstract study of this arithmetic as
subtropical algebra.

The reason for extending R to R is completely technical. By appending
the element ∞, we gain an identity with respect to the operation ∧, since
for all a ∈ R, a ∧∞ = ∞ ∧ a = a. Similarly, by appending −∞ we gain an
identity with respect to ∨. We note, however, that this structure does not
afford any inverses with respect to ∧ or ∨, since the only a, b ∈ R such that
a ∧ b = ∞ are a = b = ∞, and similarly a ∨ b = −∞ implies a = b = −∞.

Example 1.1 5∨ 9 = 9, 3∧ 6 = 3.

The adjective “subtropical” is derived from the use of “tropical” in the
study of tropical algebra. Our motivation for studying the subtropical arith-
metic system is primarily game-theoretic, as many of the most celebrated
results in game theory come to us in the form of statements about mini-
mums of maximums or maximums of minimums. However, it seems likely
that subtropical research could prove useful to mathematicians working in
algebraic geometry and other fields.

In this paper we shall explore a few results in tropical algebra before
attempting to consider the possibility of similar results in subtropical alge-
bra. We will be largely unsuccessful in our attempts to define subtropical
polynomials and subtropical lines, briefly discussing the failings in light
of what may be the larger structural issues with the space itself. We will
then focus on the connections between the abstract algebraic structure of
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the space in connection with induced topologies, obtaining a nice result
concerning the classification of lattice endomorphisms on R.

Since much of our preliminary work in subtropical algebra will greatly
mirror that of tropical algebra, we first turn our focus there.



Chapter 2

Tropical Mathematics

2.1 Survey

The term “tropical” is an homage to the Brazilian mathematician Imre Si-
mon, one of the first mathematicians to work in the field [12]. In recent
years, the study of the tropical semiring has seen resurgence due to applica-
tions to the study of algebraic geometry, plane curves, combinatorics, phy-
logenetic trees, and various other fields. The tropical semiring (T,⊕,�)
has two equivalent variants, (R ∪ {∞}, min, +) and (R ∪ {−∞}, max, +),
the inclusion of ∞ or −∞ serving to provide an identity for the ⊕ opera-
tion min or max, respectively. In yet another version [6], the tropical ring
is extended further to include an identical copy of R whose elements in-
teract with those in the original copy under tropical operations. For the
remainder of this paper, we will assume the unextended variation of trop-
ical arithmetic where addition is defined as minimum. That is to say, let
(T,⊕,�) = (R ∪ {∞}, min, +). Arithmetic in this system is then as in the
following example.

Example 2.1 5� 9 = 14, 3⊕ 6 = 3.

Through the work of Bernd Sturmfels and many others, coherent no-
tions of many traditional algebraic objects have been developed in a trop-
ical setting. These include polynomials [12, 7], linear spaces [13], vari-
eties [8, 6], ideals [6], matrices and their rank [5, 1], Nullstellensatz [10, 6],
and Grassmannians [11]. Perhaps most oddly of all, we have also seen the
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development of a tropical geometry [8], which has applications to the study
of genomics.

As one of our goals will be mimicking some of these developments in a
subtropical setting, we begin by examining tropical polynomials. Defined
analogously to traditional algebraic polynomials, the tropical polynomials
in one variable are of the form

p(x) =
n⊕

k=0

ak � xk, with ai ∈ T,

where exponentiation is defined tropically. For the sake of translation, in a
traditional algebraic setting this corresponds to

p(x) = min{nx + an, (n− 1)x + an−1, . . . , x + a1, a0}. (2.1)

The graph of a tropical polynomial then looks like the minimum of a se-
quence of lines of decreasing, nonnegative integer slope.

Figure 2.1: An example graph of a tropical polynomial.
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In considering the roots of a tropical polynomial, it no longer makes
much sense to consider the values of x where the expression achieves zero.
First we remark that zero lacks the property 0� a = 0 for all a ∈ T. This
was the property that made roots of polynomials also roots of a product
polynomial under multiplication in a traditional algebraic setting, but it no
longer applies tropically. Instead we desire to define a root as something
that propagates through tropical multiplication such that each tropically
factorable polynomial has as its roots the roots of its divisor polynomials.

The distinguishing features of the tropical polynomial in Figure 2.1 are
decidedly the “kinks” in the graph where the lines meet. Noting that if we
were to add one graph of this form to another graph of this form in a tradi-
tional algebraic setting, the kinks of each graph would be preserved. This
is due to the fact that the slopes of the lines defining the graph are strictly
decreasing, since each kink is provided no means to “cancel” by tropical
multiplication. At any given kink, multiplication by another tropical poly-
nomial will only force the slopes on either side have the same or an even
greater difference. Thus, the kinks of a tropical polynomial are preserved
under tropical multiplication. It is with this in mind that the roots of the
tropical polynomial p(x) =

⊕n
k=0 ak � xk are defined as follows.

Definition 2.2 The roots of a polynomial p(x) are defined to be all r ∈ T where

ai � ri = aj � rj = min
1≤k≤n

{ak � rk} for some i and j such that 0 ≤ i < j ≤ n.

In other words, the roots are the values of x where the minimum value
of Equation 2.1 is achieved in at least two of its components. Since these
values r are precisely the places where the lines

y = nx + an, y = (n− 1)x + an−1, . . . , y = x + a1, y = a0

have pairwise intersections falling on the graph of p(x), the roots are the
kinks on the tropical polynomial, as hinted. The polynomials then have a
delightfully familiar property.
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Proposition 2.3 Given any collection of n distinct roots r1 > . . . > rn, there ex-
ists a tropical polynomial of degree n with these roots.

Proof: Consider p(x) =
⊙n

i=1(x⊕ ri). �

This is equivalent to expanding a bunch of linear terms, each of which we
prepare in such a way that it gives the overall polynomial a particular de-
sired root. The next statement is a bit stronger, but would require a stretch
of the imagination to make analogous to traditional algebraic polynomials.

Proposition 2.4 Given a collection of n + 1 distinct natural numbers k0 < . . . < kn
and n distinct roots r1 > . . . > rn, we may construct a polynomial with root ai oc-
curring as the kink between line segments of slope ki−1 and ki.

Proof: Such a polynomial is given by

n⊕
i=1

si � xki ,

where

sj = c +
j

∑
i=1

ai(ki−1 − ki), with c ∈ T.

�

The constant c here merely shifts the graph vertically, leaving the roots
and slopes untouched. This can be thought of as an analogue to multiply-
ing a real polynomial by a nonzero constant.

It is not too much of a leap to see that this system of designating roots
and slopes can be used to produce the curve defined by any polynomial,
since such a curve is a piecewise combination of segments of decreasing
nonnegative integer slope, intersecting at precisely the roots.

We next note that two tropical polynomials may describe precisely the
same curve in the plane.

Example 2.5 Consider the polynomials f (x) = x2 ⊕ 1 � x ⊕ 2 and g(x) =
x2 ⊕ 2� x⊕ 2. These describe the same curve, since the x1 term is greater than at
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least one of the x0 or x2 terms for all x in both f and g. Since the x0 and x2 terms
then define the polynomials and are identical in f and g, f and g are identical.

We can then create equivalence classes of polynomial expressions based
on equality. We might note an interesting fact about our equivalent poly-
nomials f and g in Example 2.5: f is easily factored while g is not. With a
little tropical manipulation we can obtain

f (x) = x2 ⊕ 1� x⊕ 2 = (x⊕ 1)� (x⊕ 1).

You can, in fact, demonstrate that g has no such factorization! Now that
we have a moderate understanding of the mechanics of tropical arithmetic,
we turn our attention to subtropical algebra.





Chapter 3

Fundamentals of Subtropical
Algebra

Since R is an ordered set with the natural ordering <, we note that de Mor-
gan’s Duality Law applies. That is, for every statement about <, a roughly
equivalent statement about > holds. In our case, we are most interested
in how statements about ∧ correspond to statements about ∨. The reader
should bear this in mind while working through this chapter.

3.1 Commutativity, Associativity, and Bidistributivity

Perhaps the easiest observation to make about the operations ∧ and ∨ is
that each is commutative and associative. Furthermore, each is distributive
over the other, a property we shall call bidistributivity. While the commuta-
tive and associative properties are straightforward to see, the proof of bidis-
tributivity is a little less intuitive. In terms of our operations the proof is a
little cumbersome, so in order to more elegantly demonstrate bidistributiv-
ity we shall reformulate ∧ and ∨ in terms of an analogue to Dedekind cuts.
For each r ∈ R, let the map ϕ : R → 2R be defined by ϕ(r) = [−∞, r]. We
then note that for a, b ∈ R,

ϕ(a ∧ b) = ϕ(a) ∩ ϕ(b) and ϕ(a ∨ b) = ϕ(a) ∪ ϕ(b).

Since ϕ(a) ∩ ϕ(b), ϕ(a) ∪ ϕ(b) ∈ ϕ(R) and ϕ is injective, we can then
safely write

a ∧ b = ϕ−1(ϕ(a) ∩ ϕ(b)) and a ∨ b = ϕ−1(ϕ(a) ∪ ϕ(b)).
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Proposition 3.1 The operations ∧ and ∨ are bidistributive.

Proof: Let a, b, c ∈ R. We then observe that since ∩ and ∪ are bidistributive,

a ∧ (b ∨ c) = ϕ−1(ϕ(a) ∩ (ϕ(b) ∪ ϕ(c)))
= ϕ−1((ϕ(a) ∩ ϕ(b)) ∪ (ϕ(a) ∩ ϕ(c)))
= ϕ−1(ϕ(a ∧ b) ∪ ϕ(a ∧ c))
= (a ∧ b) ∨ (a ∧ c).

Thus, ∧ distributes over ∨. The proof that ∨ distributes over ∧ is carried
out similarly. �

It is interesting to note that we could have also defined ψ : R → 2R by
ψ(r) = [r, ∞] and observed that

a ∧ b = ψ−1(ψ(a) ∪ ψ(b)) and a ∨ b = ψ−1(ψ(a) ∩ ψ(b)).

More heuristically, we might have anticipated the distributive property
of ∨ over ∧ as a consequence of the distributive property of ∧ over ∨ in
conjunction with the Duality Law.

3.2 Subtropical Polynomials

Consider a polynomial in (R, +, ·). It has the form

p(x) =
n

∑
i=0

ai · xi.

Polynomials in (R, +, ·) have many useful characteristics that we can as-
cribe to them such as degree, roots, and factorings. In tropical algebra,
(T,⊕,�), there is the analogous form for a polynomial

p(x) =
n⊕

i=0

ai � xi

that also has useful notions of degree, roots, and factorings defined for it.
We now wish to define something similar in (R,∧,∨). Note that because
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of the bidistributivity of ∧ and ∨, our allowing ∨ to fill the role of multipli-
cation and ∧ to fill the role of addition is arbitrary.

We start by considering the basic form for a polynomial suggested by
the other two considered systems,

p(x) =
n∧

i=0

ai ∨ xi for ai ∈ R, n ∈ N,

with exponentiation interpreted subtropically: xk =
∨k

i=1 x = x for k ≥ 1.
We shall use the natural definition x0 = −∞, since the −∞ is the identity
with respect to ∨. Let P denote the set of all functions of the form p(x).

Proposition 3.2 Any element of P may be expressed as p(x) = (a ∨ x) ∧ b for
a, b ∈ R.

Proof: Following the traditional order of operations allows us to reduce
our polynomial to p(x) = a0 ∧

∧n
i=1(ai ∨ x). By distributivity we then have

p(x) = a0 ∧ (x ∨∧n
i=1 ai) . By letting a =

∧n
i=1 ai and b = a0, we then have

p(x) = (a ∨ x) ∧ b for a, b ∈ R. �

Using the form given for a polynomial by Proposition 3.2, we may then
classify each polynomial p(x) = (a ∨ x) ∧ b by considering the cases a < b,
a = b, and a > b. Since we are clever, we can handle it in two cases:

• If a < b, then

p(x) =


a if x ∈ [−∞, a]
x if x ∈ (a, b)
b if x ∈ [b, ∞]

• If a ≥ b, then p(x) = b.

We graph the more interesting of the two forms in Figure 3.1.

If we wish to develop any useful notion of a root, we would likely
want roots to somehow correspond to the kinks in the graph. However,
the above classification of all p(x) ∈ P gives that each polynomial has ei-
ther zero or two kinks. Since the product or sum of two polynomials again
has zero or two kinks, there does not seem to be a useful notion of degree
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Figure 3.1: p(x) = (a ∨ x) ∧ b for a < b.

or root to be found this way, shedding doubt on this definition of a sub-
tropical polynomial. Before we finish discussion of this form, however, we
shall demonstrate the closure of P with respect to subtropical operations.

Proposition 3.3 P is closed under ∧.

Proof: Let f (x), g(x) ∈ P. By Proposition 3.2 we are allowed to write
f (x) = (a ∧ x) ∨ b, g(x) = (c ∧ x) ∨ d for some a, b, c, d ∈ R. We then
observe that

f (x) ∧ g(x) = [(a ∧ x) ∨ b] ∧ [(c ∧ x) ∨ d]
= [(a ∧ x) ∧ (c ∧ x)] ∨ [(a ∧ x) ∧ d] ∨ [(c ∧ x) ∧ b] ∨ [b ∧ d]
= [a ∧ c ∧ x] ∨ [a ∧ d ∧ x] ∨ [b ∧ c ∧ x] ∨ [b ∧ d]
= ([[a ∧ c] ∨ [a ∧ d] ∨ [b ∧ c]] ∧ x) ∨ [b ∧ d].

Letting r = [[a ∧ c] ∨ [a ∧ d] ∨ [b ∧ c]] and s = [b ∧ d], we have that
f (x) ∧ g(x) = (r ∧ x) ∨ s for r, s ∈ R, so f (x) ∧ g(x) ∈ P. �



Subtropical Polynomials 13

Proposition 3.4 P is closed under ∨.

Proof: Let f (x), g(x) ∈ P. We may again write f (x) = (a ∧ x) ∨ b and
g(x) = (c ∧ x) ∨ d for some a, b, c, d ∈ R. It follows that

f (x) ∧ g(x) = [(a ∧ x) ∨ b] ∨ [(c ∧ x) ∨ d]
= (a ∧ x) ∨ (c ∧ x) ∨ b ∨ d
= ([a ∨ c] ∧ x) ∨ [b ∨ d].

Letting r = [a ∨ c] and s = [b ∨ d], we have that f (x) ∨ g(x) = (r ∧ x) ∨ s
for r, s ∈ R, so f (x) ∨ g(x) ∈ P. �

While closure under both operations is very much a desired property
for any potential definition of a subtropical polynomial, we still cannot help
but feel that the polynomials afforded by analogy to traditional and tropical
algebras are in some sense “too weak,” since useful notions of degree and
root are very elusive. One alternative form that we may wish to study is
the polynomial-type object the form

q(x) = a0 ∧
n∧

i=1

ai ∨ (x + bi) for ai, bi ∈ R.

The reason for this form is purely because the translations allow for the
kinks to propagate more interestingly through subtropical multiplication.
However, we do have the philosophical issue of introducing the outside
operation of addition. Having failed to come up with an intuitionally satis-
fying notion of a subtropical polynomial, we instead turn our attention to
attempting to construct a coherent subtropical geometry.





Chapter 4

Subtropical Geometry

One of the things we wish to establish within the context of subtropical
algebra is a suitable geometry. A natural place to start is with the question
of what we might expect to see happen in subtropical space R

n.

4.1 Subtropical Spaces

As noted earlier, there are no additive inverses in the subtropical semiring.
Because of this, we cannot hope to have a subtropical vector space in any
natural way. However, if we choose to ignore this, the subtropical space
contructed in analogue to the vector space Rn may have some interesting
properties.

We define the space R
n to be all n-component vectors with entries cho-

sen from R. We define addition and scaling as below.

a1
...

an

∧
b1

...
bn

 =

a1 ∧ b1
...

an ∧ bn

 , k∨

a1
...

an

 =

k ∨ a1
...

k ∨ an

 for all ai, bi, k ∈ R

However, due to the symmetry of our space it might also make sense to
define the vector operations

a1
...

an

∨
b1

...
bn

 =

a1 ∨ b1
...

an ∨ bn

 , k∧

a1
...

an

 =

k ∧ a1
...

k ∧ an

 for all ai, bi, k ∈ R.
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We begin by considering the notion of an inner product. Constructing
the inner product as an analogue to the standard inner product on Rn, we
might define

~a g~b =
n∧

i=1

(ai ∨ bi).

We note that if a, b ∈ R, we simply have a g b = a∨ b, giving some rationale
for our notation.

We next verify that this is almost an inner product, with “almost” in the
sense that R

n is almost a vector space.

Proposition 4.1 g is almost an inner product on R
n.

Proof:
Let~a,~b,~c ∈ R

n.

(i) Clearly~a g~b =~b g~a.

(ii) Define~a ∧~b componentwise. We then have that

(~a ∧~b) g~c =


a1

...
an

 ∧

b1
...

bn


g

c1
...

cn


=

a1 ∧ b1
...

an ∧ bn

g

c1
...

cn


=

n∧
i=1

(ai ∧ bi) ∨ ci

=
n∧

i=1

((ai ∨ ci) ∧ (bi ∨ ci))

=

(
n∧

i=1

(ai ∨ ci)

)
∧
(

n∧
i=1

(bi ∨ ci)

)
= (~a g~c) ∧ (~b g~c).
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(iii) Let k ∈ T. Defining k max~a in the natural way one would define
scalar action, we then observe

(k ∨~a) g~b =

k ∨

a1
...

an

g

b1
...

bn




=


k ∨ a1

...
k ∨ an

g

b1
...

bn




=
n∧

i=1

(k ∨ ai) ∨ bi

= k ∨
(

n∧
i=1

ai ∨ bi

)
= k ∨ (~a g~b).

(iv) This is the axiom that slightly breaks down. Given that the subtrop-
ical additive identity is ∞, demanding ~a g~a ≥ ∞ with equality iff
~a = ~∞ seems ridiculously. Instead, we might demand ~a g~a ≤ ∞,
with equality iff~a = ~∞. While the former of these two requirements
is trivially true, to see the latter we note that

~a g~a =
n∧

i=1

(ai ∨ ai) =
n∧

i=1

ai,

which may equal ∞ iff ai = ∞ for each ai, and thus iff~a = ~∞. �

The key hangup in this was that zero no longer holds the same signif-
icance in the subtropical setting that it did in traditional arithmetic. “Pos-
itive” and “negative” no longer have much significance, either, since sub-
tropically all numbers between −∞ and ∞ are in some sense equivalent in
their relations, up to translation.

Example 4.22
5
3

g

7
1
9

 = (2∨ 7) ∧ (5∨ 1) ∧ (3∨ 9) = 7∧ 5∧ 9 = 5.
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Due to the symmetry (by Duality) of ∨ and ∧, however, we note that it
might make just as much sense to define the inner sum

~a f~b =
n∨

i=1

(ai ∧ bi).

We note similarly that if a, b ∈ R, we have a f b = a ∧ b. We may also
prove that f has all the desired properties of an inner product if we were
to reverse the roles of multiplication and addition. The proof would go as
in Proposition 4.1, except we would demonstrate

(i) ~a f~b =~b f~a,

(ii) (~a ∨~b) f~c = (~a f~c) ∨ (~b f~c),

(iii) (k ∧~a) f~b = k ∧ (~a f~b),

(iv) ~a f~a ≥ −∞, with equality iff~a = ~−∞.

Since we must always have a∧ b ≤ a∨ b, we might suspect that~a f~b ≤
~a g~b. For the case where~a,~b ∈ R, this obviously holds. However, the next
example in R

2 shows that we may have~a f~b >~a g~b.

Example 4.3 (
1
3

)
f
(

2
4

)
= (1∧ 2) ∨ (3∧ 4) = 1∨ 3 = 3

and (
1
3

)
g
(

2
4

)
= (1∨ 2) ∧ (3∨ 4) = 2∧ 4 = 2,

so (
1
3

)
f
(

2
4

)
>

(
1
3

)
g
(

2
4

)
.



Subtropical Lines (Euclidean Analogy) 19

4.2 Subtropical Lines (Euclidean Analogy)

In developing our subtropical geometry, we might next attempt to develop
the notion of a line. Since the easiest way to start is by analogy to known
arithmetics, we begin by considering analogues to standard Euclidean ge-
ometry. Analytically, we are accustomed to seeing lines expressed in stan-
dard form: ax + by + c = 0. With this expression we may modify a, b, c
appropriately to describe any line in the plane. However, the presence of
additive inverses is what allows for this canonical representation and al-
lows us to equate the line 5x + 3y + 9 = 0 with the line 10x + 5y + 4 =
5x + 2y− 5. Due to a lack of subtropical additive inverses, we might then
guess that the form for a line would be equations of the form

(a ∨ x) ∧ (b ∨ y) ∧ c = (d ∨ x) ∧ (e ∨ y) ∧ f .

We shall now explore this system thoroughly. We begin by examining the
left side.

To induce a symmetry for the sake of generality, we will instead con-
sider

(a ∨ x) ∧ (b ∨ y) ∧ (c ∨ z) for a ≤ b ≤ c.

Since the names of the variables are arbitrary, we will homogenize the sys-
tem this way and hold whichever variable corresponds to the ”constant
term” at a constant value of −∞. For example, the expression (5 ∨ u) ∧
(3 ∨ v) ∧ 4 corresponds to (3 ∨ x) ∧ (4 ∨ y) ∧ (5 ∨ z) with 3 ≤ 4 ≤ 5 and
y = −∞.

In considering L = L(x, y, z) = (a ∨ x) ∧ (b ∨ y) ∧ (c ∨ z) for a ≤ b ≤ c,
we will start by examining cases.

• If x ≤ a, then we have L = a, since (a ∨ x) = a and each of (b ∨ y)
and (c ∨ z) is at least a.

• If a ≤ x ≤ b, then we have L = x, since (a∨ x) = x and each of (b∨ y)
and (c ∨ z) is at least x.

• If y ≤ b ≤ x, then we have L = b, since (b∨ y) = b ≤ x = (a∨ x) and
(c ∨ z) is at least c ≥ b.

• If b ≤ x ≤ y ≤ c, then we have L = x, since (a ∨ x) = x and each of
(b ∨ y) and (c ∨ z) is at least y, which is greater than or equal to x.
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• If b ≤ y ≤ x ≤ c, then we have L = y, since (b ∨ y) = y ≤ x = (a ∨ x)
and (c ∨ z) is at least c, which is greater than or equal to y.

• If b ≤ x ≤ c ≤ y, then we have L = x, since (a ∨ x) = x and each of
(b ∨ y) and (c ∨ z) is at least c, which is greater than or equal to x.

• If b ≤ y ≤ c ≤ x, then we have L = y, since (b ∨ y) = y and each of
(a ∨ x) and (c ∨ z) is at least c, which is greater than or equal to y.

• If z ≤ c ≤ x ≤ y, then L = c.

• If z ≤ c ≤ y ≤ x, then L = c.

• If c ≤ z ≤ x ≤ y, then L = z.

• If c ≤ z ≤ y ≤ x, then L = z.

• If c ≤ x ≤ z ≤ y, then L = x.

• If c ≤ x ≤ y ≤ z, then L = x.

• If c ≤ y ≤ z ≤ x, then L = y.

• If c ≤ y ≤ x ≤ z, then L = y.

So, in summary:

L(x, y, z) =



a if x ≤ a
b if y ≤ b ≤ x
c if z ≤ c ≤ x ≤ y, z ≤ c ≤ y ≤ x
x if a ≤ x ≤ b, b ≤ x ≤ y ≤ c, b ≤ x ≤ c ≤ y,

c ≤ x ≤ y ≤ z, c ≤ x ≤ z ≤ y
y if b ≤ y ≤ x ≤ c, b ≤ y ≤ c ≤ x,

c ≤ y ≤ z ≤ x, c ≤ y ≤ x ≤ z
z if c ≤ z ≤ x ≤ y, c ≤ z ≤ y ≤ x

The right hand side of the equation is handled similarly, except we that
we now no longer have the ability to treat the variables as arbitrary, since
the left hand side forces properties onto the right hand side. The solution
to this system of equations would then be all values (x, y) ∈ R

2 such that
equality holds. We shall see with the next examples, however, that this
creates a very unintuitive line.
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Example 4.4 (2∨ x) ∧ (3∨ y) ∧ 4 = 3.

We see that a necessary condition for equality would be x = 3 a minimum,
y = 3 a minimum, or 3 (the coefficient of y) a minimum. By our formula for
L(x, y, z) we see that this happens when x = 3 and y is any value or when
x ≥ 4 and y ≤ 3. We draw observe this “line” below, in Figure 4.1.

Figure 4.1: (2∨ x) ∧ (3∨ y) ∧ 4 = 3.

This “line” is actually a sheet in the plane. The next example is a little
more satisfying, but simplistic in form.

Example 4.5 x ∧ y = 1.

The solutions to this equation are x = 1 and y ≥ 1 or y = 1 and x ≥ 1. It
appears in Figure 4.2.

But next, an even more degenerate “line.”

Example 4.6 x ∧ y = x ∧ 2.

The solutions to this equation are x ≤ y and x ≤ 2 or y = 2 and x ≥ 2. This
region can be seen in Figure 4.3.
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Figure 4.2: x ∧ y = 1.

Figure 4.3: x ∧ y = x ∧ 2.

The “line” in Figure 4.3 is a sheet in the plane attached to a ray. While
the line in Figure 4.2 nearly satisfies our geometric intuitions for what a
line might be in terms of dimension, intersections, and so forth, the general
form for a line as suggested by analogy to analytic geometry in a traditional
algebraic setting yields far more exceptions to this intuition than it does
satisfactory “lines.”

4.3 Subtropical Lines (Tropical Analogy)

As we have grown accustomed to, the next step would then be to attempt
to formulate a notion of a line by analogy to tropical geometry. In tropical
geometry, a line is defined in terms of ideals of tropical polynomials. Since
the subtropical polynomials we explored in an earlier section never proved
fruitful for most meaningful criteria of analysis, defining a subtropical line
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analogously to a tropical line will not yet have much rationale other than
wishful thinking. In that spirit, we consider the solutions to

(a ∨ x) ∧ (b ∨ y) ∧ c, with a, b, c ∈ R,

where the minimum of (a ∨ x), (b ∨ y), c is achieved at least twice. We note
that one of three conditions must hold for this to happen:

• (a ∨ x) = (b ∨ y) ≤ c,

• (a ∨ x) = c ≤ (b ∨ y), or

• (b ∨ y) = c ≤ (a ∨ x).

We begin by assuming c = ∞ so that we need only examine the first
case. Consider the equation a∨ x = b∨ y, we observe that the solutions are
as follows.

• If a < b, then we have x = b and y ≤ b or y ≥ b and y = x.

• If a = b, we have x = y ≥ a or x ≤ a and y ≤ a.

• If a > b, then we have y = a and x ≤ a or x ≥ a and y = x.

We graph these cases below.

Figure 4.4: (a ∨ x) ∧ (b ∨ y) for a < b.



24 Subtropical Geometry

Figure 4.5: (a ∨ x) ∧ (b ∨ y) for a = b.

Figure 4.6: (a ∨ x) ∧ (b ∨ y) for a > b.

With these lines, the only degenerate case which involves a sheet of the
plane is when a = b. For the other lines we have the nice properties that the
lines are in some sense “one-dimensional” and intersect each other never,
once, or infinitely many times. Using similar methods, we may classify all
varieties of the form (a ∨ x) ∧ (b ∨ y) ∧ c. For lines of this slightly more
general form, we will also find that the degenerate cases similarly hold in
the case of pairwise equalities among a, b and c. While we do not wade
through the analysis, we do include diagrams that the reader may verify in
Figures 4.7– 4.16 in the next section.

Due to the large number of degenerate forms, were we to adopt this
definition of a subtropical line, we would need to justify in what circum-
stances we may ignore the degenerate cases or somehow explain why they
do not qualify as “lines.” Since this is something we lack the patience to
explore and since we are furthermore given little pressure or motivation to
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explore it other than idle curiosity, we shall turn our attention elsewhere.
In the next chapter, we shall explore subtropical space in a more abstract
algebraic and topological setting.

4.4 Categorization of Varieties of the Form (a ∨ x) ∧ (b ∨ y) ∧ c

In this section we simply enumerate the forms of such varieties through
diagrams. The remaining cases will be c < a < b, c < b < a, and c < a = b,
all of which have an empty solution.

Figure 4.7: (a ∨ x) ∧ (b ∨ y) ∧ c for a < b < c.

Figure 4.8: (a ∨ x) ∧ (b ∨ y) ∧ c for b < a < c.
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Figure 4.9: (a ∨ x) ∧ (b ∨ y) ∧ c for a < c < b.

Figure 4.10: (a ∨ x) ∧ (b ∨ y) ∧ c for b < c < a.

Figure 4.11: (a ∨ x) ∧ (b ∨ y) ∧ c for a = b < c.
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Figure 4.12: (a ∨ x) ∧ (b ∨ y) ∧ c for a < b = c.

Figure 4.13: (a ∨ x) ∧ (b ∨ y) ∧ c for b < a = c.

Figure 4.14: (a ∨ x) ∧ (b ∨ y) ∧ c for a = c < b.
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Figure 4.15: (a ∨ x) ∧ (b ∨ y) ∧ c for b = c < a.

Figure 4.16: (a ∨ x) ∧ (b ∨ y) ∧ c for a = b = c.



Chapter 5

A Topological Approach to
Subtropical Algebra

We now turn our attention to the subtropical space (R,∧,∨) in a more ab-
stract algebraic setting. This space does not have inverses with respect to
either operation, so there is no way in which we may consider it a ring due
to the lack of an underlying group structure with respect to either opera-
tion. However, arbitrarily choosing ∧ as our addition and ∨ as our multi-
plication, associativity, commutativity, and distributivity of each operation
over the other gives this space the structure of a semiring. Since only asso-
ciativity of both operations, commutativity of addition, and distributivity
of multiplication are required of a semiring, however, we note that this is a
semiring with some interesting structural features. First, we note that it is
a commutative semiring. Second, we note that it has the strange distribu-
tive property of addition over multiplication. Third, it has identities with
respect to each operation.

Subtropical space (R,∧,∨), although not quite a ring, does qualify as a
lattice. Our notation up to this point has been consistent with the notation
in lattice theory. We note that ∧ denotes the meet operation in lattice theory,
which is precisely the minimum operation in a totally ordered set, such as
R. Similarly, ∨ denotes the join operation, which is precisely the maximum
operation in a totally ordered set.
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5.1 Subtropical Endomorphisms and Automorphisms

Due to its lattice structure, we might next wish to explore the structure of
our space with respect to certain algebraic mappings. The natural algebraic
mappings to consider would be the lattice homomorphisms, i.e. maps with
the properties

ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b) and ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b)

for all a, b ∈ R. In considering such maps, however, the question arises
as to what other lattices we might map R into. Our intuition from the
first isomorphism theorem, however, suggests that many of the interesting
lattices to map into would already live as sublattices of R. It is in this spirit
that we now examine the substropical endomorphisms.

Definition 5.1 Let the subtropical endomorphisms be the functions f : R → R

such that f (a ∧ b) = f (a) ∧ f (b) and f (a ∨ b) = f (a) ∨ f (b) for all a, b ∈ R.
We denote the set of subtropical endomorphisms End(R). A bijective subtropical
endomorphism is called a subtropical automorphism. The set of subtropical auto-
morphisms is denoted Aut(R).

Since we only consider subtropical space, we shall become lazy and
refer to subtropical endomorphisms simply as endomorphisms, with the
space understood. Likewise, subtropical automorphisms will simply be
referred to as automorphisms. The first special property of endomorphisms
we notice pertains to the homomorphism axioms themselves. Namely, they
become equivalent:
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Theorem 5.2 Consider f : R → R. Then f (a ∧ b) = f (a) ∧ f (b) for all a, b ∈ R

if and only if f (a ∨ b) = f (a) ∨ f (b) for all a, b ∈ R.

Proof: In the case of a = b, we obviously have that f (a ∧ b) = f (a) ∧ f (b)
forces f (a ∨ b) = f (a) ∨ f (b). Without loss of generality, assume then that
a < b and that f (a ∧ b) = f (a) ∧ f (b). Because a < b, we then have

f (a) = f (a ∧ b) = f (a) ∧ f (b).

Thus, we must have f (a) ≤ f (b). Since a < b we must have f (a ∨ b) = f (b).
Since f (a) ≤ f (b), we also have f (b) = f (a) ∨ f (b). Thus,

f (a ∨ b) = f (a) ∨ f (b).

It follows then that if f (a ∧ b) = f (a) ∧ f (b) for all a, b ∈ R, we have

f (a ∨ b) = f (a) ∨ f (b)

for all a, b ∈ R. The backwards direction is similar. �

The above proof makes use of the way subtropical space’s operations
derive from an ordering imposed on the space. In the following theorem,
we demonstrate how this relationship is preserved under endomorphisms.

Theorem 5.3 For f : R → R and a < b ∈ R, f (a ∧ b) = f (a) ∧ f (b) if and
only if f (a) ≤ f (b).

Proof: Suppose f (a ∧ b) = f (a) ∧ f (b). Since a < b, we note that

f (a) = f (a ∧ b) = f (a) ∧ f (b).

Since f (a) = f (a) ∧ f (b), it must be the case that f (a) ≤ f (b).
Now suppose f (a) ≤ f (b). Since a < b, we have that f (a ∧ b) = f (a).

By our assumption, we also have that f (a) = f (a) ∧ f (b). It follows that

f (a ∧ b) = f (a) ∧ f (b).

�

The previous two theorems enable us to fully classify End(R), which
we do in the following theorem.
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Theorem 5.4 The subtropical endomorphisms ϕ ∈ End(R) are precisely all non-
decreasing functions f : R → R.

Proof: Let ϕ ∈ End(R). By Theorem 5.2 we have that ϕ ∈ End(R) iff
ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b) for all a, b ∈ R. By Theorem 5.3, we know this
condition is met iff a < b implies ϕ(a) ≤ ϕ(b) for all a, b ∈ R. Since this
is precisely the requirement of a nondecreasing function, the claim follows
immediately. �

Thus, we have classified all subtropical endomorphisms. We now turn
our attention to the automorphisms. Since automorphisms are bijective
endomorphisms, the following theorems seek to classify the injective and
surjective endomorphisms.

Theorem 5.5 The injective subtropical endomorphisms are precisely all strictly
increasing functions f : R → R.

Proof: Let ϕ be an injective endomorphism. From Theorem 5.2 we must
have a < b implies ϕ(a) ≤ ϕ(b). However, since ϕ is injective, this forces
that ϕ(a) < ϕ(b). Since this happens whenever a < b, we have that ϕ is
strictly increasing.

Now let f : R → R be strictly increasing. Since f is then nondecreasing,
f is an endomorphism by Theorem 5.4. Consider a 6= b ∈ R. Without loss
of generality, assume a < b. Since f is strictly increasing, we must have
f (a) < f (b), so f (a) 6= f (b). It follows that f is injective. �

We now introduce a topology on R in order to reasonably describe con-
tinuity of a function at−∞ and ∞. Since we shall shortly classify the surjec-
tive endomorphisms in terms of continuous functions of R, it is important
that we specify our notion of continuity. The topology we shall use is the
order topology. That is to say, let T be the standard topology on R, gen-
erated by all arbitrary unions and finite intersections of the open intervals
{(a, b)}a<b∈R. Then the topology we set on R will be T , generated by

T ∪ {(c, ∞]}c∈R ∪ {[−∞, d)}d∈R.

Continuity will then be defined with respect to this topology, T . Unless
otherwise noted, R will denote (R, T ) when considered as a topological
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space. To remind the reader of the topological definition of continuity, we
state it here.

Definition 5.6 Let X and Y be topological spaces. A function f : X → Y is said
to be continuous if for every open set U ⊆ Y, f−1(U) is open in X.

We say that f is continuous at the point x ∈ X if for each open set V containing
f (x) we may find an open set U containing x such that f (U) ⊆ V. [14]

We shall also use the Intermediate Value Theorem from topology, which
we state here without proof.

Theorem 5.7 (Intermediate Value Theorem) Let f : X → Y be a continuous
map of the connected space X into the totally ordered set Y with the order topology.
If a, b ∈ X and r is a point of Y such that f (a) < r < f (b), then there exists a
point c of X such that f (c) = r. [14]

Theorem 5.8 The surjective subtropical endomorphisms are precisely the nonde-
creasing, continuous functions f : R → R with f (−∞) = −∞ and f (∞) = ∞.

Proof: Let ϕ be a surjective endomorphism. From Theorem 5.4 we have
that ϕ is nondecreasing. By Theorem 5.3 we must have that ϕ(−∞) ≤ ϕ(x)
and ϕ(∞) ≥ ϕ(x) for all x ∈ R. However, since ϕ is surjective, this may
only happen if ϕ(−∞) = −∞ and ϕ(∞) = ∞. To see the continuity of ϕ,
it is enough to show that the preimages of basic open sets are open. Such
basic open sets are of the form (a, b), (c, ∞], and [−∞, d) for a < b, c, d ∈ R.

• Consider (a, b) ⊆ R. We now examine the set A = {x : ϕ(x) ≤ a}.
By the nondecreasing nature of ϕ, we note that if x ∈ A and y < x,
then y ∈ A. Consider r = sup A. We may have r ∈ A or r 6∈ A. If
r 6∈ A, then by ϕ nondecreasing we have ϕ(r) > a. Further,

ϕ(s) ≥ ϕ(r) > a

for all s > r. It follows that we cannot have p ∈ (a, ϕ(s)) be the image
of any point under ϕ, contradicting surjectivity. We then force r ∈ A.
Thus, A = [−∞, r], so

Ac = {x : ϕ(x) > a} = (r, ∞]
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is open. In a similar fashion we may construct the open set

Bc = {x : ϕ(x) < b}.

Noting that
ϕ−1(a, b) = Ac ∩ Bc,

we have that the preimage of (a, b) under ϕ is open.

• Next we consider (c, ∞] ⊆ R. As in the previous case, we may con-
struct an open set Cc = {x : ϕ(x) > c}. This set is exactly ϕ−1(c, ∞].

• We construct the open set Dc = {x : ϕ(x) < d} and note that it is
exactly ϕ−1[−∞, d).

Since the preimage of any basic open set under ϕ is open, it follows that ϕ
is continuous.

Now let f : R → R be a nondecreasing, continuous function with
f (−∞) = −∞ and f (∞) = ∞. From Theorem 5.4 we have that f is an
endomorphism. We note that the R is homeomorphic to the topological
space

[
−π

2 , π
2

]
with the order topology, with homeomorphic map

h : R →
[
−π

2
,

π

2

]
, h(x) = arctan x.

Since it is well known that
[
−π

2 , π
2

]
is connected, we then have that R is

connected. Now suppose y ∈ (−∞, ∞). Since the topology on R is the
order topology and since R is connected, then the Intermediate Value The-
orem gives that there exists a point p ∈ R such that f (p) = y. It follows
that f is surjective. �

It is worthwhile for the reader to note that endomorphisms need not
be continuous, in general. The floor and ceiling functions serve as easy
counterexamples.

Theorem 5.9 The subtropical automorphisms ϕ ∈Aut(R) are precisely all strictly
increasing, continuous functions f : R → R with f (−∞) = −∞ and f (∞) = ∞.

Proof: This result follows immediately from Theorems 5.5 and 5.8. �

We now wish to probe the structures of End(R) and Aut(R). We first
note that each obeys a nice closure property.
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While the next two propositions are clearly true by the properties of ho-
momorphisms as abstract algebraic maps, we delight ourselves with their
proofs, regardless.

Proposition 5.10 End(R) is closed under composition.

Proof: Consider ϕ, ψ ∈ End(R). By Theorem 5.4, ϕ and ψ are nonde-
creasing functions. Since we then have a < b forces ϕ(a) ≤ ϕ(b), which in
turn forces ψ(ϕ(a)) ≤ ψ(ϕ(b)), we have that ψ ◦ ϕ is nondecreasing. An-
other application of Theorem 5.4 gives that ψ ◦ ϕ ∈ End(R). �

Proposition 5.11 Aut(R) is closed under composition.

Proof: Let ϕ, ψ ∈ Aut(R). By Theorem 5.9, ϕ and ψ are strictly increas-
ing, continuous functions each satisfying −∞ 7→ −∞ and ∞ 7→ ∞. Since
each is strictly increasing, we observe that a < b forces ϕ(a) < ϕ(b), and
further ψ(ϕ(a)) < ψ(ϕ(b)). Thus, ψ ◦ ϕ is strictly increasing. Since com-
positions of continuous maps are continuous, ψ ◦ ϕ is continuous. Last, we
note that ψ(ϕ(−∞)) = ψ(−∞) = −∞ and ψ(ϕ(∞)) = ψ(∞) = ∞. Thus,
ψ ◦ ϕ satisfies −∞ 7→ −∞ and ∞ 7→ ∞. By Theorem 5.9, ψ ◦ ϕ ∈ Aut(R). �

Due to these closure properties, it now makes sense to consider the al-
gebraic structures (End(R),◦) and (Aut(R),◦).

Proposition 5.12 (End(R),◦) is a monoid.

Proof: Proposition 5.10 gives that End(R) is closed under compositions
and composition is an associative operation. Noting that id : R → R with
id(x) = x is in End(R) and meets the requirements of an identity, the claim
follows. �

Proposition 5.13 (Aut(R),◦) is a group.
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Proof: Proposition 5.11 gives that Aut(R) is closed under compositions.
Again, composition is an associative operation and id ∈ Aut(R) gives our
structure an identity. Consider some ϕ ∈ Aut(R). Since ϕ is bijective, we
may consider its inverse, ϕ−1, a function defined on R. Since ϕ is strictly
increasing, we note that ϕ(a) < ϕ(b) forces a < b. Thus, ϕ−1 is strictly in-
creasing. By Theorem 5.4, it follows that ϕ−1 ∈ End(R). Since ϕ is bijective,
so is ϕ−1, and we conclude that ϕ−1 ∈ Aut(R). �
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Corollary 5.14 The order-preserving homeomorphisms ϕ : R → R are precisely
the automorphisms.

Proof: Theorem 5.9 gives that the automorphisms are precisely the con-
tinuous, bjiective functions and Proposition 5.13 gives that their inverses
are also continuous, making them homeomorphisms. Since automorphisms
preserve order, they are then order-preserving homeomorphisms.

Homeomorphisms are bijective. If a homeomorphism is to preserve
order, it must be nondecreasing. Theorem 5.9 then gives that an order-
preserving homeomorphism is an automorphism. �

5.2 Equivalence of Algebraic Maps

Consider the following example.

Example 5.15 f1 and f2 are two endomorphisms, where

f1(x) =

{
−1 if x ∈ [−2, 2]
x otherwise.

and

f2(x) =

{
1 if x ∈ [−2, 2]
x otherwise.

We notice that there are striking similarities between these two maps.
Each map fixes everything outside the interval [−2, 2] in precisely the same
manner. Furthermore, each map handles the interval [−2, 2] in a similar
fashion, in that [−2, 2] is mapped to a single point in [−2, 2] that is neither
the supremum of [−∞,−2) nor the infimum of (2, ∞]. The similarities of
the two maps f1 and f2 then seem to topological in nature, so we set out
to find a precise statement about the topological similarity of two endo-
morphisms. Our initial guess might be that f1 and f2 derive their similari-
ties from the fact that their images are homeomorphic under the subspace
topology of R. This notion inspires the following definition of equivalence.
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Definition 5.16 We say two endomorphisms f and g are left-equivalent if we may
find some ψ ∈ Aut(R) such that f = ψg.

Proposition 5.17 Left equivalence is indeed an equivalence relation.

Proof: This follows from the fact that Aut(R) is a group. Namely,

f = id ◦ f

gives reflexivity,
f = ψg ⇒ ψ−1 f = g

gives symmetry, and

f = ψg, g = ρh ⇒ f = (ρ ◦ ψ)h

gives transitivity. �

In the case of Example 5.15, we see that f1 and f2 are actually left equiv-
alent if we choose an isomorphism such as ψ:

ψ(x) =


3x + 4 if x ∈ [−2,−1]
x
3 + 4

3 if x ∈ (−1, 2]
x otherwise.

This isomorphism ψ gives f2 = ψ f1. Our intent in defining left-equivalence
was that if f (R) and g(R) are homeomorphic as subspaces of R, ψ is some
homeomorphism between them. However, we find that the image topol-
ogy is too weak to give us the form of equivalence we desire in considering
the following example.

Example 5.18 g1(x) = bxc and g2(x) = dxe are endomorphisms.
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The problem that this example poses is a case where

g1(R) = Z = g2(R)

but g1 and g2 are not left-equivalent. To see this, we note g1(0) = g1(1/2)
while g2(0) 6= g2(1/2). Since g1 cannot distinguish between 0 and 1/2,
there is no map ψ such that ψg1 can distinguish 0 and 1/2. Since g2 must
distinguish between these points, we cannot have g2 = ψg1 for any map ψ.

This suggests, then, that we might want to construct a new notion of
topological equivalence. Instead of attempting to formulate equivalence of
f and g based on whether or not f (R) and g(R) are homeomorphic under
the subspace topology, we work with the following topology:

Definition 5.19 Let f be an endomorphism. Then we define R f to be R consid-
ered under the coarsest topology that makes f continuous. That is, let the topology
of R f be defined as follows: U is open in R f if and only if U = f−1(V) for some
V open in R.

Proposition 5.20 R f actually defines a topology on R.

Proof: We note that ∅ = f−1(∅) and R = f−1(R). Further, let {Ui}i be
a collection of open sets in R f . Then {Ui} = { f−1(Vi)}i for a collection of
open sets {Vi} in R. We then observe that

Uα ∩Uβ = f−1(Vα) ∩ f−1(Vβ) = f−1(Vα ∩Vβ),

which is open in R f since Vα ∩Vβ is open in R. Similarly,

⋃
i

Ui =
⋃

i

f−1(Vi) = f−1

(⋃
i

Vi

)

is open in R f . �
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Theorem 5.21 For any map f : R → R, the induced map f : R f → f (R) is
continuous and open.

Proof: If W open in f (R), then by the definition of the subspace topol-
ogy, W = V ∩ f (R) for some V open in R. By the way we constructed R f ,
this forces

f−1(W) = f−1(V ∩ f (R)) = f−1(V) ∩ f−1( f (R)) = f−1(V)

to be open in R f , so f is continuous.
Let U be open in R. Then we must find V open in R such that U = f−1(V).

We then note that

f (U) = f ( f−1(V)) = V ∩ f (R),

which is open under the subspace topology. �

In a heuristic sense, the problem we run into with trying to create a
notion of equivalence based on the images of functions as subspaces of
R is that of an inherent loss of information. When we consider the im-
age of a function, we lose all sense of how the function acted with respect
to its domain. With Example 5.18, the information lost was whether the
points’ preimages were half-open on the left or half-open on the right. Our
hope in constructing R f is that it will retain enough information about the
function’s preimages to allow us to make statements of left-equivalence in
terms of how functions act with respect to this topology. We run into a
slight problem with the strength of left-equivalence, however.
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Proposition 5.22 For a map h and automorphism ϕ, Rh is homeomorphic to
Rh◦ϕ.

Proof: Consider an open set V in Rh. Then we must have V = h−1(U)
for some open U in h(R). Since

h ◦ ϕ : Rh◦ϕ → (h ◦ ϕ)(R) = h(ϕ(R)) = h(R)

is continuous by Theorem 5.21, we then have

(h ◦ ϕ)−1(U) = ϕ−1(h−1(U))

is open in Rh◦ϕ. Thus, V open in Rh forces

ϕ−1(V) = ϕ−1(h−1(U))

to be open in Rh◦ϕ, so
ϕ : Rh → Rh◦ϕ

is continuous. Similarly,
ϕ−1 : Rh◦ϕ → Rh

is continuous, so Rh is homeomorphic to Rh◦ϕ by way of ϕ. �

This gives rise to the following example:

Example 5.23 Rh is homeomorphic to Rh◦ϕ, where h and ϕ are given by

h(x) = dxe and ϕ(x) = dx + 1/2e.

In the spirit of Example 5.18, we note that h and h ◦ ϕ cannot possibly be
left-equivalent, since h distinguishes between 0 and 1/2, while h ◦ ϕ does
not. In constructing this example, however, we implicity hinted at a new
equivalence relationship:



42 A Topological Approach to Subtropical Algebra

Definition 5.24 We say two endomorphisms f and g are right-equivalent if we
may find some ϕ ∈ Aut(R) such that f = gϕ.

The proof that this is indeed an equivalence relation is similar to the
proof for left-equivalence. In the previous example, we saw two right-
equivalent functions that were not left-equivalent. We shall next see two
left-equivalent functions that are not right-equivalent.

Example 5.25 h1(x) = dxe and h2(x) = dxe+ 1/2.

In this example we see that h1(R) = Z, while h2(R) = Z + 1/2. Since
for any function ϕ we will have (h1 ◦ ϕ)(R) ⊆ h(R),

h1(R) ∩ h2(R) = ∅

forces
(h1 ◦ ϕ)(R) ∩ h2(R) = ∅.

Thus, we cannot possibly have a function ϕ such that h1 ◦ ϕ = h2, so h1 and
h2 are not right-equivalent.

Thus, we have two notions of equivalence, neither of which implies the
other, and each of which indicates something about a pair of functions with
respect to how they act on subtropical space topologically. If f and g are
left equivalent, then this is a statement about deforming the image space.
With f , we simply map R into itself. With g = ψ ◦ f , we first map R into
itself through f and then continuously deform the image. Alternatively,
if f and g are right-equivalent, then we have a statement about how the
domain space is deformed. With f , we map R into itself. With g = f ◦ ϕ,
we continuously deform the domain space and then apply f . In order to
have both of these actions encapsulated in our equivalence class, we create
yet another notion of equivalence.

Definition 5.26 We say two endomorphisms f and g are equivalent if we may
find some ϕ, ψ ∈ Aut(R) such that f = ψgϕ. We shall denote this f ∼ g.

We note that by letting ψ or ϕ equal id ∈ Aut(R), f and g being right-
equivalent or left-equivalent each imply that f ∼ g. In the next section,



The Structure Theorem 43

we shall see that this definition of equivalence is precisely what we need
to formulate a statement about R f and Rg in terms of the equivalence of f
and g. Namely, R f

∼= Rg in an order-preserving way iff f ∼ g.

5.3 The Structure Theorem

In this section, we shall demonstrate that R f
∼= Rg in an order-preserving

way iff f ∼ g. The strategy we shall use is making each of the diagrams
below force the other:

Rg
g // g(R)

R f f
//

h

OO

f (R)

R
g // R

ψ

��
R f

//

ϕ

OO

R

Here, the left diagram consists of the endomorphisms f , g as they are in-
duced on the spaces as pictured, and h : Rg → R f an order-preserving
homeomorphism. Thus it is a statement about there being some home-
omorphism between R f and Rg that preserves order. We wish that the
right diagram commutes for endomorphisms f , g and automorphisms ϕ, ψ,
which would imply f ∼ g.

For our first result towards the establishing the Structure Theorem, we
will need the fact that R is Hausdorff. This is easily seen by an argument
we made previously. Since R is homeomorphic to

[
π
2 ,−π

2

]
, a Hausdorff

space, R is Hausdorff.
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Theorem 5.27 Let f , g be endomorphisms and ϕ : R f → Rg be an order-
preserving homeomorphism. Then there exists an induced order-preserving bi-
jection ρ : g(R) → f (R) such that f = ρgϕ. That is, we can find ρ such that the
diagrams below commute.

R
g // g(R)

ρ

��

R f
//

ϕ

OO

f (R)

R
g //

ϕ−1

��

g(R)

R f
// f (R)

ρ−1

OO

Proof: We will directly construct a function ρ meeting our requirements.
Since the maps we have to work with are f , g, and ϕ, a natural starting
point would be gϕ f−1. However, it is yet unclear whether this is actually a
function, since it involves the composition of a preimage.

Let a ∈ R and consider gϕ f−1(a). Suppose b, c ∈ gϕ f−1(a) with b 6= c.
It is necessarily the case that ϕ−1g−1(b) and ϕ−1g−1(c) are disjoint. Let
x ∈ ϕ−1g−1(b) and y ∈ ϕ−1g−1(c) such that x, y ∈ g−1(a). Since

f (x) = a = f (y),

all open sets in R f containing x must also contain y, and vice versa, since
these open sets must contain all of f−1(a). Since R is Hausdorff, we may
separate b ∈ U, c ∈ V for disjoint open sets U and V. We then observe
that ϕ(x) ∈ g−1(U) and ϕ(y) ∈ g−1(V), where g−1(U) and g−1(V) are
disjoint open sets in Rg. Furthermore, ϕ−1(g−1(U)) and ϕ−1(g−1(V)) are
then disjoint open sets in R f with x ∈ ϕ−1(g−1(U)) and y ∈ ϕ−1(g−1(V)).
This contradicts that all open sets containing x must contain y. We therefore
cannot have b, c ∈ gϕ f−1(a) with b 6= c.

We note that if a ∈ f (R), then f−1(a) 6= ∅, and thus gϕ f−1(a) 6= ∅, so
gϕ f−1 must take each element of f (R) to exactly one element of R. Thus,
we have that gϕ f−1 : f (R) → R is a function. Furthermore, since its image
is contained in g(R), we may restrict the codomain to give the function

r := gϕ f−1 : f (R) → g(R).

A similar argument yields the function

s := f ϕ−1g−1 : g(R) → f (R).
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Next consider a ∈ f (R), and suppose r(a) = b. Since

gϕ f−1(a) = r(a) = b,

we have that
ϕ f−1(a) ⊆ g−1(b),

and thus
f−1(a) ⊆ ϕ−1g−1(b).

This gives that
a ∈ f ϕ−1g−1(b) = s(b),

so s(b) = a. Thus,

(s ◦ r)(a) = s(r(a)) = s(b) = a,

and we have that s ◦ r is the identity function on f (R). Similarly, we find
r ◦ s to be the identity function on g(R). It follows that

s : g(R) → f (R)

is a bijection with s−1 = r. Letting ρ = s, we claim that the following
diagrams commute.

R
g // g(R)

ρ

��

R f
//

ϕ

OO

f (R)

R
g //

ϕ−1

��

g(R)

R f
// f (R)

ρ−1

OO

To see that f = ρgϕ, let a ∈ R and consider ρgϕ(a). We observe that

ρgϕ(a) = ( f ϕ−1g−1)gϕ(a)
= f (ϕ−1g−1(g(ϕ(a))))
⊇ f (ϕ−1 ϕ(a))
= f (a).

Since ρgϕ and f are both functions, this implies ρgϕ(a) = f (a), and thus
ρgϕ = f . We may similarly show that ρ−1 f ϕ−1 = g.
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Next, we note that ρ is order-preserving. To see this, we note that if
a, b ∈ g(R) with a < b we have g−1(a) < g−1(b), since if x ∈ g−1(a) and
y ∈ g−1(b) with x ≥ y, then g(x) < g(y) for x ≥ y, and g decreases.
Similarly ϕ−1g−1(a) < ϕ−1g−1(b), and finally

ρ(a) = f ϕ−1g−1(a)
≤ f ϕ−1g−1(b)
= ρ(b).

Thus, a < b forces ρ(a) ≤ ρ(b). Since ρ bijective, we then have the strict
inequality ρ(a) < ρ(b), and ρ is strictly increasing. �

We now wish to extend the map ρ : g(R) → f (R) to an isomorphism
ρ̃ : R → R. Noting that g(R) and f (R) are essentially copies of R that are
possibly “missing” some elements, our hope is that the missing portions of
f (R) and g(R) somehow “line up” in a way that provides a map between
the missing portions. For instance, in Example 5.15, we saw the maps

f1(x) =

{
−1 if x ∈ [−2, 2]
x otherwise.

and

f2(x) =

{
1 if x ∈ [−2, 2]
x otherwise.

For these maps, we have that

f1(R) = [−∞,−2) ∪ {−1} ∪ (2, ∞]

and
f2(R) = [−∞,−2) ∪ {1} ∪ (2, ∞].

The map ρ : f1(R) → f2(R) would then be the function

ρ(x) =

{
1 if x = −1
x if [−∞,−2) ∪ (2, ∞].

In extending ρ to an isomorphism ρ̃, the intuitive way to accomplish
this would be to have ρ̃ take the interval [−2,−1) to [−2, 1) and the interval
(−1, 2] to (1, 2] in some bijective, order-preserving way. By Corollary 5.14,
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this could be accomplished through the natural homeomorphism of the
intervals.

However, in the general case, it is unclear how to proceed. Perhaps
in the previous case we lucked out and simply had two functions whose
“missing” portions nicely corresponded. To make matters worse, it is un-
clear how the “missing” portions of f (R) are encoded in the function f . It
is straightforward to see that they somehow correspond to the jump dis-
continuities of the function. However, while nondecreasing functions are
fairly nice to analyze, their discontinuities need not be isolated, as seen in
the following example.

Example 5.28 Let (qn) be some enumeration of Q and let (an) be the sequence
defined by an = 1/2n. We then define the function q : R → R by

q(x) = ∑
qn≤x

an.

We note that this function is nondecreasing. However, there is no neigh-
borhood in which it is continuous, since it is discontinuous at each rational
point. This example suggests that constructing ρ̃ may be trickier, in gen-
eral, than was constructing ρ̃ for our functions f1 and f2 of Example 5.15.
To accomplish a sensible pairing of missing portions, we will need a result
from the analysis of monotonic functions. We state it here without proof.

Definition 5.29 Let f be a function defined on (a, b), and let x ∈ [a, b). Then we
write f (x+) = q if f (tn) → q as n → ∞ for all sequences {tn} in (x, b) such
that tn → x. We similarly write f (x−) for x ∈ (a, b] by restricting ourselves to
subsequences {tn} in (a, x). [9]

Theorem 5.30 Let f be nondecreasing on (a, b). Then f (x+) and f (x−) exist
on every point x ∈ (a, b). More precisely,

sup
t<x

f (t) = f (x−) ≤ f (x) ≤ f (x+) = inf
x<t

f (t).

Furthermore, if a < x < y < b, then f (x+) ≤ f (y−). Lastly, f is continuous at
x iff f (x+) = f (x−). [9]

We next prove a technical lemma.
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Lemma 5.1 Let f , g, ϕ and ρ be as in Theorem 5.27. Then there is an order-
preserving bijection χx : [g(x−), g(x+)] → [ f (ϕ−1(x)−), f (ϕ−1(x)+)] for
each x ∈ R with χx(g(x)) = f (ϕ−1(x)).

Proof: Since Theorem 5.30 gives that g(x−) ≤ g(x) ≤ g(x+) and
f (ϕ−1(x)−) ≤ f (ϕ−1(x)) ≤ f (ϕ−1(x)+), the claim is equivalent to show-
ing

g(x−) = g(x) if and only if f (ϕ−1(x)−) = f (ϕ−1(x))

and
g(x+) = g(x) if and only if f (ϕ−1(x)+) = f (ϕ−1(x)),

since a natural homeomorphism of closed intervals would then follow.
Suppose that g(x−) = g(x). We note that g(x−) ∈ g(R), and thus

ρ(g(x−)) is defined. We should note the difference between ρ(g(x−)) and
(ρ ◦ g)(x−), where the former is ρ evaluated at the value g(x−) and the lat-
ter is the leftward limit of ρ ◦ g at x. We observe that by the nondecreasing
nature of all functions involved (and thus also of their compositions),

ρ(g(x−)) = ρ

(
sup
t<x

g(t)
)

= ρ

(
sup
t<x

ρ−1 f ϕ−1(t)
)

≤ ρρ−1
(

sup
t<x

f ϕ−1(t)
)

= sup
t<x

f ϕ−1(t)

= sup
t<x

ρg(t)

≤ ρ

(
sup
t<x

g(t)
)

= ρ(g(x−)).

The result we obtain is that ρ(g(x−)) = supt<x f ϕ−1(t). Since ϕ−1 is
strictly increasing, ϕ−1(t) < ϕ−1(x) is equivalent to t < x, so we may
alternatively write
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ρ(g(x−)) = sup
t<x

f ϕ−1(t)

= sup
ϕ−1(t)<ϕ−1(x)

f (ϕ−1(t))

= f (ϕ−1(x)−).

A similar argument yields ρ(g(x+)) = f (ϕ−1(x)+). Thus, in the case
where g(x−) = g(x) we must also have

f (ϕ−1(x)−) = ρ(g(x−)) = ρ(g(x)) = f (ϕ−1(x)).

Alternatively, if we start with the condition f (ϕ−1(x)−) = f (ϕ−1(x)), we
may then show in a similar fashion that ρ−1 f (ϕ−1(x)−) = g(x−), conclud-
ing that g(x−) = g(x).

Thus, we see that g(x−) = g(x) if and only if f (ϕ−1(x)−) = f (ϕ−1(x)).
Similarly, g(x+) = g(x) if and only if f (ϕ−1(x)+) = f (ϕ−1(x)). It follows
that there is an order-preserving bijection

χx : [g(x−), g(x+)] → [ f (ϕ−1(x)−), f (ϕ−1(x)+)]

for each x ∈ R given by pasting the natural homeomorphisms

χx− : [g(x−), g(x)] → [ f (ϕ−1(x)−), f (ϕ−1(x))],

χx+ : [g(x), g(x+)] → [ f (ϕ−1(x)), f (ϕ−1(x)+)],

where
g(x−) 7→ f (ϕ−1(x)−),

g(x) 7→ f (ϕ−1(x)),

g(x+) 7→ f (ϕ−1(x)+).

�
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Theorem 5.31 Let f be nondecreasing. Then if x < y and f (x+) = f (y−),
f (x+) = f (y−) = f (z) for any choice of z ∈ (x, y).

Proof: Let f (x+) = p = f (y−) and let z ∈ (x, y). We then note

p = f (x+) ≤ f (z−) ≤ f (z) ≤ f (z+) ≤ f (y−) = p.

�

We now have all of the necessary tools to attempt the extension of ρ
to ρ̃. The strategy will be pasting the maps we created in Lemma 5.1 to
our function ρ. We shall soon see that the “missing” portions of f (R) and
g(R) will all fall into intervals having precisely the form [g(x−), g(x+)]
and [ f (ϕ−1(x)−), f (ϕ−1(x)+)], respectively. Furthermore, there will be a
bijective correspondence between these intervals determined by x.

However, we encounter a slight problem if we attempt to extend ρ for
arbitrary homomorphisms f , g. Namely, if f and g do not both handle −∞
and ∞ in the same way, it is possible to have homeomorphic spaces R f and
Rg without a way to extend ρ to an isomorphism. The claim is that this
happens precisely when, without loss of generality, g(∞) < f (∞) = ∞ or
g(−∞) > f (−∞) = −∞. The problem with the first case is that any order-
preserving extension of ρ would need to map the entirety of [g(∞), ∞] into
[ f (∞), ∞] = {∞}, since we must have ρg(∞) = f ϕ(∞) = f (∞). How-
ever, such a map cannot be injective. Similar problems arise for the case
involving −∞. For this reason, we then might choose to impose endpoint
restrictions f (±∞) = g(±∞) = ±∞.

Theorem 5.32 Let f , g, ϕ, and ρ be as in Theorem 5.27 with the additional re-
quirement that f (±∞) = g(±∞) = ±∞. The map ρ : g(R) → f (R) may be
extended to an automorphism ρ̃ : R → R such that the diagrams below commute.

R
g // R

ρ̃

��
R f

//

ϕ

OO

R

R
g //

ϕ−1

��

R

R f
// R

ρ̃−1

OO
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Proof: Define the map ρ̃ : R → R by

ρ̃(p) =

{
ρ(p) if p ∈ g(R)
χx(p) if p ∈ [g(x−), g(x+)].

We first show that this map is well-defined. Suppose p ∈ R. Then
either p ∈ g(R) or p ∈ R− g(R). If p ∈ g(R), then we need only check
that if p ∈ [g(x−), g(x+)] as well, then χx(p) = ρ(p). We shall see that
[g(x−), g(x+)] ∩ g(R) is at most {g(x−), g(x), g(x+)}. In the case where
g(x−) = g(x+), [g(x−), g(x+)] = {g(x)}. When g(x−) < g(x), suppose
p ∈ (g(x−), g(x)). Then there can be no y 6= x such that g(y) = p, since if
y < x,

g(y) ≤ g(y+) ≤ g(x−) < p.

Similarly, g(y) > p if y > x. Thus, (g(x−), g(x))∩ g(R) is empty. The same
reasoning will yield that (g(x), g(x+)) ∩ g(R) is also empty, so

[g(x−), g(x+)] ∩ g(R) ⊆ {g(x−), g(x), g(x+)}.

It follows from the way we defined the map χx in Lemma 5.1 that ρ and χx
agree on g(x). If g(x−) ∈ g(R), then we may consider ρ(g(x−)), and from
the string of inequalities in Lemma 5.1 we have that

ρ(g(x−)) = f (ϕ−1(x)−),

so ρ and χx agree on g(x−). Similarly, if g(x+) ∈ g(R), ρ and χx agree
there, as well. It follows that ρ̃ is well-defined on g(R).

Now suppose that p ∈ R− g(R). Since p is not in the range of g, a non-
decreasing function with g(±∞) = ±∞, we note that p must correspond
to some value x on which g is discontinuous—i.e., p ∈ [g(x−), g(x+)] for
some x ∈ R. To see this, let

x := sup{r ∈ R : g(r) < p}

and
x′ := inf{r ∈ R : g(r) > p}.

It is clear that x ≤ x′. We will show that x = x′. Suppose, on the contrary,
that x < x′. Then we may find some s ∈ R such that x < s < x′. Since,
by assumption, p 6∈ g(R), we cannot have g(s) = p. If g(s) < p, then we
have some s such that g(s) < p and s > x, contradicting the definition of x.
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Similarly, g(s) > p will contradict the definition of x′. Since we may then
find no such s, it follows that x = x′. We then have

sup{r ∈ R : g(r) < p} = x = inf{r ∈ R : g(r) > p}.

Since p 6∈ g(R), we have that g(x) 6= p. Suppose first that g(x) < p. Then
Theorem 5.30 gives that f (x−) ≤ f (x) < p. By how we defined x, we note
that for any t > x we must have g(t) > p. Thus,

p ≤ inf
t>x

g(t) = g(x+),

and we have that
g(x−) ≤ p ≤ g(x+).

In the case where g(x) > p, we observe that

g(x−) ≤ p ≤ g(x+)

is similarly forced. Thus, we have shown that if p ∈ R − g(R), then
p ∈ [g(x−), g(x+)] for some x ∈ R, as desired. We also note that g must
be discontinuous at x, because otherwise g(x−) = g(x) = g(x+) by Theo-
rem 5.30, forcing g(x) = p and thus contradicting that p 6∈ g(R).

Since g(x−) < g(x+), then if x < y, it follows from Theorem 5.30 that
the only way we may also find p ∈ [g(y−), g(y+)] is if

p = g(x+) = g(y−).

Letting z ∈ (x, y), by Theorem 5.31, we then have g(z) = p, contradicting
that p 6∈ g(R). Therefore, if p 6∈ g(R) and p ∈ [g(x−), g(x+)], we cannot
have p ∈ [g(y−), g(y+)] for x < y. This result similarly holds for x > y, so
the choice of x is unique. It follows that ρ̃ is well-defined on R− g(R).

We next wish to see that ρ̃ is bijective. To see injectivity, consider a < b
with a ∈ [g(x−), g(x+)], b ∈ [g(y−), g(y+)]. If x = y, then a and b are car-
ried by the single map χx, which is an order preserving homeomorphism,
so

ρ̃(a) = χx(a) < χx(b) = ρ̃(b).

Suppose then that x 6= y. We then carry a with χx and b with χy such that
ρ̃(a) ∈ [ f (ϕ−1(x)−), f (ϕ−1(x)+)], ρ̃(b) ∈ [ f (ϕ−1(y)−), f (ϕ−1(y)+)]. If
ρ̃(a) = ρ̃(b) and x < y, then we note that this forces

ρ̃(a) ≤ f (ϕ−1(x)+) ≤ f (ϕ−1(y)−) ≤ ρ̃(b),
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so f (ϕ−1(x)+) = f (ϕ−1(y)−). By Theorem 5.31, this means we may find
z ∈ (x, y) for which ρ̃(a) = f (ϕ−1(z)) = ρ̃(b). It then follows that since

g(z) = ρ−1( f (ϕ−1(z))) = ρ−1(ρ̃(a)) = ρ−1(ρ̃(b)),

and ρ−1 is inverse to ρ̃ on f (R), we must have g(z) = a = b. Similarly,
a = b if ρ̃(a) = ρ̃(b) for x > y. Thus, ρ̃ is injective.

To see that ρ̃ is surjective, let q ∈ R. If q ∈ f (R), q has ρ−1(q) in its
preimage under ρ, and

ρ̃(ρ−1(q)) = ρ(ρ−1(q)) = q.

If q ∈ R− f (R), we may find q in some interval [ f (ϕ−1(y)−), f (ϕ−1(y)+)]
corresponding to a discontinuity of f analogously to the case of finding the
points of R − g(R) in intervals of the form [g(x−), g(x+)]. We note that
these points q then have as their preimages the points in [g(y−), g(y−)]
carried to them by the homeomorphism χy.

To complete the proof that ρ̃ is an automorphism, we need only show
that it is strictly increasing. Let a < b. We noted above that if we have
a ∈ [g(x−), g(x+)], b ∈ [g(y−), g(y+)] for x = y, then ρ̃(a) < ρ̃(b). In the
case where x 6= y, we note that if x < y, we force g(x) ≤ g(y), and thus

f (ϕ−1(x)) = ρ(g(x)) ≤ ρ(g(y)) = f (ϕ−1(y)).

Furthermore, by Theorem 5.30,

f (ϕ−1(x)+) ≤ f (ϕ−1(y)−).

Since ρ̃ is injective and

ρ̃(a) ≤ f (ϕ−1(x)+) ≤ f (ϕ−1(y)−) ≤ ρ̃(b),

we must have ρ̃(a) < ρ̃(b). If y < x, on the other hand, we derive the
relation

b ≤ g(y+) ≤ g(x−) ≤ a,

contradicting that a < b. It follows that ρ̃ is strictly increasing. We then
have that ρ̃ : R → R is an automorphism, by Theorem 5.9. �
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Theorem 5.33 Let f and g be two functions and ϕ, ψ ∈ Aut(R) such that the
diagram commutes.

R
g // R

ψ

��
R f

//

ϕ

OO

R

Then ϕ is an order preserving homeomorphism ϕ : R f → Rg.

Proof: Let U be an open set in Rg. Since U is open in Rg, we may
write U = g−1(V) for some set V open in R. Since ψ : R → R is an
automorphism, it is a homeomorphism by Corollary 5.14. Thus, ψ(V) = W
is open in R, and we therefore have that f−1(W) is open in R f . We then
note that since the diagram commutes, we must have

ϕ−1(U) = ϕ−1g−1(V) = ϕ−1g−1ψ−1(W) = f−1(W).

Thus, the open set U in Rg has the open set f−1(W) in R f as its preimage
under ϕ. It follows that ϕ is continuous. It similarly follows that ϕ−1 is
continuous, noting that ψ−1 would be the homeomorphism to pass through
this time. Since ϕ : R → R is an automorphism and the underlying sets of
ϕ : R f → Rg are R, it follows that ϕ : R f → Rg is a homeomorphism. �

Since f , g here were arbitrary functions, this theorem is a little stronger
than what we actually need. We now prove the structure theorem.
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Theorem 5.34 (The Structure Theorem) Let f and g be two homomorphisms
with f (±∞) = g(±∞) = ±∞. Then R f

∼= Rg in an order-preserving way if
and only if f ∼ g. In other words, there exists an order preserving homeomor-
phism h : R f → Rg shown in the diagram on the left if and only if there exist
ϕ, ψ ∈ Aut(R) such that the diagram on the right commutes.

Rg
g // g(R)

R f f
//

h

OO

f (R)

R
g // R

ψ

��
R f

//

ϕ

OO

R

Proof:

(⇒) Let h : R f → Rg be an order-preserving homeomorphism. We first
note that if h is an order-preserving homeomorphism, it must be a
nondecreasing bijective function on all of R by Corollary 5.14, making
it an automorphism by Theorem 5.9. Thus, take ϕ = h. Next, we
apply Theorem 5.32 to obtain the automorphism ρ̃ : R → R. Letting
ψ = ρ̃, we have found ϕ, ψ ∈ Aut(R) such that the diagram below
commutes.

R
g // R

ψ

��
R f

//

ϕ

OO

R

(⇐) Let f = ϕgψ, as in the above diagram. Letting h = ϕ, Theorem 5.33
then gives that h is an order preserving homeomorphism h : R f →
Rg, as desired. �





Chapter 6

Conclusion

Since we were not able to formulate a satisfying notion of a subtropical
polynomial, we might be skeptical as to our ability to further explore sub-
tropical geometry, since the tropical linear spaces were derived with re-
spect to ideals of tropical polynomials [8]. Furthermore, tropical lines were
examined within a projective space, while the idea of subtropical projec-
tion does not make as much sense—when we “scale” subtropically, we end
up losing information about our vector in a less than useful manner. This
further casts doubt upon our ability to explore subtropical geometry as an
analogue to tropical geometry. For future studies, we might wish to explore
alternative forms of polynomials or alternative forms of linear spaces, un-
less we can make sense of the ones presented here in such a way that they
become useful. Once the notions of polynomials and lines have been safely
established, then perhaps things such as a Fundamental Theorem of Sub-
tropical Algebra would make sense for the polynomials, or a notion of sub-
tropical distance (and possibly even arclength for varieties) would make
sense in subtropical space.

In the last section we completely categorized the subtropical endomor-
phisms, creating equivalence classes and relating those classes to topo-
logically homeomorphic spaces. There are quite a few questions that re-
main yet unanswered, however. First, there is the question of under which
circumstances do left- and right-equivalence become the same. We have
seen clear examples of functions that relate through one equivalence class
but not the other. Second, there are some unresolved issues concerning
when two image spaces f (R) and g(R) are homeomorphic in an order-
preserving way. We saw through the Structure Theorem that equivalence
of f and g is enough, but it is a decidedly strong condition. For instance, the
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ceiling and floor functions have the same image, but one may check that
they are not equivalent as endomorphisms. From a more abstract stand-
point, there is also the question of which lattices have similar structure the-
orems. Our Structure Theorem is inherently tied to the total ordering of
R, but do we need compactness? Can we somehow extend the results to
partial orderings? These questions among others may be worth exploring.
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