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Abstract Abstract 
The dualism between continuous and discrete is relevant in music theory as well as in performance 
practice of musical instruments. Geometry has been used since longtime to represent relationships 
between notes and chords in tonal system. Moreover, in the field of mathematics itself, it has been shown 
that the continuity of real numbers can arise from geometrical observations and reasoning. Here, we 
consider a geometrical approach to generalize representations used in music theory introducing 
continuous pitch. Such a theoretical framework can be applied to instrument playing where continuous 
pitch can be naturally performed. Geometry and visual representations of concepts of music theory and 
performance strengthen the relationship between music and images: in this way, we can connect a 
theremin or violin performance with a study on perspective, always through mathematical ideas and 
paradigms. So can math explain musical concepts, and, on the contrary, can music explain mathematical 
concepts? Can music and math together give rise to visual arts in ever more innovative ways? In this 
paper, we try to connect different topics such as musical performance on instruments with continuous 
pitch, and the paradigm of geometry and continuity. 
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Dense Geometry of Music and Visual Arts: Vanishing Points, Continuous Tonnetz, and 

Theremin Performance 

Maria Mannone, Irene Iaccarino & Rosanna Iembo 

 

Introduction. From Pythagorean Geometry to the Theremin 

Let us start 2500 years ago, with the School that Pythagoras and his wife Theanò 

founded in Crotone, in Italy. Pythagoreans were looking for harmony in science and life. This 

was based on ratios, (Greek λόγοι) and on equality of ratios, the proportion (Greek ἀναλογία). 

Pythagorean thought contributed to the development of music theory over the centuries: Bach, 

Rameau, Tartini, Xenakis, Boulez, and Glass, to name but a few. 

In particular, Bach’s works show a strong link between mathematics and music. Bach 

systematically uses geometric transformations that invert, overturn, and expand musical 

themes. These transformations, basic for polyphony, were then formulated as rules of twelve-

tone music (Iaccarino, 2012). 

 Pythagoras and his students reasoned on the finite, measurable, and on the infinite, 

immeasurable. This led them to the idea of discrete and continuous. From Pythagorean 

philosophy to modern Physics, concepts of continuous and discrete have been relevant for both 

abstract thinking and Nature investigation. We can study molecules through geometry. 

Geometric structures are also relevant in music theory (Tymoczko, 2011; Mazzola et al., 2016). 

In music, both continuous and discrete structures are present.  The dialogue between discrete 

notes and continuous pitch is relevant for musical understanding. 

Because geometrical reasoning can help introduce continuity (Iembo, 2002), we can deduce 

one more connection between music and images through mathematics. 

 Classical geometry was named after Euclid, a follower of Pythagorean philosophical 

and scientific thinking. This name lasted until the negation of the fifth postulate, the one about 
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parallel straight lines, that never touch. Euclidean geometry can be seen as a local 

approximation of non-Euclidean one. Non-Euclidean geometries implied essential 

consequences for physics and arts—e.g., Escher’s graphic work. Within a Euclidean 

framework, by considering simple notions of perspective we can get an intuitive idea of affine 

geometry and projective geometry — where parallel straight lines intersect in the vanishing 

point. We can draw segments to connect a point A in the straight-line a with a point B in the 

straight-line b. This segment is a portion of a straight-line orthogonal to lines a and b in 

Euclidean geometry, and incident on the affine plane. 

 Now, instead of drawing a segment that is a part of a straight-line, let us draw a 

curvilinear segment (Figures 3). Let several straight lines intersect in the vanishing point, and 

let a long curvilinear segment intersect them. This gives an intuitive idea of a central symmetry 

where we measure the distance from a point, i.e., the vanishing point, let us call it V. 

 If we distribute our parallel arrows around V, our curvilinear segment will be a circle. 

Let us suppose to draw more than one circle. The closer we are to V the smaller the circle’s 

radius is. If the V is the center of a physical force, its effect diminishes as 1/r, where r is the 

distance from V. This represents a system with central symmetry. 

 We can move forward and intuitively introduce some cylindrical coordinates. Let us 

imagine building up a vertical axis, let us call it z, whose V is the origin. All the distances are 

invariant concerning the points alongside the z-axis. 

 This construction becomes helpful while mathematically modeling the theremin 

playing. The theremin is the first electronic instrument, invented in 1919. It still inspires 

performers, composers, and scientists (Skeldon et al., 1998). It is not a case that it was invented 

by a physicist and cellist, after a sequence of experiments on electric circuits that made strange 

noises. Theremin’s sound is electronically generated: the hands of the performers act as the 

missing plates of a capacitor; changing their position with respect to the two antennas, they 
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produce a change in the frequency of one of the coupled oscillators within the instrument. The 

frequency is then converted in the domain of audible sounds and then amplified. 

 

Tonnetz and Theremin: thinking geometrically to investigate musical theory and 

performance 

 The theremin has two antennas: one for pitch, and the other for loudness. The closer 

the performer’s (left) hand is to the loudness antenna, and the less loud is the instrument. The 

closer the (right) hand is to the pitch antenna, and the higher is the sound. We can easily 

schematize the pitch antenna as the z-axis in the described cylindrical system (Figure 1). The 

theremin allows continuous pitch playing; however, the performer learns how to catch discrete 

pitch, and how to play precise intervals. This would correspond, once a straight line (in the 

air!) is selected, to picking up points alongside it. These points would ideally be equally-

spaced. However, in an affine/projective framework, the distances would take into account the 

perspective effect. For the theremin, there is a linear interval preceded and followed by non-

linear distribution of pitch (Skeldon et al., 1998). The conceptual analogy still holds. In 

theremin playing, the performer does not touch anything: he or she feels like ‘acting’ in an 

‘empty’ space. This may be related to the mathematical concept of fiber.1 Playing the theremin 

means ‘finding a path’ between the infinitely possible paths in the ‘empty space’ of the air. 

 Vanishing points, perspective, affine and projective geometry remind us of their stimuli 

from visual arts, with the ‘scientific perspective’ versus pre-Renaissance ‘intuitive 

perspective.’ With perspective, we can easily study the deformations of visual patterns, in the 

same way as, in music, we can study motivic variation. 

                                                 
1
 If we refer to categories (Mac Lane, 1975) while analyzing music (Mannone, 2018), we could include fibered 

categories (Grothendieck, 1971). 
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 These, and other topics of mathematics, such as homotopy theory, give us technical 

tools to study objects, their spatial deformations under perspective rules, and their deformations 

in themselves. We can think of a circle that becomes a Möbius strip. Notions of group theory, 

symmetries, affine and projective geometry, reveal their helpfulness for visual arts and music 

(Tymoczko, 2011; Gamer and Wilson, 2003). In music, we can both consider performance 

gestures—and the example of the theremin goes in this direction—as well as some theoretical 

tool such as the tonnetz. We can also propose some analogies: could the violin’s neck be 

thought as a collection of some parallel tracks, whose V being in the scroll, seen in perspective? 

The violin allows continuous pitch. However, there are strings, and thus, the paths to follow 

are restricted and limited to those strings as given tracks. Also, the violinist selects points on 

strings, and he or she studies how to make intervals, and so on. Both the theremin and the violin 

are good physical metaphors for the dualism, in music, between discrete pitch versus frequency 

continuum. 

 Conversely, piano strings are percussed at fixed points; we have specific strings (or sets 

of strings) for each note, and thus we have discrete points. If we move from discrete to 

continuous, we can order these three instruments in the following way: piano, violin, and 

theremin. 

 How should we classify human voice? Somehow between violin and theremin: we 

cannot see where ‘hands’ are, and we can partially feel inner gestures necessary to sing.  We 

do not have visible references as the left-hand position on the violin’s neck (and bow’s pressure 

and position), or the hands’ distance from theremin’s antennas. Instead, we can directly control 

musical parameters ‘from inside,’ even if we are not conscious of all movements happening in 

the phonatory system. Metaphors of external movements help us learn and sing well; we 

directly connect brain and voice, and we can immediately “give an A.” 

 

4

The STEAM Journal, Vol. 3, Iss. 2 [2018], Art. 15

https://scholarship.claremont.edu/steam/vol3/iss2/15



 

 

Beyond A Music Theory dense in R 

 Geometry gives analytic tools both to music theory and performance practice. Here, we 

discuss two examples from music theory: the tonnetz and Lewin’s intervals. 

 

Discrete Tonnetz 

 We can pursue the analogy between mathematical tools and visual representations for 

music theory, and we can define generalized tonnetz (defined in contemporary music theory) 

with continuous pitch. The tonnetz (from the German ‘a net(work) of tones’) is a visual 

representation, in 2 or 3 dimensions, of single notes or chords and their relationships. Some 

representations are animated (Baroin and Seress, 2015). 

By construction, the tonnetz is discrete. However, we may try to extend it to include continuity. 

We may define a ‘tonnetz dense in R,’ the field of real numbers. To this aim, we can use the 

continuity of pitch, where usual pitch is just a discretization, and the Continuity Axiom (Iembo, 

2002) to introduce real numbers’ continuum in an affine-geometry framework. Real numbers 

had already entered music theory since longtime: let us think of square root of 2 for equal 

temperament. 

 We can approach continuous tonnetz in two ways. First, we can start from the discrete 

model and ‘fill up the empty spaces’ with continuous pitch. Second, we can involve the inverse 

process: we can first think continuously and then recover, ‘sampling’ some discrete structures, 

obtaining a vector fiber from the continuum of pitch (Figure 3). 

 Within the theremin analogy, we could either think of discrete frequencies and find 

them on the instrument—and this is what experienced performers can do without ‘looking for 

the notes’—or, instead, we can feel the continuum and then recognize and isolate some specific 

frequencies. Both procedures also happen while singing: we can sing a precise note or we can 

use continuous portamento or glissando. This reminds of fractals like the Sierpinski carpet with 
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its tridimensional version, the Menger sponge, containing a collection of points with the 

cardinality of continuous, while visually looking like a discrete structure. 

The theremin has an almost cylindrical symmetry: positions in the space, having the same 

distance from the z-axis (pitch antenna), ‘generate’ the same sounds at the same height (as 

cylindrical coordinates). Musically-useful positions constitute a circular sector around the z-

axis. In all these cases, we can define intervals as the distance between the points-notes. 

Thereminists localize single notes as hand positions and reach possible intervals through finger 

displacement. Both theremin and violin easily allow continuous glissando, as well as human 

voice.2 

 

Lewin-style intervals 

 We used the notion of musical intervals in performance and in musical practice. We 

can now consider the notion of movement. We can see a musical interval as a starting point, 

and a movement, represented by an arrow, that leads us to the final point (Figure 3). This 

concept is included in David Lewin’s studies (Lewin, 1987; Peck, 2015). It also constitutes the 

starting point for the mathematical definition of musical gestures. A gesture is seen as a 

mapping from an oriented graph—‘abstract’—and a system of curves in space and time—

‘concrete’.— (Mazzola et al., 2016). We can just define a gesture as a way to continuously 

connect discrete points in space and time. Theremin performance seems a suitable model for 

such a description: we can choose a pitch by moving the right hand with respect to the right 

antenna; then, we can reach a new pitch by opening the hand. The arrow describing the hand’s 

opening also describes the connecting movements between two pitch. Thus, theoretical 

representations within music theory and performance-related movements may help each 

other.   

                                                 
2
 Pitch, frequency, and note are not the same thing, but we are using some musical jargon. 
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 This concept may broaden the mathematical theory of musical gestures (Mannone, 

2018). Similar gestures may lead to the definition of similar intervals and similar structures in 

the affine system with cylindrical symmetry. 

 The notion of infinitesimal displacements may help define intervals immersed in the 

continuum. Starting from a continuum of pitch, the discrete tonnetz can be obtained as a fiber. 

 From Lewin’s work, we can retain the idea of ‘jumping’ from one point to another, an 

essential concept for the mathematical definition of musical gestures. This seems relevant 

because of the concept of directionality—and maybe also of intentionality. 

These ideas can be the starting point for a categorical formalism, as well as a starting point for 

a gestural analysis of music. Finally, some music-theory related concepts can also be effective 

while describing contemporary musical instruments. 

 

Musical Instruments and Real Numbers 

Sound frequencies belong to real numbers: each note of a well-tempered scale has a 

frequency that is a real number. These scales are a discrete selection of points in the imaginary 

straight line of continuous pitch — as a finite selection of specific real numbers. Other tuning 

systems involve rational numbers. Some instruments allow to play continuous intervals 

between one note and the other, while others only allow discrete frequencies. 

 Based on the notes we can play on them, we can compare musical instruments; e.g., 

guitar has little points (where to press and touch the strings) ‘corresponding’ to notes and 

chords; violin has strings but no other references; theremin has no references at all, except the 

ear of the performer. Guitar and violin’s strings are approximately parallel, easily described 

within an affine-geometrical framework where V is at the extremity end of the scroll. 
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Conclusions and further research 

 We showed how concepts from different areas, such as music theory, musical 

performance, geometry, and visual arts, can be joined to get a bird-eye perspective of artistic 

creative and analytic processes. The composer Salvatore Sciarrino (1998) used mathematical 

metaphors and strategies to describe variational processes in music and visual arts, included 

additions and multiplications. Our research may be an ideal prosecution of Sciarrino’s 

pioneering view of processes’ comparisons in different fields of arts. Also, the formalism of 

category theory gives a powerful tool to compare transformations between transformations. 

 There are several studies in the field of musical similarity (Cont et al., 2011). We can 

develop our research involving self-similarity, and thus, again, fractals. Among the repetition 

strategies in music composition, we can consider specific cases, such as recursive musical 

gestures in composition (Mannone, 2017) as examples of self-similar fractals.  We can wonder 

about musical renditions of self-similar and self-affine fractals—where some symmetry 

conditions are released, see (Mandelbrot, 1985)—for creative applications. Former studies 

discussed the possibility of generating music through fractals (Cosenza, 2010), finding melodic 

sequences and exploring their border with chaotic sequences. Further research should 

investigate the role of harmony in chaos and fractal-generated music, as well as relationships 

between real numbers, fractals, and sounds. 

 Visual representations of fractals may constitute a guide for harmony, and hopefully, 

the study of ‘extreme’ cases can help deepen our knowledge of the relationship between music, 

visual arts, and mathematics. These studies may constitute an innovative resource for teaching 

music, mathematics, music plus mathematics, and also for enhancing multimedia creativity and 
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expression. May this allow some applications in fields that apparently seem far from these 

disciplines, from medicine to architecture? A Pythagorean renaissance of inter-trans-

disciplinarity is our hope.  

 

Figure 1 
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Figure 2 

Figure 3 
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