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Abstract

We study the behavior of diffusive Lotka-Volterra systems in environments with
spatially varying carrying capacities. In particular, we use numeric and analytic
techniques to study two similar models for population growth, in order to deter-
mine their qualitative differences. Additionally, we investigate competition models
in the presence of periodic disasters, in order to determine what factors affect com-
petitive dominance. We found that under conditions of high spatial heterogeneity,
the model for population growth was the main factor determining coexistence. Un-
der low spatial heterogeneity, the effect of disturbance on the stronger competitor
was the main factor determining coexistence.
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Chapter 1

Biological Significance

This thesis concerns the mathematical modeling of species interaction and succes-
sion. The first chapter is a short review of the biological processes that will be
modeled throughout the remainder of the thesis, and is written so as to be accessi-
ble to any reader. The second chapter examines a variety of models that are used to
model species interaction, succession, and the spread of invasive species. The third
chapter considers two commonly used equations that model species interactions,
and analyze the differences between them. The fourth chapter looks at a simulation
for competing species in a temporally varying environment. The final chapter is a
list of potential future research projects, growing out of this work.

1.1 Succession

Succession is the process of ecological community change. During succession,
species are displaced by better competitors. These species are then either displaced
by even stronger competitors, or grow to dominate a particular ecosystem. Succes-
sion is mainly studied in communities of sessile (non-mobile) organisms, namely
plant communities and inter-tidal communities.

There are two basic types of succession: primary and secondary [Ricklefs and
Miller, 2000]. During primary succession, all traces of previous life are lost, or
were not there to begin with. The classic example of primary succession is life
forming on volcanic pumice, as occurred on Mt. Saint Helens [del Moral and Jones,
2002]. Primary succession is often characterized as being more stochastic, as a
result of species needing to migrate in from other areas. During secondary succes-
sion, traces of former life remain, such as in the seed bank. Classic examples of
secondary succession include forest fires, clear-cutting, and other natural disasters
[Ricklefs and Miller, 2000]. Any event which causes a local extinction is known
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as a disturbance event.
There is a general pattern to the evolution of ecological communities during

succession. Shortly after a disaster has occurred, the landscape is colonized by
pioneer species [Ricklefs and Miller, 2000]. The classic example of a pioneer
species in terrestrial habitats is grass. Pioneer species tend to thrive under high
light conditions, and in heterogeneous landscapes. They spend most of their energy
growing and reproducing rapidly (usually at least one reproductive bout per year),
and as such spend very little energy on permanent structures. Because of this, they
are eventually invaded and out-competed by species which do not reproduce or
diffuse quickly, but put more energy into being better competitors. This process
repeats itself until the landscape is in its climax state. A climax state is one which
is approximately stable, as long as the environment is stable. Climax species tend
to be those that are shade tolerant, live a long time, and do not reproduce until many
years into their life. Because the best competitors are the slowest plants to enter a
new area, it suggests that there is a trade-off between competitive ability and fast
dispersal. This is likely due to the fact that forming permanent woody structures
and growing to a great enough size to be a good light competitor takes time and
energy, and could instead be used producing a huge number of seeds.

Currently there are three models for competitive interaction during succes-
sion [Ricklefs and Miller, 2000] [Sanchez-Velasquez, 2003]. The first is called
the Facilitation Model. Under the Facilitation Model, organisms in each succes-
sional stage allow for the introduction of species in later stages. One example of
this would be nitrogen-fixing plants, without whom trees would be unable to get
their necessary amount of nutrients. The second model is known as the Inhibition
Model. Under the inhibition model, when a species begins inhabiting an area, it
prevents later species from invading, through methods such as allelopathy (the use
of chemicals to alter soil, making it more difficult for other plants to grow there).
A famous example of this was discovered by Sousa [Sousa, 1979], who studied
succession on coastal boulders, and found that a particular algae, when it became
attached to a boulder, was able to prevent any other algae from becoming attached.
Often, it was not until the algae was damaged by predators that other species could
grow on a boulder (for more details, see [Ricklefs and Miller, 2000]). The final
model is known as the Tolerance Model. Under the Tolerance Model, timing of
colonization does not affect an organism’s ability to colonize (i.e., if species A col-
onizes an area before species B, it has the same end result as if species B colonizes
an area before species A). Unless otherwise noted, species in my thesis will interact
under the Tolerance Model. See Table 1.1 for a diagram of each model.
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Table 1.1: Three classic methods for succession. Under the Facilitation Model,
early successional plants make it possible for later plants to colonize an area. Under
the Inhibition Model, early successional plants prevent later plants from colonizing.
Under the Tolerance Model, the timing of colonization does not affect the overall
result.

1.2 Coexistence and Diversity

The process of competitive coexistence is important to the study of population
interactions. According to the competitive exclusion principle, two species should
not be able to coexist on shared resources. Instead, the tougher competitor should
drive the other organism to extinction [Ricklefs and Miller, 2000]. However, this
seems difficult to believe when one considers the vast number of plant and animal
species in existence. There have been several mechanisms proposed to allow for
coexistence. Perhaps the most famous mechanism is niche partitioning. Simply
put, a niche is the ecological role that a species occupies [Ricklefs and Miller,
2000]. Therefore, two seemingly similar organisms can live in the same area if
they are separated spatially, temporally, or if they eat different food sources.

Another theorized mechanism for coexistence is the Intermediate Disturbance
Hypothesis. Originally introduced by Connell [Connel, 1978], the idea is that oc-
casional disasters actually have the paradoxical result of increasing species diver-
sity. Shortly after a disturbance event, an area will become dominated by pioneer
species. As time goes on, more and more new species move into the disturbed
area, and thus species richness increases. However, as an ecosystem approaches
a climax state, weaker competitors are driven to extinction, and species richness
declines. Because of this, the Intermediate Disturbance Hypothesis suggests that
there exists a rate of disturbance under which species richness is maximized (see
Figure 1.1). At this rate of disturbance, a large number of species will have immi-
grated into an area, but many will have not yet gone extinct.

There have been other proposed methods of coexistence. The Gradual Change
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Figure 1.1: Under the Intermediate Disturbance Hypothesis, species richness is
maximized when disturbance events occur at a moderate level.

hypothesis states that environments are constantly changing at a rate which is com-
parable to the time it would take for one species to drive the other to extinction.
Under any given state, one or more species is competitively superior. However, no
organism is optimal under all conditions, and as such no organism is capable of
dominating [Connel, 1978]. This was originally theorized to explain why several
species of plankton could coexist on the same resources in a what appeared to be
a well-mixed environment [Hutchinson, 1961]. The Compensatory Mortality Hy-
pothesis states that in certain situations, having a high population density causes
an increased mortality [Connel, 1978]. This can occur if predators (or herbivores,
frugivores, etc.) preferentially eat the more abundant species. This can also oc-
cur if seed mortality is the highest close to its parent, as would be the case for
host-specific predators [Janzen, 1970].

1.3 Invasive Species

Invasive species are one of the most studied problems in ecology today, and for
many good reasons. The invasion of exotic species has been linked to a whole host
of environmental damage, including native species loss, chemical changes in the
soil, and altering of geologic processes. Additionally, vast amounts of money are
spent every year controlling invasive weeds [Sakai et al., 2001] [Myers and Bazely,
2003].

Currently the model for invasion involves three stages. For example, in the
context of plants, the first stage is the plant’s initial introduction. This happens in
many ways, both accidentally or intentionally. During this first stage, the organ-
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Figure 1.2: Kudzu is a well known and very problematic invasive species in the
Southern United States. Image provided by Kerry Britton, USDA Forest Service,
at Forestryimages.org (reprinted with permission).

ism must be able to survive and reproduce in a novel environment. The second
stage is a lag period. During this stage, the population establishes itself. Some
have claimed that the delay is only caused by the necessary time it takes for the
population to grow, while others have claimed that it is a result of species needing
to diversify genetically (often either through hybridization with native plants, or
through repeated introduction). The final period of succession is the spread into
neighboring communities. The methods of spreading and the ability to survive
in novel environment are major factors influencing how rapidly spreading occurs.
Similar dynamics have been shown for other organisms [Sakai et al., 2001].

What makes a plant capable of being invasive is currently much debated amongst
biologists [Sakai et al., 2001]. Possible traits include the ability to reproduce asexu-
ally (or even both sexually and asexually), grow rapidly, mature early, and produce
many seeds. Additionally, phenotypic plasticity (the ability to adapt to new envi-
ronments), and high competitive ability are believed to be important. It is believed
each stage of invasion selects for different traits. Traits such as these are often
referred to as r-selected traits (see §2.3 for more details on r- and K-selection).
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In addition to what life history traits make a species invasive, what ecological
traits make an ecosystem invasible has also been studied. Many biologists have
theorized that a major reason invasive species are able to do so well in novel en-
vironments is because they are freed from the specialist predators and parasitoids,
and as such can put less energy into defense mechanisms. However, this claim
is still debated amongst ecologists [Myers and Bazely, 2003]. The abundance of
generalist predators has been shown to hinder invasion. Additionally, it has been
shown that environments with an abundance of resources are often much more in-
vasible, since there are many unused niches that an invading organism can take
advantage of. Because of this, disturbance events are a major gateway for invasion
[Sakai et al., 2001] [Myers and Bazely, 2003].



Chapter 2

Ecological Modeling

In any field of science, predictive models are not merely important, but vital. In-
deed, physics would have progressed at a snail’s pace if every physicist needed to
record the way their own special stone rolled down a hill. And yet, all too often this
mistake is being made by ecologists [Belovsky et al., 2004]. In particular, partial
differential equations remain unknown to most experimental biologists [Holmes
et al., 1994]. In this chapter we present a short survey of mathematical tools that
theoretical ecologists use to model the biological events described in Chapter 1.

2.1 Gap Models

Gap models are a way of modeling species interactions using computer simula-
tions. Among other things, they have the advantage being relatively straightfor-
ward and easy to use. In a gap model, the forest is broken into a discrete set of
”gaps,” each of which is filled with individual trees. Time is broken into a series of
steps. Each gap is environmentally homogeneous. During each step, reproduction,
growth, and death are calculated probabilistically. For the most part, Gap models
neglect plant interactions between gaps [Porte and Bartelink, 2002].

The first, and likely the most famous gap model was the JABOWA model
[Botkin et al., 1972]. In this model, each gap was 10x10 meters, the plot con-
sidered was 208 gaps, and each time step represented a year. Growth was logistic,
and related to the amount of light available, the average annual temperature, and
competition for soil nutrients. Growth was measured in dbh (diameter at breast
height, a common unit of measurement for tree size), and height and leaf area
were calculated from these. Trees were grouped into two categories, shade tolerant
and shade intolerant, with tolerant trees being more able to grow under poor light
conditions. The appearance of saplings did not depend on the current or previous
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makeup of the gap. At the beginning of each year, a species was selected at ran-
dom for each gap, and 0-2 saplings were generated. If total leaf area over the entire
forest was below a certain level, then 60-75 cherry saplings were added. Addition-
ally, if total leaf area was above the cutoff level for adding cherry trees, but below
another cutoff, then 0-13 birch saplings were added (locations chosen randomly,
though sunnier gaps were preferred). There were two functions for mortality. The
first function applied to all trees, and caused them to suffer an annual death rate of
p = 1 − (1 − ε)n, where ε is 4 divided by the maximal age of a tree, and n is the
current age of the tree. With this, only 2% of trees would survive to adulthood. The
second function applied only to trees which grew less than 0.01 dbh cm per year,
and gave them a 36% chance of dying each year. The results were consistent with
those for a 200 year old growth forest, and helped explain how short lived trees
could survive in climax forests (e.g., by moving in to places where large trees had
died).

2.2 Markov Models

Markov models are another useful tool for studying competition, succession, and
ecological community makeup, especially in plant communities. In a Markov
model, one calculates the likelihood that each species will be replaced by an indi-
vidual of any other species. These parameters are arranged in a matrix, known as a
transition matrix, which can be used to determine a) the makeup of an environment
N years from now, given its current makeup, and b) the steady state population. Of-
ten, this is done in forest communities by determining what saplings are growing
beneath each tree [Ricklefs and Miller, 2000].

One famous use of Markov models was done by McAuliffe (1988, cited in [Rick-
lefs and Miller, 2000]). In his study, McAuliffe considered a desert population of
Ambrosia dumosa and Larrea tridentata. Using data on a variety of factors, and
assuming a facilitation model of competition, McAuliffe estimated how often each
plant would replace the other, and how often each plant would die and not be re-
placed (thus, leaving open space). He found the steady-state vector predicted for
the transition matrix was very similar to the actual population distribution.

2.3 Ordinary Differential Equations

Perhaps the most famous model for population interaction are the Lotka-Volterra
equations. Under this model, population growth for each species is modeled logis-
tically, using the equation

u′ = ru(1 − u/K) (2.1)
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where u = u(t) is the population density of the species, r is the intrinsic growth rate
(or, how fast the species can reproduce in the absence of resource limitations), and
K is the carrying capacity of species (or the maximum population density an envi-
ronment will allow). By studying the life history of an organism, one can estimate
r, and by observing an approximately steady state population, or by experimen-
tally determining the population growth rates under various population levels, one
can estimate K (see e.g., [Neubert and Caswell, 2000], [Okubo et al., 1989], and
[van der Bosch et al., 1990]). Under this model, the population grows exponentially
at low values of u, and saturates as it reaches the asymptotic value of u = K.

Ecologists classify organisms into r-selected and K-selected organisms. An
r-selected organism is one which has traits that allow it to be a better competitor
at low population densities (i.e., an organism with a large value of r). Such traits
include small body size, short generation time, and a high number of offspring.
Invasive species are often r-selected. A K-selected organism is one which is a
better competitor at high population densities. Such traits include having larger,
fewer, and more competitive offspring.

The accuracy of this model has at times been questioned. Whether or not the
idea of a carrying capacity is actually realized in natural settings was hotly debated
by ecologists. Currently, the most common view is that carrying capacity exists,
though it often varies from year to year as a result of changing factors, such as an-
nual rainfall [Ricklefs and Miller, 2000]. Additionally, some organisms are more
strongly affected by density dependance than others. Because of this, some have
claimed that Lotka-Volterra models with stable carrying capacities are bad mod-
els for r-selected organisms [Pianka, 1988]. Also, many authors (see e.g., [Ei and
Yanagida, 1994], [Hutson et al., 2002], [Kan-on, 1997], [Shigesada et al., 1984],
[Shigesada et al., 1986], and [Sneyd and Sherratt, 1997]) have adopted the conven-
tion of substituting rK for r, yielding the equation

u′ = ru(K − u). (2.2)

Equations (2.1) and (2.2) are equivalent if the product rK is constant. Later, with
environmental heterogeneity in mind, we will consider spatially varying coeffi-
cients r(x) and K(x), in which case both models are quite different. This will be
expanded upon further in Chapter 3. Also, the Lotka-Volterra equations assume
that the moment an organism is born, it begins breeding. This is often not the
case, especially for K-selected species [Pianka, 1988]. Because of this, some have
begun using age-stuctured models, which take an organism’s various life-history
stages into account. The final problem with this equation is that it ignores spatial
dynamics, and assumes a constant carrying capacity [Pianka, 1988].

In equation (2.1), the term (1− u/K) represents the amount of resources being
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used. Thus one can represent competition between two species as

u′ = ruu
(
1 −

u + αvv
Ku

)
(2.3)

v′ = rvv
(
1 −

v + αuu
Kv

)
(2.4)

where αu and αv represents the competition coefficient (i.e., if you introduce one
organism of species u into an environment, then to species v, it is equivalent to
introducing αu organisms of species v into the environment). Since α represents
the amount of shared resources an organism uses, a low value of α corresponds to
a high niche separation.

There are four possible equilibrium for System (2.4), depending on the pa-
rameter values (see Figure 2.1) [Ricklefs and Miller, 2000]. If Kv/αu < Ku (i.e.,
intraspecific competition is stronger than interspecific competition for species u)
and, Ku/αv > Kv (i.e., interspecific, or within-species, competition is stronger
than intraspecific, or between-species, competition for species v) then the species
will go to the equilibrium (u, v) = (Ku, 0) so long as u0 > 0 (where u0 is the initial
population density of species u). Similarly, if Ku/αv < Kv and Kv/αu > Ku, then
the populations will reach equilibrium at (u, v) = (0, Kv) if v0 > 0. If Ku/αv < Kv

and Kv/αu < Ku (i.e., interspecific competition is stronger than intraspecific com-
petition for both species), then there are two stable equilibria, (Ku, 0) and (0, Kv).
Which species dominates depends on how strong each competitor is, and on which
species has a higher initial population density. This could be used to model inhibi-
tion competition (see §1.1). Finally, if Ku/αv > Kv and Kv/αu > Ku,(i.e., intraspe-
cific competition is stronger than interspecific competition for both species) both
species coexist at (u, v) = ( Ku

αuαv+1 , Kv
αuαv+1 ). This could indicate niche separation.

It is also of interest to consider systems of more than two competing species.
For example, Shigesada et al. [Shigesada et al., 1984] modeled a system of N
competing species

u′i = ui

εi −σiαiui −

N∑
j=1,i

σiβ ju j

 (2.5)

for i = 1...N. Under this system, ε represents the intrinsic growth rate, α represents
the within-species competition, β represents between-species competition, and σ
represents the species resilience (or the degree to which they are capable of resist-
ing competition). They found that this system, for a certain range of parameters,
has at most two stable equilibria, and described how each could be determined.
This model was used by Ohsawa et al. [Ohsawa et al., 2002] to model succession
in an ecosystem with 10 species, and periodic disturbance events.
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Figure 2.1: Three possible sets of equilibria are possible for the Lotka-Volterra
competition model. Either species coexist (a), one species drives to the other to
extinction, though which one goes extinct depends upon initial conditions (b), or
one species inevitably drives the other to extinction (c).

2.4 Partial Differential Equations

Ordinary differential equations are a good first approximation for modeling species
interactions. However, such a simplification ignores spatial effects, and simply av-
erages the population densities across space. Such effects become important when
an organism cannot use all of the resources in its environment, especially if there is
an uneven distribution of organisms, as would be the case in succession. In order
to take space into account, we must get into the realm of partial differential equa-
tions (PDEs). The most commonly used method of modeling species interaction in
space are reaction-diffusion equations, such as

∂u
∂t

= du∆u + rvu
(
1 −

u + αvv
Ku

)
(2.6)

∂v
∂t

= dv∆v + rvv
(
1 −

v + αuu
Kv

)
(2.7)

where du and dv are the dispersion coefficients of organism u and v, respectively
(e.g., how rapidly and how far each plant spreads its seeds), and ∆ is the Laplace

operator
n∑

i=1

∂2

∂x2
i
, where the xi represents each spatial direction in Rn. The Lapla-

cian is used to model random diffusion. Its main effect is to cause organisms (or
whatever is diffusing) to flow down a concentration gradient.

PDEs are necessary to model species interactions in a spatially heterogeneous
environment. This can be advantageous, since real environments are not homoge-
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neous. The most general way of modeling m competing species is

∂ui

∂t
= div(d(x)∇ui)x + r(x)ui

1 − ui

Ki(x)
−

m∑
j=0,i

α jiu j

K j(x)

 (2.8)

where α ji is the competitive effect species j has on species i, and K(x), r(x), and
d(x) are now spatially dependent.

It is interesting to note that, if Ku(x) = Kv(x) and ru(x) = rv(x), then du > dv

implies that species u will go extinct [Hastings, 1983] [Hutson et al., 2002] [Hutson
et al., 2003]. The reason this occurs is because u migrates out of the good habi-
tats much more rapidly than species v. This leads to more of u leaving population
sources for population sinks, and as such, species v eventually dominates. This
is interesting to note, since it implies that a greater dispersal rate is counterpro-
ductive, and thus should be selected against. This is counter to what is suggested
in §1.1, since species often trade direct competitive ability for greater dispersal
ability. However, when an environment is both spatially and temporally heteroge-
neous, this conclusion no longer applies, and greater dispersal ability may become
beneficial [Ohsawa et al., 2002]. This will be covered more in Chapter 4.

2.4.1 Maximum Principle

Exact analytical solutions to PDEs are often not possible, though it is sometimes
possible to determine general patterns of behavior. One general behavior that is
often established is the Maximum Principle, a correlation of which is the larger of
two populations of the same species (i.e., same parameter values) will always be
larger. The following Theorem is from [Cantrell and Cosner, 2003], and was based
on a paper by Protter and Weinberger (1967) .

The Maximum Principle

Theorem 1. Consider the operator L = a∆u + c(x), where c ≤ 0. If Ω ⊆ Rn is a
bounded domain and the coefficients of L are uniformly bounded on Ω, it follows
that:
(i) if u ∈ C2(Ω) and Lu ≥ 0, and if u attains some maximum M ≥ 0 at any point in
the interior of Ω then u(x) ≡ M in Ω.
(ii) if u ∈ C2(Ω) ∩C(Ω̄), if each point on δΩ lies on the boundary of some ball
contained in Ω, and if u(x) = M at some point x0 ∈ δΩ for which ∂u/∂~n exists,
then either ∂u/∂~n > 0 at all x0 or u(x) ≡ M in Ω.

One fundamental application of this model is preserving order. To this end,
consider two populations, u1 and u2, and suppose that u1, u2 ∈ C2(Ω) ∪C(Ω̄) are
solutions to Lu = f (x) in Ω(x), and that u1 − u2 > 0. If L satisfies the conditions
in Theorem 1, then u1 − u2 ≡ M > 0 on Ω, and thus u1 − u2 ≡ M > 0 on δΩ.



Traveling Waves 13

2.5 Traveling Waves

A traveling wave is a function of the form f (x − ct). R. A. Fisher first introduced
the idea of a traveling wave to mathematics as a way of modeling the flow of advan-
tageous genes across a one dimensional environment (such as along a shoreline)
[Fisher, 1937]. Physically, a traveling wave solution is one which is temporally
stable, and moves with constant velocity through space (see Figure 2.2). Travel-
ing waves can be the solutions to PDEs, and are good models of invasion. Often,
traveling wave solutions of PDEs are found by looking for solutions of the form

u(x, t) = v(x − ct) = v(ξ), (2.9)

where ξ = x − ct, x is the spatial vector, t is time, c is the speed of the wave,
and v is the wave profile. This idea has since been used to model a wide variety
of phenomenon, including calcium waves [Sneyd and Sherratt, 1997], spreading
disease [van der Bosch et al., 1990], and species invasion [van der Bosch et al.,
1990] [Holmes et al., 1994] [Okubo et al., 1989] .

u

u(x,t) = v(x-ct)

Figure 2.2: A traveling wave represents a fixed profile which moves linearly in
time.
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2.5.1 Logistic Traveling Waves

To demonstrate the idea of a traveling wave solution, we will begin with the Fisher
Equation (which models logistic population growth in one dimension)

ut = duxx + ru(1 − u/K). (2.10)

To find a traveling wave solution, we make the change of variables u(x, t) = v(x−
ct) to find v solves

−cv′ = dv” + rv(1 − v/K) (2.11)

where ′ = d
dξ . This nonlinear ODE defines the profile v and the possible speeds

c. However, the value of c is not given, but rather must be determined. We do not
have any initial conditions. To analyze this further we consider it as a system. If
we let a = v and b = v′, then we obtaina′ = b

b′ = − c
d b − r

d a(1 − a/K).
(2.12)

This system has two equilibrium points, (a∗1, b∗1) = (0, 0) and (a∗2, b∗2) = (0, K).

Linearizing around each point, we find that the eigenvalues at (0,0) are −c±
√

c2−4dr
2d ,

and the eigenvalues at (0, K) are −c±
√

c2+4dr
2d . To preserve nonnegativity of solu-

tions, we require both equations to no have complex roots. Thus, c2 − 4dr > 0 or
|c| > 2

√
dr. It has been proven that a heteroclinic orbit (i. e., one which connects

two disjoint equilibrium points with a single path, see Figure 2.3) must exist for
systems of equations of this form [Hadeler and Rothe, 1975], and thus we know any
solution beginning at one equilibrium will asymptotically reach the other. It can
be shown for each c that this equation generates two waves, one when c ≥ 2

√
dr,

in which (0,0) is a stable and (0,K) is a saddle point, and another when c ≤ 2
√

dr,
in which case (0,0) is an unstable equilibrium and (0,K) is a saddle point. Thus,
(2.10) exhibits traveling wave behavior.

In fact, it has been proven that a traveling wave solution exists for a general
growth equation ut = d∆u + f (u) [Hadeler and Rothe, 1975]. This equation
makes several simple assumptions, which hold for most population growth equa-
tions not including the Allee effect, in which per capita growth is negative below
a certain population density. Under these conditions, the minimum wave speed is
c = 2

√
d f ′(0).

2.5.2 Periodic Traveling Waves

The idea that an environment is completely homogeneous, while mathematically
very nice, is not very realistic. In addition to roads and other human-caused het-
erogeneity, soil contents, light, and water vary across a landscape. However, we
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Figure 2.3: A heteroclinic orbit, such as the blue line pictured above, connects two
equilibria. All other orbits asymptotically approach the hetorclinic orbit.

see that in Equation (2.12), a(ξ) = K(x) can only occur when K is a constant
function, and as such traveling waves of the classic form do not exist in heteroge-
neous environments. Because of this, it would be very useful to have a definition
for a traveling wave which could exist in a heterogeneous environment. Shigesada
et al. [Shigesada et al., 1986] defined the idea of a traveling periodic wave as a
solution u(x, t) for which there exists a length L∗ and a time t∗ such that

u(x, t) = u(x + L∗, t + t∗). (2.13)

In their paper, the authors described a model for an invading species in a periodi-
cally constant environment. Population growth and movement are modeled as

u(x, t) = (d(x)ux)x + u(K(x) − u) (2.14)

where

d(x) =

d1 x mod L∗ < l
d2 x mod L∗ > l

K(x) =

K1 x mod L∗ < l
K2 x mod L∗ > l

(2.15)

for some distances l such that 0 < l ≤ L∗. A graphical representation of this
environment is displayed in Figure 2.4. Note that when l = L∗, this equation
reduces to (3.2). Shegisada et al. found that, under these conditions, a periodic
traveling wave did in fact exist, and it moved at a speed

c = 2
√
< d >h< K >a (2.16)

where <>h is the harmonic mean and <>a is the arithmetic mean.
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Figure 2.4: In order to model an organism invading a heterogeneous environment,
[Shigesada et al., 1986] designed an environment in which the diffusion rate d and
the growth and carrying capacity ε vary between two constant values. Reprinted
from Theoretical Population Biology, 30, Nanako Shigesada, Kohkichi Kawasaki,
and Ei Teramoto, Traveling periodic waves in heterogeneous environments, 97–
113, 1984, with permission from Elsevier.

More generally, Berestycki et al. [Berestycki et al., 2005] considered equations
of the form

ut = div(d(x)∇u) + f (x, u) (2.17)

where fu(x, 0) = µ(x) + Bν(x) and µ, ν are periodic. They proved that a traveling
wave exists as long as (a) fu(x, u)/u < 0 (i.e., per capita growth is decreasing), (b)
there exists K such that u > K implies f (x, u) < 0 (i.e., a carrying capacity exists),
and (c) either max ν > 0 and B are large enough, or

∫
µ ≥ 0,

∫
ν ≥ 0 and max

ν > 0. Again, these assumptions do not consider the Allee effect. Additionally, in
[Berestycki et al., 2005] they showed adding heterogeneity actually increased the
speed of a traveling wave.

2.5.3 Competitive Traveling Waves

All of the models so far consider a species invading a new area, without interacting
with local inhabitants. In reality, this is often not the case, and invasive species
do have a major impact on native flora and fauna. This can then be described by
the introduction of a small number of species v into an area in which species u
is uniformly at carrying capacity. Many authors have considered this (see e.g.,
[Al-Omari and Gourley, 2003], [Ei and Yanagida, 1994], [Fei and Carr, 2003],
[Kan-on, 1997], [Kan-on, 1998]). In such a model, the traveling wave moves with



Traveling Waves 17

both populations (u as it goes from K to either 0 or its new equilibrium, and v as it
goes from 0 to its new equilibrium). Kan-on [Kan-on, 1998] proved that a traveling
wave existed to any general competition equation, so long as a maximal carrying
capacity exists, and the per-capita growth rate is decreasing. Fei and Carr [Fei and
Carr, 2003] found that, under the system

ut = uxx + u(1 − u − α1v) (2.18)

vt = vxx + v(1 − α2u − v) (2.19)

the speed of a traveling wave was c ≥ 2
√

r(α2 − 1), as long as 1−α1 ≤ r(α2 −1) <
1 and 0 < α1 < 1 < α2.

In the next chapter, we consider populations modeled in a one dimensional
environment. We analyze the effect that environmental heterogeneity and the pa-
rameters r and d have on populations modeled with Equation (2.1) and (2.2).





Chapter 3

Single Species Growth Models

As discussed in §2.4, the equations

ut = duxx + ru(1 − u/K(x)) (3.1)

and
ut = duxx + ru(K(x) − u) (3.2)

are equivalent when carrying capacities are constant. However, if K = K(x), with
K′(x) . 0, there is a difference. Because r is a constant, and K(x) is not, we can
no longer simply rescale r in terms of K. Under Equation (3.1), population growth
is an intrinsic trait of a species, and thus for small u, ut ≈ ru, regardless of the
carrying capacity of the environment. Under Equation (3.2), population growth is
directly proportional to environmental quality, and thus for small u, ut ≈ ruK.

When a species is diffusing in a heterogeneous environment, the equations pre-
dict different asymptotic average population levels. In this section, we analyze the
differences using numerical and analytic means, and discuss physical implications
of these results.

3.1 Analytical Results

In this section we develop several results for (3.1) and (3.2). In what follows we
consider populations on a habitat [0, L] ⊆ R. Throughout this section we assume
homogeneous Neumann boundary conditions ux(0) = ux(L) = 0. We assume

that u > 0 and K(x) > 0 for all x ∈ [0, L]. Let U∗ = lim
t→∞

L∫
0

u(x, t)dx denote the

total asymptotic population. We are interested in the dynamics of U∗ as r and d are
varied.
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Proposition 1. Assume u∗ ∈ C2[0, L] is a positive equilibrium solution of (3.1)
or (3.2). We further assume that there exists an ε > 0 such that u∗ > ε for all
x ∈ [0, L], for all r and d sufficiently large. As the ratio r/d → ∞, the total

equilibrium population U∗ →
L∫

0
K(x) for both (3.1) and (3.2).

Proof. We will first consider Equation (3.2). We want to show
L∫

0
u∗(x)dx →

L∫
0

K(x)dx as r/d → ∞, where u∗ is the equilibrium solution defined by

0 = du∗xx + ru∗(K(x) − u∗). (3.3)

Equivalently, u∗ solves

u∗(K(x) − u∗) =
d
r

u∗xx (3.4)

for x ∈ [0, L]. Since u∗ ∈ C2[0, L], there exists M > 0 such that ||u∗xx|| < M, then
||u∗xx||∞ < M, then

|u∗(K(x) − u∗)| =
d
r
|u∗xx| ≤

d
r

M for all x ∈ [0, L]. (3.5)

Therefore, as d/r → 0 (which corresponds to r/d → ∞), it follows

|u∗(K(x) − u∗)| → 0 for all x ∈ [0, L]. (3.6)

Thus, either u∗ → 0, or u∗ → K(x). Since u∗(x) > ε for all x, it follows that

u∗(x) → K(x) for all x ∈ [0, L]. Therefore, U∗ =
L∫

0
u∗(x)dx →

L∫
0

K(x)dx. The

proof that this proposition holds for Equation (3.1) is similar.
�

Lemma 1. Under Neumann boundary conditions, 0 =
L∫

0
f (u∗)dx, where f is pop-

ulation growth term in Equation (3.1) or (3.2), and u∗ is its equilibrium solution.

Proof. Consider the equation

ut = duxx + f (u). (3.7)

At equilibrium, the solution to this equation is

0 = du∗xx + f (u∗). (3.8)
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By integrating, we find that

0 = d

L∫
0

u∗xxdx +
L∫

0

f (u∗)dx. (3.9)

However, because of Neumann boundary conditions, u∗x(0) = u∗x(L) = 0. Thus,

0 =
L∫

0

f (u∗)dx. (3.10)

�

Proposition 2. Assume that u∗ and K(x) are C2 in [0, L] for all r, d > 0. As

r/d → 0, U∗ → 1
L

L∫
0

K(x)dx, the average of K(x).

Proof. We want to show
L∫

0
u∗(x)dx →

L∫
0

K(x)dx as r/d → 0, where u∗ is the

equilibrium solution defined by

0 = du∗xx + ru∗(K(x) − u∗). (3.11)

Equivalently, u∗ solves

u∗(K(x) − u∗) =
d
r

u∗xx (3.12)

for x ∈ [0, L]. By the triangle inequality,

|u∗(K(x) − u∗)| = |u∗||K(x) − u∗| ≤ |u∗|(|K(x)|+ |u∗|). (3.13)

Because u∗(x) and K(x) are C2, ∃M such that ||u∗(x)||∞ < M and ||K(x)||∞ < M.
We see that

|u∗(K(x) − u∗)| ≤ ||u∗||∞(||K(x)||∞ + ||u∗||∞) < 2M2. (3.14)

Therefore, as r/d → 0, we find

|u∗xx| <
r
d

2M2, (3.15)

and thus u∗xx → 0 for all x ∈ [0, L]. This means that as r/d → 0, u∗(x) → Ax + B,
for some A, B ∈ R. However, by Neumann boundary conditions, A = 0. thus

u∗(x)→ B > 0 for all x ∈ [0, L]. (3.16)
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Hence, we see that

U∗ =
L∫

0

u∗(x)→ BL (3.17)

By Lemma 1,

0 =
L∫

0

u∗(K(x) − u∗)dx. (3.18)

As r/d → 0, this equation converges to

0 =
L∫

0

u∗(K(x) − u∗)dx→

L∫
0

K(x)dx −

L∫
0

Bdx. (3.19)

Therefore, B = 1
L

L∫
0

K(x)dx, and so U∗ → 1
L

L∫
0

K(x)dx.

�

Proposition 3. Assume that u∗ and K(x) are C2 in [0, L]. As r/d → 0, U∗ →

1
L

L∫
0

K(x)dx, the harmonic mean of K(x).

Proof. We want to show
L∫

0
u∗(x)dx → 1

L

 L∫
0

K(x)1dx

−1

as r/d → 0, where u∗ is

the equilibrium solution. By the triangle inequality,

|u∗(1 −
u∗

K(x)
)| = |u∗ − 1 −

u∗2

K(x)
| ≤ |u∗|+ |

u∗2

K(x)
|. (3.20)

Because u∗(x) and K(x) are C2, and K(x) > 0, ∃M such that ||u∗(x)||∞ < M and
||1/K(x)||∞ < M. We see that

|u∗(1 −
u∗

K(x)
)| ≤ ||u∗||∞ +

||u∗2||∞
||K(x)||∞

≤ M + M3. (3.21)

Therefore, by similar
|u∗xx| <

r
d
(M + M3), (3.22)

and thus u∗xx → 0 for all x ∈ [0, L]. By an argument similar to the one in Proposi-
tion (2), for some B ∈ R,

u∗(x)→ B > 0 for all x ∈ [0, L]. (3.23)
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Hence, we see that

U∗ =
L∫

0

u∗(x)→ BL (3.24)

By Lemma 1,

0 =
L∫

0

u∗(1 −
u∗

K(x)
)dx. (3.25)

As r/d → 0, this equation converges to

0→

L∫
0

B(1 −
B

K(x)
)dx. (3.26)

By simple algebra, this becomes

B→


L∫

0

1
K(x)

dx


−1

. (3.27)

And thus, U∗ → L
L∫

0
K(x)dx.

�

One other difference that is worth noting is the change in traveling wave be-
havior. As stated in §2.5.2, Shigesada et al. [Shigesada et al., 1986] found that in
equation (3.2), periodic traveling waves move at a minimum speed of

c = 2

√√√√√√
dr

1
L

L∫
0

K(x) dx (3.28)

In Equation (3.1), we find that f ′(0) = r. Therefore, by Hadeler and Rothe [Hadeler
and Rothe, 1975], the minimum speed of a traveling wave for this equation is
c = 2

√
rd. This is interesting, because it means that traveling waves will travel

at a constant speed in Equation (3.1), regardless of environmental heterogeneity.
However, the average traveling wave speed will be the same in both equations.
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3.2 Numerical Results

To find the equilibrium solutions of Equation (3.1), we solved the equation using
numerics. To find the equilibrium, we simulated two populations, one of which be-
gan at 0.75K(x), and the other of which began at 1.50K(x). By the Maximum Prin-
ciple (see §2.4.1), the later population will always be greater than the former. Since
one population begins below the carrying capacity, and the other begins above it,
they should converge to u∗. When both populations were within 0.001 of each
other, we averaged them, and used this to approximate U∗. The numerical simula-
tor used a Crank-Nicholson scheme. Population growth was calculated both before
and after diffusion, and the average population growth was added to post-diffusion
population levels.

To measure the effect of changing environmental heterogeneity, we started with
three carrying capacity functions K(x), which are shown in Figure 3.1. Each was

constrained so that
1∫

0
K(x) dx = 1. Additionally, each carrying capacity could

have its heterogeneity level rescaled, as can be seen in Figure 3.2. The rescaling of
K(x) did not change the average carrying capacity.

After several simulations with many different parameters, we found that all
simulations gave solutions essentially similar to those in Figure 3.3. As hetero-
geneity increased in Equation (3.1), U∗ decreased. When environmental hetero-
geneity increased in (3.2), U∗ increased. The results had the same shape for all
carrying capacities, but were the most extreme in the step function carrying capac-
ity (the top carrying capacity displayed in Figure 3.1). We believe this is because
this function had the steepest changes in carrying capacity.

This makes sense mathematically because of the behavior of growth rates in
environments with changing carrying capacities. Under each equation, populations
grow at different rates above and below their carrying capacities. In Equation (3.1),
when u is, say, ε less than K1, the growth rate is f ′(x) = (ε − ε

2

K1
). On the other

hand, when u is ε greater than K2, population growth rate f ′(x) = −(ε + ε2

K2
).

Because of the nature of diffusion, organisms tend to be below carrying capacity in
good environments, and above carrying capacity in bad environments. Therefore,
because K1 > K2, the negative growth rate above a low carrying capacity will be
greater than the positive growth rate below a high carrying capacity. On the other
hand, in Equation (3.2), when u is ε below a high carrying capacity K1, the growth
rate is f ′(x) = (K1ε − ε

2). When u is ε above a low carrying capacity K2, the
growth rate is f ′(x) = −(K2ε + ε2). Therefore, the positive growth rate below
a high carrying capacity is more than enough to counterbalance the decline of a
population near a low carrying capacity.
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Figure 3.1: To test the effect of changing the environmental heterogeneity, we
considered three different carrying capacities. For each model we maintain
1∫

0
K(x)dx = 1.

We ran simulations where we varied the parameter r/d, and found solutions
similar to those in Figure 3.4. We found that only the ratio r/d mattered, instead
of the actual values of r or d. The results are consistent to those proved in § 3.1. As
r/d → ∞, U∗ → 1 in either equation. As r/d → 0, U∗ → L

(∫
K(x)−1

)−1
when

using (3.1), and U∗ → 1 when using (3.2). In equation (3.1), as r/d increases,
U∗ asymptotically grows towards 1. In (3.2), as r/d increases, U∗ increases to a
maximum, and then decreases toward U∗ = 1. It would be interesting to determine
what the maximal value of U∗ is and where it occurs.
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K(x)

x

Figure 3.2: The heterogeneity level of each K(x) could be altered, to represent
the same environment becoming more heterogeneous. At minimal heterogeneity,
K(x) ≡ 1. At maximal heterogeneity, max K(x) ≈ 2, min K(x) ≈ 0.

3.3 Implications

There are two major implications we can gain from the differences between these
models. The first has to do with habitat protection and restoration. If we believe
that Equation (3.1) more accurately predicts population growth, then our predic-
tions suggest protection and restoration projects should focus on keeping a healthy
environment everywhere. On the other hand, if we choose to work with the as-
sumptions in Equation (3.2) , it predicts that it is better to spend our money to
conserve the best habitats, even if this leads to a patchy environment. The other
implication has to do with species invasion. If we use Equation (3.1), we would
predict there is no way to indirectly slow an invading species. If we use Equation
(3.2), our results would suggest an invader can be slowed by weakening the habitat
around it.
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Figure 3.3: To test the effect population growth and diffusion rates had on U∗, we
ran several simulations. All simulations gave similar results to those seen here.
Part (a) represents populations governed by Equation (3.1), and (b) represents pop-
ulations governed by (3.2).

Figure 3.4: To test the effect population growth and diffusion rates had on U∗, we
ran several simulations. All simulations gave similar results to those seen here.
Part (a) represents populations governed by Equation (3.1), and (b) represents pop-
ulations governed by (3.2).





Chapter 4

The Successional Competition
Model

In §2.3, we saw that generation time has no effect on competitive ability, and in
§2.4, we saw that all things being equal, if an environment is spatially variant but
temporally stable, the faster diffusing species goes extinct. These claims are rather
disturbing, because they are not what is seen in nature. Indeed, if taken to their
logical conclusions, it would indicate that grass should be long extinct. Because
this is not the case, it indicates that temporal interactions must have an effect on
population dynamics. A full exploration of every factor that could affect population
levels was far beyond the scope of this paper, so instead we chose to consider
disturbances. In [Ohsawa et al., 2002], they built a 10 species diffusive competition
model, and showed that the existence of periodic disturbances could affect which
species coexist. However, this model mainly addressed the question of who would
coexist, and not how species parameters or environmental heterogeneity affected
coexistence. Here we consider a one-dimensional model of species coexistence, in
a spatially heterogeneous environment with periodic disturbance events.

4.1 Model Design

To gain a better qualitative understanding of how competition models operate in a
changing environment, we designed a simulation which tracked the population lev-
els of two competing species in an environment peppered by disturbance events. To
simulate a disturbance event, the environment was broken into 10 sections of equal
length. Periodically, a set number of sections were randomly selected, and popu-
lation levels within that section were reduced to 0. After a set period of time, pop-
ulation levels were analyzed to determine which species was dominant, or if both
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species had coexisted. Because of the random nature of the disturbance events, all
trials were run 5 times. We ran each simulation under a wide range of disturbance
sizes, in order to determine what disturbance regimes allowed for coexistence.

4.1.1 Competition Equation

We consider a successional model for both Equations (3.1) and (3.2). Until we have
a better understanding of which model better represents reality, we should analyze
both. This has the benefit that any qualitative differences can be compared, to
determine which is most like reality. We assume a tolerance model of competition
under most situations.

4.1.2 Species Viability and Coexistence

Population levels U∗ = 1
L

L∫
0

u(x, t) dx were assessed before disturbance events

occurred. If U∗ < 0.01 during five consecutive samplings, the simulation was
halted, and that population was considered non-viable. If this did not occur, values
of U∗ were averaged over the latter half of data points. If this average was less than
0.025, the population was considered non-viable. If the average was above 0.025,
but less than 0.1, then the population was considered possibly non-viable. Finally,
it was possible that a population was in decline, and eventually would go extinct,
but would show that U∗ > 0.025. For example, it has been analytically proven
when αu = αv = 1, du > dv, and there are no disturbances, u will go extinct
[Hastings, 1983], [Hutson et al., 2002], [Hutson et al., 2003]. However, in some
cases this happens so slowly that U∗ > 0.3 during the entire simulation, as can be
seen in Figure 4.1. To account for this, we attempted to determine if the population
was monotonically (or almost monotonically) in decline. Simply, if we define
U∗(t) as the value of U∗ at time step t, then we say that u was in decline if U∗(t) +
0.05 > U∗(t + 1) for all t ≥ 0. The 0.05 was used, because several populations,
such as the one pictured in Figure 4.2 were not declining monotonically, but were
clearly in decline. However, this is not enough, since it predicts that v will go
extinct in Figure 4.1. Therefore, we also ran a simple regression, to make sure that
a population was actually declining. This definition was also slightly problematic,
since in some situations a population would be almost level, but still register as
decreasing, such as was the case in Figure 4.3. To correct this problem, we stated
that a population could only be monotonically decreasing if U∗ ≤ 0.4 at the end of
the simulation.

After each simulation, the population was assigned a viability score S . If a
population was completely viable, we assume S = 1. If it was non-viable, we
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Figure 4.1: The graph above shows the average population levels over time of two
competing species. In this simulation, αu = αv = 1, du > dv, and there are no
environmental disturbances. This will eventually lead to species u being wiped
out.

assigned S = 0. If it was possibly non-viable, we assigned it S = 0.5. These
values were averaged over the 5 trials, and at the end we determined the likely
viability of the species by looking at this average. For example, if a population was
non-viable in 2 trials, possibly non-viable in 2 trials, and viable in 1 trial, it would
receive an average score of S = 0.4.

Coexistence was defined as mutual survival (see §4.1.2 for details on quan-
tifying survival). We determined the exact coexistence value by multiplying the
viability scores of both species together.

4.1.3 Parameter Values

In each simulation, αu + αv = 2 [Okubo et al., 1989]. To study how differences in
diffusion rate affected competitive edge, we ran simulations in which ru = rv = 10,
and K(x) = 1 + 0.25 cos(2πx) + 0.2 cos(16πx) (the middle carrying capacity
function in Figure 3.1). We also considered how population growth rate affected
competitive edge. To examine this, we ran simulations in which du = dv = 0.05 or
du = dv = 0.005, and used the same carrying capacity stated above. We also ran
several simulations in which ru = rv = 10, d1 = 0.1, d2 = 0.01, and K varied. We
ran simulations under each form of carrying capacity, in Figure 3.1, and at varying
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Figure 4.2: The graph above shows the average population levels over time of two
competing species. In this simulation, αu = 0.9,αv = 1.1, 10du = dv, and there
is a moderate disturbance rate. We have shown that this will eventually lead to
species u being wiped out.

degrees of heterogeneity, including no heterogeneity.

4.1.4 Numerical Scheme

We used a Crank-Nicholson finite-differences scheme to model diffusion. To model
species growth, we calculated the amount our species would grow both before and
after diffusing, and averaged that. This sum was added to our population after it
diffused. We used values dx = 0.01 and dt = 0.001.

4.1.5 Time Saving Algorithm

Due to time constraints, we did not run every simulation on most trials, but rather
ran a more efficient algorithm. If we denote S i(a, d) the viability of species i with
a = αi and D = disturbance rate, we assumed

a) S u(α, Dx) = 0 and Dy < Dx, imply S u(α, Dy) = 0, and
b) S v(α, Dx) = 0 and Dy > Dx, imply S v(α, Dy) = 0.

These statements were consistently satisfied in numerical tests, in which all points
were examined. They also make intuitive sense. If a certain level of disturbance is
so extreme that it causes a species to be wiped out, one would not expect them to
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Figure 4.3: The graph above shows the average population levels over time of two
competing species. In this simulation, αu = αv = 1, du > dv, and environmental
disturbances are small. A regression fit of u gives a negative slope. For this rea-
son, we further insist the average population must be below 0.4 by the end of the
simulation.

survive at a more extreme level of disturbances.
We took advantage of this fact to produce an algorithm which attempted to

only check values where S uS v > 0. Simply, a particular disturbance level D was
chosen. Tests were run on every level of disturbance below D until S u = 0. Then,
tests were run on every level of disturbance above D until S v = 0 was found. In
early trials, this method reduced the number of calculations by an average of 40%.

4.2 Results

To determine which environments allowed for coexistence, we multiplied C =
S uS v for every simulation with the same parameters. If C = 0, then coexistence
did not occur in any trial. If C = 1, then coexistence occurred in every trial. If
0 < C < 1, coexistence occurred in some trials. We graphed C as values of α and
D changed, to determine how easily coexistence could occur in that environment
(see graphs below for an example). If a particular α and D gave C = 1, this point
was marked with either a blue dot. If those values gave 0 < C < 1, we marked that
point with a red dot. If C = 0, we marked that point with a black x.

In most cases, we found that it made very little difference whether we used
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Figure 4.4: Tests seemed to show little to no overall difference between Equa-
tions (3.1) and (3.2) in a temporally varying environment when heterogeneity was
low.

Equation (3.1) or Equation (3.2). See Figure 4.4 for a comparison. However, when
environmental heterogeneity was high, or when a step function carrying capacity
was used (the top function pictured in Figure 3.1), there were major differences, as
can be seen in Figure 4.5. When either of these two things occurred, Equation (3.1)
allowed almost no coexistence under most circumstances. The one exception to
this statement we found was when diffusion rates were low. Populations modeled
with Equation (3.2), on the other hand, seemed unaffected by changes in carrying
capacity and environmental heterogeneity. In fact, it may be the case that major
increases in heterogeneity slightly increase the ability of the two species to coexist.

We tested how changing d affected coexistence, using di = 0.1, 0.01, and
0.001. Typical results can be seen in Figure 4.6. We found when du = 0.1, dv =
0.01, very high disturbances were generally necessary for coexistence to occur,
unless competition was minimal. On the other hand, when du = 0.1, dv = 0.01
or du = 0.01, dv = 0.001, a moderate disturbance size was enough for coexis-
tence to occur under nearly competition levels. Behavior was similar under both
equations and all environments, except when Equation (3.1) was used in highly
heterogeneous environments.

We also analyzed how changing r affected coexistence, using ri = 1, 5, and 25.
Typical results can be seen in Figure 4.7. When running a test where ru = 25, rv =
5, we saw that coexistence could occur when the degree of competition grew lin-
early with the degree of disturbance. This was fairly stable, so little changes in α or
D would not affect coexistence. When ru = 5, rv = 1 or ru = 25, rv = 1, however,
coexistence almost never occurs.
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Figure 4.5: Tests showed major differences between Equations (3.1) and (3.2) in a
temporally varying environment when environmental heterogeneity was high.

4.3 Discussion

Our results suggest that in a Lotka-Volterra competition model with no spatial or
temporal heterogeneity, coexistence is entirely determined by the relative values of
αu and αv (the ”competition coefficients”). Because of this, it is not inaccurate to
summarize competitive ability as a single number. However, in spatially or tem-
porally varying carrying capacities, d and r can affect whether a species survives.
Two conclusions can be drawn from this. First, that in a temporally and spatially
varying environment, organisms can compete by using various strategies. Second,
when coexistence occurs, these strategies appear to be equivalent. This should be
studied more thoroughly, to see what effect combining strategies have, or whether
this type of equivalence is transitive.

In highly varying environments, it seemed that the most important factor af-
fecting coexistence was which equation was used. If we modeled species using
Equation (3.1), environmental heterogeneity and fragmentation could effectively
stop any chances two species have of coexisting. On the other hand, when Equa-
tion (3.2) is used, environmental heterogeneity made little to no difference. This is
likely to be simply a factor of maximum population levels. When population levels
are already quite low, it takes longer for the population to spread out and recolo-
nize after a disaster. As we saw in Chapter 3, an increase in spatial heterogeneity
causes the maximum sustainable population level U∗ to decrease when modeling
a species with Equation (3.1). When using Equation (3.2), there appears to be no
difference. It appears that this may be what is occurring here.

In environments with low spatial variability, the exact parameters seemed to be
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Figure 4.6: We ran several simulations on the effect of dispersion coefficients on
coexistence. In the left panel, du = 0.1, dv = 0.01. In the middle panel, du =
0.01, dv = 0.001. On the right panel, du = 0.1, dv = 0.001.

Figure 4.7: We ran several simulations on the effect of population growth rates on
coexistence. In the left panel, ru = 25, rv = 5. In the middle panel, ru = 5, rv = 1.
On the right panel, ru = 25, rv = 1.

the best judge of whether coexistence was possible. It seems that the actual values
of parameters is more important than their specific ratios. This could a factor of
how long it takes for a stronger competitor to establish itself in a new environment.
In other words, no matter how strong a competitor is, it cannot move into a new
environment any faster than c (the rate of a traveling wave), and it cannot increase
in population levels any faster than r. It seems likely that in situations where rv = 1
or dv = 0.001, that the population v simply cannot survive conditions of high
environmental disturbance. Indeed, numerical tests seem to verify that under such
conditions species cannot survive, even in the absence of competition. This claim
seemed to hold up to numerical tests, as can be seen in Figure 4.8.
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Figure 4.8: In the above simulation, r = 1. This occurrence may explain why
coexistence did not happen under certain circumstances.





Chapter 5

Conclusions and Future Work

In this work, we hope to have proven the importance of including the effects of
spatial and temporal heterogeneity when modeling competing species. When mod-
eling species in a spatially heterogeneous environment, the degree of habitat frag-
mentation can have a large effect on expected population sizes, depending upon
which variables one has chosen to use. When modeling species in a temporally
heterogeneous environment, species can compete either directly, or through ad-
vancing more quickly.

We have shown that in fragmented environments, the equations one uses to
model species growth has a major impact on the expected outcomes. When work-
ing within one framework, we expect fragmentation to increase population num-
bers and species diversity. When working in the other, we expect just the opposite
results.

Finally, our results so far have seemed to indicate that the main mechanism
which affects the possibility of coexistence is the agility of the strong competitor.
This is surprising, but makes sense when one considers that all a fast competitor
needs to do to avoid extinction is survive to each successive disturbance, after
which they are free to grow and expand once more. It may be that too narrow of
a range of parameters was chosen, and it may be that this occurrence is unique
to two species environments. More simulations should be run to determine the
generalizability of these results.

There are several spin-off projects that could come from this research:

1. Though there has been much work done on competitive traveling waves, and
traveling waves in a heterogeneous environment, there appears to be no work
that contains both conditions simultaneously. This would be an interesting
problem to consider analytically or numerically.

2. More work is necessary to determine for which habitats and which organisms
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Equation (3.1) or (3.2) is more valid.

3. One could analyze species competition under a multiple competing species
environment. This could be very interesting, since two species is a good first
approximation, but often not the case in real environments. One could also
analyze the theoretical effects invasive organisms could have on a changing
environment this way.

4. One could consider the effects a stage-structured model of population growth
could have. Under such a model, species are assumed to have a juvenile stage
and an adult stage, and they do not reproduce until their adult stage, however
all stages consume resources. Additionally, one could create a model with
three stages: seed, juvenile, and adult. In this model, only the seeds would
diffuse, and only the adult trees could create seeds.

5. Extensions of this work to a two- (or possibly even three-) dimensional
model may model reality more realistically.

6. In my model, disturbance events happened completely at random, and did
not change the environment. It may be the case that disturbances effect some
species more than others, happen in a more deterministic (or at least stochas-
tic) fashion, and/or change the carrying capacity of an environment, whether
permanently, temporarily, or until repaired by particular species. Addition-
ally, the effects of facilitation or inhibition were not considered (although,
considering the former would likely require a 3+ species environment).

7. The model proposed only considers major disturbance events, when in fact
there are many factors that could cause a fluctuation in carrying capacity,
such as rainfall. It would be interesting to study what effects more minor
environmental changes have on species coexistence.

8. It would be extremely interesting if real data were available to determine the
validity of there simulations.
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