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The game Klappenspiel ("flipping game") is a traditional German game
of flipping tiles according to dice rolls. In this paper, we derive the optimal
strategy for this game by using dynamic programming. We show that the
probability of winning using the optimal strategy is 0.30%.

The Rules of the Game and Notation
The game begins with ten tiles, numbered 1 through 10, initially all face

up. The object of the game is to reach the position where all of the tiles are
face down. Two six-sided dice are rolled, and the player has a choice:

• flip over two face-up tiles corresponding to the individual die values, or

• flip the face-up tile equal to the sum of the two dice.

Thus, once a tile is face down, it remains face down for the rest of the gam!'!.
For breVity, we shall call the above choices the !NO play and the SUM play.
Ifone of these choices is not possible, then the play is forced. If neither play
is possible, then the game ends; otherwise, the player rolls again. Note that
if doubles are rolled, then only the SUM play is possible. On fact, double-six
immediately ends the game.) Since the IND play requires flipping two tiles,
it cannot be used if there is only one tile left; a single remaining tile must be
flipped on a SUM play. TIles will be referred to by their number (e.g., "the 5
tile"); unflipped tiles will be "up," and tiles that have already.,been flipped
will be "down."

For example, if tiles 4, 6, and 10 are up and the player rolls .4,6 (see
FiglUe 1), then there is a choice between flipping tile 10 or tiles 4 and 6. It
turns out tha t the optimal play is to flip the 4 and 6 tiles, since the probability
of winning with only the 10 tile up is .083, w:hile the probability of winning
with the 4 and 6 tiles up is .079.

But what if other tiles are up? The presence of other tiles can greatly
affect the optimal play. If we add the 1 tile to the example above, so that
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Figure L For a given roU, the best play for each of two sets of faa!-Up tiles.

Methods

Dynamic Program
Define

Notice that a legal play can only reduce a board's number. Spedf­
kaUy, if from board number X, we have to play roll Y consisting of
die values j and k, then the !ND play (if legal) results in board num­
ber X - 2

j
-

1
- 2

k
-

1
, while the SUM play (if legal) results in boardX _2;+k-l

Dice Rolls

Since the order of the dice roll does not matter (Le., rolling 2,1 is the same
as rolling 1,2), there are only 21 distinct dice rolls possible. The probability
ofeach doubles roll is 1/36, and the probability of any other roll is 2/36. For
notational convenience, define prob(Y) to be the probability of dice roll Y.. .

Example2: We begin at board 1023 (all tiles up), and we wantto flip tile
10. We have 1023 "- 2

10
-

1 = 511, and we get board 511 = 0111111111,
with nle 10 down and all others up.

P[X] =probability of winning from board X using optimal strategy.

Our base case is board 0, since prO] = 1. Here are two other examples
that we can compute qUickly.

• If X = 32 (board consists of a lone 6 tile), then Pf32j = 5/36, since we
win if and only if our next roll sums to 6.

• If X = 17 (only tiles 1 and 5 up), then our only hope of winning is to roll
1,5 immediately. Thus, P[17] = 2/36.

Next, we define

OPT[X, Y] = the optimal decision at board X with roll Y.

For example, if X = 49 (tiles 1,5, and 6 up) and roll Y = 1,5, then OPT[X, Y]
=IND, since the resulting IND position is superior to the reSUlting SUM
position, i.e., Pf32] > P[17J.

To find OPT[X, Yj and P[X], we must first determine if the play is forced.
Say roll Y corresponds to die values j and k. We examine board X to see if
tiles j, k, and (j + k) are up. The player will ha~e a dedsion to make only
if all three tiles are up and j andk are distinct; otherwise, the play is forced.
There are three types of forced plays: forced SUM, forced lND, and no play
possible.

IND

SUM

Optimal PlayRoll: 4,6

To find the optimal strategy, we will use dynamic programming to com­
pare the win probabilities of the SUM play vs. the IND play, for every set
of face-up tiles (called a "board") and every possible dice roll. We wrote a
Pascal program to create and output an array OPT that stores the optimal
play for each possible circumstance.

Dynamic programming can be thought ofas the art of working backwards.
We find optimal strategies to problems by building on already-eomputed
optimal strategies to "smaller" problems. Usually, we need to specify the op­
timal solutions to only the simplest (often trivial) problems, together with a
recurrence that builds upon solutions to smaller problems to create solutions
to larger ones. Klappenspiel is naturally suited for dynamic programming,
since once a tile is flipped down, it can never be flipped up again. For more
examples and information about dynamic programming, see Benjamin and
Huggins [1993], Denardo [1982], and Dreyfus and Law [1977].

There are 10 tiles, which can each be up or down, SO there are 210 =1024
possible boards. We can think of these boards as binary numbers with up
tiles as 1 digits and down tiles as 0 digits. Tile 1 is in the Is column, tile
2 in the 2s column, tile 3 in the 4s column, and so on, up to tile 10 in the
29=5125 column. Thus, each board can be converted to an ordinary integer
by assignfng a value of 2j - 1 to tile j and adding the values of all face-up
tiles.

Example 1:

o = 0000000000 All tiles down (Goal Position)
1 = 0000000001 Tile 1 up, all others down

199 = 0011000111 TIles 1, 2, 3, 7, and 8 up, all others down
1023 = 1111111111 All tiles up (Initial Position)

tiles 1,4,6, and 10 are up, then the optimal play for the roll 4,6 changes to
SUM. In fact, if tiles 4 and 6 were flipped, it would become impossible to
win (since the 10 tile can be flipped only on a SUM play and the 1 tile can
be flipped only on an INO play).
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If j and k are distinct and tiles j, k, and (j +k) are all up, then both SUM
and IND are possible; we can find the optimal play by comparing the win
probabilities of the outcomes of each play.

_ { INO, if PIX - 2;-1 - 2k- 1j 2: PIX - 2;+.1:-1];
OPT[X, ¥']- SUM th .

, 0 erwtSe,

Notice that this calculation is recursive; it builds on the fact that we have
computed P for all boards less than X.

Define

{

PIX - V-I - ~-11, if OPT[X, Y] =INDor INO is forced;
E[X Y] = PIX - 2i+k

-
1

], ifOPT[X, Y] = SUM or SUM is forced;
'0, if no play possible and X > 0;

1, if no play possible and X = o.
So E[X, Y] is the probability of winning using the optimal strategy start­

ing at board X with dice roll Y. Once we have found the optimal and forced
plays for every possible dice roll at a certain board X, we can take a weighted
average of the resulting win probabilities after each play Y to find PIX]:

PIX] = L prob(Y) . E[X, Y],
allY

where Y varies over all 21 possible distinct dice' rolls.
Note that P[1023] is the expected value with all tiles up (Le., at the be­

ginning of the game).

Results
We wrote a Pascal program to employ the dynamic programming tech­

niques discussed above. According to output from the program, P[1023] =

.OO30-theprobability of winning this game is exceedinglysmall, even when
the optimal strategy is used! There are seven rolls that are always forced;
these are the double rolls and the 5,6 roll. Double 6 ends the game, and other
doubles (if playable) must be SUM. Since there is no 11 tile, a roll of 5,6 (if
playable) must be IND.

A sample section of the OPT array output is included as Table 1. The
main pattern that emerges from these data is that

• Rolls involving lower numbers tend to have an optimal play of IND, while

• rolls involving larger numbers tend to have an optimal play of SUM.

The reason is consistent with our intuition: The more extreme the tile num­
ber, the less likely that the player will obtain a roll that would allow flipping
that tile (see Table 2).

Optinuzl Klappenspiel 15

T~blel.

Sample of OPT. Since doubles rolls and the 5,6 roll are always fomlcl, they are not listed here. F is the
probability of winning using the optimal strategy from the given boarcl. MIM indicates that INo is the

optimal play, MS" indicat... that SUM is the optimal play, and M.M inclicates that the play is forced or no play
is possible.

Boarcl. F 1,2 1,3 1,4 1,5 1,6 2.3 2.4 2,5 2,6 3,4 3,5 3,6 4,5 4,6

.0 1.000
1 .000
2 .028
3 .056
4 .056
5 .056
6 .059
7 .0062
8 .083

1008 .0038
1009 .0016
1010 .0021

I S1011 .0020 I s S S1012 .0026
S S1013 .0023 I S S S1014 .0024 I S S S S1015 .0020 I I S I S S S S1016 .0032

s S1017 .0023 I I 5
5 51018 .0027

I S S 5 S1019 .0024 I I S S S S S S1020 .0031
I 5 S S S1021 .0025 I I r S .. 5 S S S 51022 .0031 I I S S S S S S S1023 .0030 I T T t 5 I r S S s s s s S

Table 2.

Probability of a roll that would allow /lipping with all tiles up <boanl1023).

TIle !NO SUM or forced SUM Total

1 10/36 0 10/36
2 10/36 1/36 11/36
3 10/36 2/36 12/36
4 10/36 3/36 13/36
5 10/36 4/36 14/36
6 10/36 5/36 15/36
7 0 6/36 6/36
8 0 5/36 5/36
9 0 4/36 4/36

10 0 3/36 3/36
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In other words, the more extreme tiles are more difficult to flip, and it is
not surprising that we would want to flip the most difficult tiles possible.on
each roll.

Although this heuristic rule might lead us to try to find a ranking of the
tiles in orderof difficulty, the rule is not as simple as it first appears. Flipping
any of the tiles 1 through 6 can make it more difficult to flip the remaining
tiles; also, as we move to boards with fewer tiles, we increase the probability
of obtaining an unusable roll, which would end the game. If we try to
account for all of the factors of difficulty, we find that the optimal strategy
for this game becomes too complex for a simple description. However, there
are some features of OPT that are worthy of further investigation, and the
optimal strategy can be well approximated.

The Nine Consistent Rolls
There are nine rolls that have a consistent optimal strategy; these are the

seven forced rolls, the 1,2 roll, and the 1,3 roll. The 1,2 roll is the only roll for
which the expected value of the IND play sometimes equals the expected
value of the SUM play; when this occurs, either play is optimal, so the choice
does not matter. Other than these cases, inspection of the entire OPT array
shows that the 1,2 and 1,3 rolls are always forced or IND.

The Twelve Inconsistent Rolls
The remaining 12 rolls are more difficult to characterize. The optimal

strategy cannot be described in a simple way because the optimal decision
for roll j, k can change depending on the presence of tiles other than j, k,
and (j + k). Let us call this property interference.

Example 3: We roll 1,6 and the play is not forced. Is lND or SUM the
optimal play? The answer depends on which other tiles are up.

TIles up Roll Optimal play

1,6,7 1,6 IND
1,2,6,7 1,6 SUM
1,3,6,7 1,6 SUM
1,2,3,6,7 1,6 SUM
1,4,6,7 1,6 INO

We see from the example that the presence of some tiles causes a switch
in the optimal play from lND to SUM, while the presence of others do not.
Is there some consistency in the interference caused by a given tile? Tables
3a and 3b combine to show that every tile can cause a change in optimal
play from IND to SUM, and Table 4 shows that every tile except tile 1 can
cause a change from SUM to IND.

Optimal Klappenspiel 17

Table 3.
lnterfemtce caused by an additional tile can change optimal play from IND to SUM

a.

Boards With only tiles j, k, and (j + k) up.

TlIa up Roll Optimal play I With tile Optimal play
,

1,2,3 -1.2 !NO (always INO or does not matter )
1,3,4 I) IN[) (always IND)
1,4,5 1,4 IND 2,3,or6 SUM

1,5,6 1,5 !NO 2,4,or8 SUM
1,6,7 Vi IND 2 SUM
2,3,5 2) !NO 10r4 SUM

2,4,6 U INO 1,5.7,orlO SUM

2,5,7 2,5 IND 1 SUM
2,6,8 2P INO 3 SUM

3,4,7 3,4 INO 2 SUM

3,5,8 3,5 IND 4 SUM
3.6,9 3.6 IND 5 SUM
4,5,9 4,5 INO 6 SUM
4,6,10 4~ !NO 7 SUM

b.

Other boards.

iaillliup Roll Optimal play With tile Optimal play

4.6,10 _. 4~ !NO 8 SUM
4,6,10 4.,6 INO 9 SUM

1,2,3.4,5,7,9 2) IND 10 SUM

T.bl.4.

Interfenmce from lUlyone of tiles 2 through 10 can change optimal play from SUM to IND.

Tl1es up Roll Optimal play IWith tile Optimal play

1,2,4,6, 7.8 1~ SUM 10 INO

1,2. 4. 5,6, 7,8, 10 1.'1 SUM 9 INO

3,4,5,6,7,10 3.4 SUM 8 INO

1,2,4,5,6,8,9,10 1,5 SUM 7 INO

1, Z, 3, 4, 5.7, 9 1.4 SUM 6 IND

1,2,3,4,6,7,8,9,10 2,4 SUM 5 IND

1,2.6,7,8, 10 1~ SUM 4 INO

1,2,6,7.8 1,6 SUM 3 INO

1,4,6, 7 1~ SUM 2 INO
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The Boards with Only Tiles j, k, and (j + k) Up
When the only tiles up are those directly involved in the dice roll (see

Table 3a), then the optimal play is always IND (except for the board with
tiles I, 2, and 3 up, for which the expected value of the INO play equals
the expected'value of the SUM play). Consider a roll i,k for which this

·can occur (i.e., not doubles or 5,6). If we flip the (j + k) tile, then we must
subsequently either roll ;, k, or we must flip both tiles on SUM plays. It
makes sense intuitively that this would be more difficult than flipping the
(j + k) tile on a single SUM play. In fact, we can prove this directly by
considering that if we make the SUM play, then our winning chances are
exactly PCRoll;, k) + 2·P(sum = j)-P(sum = k), which is less than or equal
to 2/36 + 2(3/36)(5/36) : 102/1296. (The (3/36X5/36) term comes from
the "best-case" scenario j = 4, k = 6.) H, however, we make the 1NO play,
then our chance of winning is exactly P(sum = j + k), which is at least 3/36
("worst-case scenario"), which exceeds 102/1296.

Suboptimal Strategies
We have seen that the optimal strategy is too complex to be captured in

only a few sentences. However, it is possible to find a SUboptimal strategy
that does almost as well as the optimal one. With the optimal strategy, the
probability of winning is .0030; but a relatively simple heuristic yields a
probability of winning of .0029. For comparison, a few other simple strate­
gies are also examined, with results shown in Table 5.

T.blc S.

Suboptimalslrategit!s.

Strategy Prob.bilily of winning

Antl-optilI\lll .0011

Alwtoy. play IND .0016

Random .0017

Always play SUM .0019

Heuristic .0029

Optimal .0030

First, to obtain a lower bound on winning the game, we look at the "anti·
optimal" strategy. In this strategy, every time the player has a choice, the
play with the lower winning chances is chosen. ~us, by Table 5, no matter
how hard you try to lose (but playing legally), your winning chances are at
least .0011.

Always playing SUM fares better than always playing IND. The SUM·
only strategy would flip tiles 7 to 10 whenever possible, whereas the IND·
only strategy would prefer tiles 1 to 6. Since the player usually encounters
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more opportunities to flip tiles 1 to 6 than tiles 7 to 10 (see, for example,
Table 3), it follows that tiles 7 to 10 tend to be more difficult to flip. Hence,
we would intuitively expect the SUM~nly strategy to do better than the
WD-only strategy, since the former more often corresponds to flipping the
more difficult tiles.

The random strategy, as its name implies, randomly selects a play when­
ever there Is a choIce. This strategy yields a probability of winning between
the SUM~nlyand INO-only strategies.

The heuristic strategy chooses a play based on the dice roll: If the sum
is 6 or less, play INO; If the sum is 7 or more, play SUM. We devised this
strategy by inspecting the OPT array to find the most common optimal
choice for each dice roll. This heuristic approximates quite well the results
of the optimal strategy.

The optimal strategy offers an improvement of 172% over the anti­
optimal strategy and 76% over random play. The heuristic strategy comes
close to this, doing 163% better than the anti~ptimalstrategy and 71% better
than random.

Hence, we must conclude that although Klappenspiel is a game that can
be described simply, its optimal strategy is quite involved. Although the
dynamic programming technique makes it possible to find explicitly the
optimal strategy for this game, it offers no guarantees that the data can be
easily reduced to a few rules. Nonetheless, inspection of the data allows us
to find a good approximation of the optimal strategy in a simple heuristic.
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