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Abstract

I have developed a tiling interpretation of the q-binomial coefficients. The
aim of this thesis is to apply this combinatorial interpretation to a variety of
q-identities to provide straightforward combinatorial proofs. The range of
identities I present include q-multinomial identities, alternating sum iden-
tities and congruences.
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Chapter 1

Introduction to q-Binomial
Coefficients

1.1 Research goals

The binomial coefficients are one of the essential building blocks of enumer-
ative combinatorics. A great deal of research has gone into understanding
them both algebraically and combinatorially, and there are a wealth of bi-
nomial identities with both algebraic and combinatorial proofs. My work
this semester has focused on a generalized version of the binomial coeffi-
cients: the q-binomial coefficients. These generalized binomial coefficients
appear naturally in the studies of integer partitions and hypergeometric se-
ries, and their properties have been examined primarily in these contexts.
However, previous study of q-binomial coefficients has tended towards an
algebraic viewpoint. My goal for this project has been to provide combi-
natorial interpretations for q-binomial identities. This includes both giving
combinatorial proofs for known q-identities and using a combinatorial un-
derstanding of standard binomial identities to find and prove q-analogues.

1.2 Notation and Basic Theory

There are several equivalent algebraic definitions for the q-binomial coeffi-
cients. From a combinatorics perspective, it makes sense to start by gener-
alizing the natural numbers and work our way up to binomial coefficients.
For a natural number k, we define its q-version [k]q as a polynomial in q by:

[k]q ≡ 1 + q + q2 + · · ·+ qk−1



2 Introduction to q-Binomial Coefficients

Then we define the q-factorial in the natural way:

[k]q! ≡ [k]q[k− 1]q[k− 2]q · · · [1]q

and we define the q-binomial coefficient in the natural way as well:[
n
k

]
q
=

[n]q!
[k]q![n− k]q!

Note that if we let q = 1, we get

[k]1 = 1 + 1 + 1 + . . . + 1 = k

and it follows that
[k]1! = k!

and [
n
k

]
1

=
(

n
k

)
.

A standard combinatorial interpretation for
[

n
k

]
q

is that it counts the

number of partitions that will fit into a box of size k × (n − k), weighted

by the size of the partition. For example,
[

4
2

]
q

evaluates to q4 + q3 + 2q2 +

q + 1. This tells us that there are a total of six distinct integer partitions
which fit into a 2× 2 box and that these include one partition of the num-
ber 4, one of the number 3, two of the number 2, one of 1, and one of 0.
Indeed, if we look for all the partitions that fit into a 2 × 2 box, we find
(2, 2), (2, 1), (2), (1, 1), (1) and (). These are precisely the number and types

of partitions predicted by
[

4
2

]
q
. (See Figure 1.1).

In practice, combinatorial proofs using this partition-in-a-box interpre-
tation often make use of an associated lattice path interpretation. Each par-
tition that fits into a box of size k × (n − k) is uniquely determined by a
lattice path from (0, 0) to (k, n − k) and we simply take the weight of the
lattice path to be the weight of its associated partition. Figure 1.1 shows the
partition/lattice path interpretation for n = 4, k = 2.
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Figure 1.1: The six lattice paths from (0,0) to (2,2). The exponent on q in
the weight of each path is given by counting the number of boxes which fit
above and to the left of the lattice path.

1.3 q-Binomial coefficients in linear algebra

The partition-in-a-box interpretation gives the q-binomial coefficients a nat-
ural application to the theory of integer partitions. However, they show up
in other fields as well. For example, let V be the n-dimensional vector space
over the finite field Fq. (That is, V is the set of all vectors of length n whose
elements are in Fq.) We might naturally ask the question, “How many k-
dimensional subspaces does V have?”

To answer this question, note that the number of k-dimensional sub-
spaces of V multiplied by the number of ordered bases for each subspace
gives us the number of ordered bases for all k-dimensional subspaces of V.

Now, once we have picked a k-dimensional subspace, how many ways
can we choose an ordered basis? For the first basis vector, we may choose
any element of the subspace except 0. Thus, we have (qk − 1) choices. For
the second basis vector, we may choose any element of the subspace except
q elements spanned by our first basis vector for a total of (qk − q) choices.
We proceed to pick all k of our vectors in this fashion. This gives us the
number of ordered bases for each k-dimensional subspace as:

(qk − 1)(qk − q)(qk − q2) . . . (qk − qk−1)

On the other hand, we also need to count the number of ordered bases
for all k-dimensional subspaces. We do this in a similar fashion. For our
first basis vector, we may choose anything in the vector space except 0,
for a total of qn − 1 choices. For our second basis vector we may choose
anything except the q elements spanned by our first basis vector, for a total
of qn − q choices. Proceeding in this fashion, we find that the total number
of ordered bases for all k-dimensional subspaces is

(qn − 1)(qn − q)(qn − q2) . . . (qn − qk−1)

Thus, the number of k-dimensional subspaces of V is the quotient of
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these expressions:

(qn − 1)(qn − q)(qn − q2) . . . (qn − qk−1)
(qk − 1)(qk − q)(qk − q2) . . . (qk − qk−1)

Factoring out all the factors of q from the top and bottom of this expression
gives

q(k
2)(qn − 1)(qn−1 − 1)(qn−2 − 1) . . . (qn−k − 1)

q(k
2)(qk − 1)(qk−1 − 1)(qk−2 − 1) . . . (q− 1)

and further factorization by pulling out a (q− 1) from each term on the top
and bottom gives

(q− 1)k[n]q[n− 1]q[n− 2]q . . . [n− k + 1]q
(q− 1)k[k]q[k− 1]q[k− 2]q . . . [1]q

That is, the number of k-dimensional subspaces of V is

[n]q!
[k]q![n− k]q!

=
[

n
k

]
q

Thus, the q-binomial coefficients can arise naturally in questions of enu-
meration in linear algebra.



Chapter 2

A Tiling Interpretation of the
q-Binomial Coefficients

2.1 The Tiling Interpretation

The standard binomial coefficient (n
k) counts, among other things, the num-

ber of ways to tile a board of length n using k green squares and n− k red
squares. This interpretation can be extended to the q-binomial coefficients
by assigning each tiling a weight of the form qw. Let Tn,k be the set of all
tilings of an n-board using exactly k green squares and n − k red squares.
Also let qwT be the weight of tiling T. For each T ∈ Tn,k, we calculate wT as
follows:

• Assign a weight to each individual square in the tiling. A red square
always receives a weight of 1. A green square has weight qs where s
is equal to the number of red squares to the left of that green square
in the tiling.

• Calculate wT by multiplying the weight qs of all the green squares (or
equivalently, the weight of all of the squares.)

For example, the weight of the tiling rgrrgg is q1+3+3 = q7, as demon-
strated in Figure 2.1.

The q-binomial coefficient
[

n
k

]
q

is created by summing the weights of

all these tilings. That is, [
n
k

]
q
= ∑

T∈Tn,k

qwT
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Figure 2.1: Here we see a sample tiling and its associated lattice path. Note
that the tiling receives weight q7 and the lattice path corresponds to a par-
tition of the number 7.

Since lim
q→1

qw = 1 for any w ∈ N, we see that lim
q→1

∑
T∈Tn,k

qwT = ∑
T∈Tn,k

lim
q→1

qwT =

∑
T∈Tn,k

1, which is just the standard binomial coefficient
(

n
k

)
.

Note that there is an obvious bijection between this tiling interpretation
and the boxed partition interpretation of the q-binomial coefficients. To
each n-tiling with k green squares, create an associated lattice path from
(0, 0) to (n − k, k) by letting each green tile represent a move one unit up
and each red square represent a move one unit right. (See Figure 2.1)

This bijection clearly gives the same number of tilings and boxed parti-
tions. It just remains to show that the weight of the tiling and its associated
lattice path are the same. To see this, note that we can calculate the weight
of the lattice path by summing one row at a time. That is, since each row
corresponds to an up move, for each up move, the weight of that row is
given by the number of preceding right moves in the path. This is pre-
cisely how we calculate the weight of our tilings, since the weight of each
green tile is determined by the number of red tiles before it. Therefore, the
bijection between partitions/lattice paths and tilings is weight-preserving.

Hence, since
[

n
k

]
q

counts the number of partitions which will fit into a

box of size k × (n − k) weighted by the size of the partition, it also counts
the number of n-tilings with k green squares and n− k red squares weighted
as described above.
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Since the subscript on the q-binomial coefficient will almost always be

q, from this point forward we will simply write
[

n
k

]
for
[

n
k

]
q
. The missing

subscript should be taken to be q unless otherwise specified.

2.2 Some q-Binomial identities with simple proofs un-
der this interpretation

We will now present a selection of q-identities whose proofs are straight-
forward using the tiling interpretation for the q-binomial coefficients. The
identities in this section are taken from George Andrews and Kimmo Eriks-
son’s book Integer Partitions [2], where they are presented in slightly differ-
ent form. Their proofs are given combinatorially via the partition-in-a-box
interpretation of the q-binomial coefficients. I provide them here both for
reference and to demonstrate their proofs using the tiling interpretation.
All of these identities have well-known binomial coefficient analogs when
q = 1.

[
n
k

]
=

[
n

n− k

]
(2.1)[

n
k

]
=

[
n− 1

k

]
+
[

n− 1
k− 1

]
qn−k (2.2)[

n
k

]
=

[
n− 1

k

]
qk +

[
n− 1
k− 1

]
(2.3)[

2n
n

]
=

n

∑
j=0

qj2
[

n
j

]2

(2.4)

Proof of (2.1): [
n
k

]
=
[

n
n− k

]
We not only need a bijection between the tilings on the left and right side
of the equation, but a weight-preserving bijection. That is, we must find a
way to map each tiling of length n with k green squares to a tiling of length
n with n − k green squares that has the same weight. A first guess would
be to simply toggle each square between red and green. This gives a bijec-
tion, but not necessarily a weight-preserving one. (For example, the tiling
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Figure 2.2: If we take the top tiling and reverse it, we obtain a tiling of
different weight. However, if we instead toggle the color of each tile and
reverse, we obtain a new tiling of the same weight.

grgrgg which has weight q5 would get mapped to rgrgrr which has weight
q3, as shown in Figure 2.2.) Instead, we choose the bijection given by tog-
gling each tile between red and green and reversing the order of the tiling.
This works because counting the number of red tiles before each green is
equivalent to counting the number of green tiles after each red.

Proof of (2.2):

[
n
k

]
=
[

n− 1
k

]
+
[

n− 1
k− 1

]
qn−k

Question: What is the total weight of the tilings of length n using k green
squares and n− k red squares?
Answer 1: By definition, [

n
k

]
.

Answer 2: Consider the color of the last tile.
The total weight of the tilings whose last tile is red is simply the weight

of all tilings of length n− 1 with k green squares multiplied by the weight
of the final red tile. Since the weight of the final red tile must be 1, we have

a total weight of
[

n− 1
k

]
from tilings of this form.

On the other hand, if the last tile is green, then we again have the sum of
the weights of the tilings of the first n− 1 positions with k− 1 green squares
multiplied by the weight of the final green tile. The final green tile always
has weight qn−k because it has (n− k) red squares before it.
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Thus, the total weight of all tilings of length n with k green squares is[
n− 1

k

]
+ qn−k

[
n− 1
k− 1

]
Hence, [

n
k

]
=
[

n− 1
k

]
+ qn−k

[
n− 1
k− 1

]
as desired.

Proof of (2.3):

[
n
k

]
=
[

n− 1
k

]
qk +

[
n− 1
k− 1

]
Question: What is the total weight of the tilings of length n using k green
squares and n− k red squares?
Answer 1: By definition, [

n
k

]
.

Answer 2: Consider the color of the first tile.
If it is green, then it contributes a weight of 1 to each tiling. Thus, our

answer is just the sum of the weights of the tilings of the last n− 1 positions

with k− 1 green squares. That is,
[

n− 1
k− 1

]
.

On the other hand, if the first tile is red, then we know it has weight 1
itself, but it also contributes a weight of q to each of the following k green
squares. Thus, the total weight contribution of the initial red is qk. Since

we also have
[

n− 1
k

]
as the weight of the tilings of the last n− 1 positions

with k green squares, the total weight of these tilings is qk
[

n− 1
k

]
.

Therefore, the total number of weighted tilings is[
n− 1

k

]
qk +

[
n− 1
k− 1

]
Hence, [

n
k

]
=
[

n− 1
k

]
qk +

[
n− 1
k− 1

]
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as desired.

Proof of (2.4):

[
2n
n

]
=

n

∑
j=0

qj2
[

n
j

]2

Question: What is the sum of the weights of the tilings of length 2n using
n green squares and n red squares?
Answer 1: By definition, [

2n
n

]
.

Answer 2: Consider the number of red squares out of the first n. Say j of
the first n squares are red. Then the sum of the weights of the tilings of the

first n positions is
[

n
n− j

]
. If we temporarily ignore the first n positions of

the tiling, the sum of the weights of the tilings of the last n positions is
[

n
j

]
.

However, the weight of the tiling covering the last n positions is adjusted

from
[

n
j

]
because it is preceded by some number of red squares. In partic-

ular, since the first n tiles contained j red squares, each green square in the
second half gets an additional weight of qj. Thus, since there are j green
squares among the last n positions, we have undercounted the weight of
the tiling as a whole by a factor of (qj)j = qj2 . That is, for a fixed j, the total
weight of the tilings is

qj2
[

n
n− j

] [
n
j

]
.

Finally, the weight of all desired tilings is the sum over j. That is, our an-
swer is

n

∑
j=0

qj2
[

n
n− j

] [
n
j

]
Hence, by applying Equation (2.1), we get the desired identity:[

2n
n

]
=

n

∑
j=0

qj2
[

n
j

]2
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2.3 The q-Binomial Theorem

The standard binomial theorem states

(1 + x)n =
n

∑
k=0

(
n
k

)
xk.

We can prove the binomial theorem by choosing either 1 or x from each
of the (1 + x) terms on the left. The number of ways to choose exactly k of
the xs and therefore obtain an xk coefficient is (n

k).

We will now prove the q-binomial theorem in a similar way.
Theorem:

n−1

∏
j=0

(1 + xqj) =
n

∑
k=0

q(k
2)
[

n
k

]
xk

Proof:
Question: What is the sum of the weights of the tilings of an n-board

with n− k red and k green squares?

Answer 1: By definition,
[

n
k

]
. That is, the xk coefficient of

n
∑

k=0

[
n
k

]
xk.

Answer 2: From the product
n
∏
j=0

(1 + xqj), construct a tiling by choos-

ing precisely (n − k) ones and k non-one terms to obtain an xk coefficient.
Each 1 term chosen represents a red square whereas each xqj term repre-
sents a green square. However, choosing terms in this manner creates a
larger power of q than the one which is given by the corresponding tiling,
so we now need to figure out how much this technique overestimates the
exponent on q.

Recall that for each green tile selected, the exponent on q should be the
number of red tiles preceding it. Thus, for the first xqj term chosen, the
previous j terms chosen must have been 1s, so qj is the correct weight of
that green square. However, for the second xqj term selected, j − 1 of the
previous j selections were red squares and one was green, so the correct
weight of this square is only qj−1, not the qj we actually multiplied in. Sim-
ilarly, the third xqj selected represents a green square with weight qj−2 and
we have overcounted by q2. All told, we have overcounted by a factor of
q0+1+2+...+(k−1) = q(k

2).

That is, the answer to our question is the xk coefficient of
n
∏
j=0

(1 + xqj)/q(k
2)
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Therefore, since they have the same coefficient on xk for all k,

n−1

∏
j=0

(1 + xqj) =
n

∑
k=0

q(k
2)
[

n
k

]
xk

as desired.



Chapter 3

q-Identities Requiring More
Advanced Techniques

3.1 The Vandermonde Convolution

The Vandermonde convolution is a commonly used combinatorial identity.
The identity is often written as(

n
m

)
= ∑

k

(
p
k

)(
n− p
m− k

)
. (3.1)

We will present a proof sketch for this identity and then generalize to a
q-identity.

Proof sketch:
Question: How many ways are there to tile an n-board with m green

tiles and n−m red tiles?
Answer 1: By definition, (n

m).
Answer 2: Consider the number of green tiles in the first p positions.

(Call this number k.) Our answer is (p
k)(

n−p
m−k) summed over all values of k.

The proof of the following q-identity proceeds along the same lines.
Claim: [

n
m

]
= ∑

k

[
p
k

] [
n− p
m− k

]
q(p−k)(m−k) (3.2)

Proof:
Question: What is the sum of the weights of the tilings of an n-board

with m green tiles and n−m red tiles?

Answer 1: By definition,
[

n
m

]
.
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Answer 2: Consider the number of green tiles in the first p positions.
(Call this number k.) For a fixed k, the sum of the weights of the tilings of

the first p positions is
[

p
k

]
. If we ignore the first p positions, the sum of the

weights of the tilings on the last n − p positions is
[

n− p
m− k

]
. However, we

must additionally adjust this weight to account for the fact that this section
of the tiling is preceded by a tiling containing p− k red tiles. That is, each of
the m− k green tiles in the second section gets extra weight p− k due to the
red tiles in the first section, so we must adjust our weight up by q(p−k)(m−k).
Therefore, the total weight of the tilings we’re looking for is

∑
k

[
p
k

] [
n− p
m− k

]
q(p−k)(m−k)

as desired.
Note: if we instead consider the number of green tiles in the last p posi-

tions, we get the similar identity:[
n
m

]
= ∑

k

[
p
k

] [
n− p
m− k

]
q(n−p−m+k)k (3.3)

3.2 The Gaussian Formula

This is another formula taken from Andrews and Eriksson’s Integer Parti-
tions [2]. In their book, it is proved by substituting in several recurrence
relations. We will present instead a combinatorial proof using tilings.

Theorem:
n

∑
j=0

(−1)j
[

n
j

]
=
{

0 if n is odd
(1− q)(1− q3)(1− q5) . . . (1− qn−1) if n is even

(3.4)

Proof: For odd n, the proof is simple. For each tiling T, create the tiling
T′ by reversing the order of T and toggling the color of each tile. This
procedure preserves the weight of T, but changes the parity of the number
of green tiles. (Note that if n were even, toggling the color of each tile would
preserve the parity of the number of green squares, rather than changing
it.) Furthermore, if we perform this procedure on T′, we will get T back.
Thus, we have a sign-reversing involution, so the positive and negative

terms of our sum cancel out and
n
∑

j=0
(−1)j

[
n
j

]
= 0
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The case where n is even is more complicated. If we can show combi-
natorially that

n+2

∑
j=0

(−1)j
[

n
j

]
= (1− qn+1)

n

∑
j=0

(−1)j
[

n
j

]
then we may proceed by induction. To show this, split the tilings of an
(n + 2)-board into four distinct cases. One of the following must hold:

Case 1 The board begins with gg

Case 2 The board begins with gr

Case 3 The board begins with r and ends with g

Case 4 The board begins with r and ends with r

In fact, each of these cases represents precisely 1
4 of the tilings. I claim that

cases 2 and 4 cancel each other out in the alternating sum. Note that a g at
the beginning of a tiling adds no weight to the tiling, nor does an r at the
end. Thus, for each tiling in case 2, we can change the leading g to a trailing
r and obtain a tiling in case 4 with equal weight but opposite parity of the
number of green tiles.

Thus,

n+2

∑
j=0

(−1)j
[

n
j

]
=

n+2

∑
j=0,

tiling begins with gg

(−1)j
[

n
j

]
+

n+2

∑
j=0,

tiling begins with r
and ends with g

(−1)j
[

n
j

]

In the case of the tilings beginning with gg, note that adding gg to the
beginning of a tiling of length n changes neither its weight nor its parity, so

n+2

∑
j=0,

tiling begins with gg

(−1)j
[

n
j

]
=

n

∑
j=0

(−1)j
[

n
j

]

The remaining case counts tilings of length n + 2 that begin with r and
end with g. We can construct these from tilings of length n by first adding
a leading r and then a trailing g. Assume we have a tiling T of length n
with j green squares and n− j red squares. Then rT will have weight qjqwT

since the leading r increases the weight of each green square by 1. Adding
a trailing g, we see that the final g has weight n − j + 1 (the number of
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red squares before it), so the tiling rTg has weight qjqwT qn−j+1 = qwT qn+1.
Furthermore, adding one red and one green square has changed the parity
of the number of green squares, so

n+2

∑
j=0,

tiling begins with r
and ends with g

(−1)j
[

n
j

]
=

n

∑
j=0

qn+1(−1)j+1
[

n
j

]

= −qn+1
n

∑
j=0

(−1)j
[

n
j

]
and therefore

n+2

∑
j=0

(−1)j
[

n
j

]
= (1− qn+1)

n

∑
j=0

(−1)j
[

n
j

]
as desired.

Thus, since

2

∑
j=0

(−1)j
[

2
j

]
=
[

2
0

]
−
[

2
1

]
+
[

2
2

]
= 1− (1 + q) + 1 = (1− q)

by induction, we have

n

∑
j=0

(−1)j
[

n
j

]
= (1− q)(1− q3)(1− q5) . . . (1− qn−1)

for even n.

This inductive proof suggests a method for constructing an almost-
bijection. Given a tiling T of an (n + 2)−board, if it falls under case 2 or
4, pair it up with the corresponding tiling of case 4 or 2. Otherwise, it must
have either begun with gg or begun with r and ended with g. Now strip
off these two tiles to get a tiling of length n. If this new tiling is of type 2
or 4, change it to type 4 or 2 to get a different tiling of the same weight but
opposite parity. Then, add back the leading gg or the leading r and trailing
g to get a new tiling T′ of length n + 2. T′ will always have the same weight
as T because adding a leading gg never adds weight to a tiling, whereas
the added weight from a leading r and a trailing g depends only upon the
length of the interior. Since T′ and T are constructed by adding gg− or r−
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−g to tilings of the same weight, T′ and T have the same weight. Note also
that T and T′ still retain opposite parity. If, however, our tiling of length n
is of type 1 or 3, we repeat the process from before, namely:

• Strip off the gg− or r− −g and check what case the new tiling falls
under.

• If it’s case 2 or 4, switch it to case 4 or 2 then sequentially add back the
tiles you stripped off to get a tiling T′ of length n + 2 with the same
weight as T

• If it’s case 1 or 3, repeat these steps again

This gives us a bijection in almost all instances. The only types of
tilings we’re missing are those for which this procedure eventually gives
us the empty 0-board. Such a tiling can be built up by starting with the
0-board and repeatedly adding either gg− prefixes or an r− prefix and a
−g suffix. Note that adding a gg− does nothing to the weight or the par-
ity, whereas adding an r− −g in the ith step changes the parity and adds
weight q2(i−1)+1. Thus, the weights of the tilings this bijection misses are:
(1− q)(1− q3)(1− q5) . . . (1− qn−1), as claimed.

3.3 Counting Palindromic Tilings

One question we might naturally be interested in is whether palindromic
tilings have any special properties. We can consider two different types of
palindromic tilings. First we will examine tilings which are the same when
reversed, and then we will consider tilings which are the same when we
toggle all the tiles from red to green and then reverse the order. We will
call these palindromic tilings of the first and second type, respectively. See
Figure 3.1 for some sample palindromic tilings of length 6.

Suppose we have a palindromic tiling T of the first type with even
length 2n. Since the tiling is a palindrome of the first type, the colors of
the tiles in position i and (2n− i + 1) are the same. Further, since the par-
ity of i and (2n − i + 1) are opposite, this shows that our tiling must have
an even number of green squares–call this number 2k. We now define the
function Pq(2n, 2k) as the sum of the weights of the palindromic tilings of
length 2n using 2k green squares.

We can now determine a recurrence relation for Pq(2n, 2k).
Question: What is the sum of the weights of the palindromic tilings of

the first type of length 2n with 2k green squares?
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Figure 3.1: Some example palindromic tilings of the first and second type.

Answer 1: By definition, Pq(2n, 2k)
Answer 2: Consider the color of the first square. Say the first square is

green (and therefore the last square is green as well). Then we have a tiling
of the form gT′g, where T′ is a palindromic tiling of length 2n − 2 with
2k− 2 green squares. (Thus, the sum of the weights of the tilings which can
make up T′ is Pq(2n− 2, 2k− 2).) Recall that a leading g adds no weight to
a tiling, so the weight of gT′g is just the weight of T′ times the weight of
the trailing g. Since there are 2(n − k) red squares in T′, the weight of the
trailing green is q2(n−k). Thus, the sum of the weights of the tilings which
begin with a green square is Pq(2n− 2, 2k− 2)q2(n−k).

We can apply a similar process when the first tile is red to see that the
sum of the weights of the tilings which begin with a red square is Pq(2n−
2, 2k)q2k.

Thus, we have the recurrence

Pq(2n, 2k) = Pq(2n− 2, 2k− 2)q2(n−k) + Pq(2n− 2, 2k)q2k

and the solution to this recurrence is

Pq(2n, 2k) =
(

n
k

)
q2k(n−k) (3.5)

We now provide a direct combinatorial proof for Equation (3.5).
Question: How many palindromic tilings of the first type of length 2n us-
ing 2k green squares?
Answer 1: By definition, Pq(2n, 2k).
Answer 2: We can think of our tiling as having k pairs of green tiles. Each
pair has a green tile in position i and a corresponding tile in position (2n−
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i + 1).
I claim that each pair of red tiles contributes a weight of q2 to each pair of
green tiles. Why? If we consider just a pair of green squares and a pair of
red squares and ignore everything else in the tiling, we see that our greens
and reds must be arranged as either grrg or rggr. (The intermediate tiles
aren’t important since we want to know only the weight contributed to this
particular pair of green tiles by this particular pair of red tiles.) If the ar-
rangement is grrg, then the red tiles each contribute a weight of q to the
second green tile for a total contribution of q2. On the other hand, if the
arrangement is rggr, then the initial red contributes a weight of q to each of
the green tiles for a total contribution of q2. Thus, since there are n− k pairs
of red squares, each pair of green squares has a weight of (q2)n−k.
Since there are a total of k pairs of green squares, the weight of each tiling
is q2(n−k)k. Moreover, the number of palindromic tilings of this type is (n

k)
since the palindromic tiling is completely determined by tiling the first n
squares with k greens. Hence, the total weight of all palindromic tilings of
length 2n with 2k green squares is(

n
k

)
q2(n−k)k.

Now consider the case of odd palindromic tilings. I claim

Pq(2n + 1, 2k) = qkPq(2n, 2k) =
(

n
k

)
q2k(n−k)qk (3.6)

and

Pq(2n + 1, 2k + 1) = qn−kPq(2n, 2k) =
(

n
k

)
q2k(n−k)qn−k. (3.7)

Proof of 3.6: Pq(2n + 1, 2k) counts the number of palindromic tilings of
the first kind with 2k green squares and 2n− 2k + 1 red squares. Since there
are an odd number of red squares, the center square must be red. Hence,
we can think of this palindromic tiling as a palindromic tiling of length 2n
with 2k green squares and a red square inserted in the middle. Adding
a red square in the middle adds weight q to each green square after the
middle, so it adds a total weight of qk to the tiling. Hence,

Pq(2n + 1, 2k) = qkPq(2n, 2k) =
(

n
k

)
q2k(n−k)qk
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as desired.

Proof of 3.7: Proceed similarly to the previous proof. Pq(2n + 1, 2k + 1)
counts the number of palindromic tilings of the first kind with 2k + 1 green
squares and 2n − 2k + 1 red squares. Since there are an odd number of
green squares, the center square must be green. Hence, we can think of
this palindromic tiling as a palindromic tiling of length 2n with 2k green
squares and a green square inserted in the middle. The green square in the
middle will have weight qn−k, so it contributes a weight of qn−k to the tiling.
Hence,

Pq(2n + 1, 2k) = qn−kPq(2n, 2k) =
(

n
k

)
q2k(n−k)qn−k

as desired.

Finally, let P′q(2n) be the sum of the weights of the palindromic tilings of
the second type with length 2n. (Clearly there are no such tilings of length
2n + 1 since tile n + 1 would have to be both green and red. Also, we
need not specify the number of green tiles since exactly half of the tiles in a
palindromic tiling of the second type must be green.) I claim that:

P′q(2n) = (1 + q)(1 + q3)(1 + q5) · · · (1 + q2n−1).

Proof: We prove this constructively. Each palindromic tiling of the sec-
ond type can be created by successive additions of tiles to the beginning
and end of a previous palindromic tiling. To create a palindromic tiling of
length 2n, start with the empty board and successively add either a leading
g and a trailing r or a leading r and a trailing g a total of n times. As we
saw in Section 3.2, adding a leading g and a trailing r does nothing to the
weight of the tiling. On the other hand, adding a leading r and a trailing
g to a tiling of length 2i contributes weight q2i+1. Hence, the first addition
gives the tiling a weight of 1 or q. The second addition contributes weight
1 or q3. Continue in this fashion until the last addition, which contributes
a weight of 1 or q2n−1 That is, the total weight of the palindromic tilings
of the second type of length 2n is (1 + q)(1 + q3)(1 + q5) . . . (1 + q2n−1), as
claimed.
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3.4 q-Multichoose and the q-Binomial Series

Recall the combinatorial definition of “multichoose”. In the tiling interpre-

tation of the standard binomial coefficients, we can define
((

n
k

))
as the

number of tilings of a board of length n using n − 1 red tiles and k green
tiles which are stackable according to the following rules:

• Number the locations on the board from 0 through n− 1.

• The locations of the red tiles are all predetermined. We place one red
tile at the bottom of the stacks at locations 1 through n− 1.

• We now place the remaining k green tiles one at a time. Each green tile
may be placed at the top of any existing stack in locations 0 through
n− 1. There is no limit on how many tiles are allowed in a stack.

Note in particular that the stacks at locations 1 through n − 1 will nec-
essarily all have at least one tile, since we started by placing red tiles there.
The stack at location 0, on the other hand, has no red tiles and could possi-
bly end up with no tiles at all.

One way to interpret
((

n
k

))
is the number of ways to distribute k

identical candies to n students. Our interpretation with stackable tiles is
equivalent to the student/candy interpretation if we think of the number
of green tiles in stack i as the number of candies given to student i. It is also
easy to see that ((

n
k

))
=
(

n + k− 1
k

)
We simply map a stacked tiling on the left side of the equation to an un-
stacked tiling on the right by toppling the stacks. That is, a red with three
greens on it becomes the sequence rggg.

If we now give a method for calculating the weight of a stacked tiling,
then we will have a q-analog of multichoose. The method we choose is that
each red square gets weight 1 and each green square stacked on position i
gets weight qi. See Figure 3.2 for an example in which we map a stackable
tiling on positions 0 through 3 to a tiling of length 7. A similar interpreta-
tion, phrased as the selection of balls from boxes rather than the selection
of locations for stackable tiles, is provided by John Konvalina in [9].

The following identity, called the q-binomial series, is taken from An-
drews and Eriksson’s Integer Partitions [2], where it is proved using the



22 q-Identities Requiring More Advanced Techniques

Figure 3.2: An example stackable tiling and the corresponding unstacked
tiling, both of weight q5. To create the unstacked tiling from the stacked
tiling, we simply topple each stack.

partition-in-a-box interpretation. Here, we prove it with the stackable tiling
interpretation of q-multichoose.

n

∏
j=1

1
1− zqj =

∞

∑
m=0

qm
[[

n
m

]]
zm (3.8)

Rather than prove this directly, we will first prove the following modi-
fied identity:

n−1

∏
j=0

1
1− zqj =

∞

∑
m=0

[[
n
m

]]
zm (3.9)

Proof of 3.9:
Question: Give a generating function in z for the weighted number of
stackable tilings on positions 0 through n − 1. (The power of z counts the
total number green tiles used.)
Answer 1: We have infinitely many choices for the number of green tiles on
each position. At position 0, we may choose to have either 0 or 1 or 2 or . . .
green tiles, so our generating function has a factor of (1 + z + z2 + z3 + . . .).
Next, at position 1, we may choose to have either 0 or 1 or 2 or . . . green
tiles, so our generating function has a factor of (1 + zq +(zq)2 +(zq)3 + . . .).
Now we choose the number of green tiles on position 2. Since each green
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tile gets a weight of q2, our generating function has a factor of (1 + zq2 +
(zq2)2 + . . .). Continuing this pattern up to position n− 1, our overall gen-
erating function is

(1 + z + z2 + . . .) . . . (1 + zqn−1 + (zqn−1)2 + . . .) =
n−1

∏
j=0

1
1− zqj

Answer 2: By definition, the sum of the weights of the stackable tilings on

positions 0 through n− 1 using m green squares is
[[

n
m

]]
. In other words,

our generating function is

∞

∑
m=0

[[
n
m

]]
zm

Therefore, since both are answers to the same combinatorial question,

n−1

∏
j=0

1
1− zqj =

∞

∑
m=0

[[
n
m

]]
zm

as desired.
Now to obtain Equation (3.8) from Equation (3.9), simply replace z in

(3.9) with the quantity (qz). Combinatorially, this substitution is equiv-
alent to adding the restriction that our generating function should give
the weights of the tilings on positions 0 through n where tiles may not be
placed on position 0. That is, no green tiles may be placed before the first
red tile.

3.5 Analogue to the Sums of Consecutive Integers

The binomial identity
n

∑
k=1

k =
(

n + 1
2

)
(3.10)

can be proved by considering the location of the last green square in a tiling
of length n + 1 with 2 green squares. This binomial identity and its counter-
parts for squares and cubes in the following two sections were taken from
Benjamin and Quinn’s Proofs that Really Count [3].
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One q-analogue of this theorem is

n

∑
k=1

[k]qqk−1 =
[

n + 1
2

]
(3.11)

and the proof is analogous to the non q-ified case.
Question: What is the sum of the weights of the tilings of length n + 1

using 2 green squares?

Answer 1: By definition,
[

n + 1
2

]
Answer 2: Consider the location of the second green square. Label the

locations of the board from 1 to n + 1 and call the position of the second
green square k + 1. Then the second green square has k − 1 red squares
before it and therefore has weight qk−1. The first green square, on the other
hand, can be preceded by 0 or 1 or 2 or ... or k − 1 red squares. Thus, the
total weight of the tilings with the second green square in position k + 1 is
qk−1(1 + q + . . . + qk−1) = qk−1[k]q. So the answer to our question is the
sum over all possible locations k + 1 of qk−1[k]q. That is,

n+1

∑
k+1=2

qk−1[k]q =
n

∑
k=1

qk−1[k]q,

as desired.

Michael Schlosser’s paper “q-Analogues of the sums of consecutive in-
tegers, squares, cubes, quarts, and quints” [11] gives a different identity for
the sum of q-integers:

n

∑
k=1

[k]qq2(n−k) =
[

n + 1
2

]
(3.12)

For this version of the theorem, we simply let k count the total number
of squares to the right of the first green square.

3.6 Analogue to the Sums of Integer Cubes

From the identity on the sum of integers, we will proceed to the corre-
sponding identity giving the sum of integer cubes. The identity on the sum
of integer squares turns out to be slightly more complicated and will be
handled in the next section.
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Garrett and Hummel [7] give the following nice identity for the sum of
q-cubes.

n

∑
k=1

qk−1
(

1− qk

1− q

)2 (1− qk−1

1− q2 +
1− qk+1

1− q2

)
=
[

n + 1
2

]2

(3.13)

Using their formula as inspiration, I discovered the modified version
below.
Theorem:

n

∑
k=1

qk−1[k]3q =
[

n + 1
2

]2

+ (q− 1)
n

∑
k=1

qk−1[k]q
[

k
2

]
(3.14)

Note that as we let q go to 1 in (3.14), the final term drops out and we
obtain the binomial identity for the sum of cubes:

n

∑
k=1

k3 =
(

n + 1
2

)2

(3.15)

We provide a combinatorial proof of the slightly rearranged identity:

n

∑
k=1

qk−1[k]3q +
n

∑
k=1

qk−1[k]q
[

k
2

]
=
[

n + 1
2

]2

+ q
n

∑
k=1

qk−1[k]q
[

k
2

]
(3.16)

Before doing so, it will be helpful to introduce some new notation. Let
(x1, x2, . . . , xa)n denote the weighted tiling of a board of length n with green
squares at positions x1, x2, . . . , xa and red squares elsewhere. We require
1 ≤ x1 < x2 < · · · < xa ≤ n. We can calculate the weight of this tiling as

q∑a
i=1 xi−i.

For example, (a)n would denote a length n tiling of weight qa−1 with a
single green square on cell a. See Figure 3.3 for some illustrations of this
new notation.

Now for the four terms in Equation (3.16), we define four sets for which
they give the weight.

Let

A = {(a)n+1, (b)n+1, (c, d)n+1 | a, b < d}
B = {(e, f )n+1, (g, h)n+1 | f < h}
C = {(i, j)n+1, (l, m)n+1}
D = {(r)n+1, (s)n+1, (t, u)n+1 | r < s < u}



26 q-Identities Requiring More Advanced Techniques

Figure 3.3: Two example tilings along with their specifications under the
notation just introduced.

If we let |A| represent the sum of the weights of the tilings in A, then
by letting k = d− 1,

|A| =
n

∑
k=1

qk−1[k]3q

Similarly, by letting k = u− 1, the sum of the weights of the tilings in D
is given by

|D| = q
n

∑
k=1

qk−1[k]q
[

k
2

]
By letting k = h− 1, the sum of the weights of the tilings in B is given

by

|B| =
n

∑
k=1

qk−1[k]q
[

k
2

]
Finally, the sum of the weights of the tilings in C is given by

|C| =
[

n + 1
2

]2

Now to prove the identity, we want a weight-preserving bijection from
A ∪ B to C ∪ D. Note that B ⊂ C and D ⊂ A so most of our bijection can
be accomplished with the identity map.

• For each element of B, map via the identity map into C. All elements
of C are hit except for those where j ≥ m.
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• For each element of A with a < b, map via the identity map into D.
(This covers all of D.)

• For the remaining elements ofAwith a ≥ b, take (a)n+1, (b)n+1, (c, d)n+1
to (c, d)n+1, (b, a + 1)n+1, which is an element of C with j ≥ m.

This map is 1-1, onto, and weight preserving, so we have our identity.

3.7 Analogues to the Sum of Integer Squares

Michael Schlosser [11] lists two different q-analogues for the sum of squares:

n

∑
k=1

(1− q2k)(1− qk)
(1− q2)(1− q)

q
3
2 (n−k) =

(1− qn)(1− qn+1)(1− qn+1/2)
(1− q)(1− q2)(1− q3/2)

(3.17)

and

n

∑
k=1

(1− q3k)(1− qk)
(1− q3)(1− q)

q2(n−k) =
(1− qn)(1− qn+1)(1− q2n+1)

(1− q)(1− q2)(1− q3)
(3.18)

Here I present two further q-analogues of my own construction.
Theorem:

n

∑
k=1

qk−1[k]2q = 2q2
[

n + 1
3

]
+

n

∑
k=1

qk−1[k]q2 (3.19)

Proof: Question: What is the sum of the weights of the tilings in the set

{(a)n+1, (b, c)n+1|a < c}

Answer 1: Consider the value of c. If c = k + 1, then the green tile it
represents has weight qk+1−2 = qk−1. Once we’ve picked c, we can inde-
pendently choose a and b to be anything from 1 to k. These choices give a
total weight of [k]q × [k]q. Hence, the sum of the weights of all tilings in the
set is

n

∑
k=1

qk−1[k]2q

Answer 2: Split the problem up into cases based on whether or not
a = b. If a < b, then we can create (a)n+1, (b, c)n+1 by taking the tiling
(a, b, c)n+1 and breaking a out into a separate board. Thus, the number
of such tilings is (n+1

3 ) and the weight of (a)n+1, (b, c)n+1 is greater than
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the corresponding tiling (a, b, c)n+1 by a factor of q2. Thus, the sum of the
weights of the tilings with a < b is

q2
[

n + 1
3

]
A similar argument works in the case where a > b. In this case, we also
have the sum of the weights of the tilings is

q2
[

n + 1
3

]
Finally, we have to consider the case where a = b. As in our first solution,
we consider the value of c. If c = k + 1 then that tile gets weight qk−1. As
in Answer 1, we are left to choose a and b, but now we have the additional
restraint that a = b. If we put them in position 1, then they have a combined
weight of 1. In position 2, they have combined weight q2. In position i they
have weight q2i−2. Thus, the weights of the tilings with c = k + 1 are given
by

qk−1(1 + q2 + q4 + . . . + q2k−2) = qk−1[k]q2

Putting these cases together, the sum of the weights of the tilings in the set
is

2q2
[

n + 1
3

]
+

n

∑
k=1

qk−1[k]q2

as desired.

For our second identity, we start with a different formulation for the
sum of integer squares. Duane DeTemple [5] has provided a combinatorial
proof for the following identity by counting flagpole arrangements.

n−1

∑
k=1

k2 =
1
4

(
2n
3

)
(3.20)

I modified this identity to a q-analogue of the following form:

(1 + 2q + q2)
n−1

∑
k=1

[k]2q2 q2k−1 =
[

2n
3

]
+ (q− 1)

n−1

∑
k=1

[2k− 1]q[2k]qq2k−2 (3.21)
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As in the case of the sum of cubes, note that if we let q = 1, the whole
final term drops out and leaves our binomial identity (3.20).
I will provide a combinatorial proof for the slightly rearranged identity:

(1 + 2q + q2)
n−1

∑
k=1

[k]2q2 q2k−1 +
n−1

∑
k=1

[2k− 1]q[2k]qq2k−2 =[
2n
3

]
+ q

n−1

∑
k=1

[2k− 1]q[2k]qq2k−2 (3.22)

Proof of 3.22: Our proof will consist of two steps. First, we will define
a set whose weight is given by each of the four terms in 3.22. Secondly, we
will give a weight-preserving bijection between the sets on the left-hand
side and right-hand side.

Using the same notation as in Section 3.6, let

A = {(a)2n, (b, c)2n | a < c, c odd}
B = {(e, f , g)2n}
C = {(r)2n, (s, t)2n | t ≤ 2n− 2, r ≤ t, t even}
D = {(u)2n, (v, w)2n | u < w− 1, w odd}

Note that
n−1

∑
k=1

[k]2q2 q2k−1

gives the weight of the tilings in the set {(a)2n, (b, c)2n|a, b < c, with a, b, c odd}.
Multiplying by the factor (1 + 2q + q2) allows us to remove the restriction
that a and b be odd. (Why? Multiplying by 1 leaves both a and b odd. Mul-
tiplying by 2q either leaves a odd and adds one to b or leaves b odd and
adds one to a. Multiplying by q2 adds one to both a and b, making them
both even.) Thus,

|A| = (1 + 2q + q2)
n−1

∑
k=1

[k]2q2 q2k−1.

By our definition of the q-binomial coefficient, the sum of the weights
of the tilings in B is given by

|B| =
[

2n
3

]
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By letting t = 2k, the sum of the weights of the tilings in C is given by

|C| =
n−1

∑
k=1

[2k− 1]q[2k]qq2k−2

Finally, by letting w = 2k + 1 the sum of the weights of the tilings in of
D is given by

|D| =
n−1

∑
k=1

[2k− 1]q[2k]qq2k−1

Now we must define a weight-preserving bijection fromA∪C to B∪D.
Since D ⊂ A, it makes sense to rewrite A as E ∪ F where E = D and F

is A with the additional restriction that a = c− 1.

The weight-preserving bijection we use is:

E → D
(c− 1)2n, (b, c)2n ∈ F → (b, c, c + 1)2n ∈ B

(r)2n, (s, t)2n ∈ C →


(s, r, t + 2)2n ∈ B if r > s

(r, r + 1, t + 1)2n ∈ B if r = s
(r, s + 1, t + 1)2n ∈ B if r < s

It is easy to check that this bijection is 1-1, onto, and weight-preserving,
and therefore that it completes our proof of the identity.

3.8 The q-Lucas’ Theorem

Lucas’ theorem allows us to simplify binomial coefficients modulo a prime.
If we let p be a prime and let a and b be non-negative integers with 0 ≤
a, b < p, then Lucas’ theorem says:(

pn + a
pk + b

)
≡
(

n
k

)(
a
b

)
(mod p) (3.23)

Proof sketch:
Question: How many ways (mod p) can we tile a board of dimensions

p × n and a strip of dimensions a × 1 using pk + b green unit squares and
p(n− k) + (a− b) red squares?

Answer 1: From the pn + a total locations, select which pk + b hold
green squares. There are (pn+a

pk+b) ways to do this.
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Answer 2: Since we’re working modulo p, let’s start by grouping as
many of these tilings as possible into sets of size p.

Start by looking at the first column of the board. If not all the squares in
this column are the same color, then moving the top square to the bottom
of the column and shifting the rest of the squares up by one position will
create a different column. In fact, since p is prime, repeating this process
p− 1 times will create p distinct columns. Thus, whenever the first column
is not all the same color, we can place it in a group of p distinct tilings of
the board. Since we are only considering the number of tilings modulo p,
this means we can ignore any tilings in which the first column is not all the
same color.

If the first column is all the same color, move on to the second column
and check if it is all one color. If not, perform the same shifting procedure.
If it is all the same color, move onto the third column. Continue in this
fashion until you reach the right end of the board.

Now the only tilings of the board and the strip which haven’t been put
into a set of size p are the ones in which each column of the board is just
a single color. How many such tilings are there? There are (n

k) ways to tile
the board. (Just choose which columns are green.) Then there are (a

b) ways
to place the remaining b green tiles onto the strip of length a. Hence, our
answer is (

n
k

)(
a
b

)
,

as desired.
The equivalent q-identity is[

pn + a
pk + b

]
≡
(

n
k

) [
a
b

]
(mod [p]q) (3.24)

One of the key observations required for the upcoming proof is that

qp ≡ 1(mod [p]q).

This is true because
qp − 1 = [p]q(q− 1).

Our proof will also require a lemma on the effects of cycling through a
tiling as we did with the columns in the previous proof.

Lemma 3.1. For a prime p, take a tiling of a strip of length p with at least one
red tile and at least one green tile. Following the procedure outlined in the proof of
3.23, create p distinct tilings from this one by successively removing the front tile
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Figure 3.4: The shifting procedure described in Lemma 3.1 applied to a
tiling of length 5. Note that this procedure does indeed produce 5 distinct
tilings. From top to bottom, their weights are q, q4, q2, q5, and q3. The sum
of these weights is q + q2 + q3 + q4 + q5 = q[5]q, which is a multiple of [5]q,
as desired.

and placing it at the back. The sum of the weights of these p tilings is a multiple of
[p]q. (See Figure 3.4 for an example of this shifting procedure applied to a tiling of
length 5.)

Proof: Note that it is equivalent to show that the exponent on the weight
of each of these p tilings is distinct mod p. (Why? If each tiling has a
different exponent (mod p), then their sum will be equivalent to 1 + q +
q2 + · · ·+ qp−1 (mod [p]q). Since 1 + q + q2 + · · ·+ qp−1 = [p]q, this shows
that the sum of the weights is congruent to [p]q, as desired.)

Now let’s look at the effect on a tiling of moving the front tile to the
back. Say our tiling has k green squares and p− k red squares (where 0 <
k < p since we have both red and green squares.) If the front tile is green,
moving it to the back will change the weight of the tiling by a factor of qp−k

since we now have an additional green square counting all the reds. If,
on the other hand, the front tile is red, moving it to the back will change
the weight of the tiling by a factor of q−k since the red tile was previously
counted by all the greens and is now counted by none of them. However,
since qp ≡ 1, these actions have equivalent effects on the weight of the
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Figure 3.5: The board and strip described in the question for the proof of
Equation (3.24). The arrows on the diagram indicate the order in which we
will consider tiles when calculating the weight of the board and strip.

tiling (mod [p]q).
Hence, if the weight of the first tiling is qs, the weight of the second

tiling is congruent to qs−k. The weight of the third is congruent to qs−2k,
and so forth until the last tiling which has weight qs−(p−1)k. However, since
p is prime and k is strictly between 0 and p, these exponents are all distinct
modulo p, as desired.

With this lemma, we are now ready to prove Equation (3.24).
Proof:
Question: What is the sum of the weights of the tilings (mod [p]q) of a

board with dimensions p× n and a strip with dimensions a× 1 using pk + b
green unit squares and p(n− k) + (a− b) red squares? Note that to assign
a weight to this board/strip combination, we must provide an order for all
pn + a locations. We will say that the first location is the upper left corner
of the board. From there we proceed down the first column, then down
the second, and so on until the end of the board. Finally, we will proceed
across the strip so that the last tile is at the right end of the strip. See Figure
3.5 for an illustration of this setup.
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Answer 1: Despite the unusual layout, we can still determine the sum of
the weights of the tilings in the usual way. Since there are pn + a locations
and pk + b green squares, our answer is just[

pn + a
pk + b

]
.

Answer 2: As in the standard proof, look for the first column whose
tiles aren’t all the same color and perform the same shifting procedure to
create p different tilings. Lemma 3.1 showed that the sum of the weights
of these columns will be a multiple of [p]q. Furthermore, since rotating the
tiles within a column doesn’t change the interactions between that column
and the rest of the tiling, the sum of the weights of these p tilings is also
a multiple of [p]q. Hence, since we are working mod [p]q, we need only
consider the tilings upon which we cannot perform this procedure, i.e. the
tilings in which every column is monochromatic.

To calculate the sum of the weights of these tilings, we will split them
into two parts. First we consider the weight of the board, then the weight
of the strip, and finally the interactions between them.

We know the board must have k columns of green tiles and n− k columns
of red tiles. Since each column has height p, we see that every red column
contributes weight qp2

for each green column after it. However, since we
are working modulo [p]q, we know qp ≡ 1 and therefore qp2 ≡ 1 as well.
Hence, the weight of the board will always be 1, so the contribution from
the board is simply the number of arrangements of the k green and n − k
red columns, i.e. (n

k).
The sum of the weights of the strip is easy to obtain. We have a strip of

length a with b green squares, so the sum of the possible weights is
[

a
b

]
.

Finally, we must consider the interaction between the strip and the
board. Each of the b green squares in the strip counts each of the p(n − k)

red squares in the board, so we must multiply our answer of
(

n
k

) [
a
b

]
by

an additional factor of qbp(n−k). However, modulo [p]q, we have qbp(n−k) ≡

(qp)b(n−k) ≡ 1. Thus, our answer is simply
(

n
k

) [
a
b

]
, as desired.
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3.9 An Identity on Tiling Two Boards

The following identity is given with an algebraic proof in John Riordan’s
Combinatorial Identities [10].(

n
x

)(
n
y

)
= ∑

j≥0

(
x
j

)(
y
j

)(
n + j
x + y

)
(3.25)

We will prove it here combinatorially and then give a q-analogue.
Proof:

Question: From the set of integers 1 through n, how many ways are there
to choose a subset of size x and a subset of size y, where these two subsets
may overlap?

Answer 1: First choose the subset of size x, then choose the subset of
size y. There are (n

x)(
n
y) ways to do this.

Answer 2: Let X be the subset of size x and Y be the subset of size
y. For each selection of subsets, we can create a sequence of x X’s and y
Y’s by listing, for each number 1 through n, the subset or subsets in which
that number appears. For example, if X = {1, 5} and Y = {2, 4, 6}, our
sequence would be XYYXY since 1 ∈ X, 2 ∈ Y, 3 ∈ neither, 4 ∈ Y, 5 ∈ X,
and 6 ∈ Y. See Figure 3.6 for a graphical illustration of this example. By
convention, we will say that if a number appears in both X and Y, we will
list the X before the Y in our sequence. For example, X = {3, 5} and Y =
{2, 3} would lead to the sequence YXYX. (2 ∈ Y, 3 ∈ X and Y, 5 ∈ X.)

Let j count the number of times an “XY” appears in our sequence. If
we choose which j of the X’s and which j of the Y’s take part in the “XY”
pairings, this uniquely determines the sequence. Therefore, there are (x

j)(
y
j)

sequences in which “XY” appears exactly j times.
Once we have selected a sequence of X’s and Y’s in which “XY” appears

j times, I claim there are (n+j
x+y) selections of subsets X and Y which fit this

specific sequence. That is, we can map each selection of x + y numbers from
the set of numbers 1 through n + j onto a distinct pair of subsets X and Y
which fit our sequence of X’s and Y’s. We use the sequence of X’s and Y’s to
determine the specific transformation we must apply in the following way:

Start by writing a zero under each of the X’s and Y’s in the sequence.
For each appearance of “XY” in the sequence, subtract one from the number
under the Y and from all numbers after that Y. For example, the sequence
XYYXY would lead to {0, −1, −1, −1, −2}.

Once we have created this sequence of nonpositive numbers, we add
them to the list of x + y elements selected from 1 through n + j. Determine
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Figure 3.6: A graphical illustration of the example in which X = {1, 5} and
Y = {2, 4, 6}. Here we have written out the numbers 1 through n twice
and circled those which appear in X on top and those which appear in Y
on below. We can then determine the ith element in the sequence of X’s
and Y’s by scanning this diagram from left to right and looking at whether
the ith circle appears in the top or bottom row. In this case, we obtain the
sequence “XYYXY”.

which elements are in the set X and which are in Y in the natural way by
matching up this new sequence with the sequence of X’s and Y’s. This
transforms the selection to a list of elements from the numbers 1 through n
where repetition is allowed only in locations where an “XY” appears in the
sequence.

Thus, our final answer is ∑
j
(x

j)(
y
j)(

n+j
x+y), as desired.

The corresponding q-identity is:[
n
x

] [
n
y

]
= ∑

j
q(x−j)(y−j)

[
x
j

][
y
j

][
n + j
x + y

]
Proof:

Question: Create a pair of tilings, both of length n, where the first tiling
contains x green squares and the second tiling contains y green squares.
Let the weight of this pair of tilings be the product of the weights of the in-
dividual tilings. What is the sum of the weights of all such pairs of tilings?

Answer 1: The sum of the weights of the first tiling alone is
[

n
x

]
and the

sum of the weights of the second tiling alone is
[

n
y

]
. Since we calculate the

weight of the pair by multiplying the weights of the individual tilings, our
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answer is simply
[

n
x

] [
n
y

]
.

Answer 2: Let X be the set consisting of the locations selected for the
green tiles in the first tiling and Y be the analogous set for the second tiling.
As before, for each selection of X and Y, we can create a sequence of x X’s
and y Y’s by listing, for each number 1 through n, the set or sets in which
that number appears. We follow the same convention as before that if a
number appears in both X and Y, we will list the X before the Y in our
sequence.

Again we let j count the number of times an “XY” appears in our se-
quence. Once we have selected a sequence of X’s and Y’s in which “XY”
appears j times, as we saw previously, there are (n+j

x+y) selections of sets X
and Y which fit this specific sequence. That is, we can map each selection
of x + y green tiles from the positions 1 through n + j onto a distinct pair
of sets X and Y which fit our sequence of X’s and Y’s. For this proof, we

will start with this set of single tilings whose weights sum to
[

n + j
x + y

]
and

examine how the transformation to pairs of tilings affects the weight.
We will perform the transformation in two steps. The first step is to

break out only the Y tiles which are involved in “XY” pairs into a second
board and perform the required left-shifting transformation on all tiles as
described in the standard binomial proof. For example, with the sequence
XYYXYX and the selection of green tiles on locations {1, 2, 3, 5, 8, 13}, we
would create the pair of tilings with green tiles on locations {1, 2, 4, 11} and
{1, 6}, as illustrated in Figure 3.7. It is important to remember that the
green tile on position 2 in the top tiling really belongs on the same position
in the bottom tiling, but we will handle that with the second step of our
transformation.

Now we must handle the question of how this first step of the transfor-
mation affected the weight of the tilings. Notice that the first Y broken out
gains weight equal to q raised to the number of tiles before it which aren’t
involved in “XY” pairs. The removal of that Y tile from the first board is
negated by the fact that all subsequent tiles are shifted one position to the
left. In the previous example, the first Y broken out initially had weight q0

and continues to have weight q0 after the first step of the transformation,
as anticipated. From there, we proceed to look at all the subsequent Y tiles
broken out. Each gains weight given by q to the number of tiles before it
which aren’t involved in “XY” pairs. In the example above, the second Y
tile removed from the top board initially had weight q3 and ends up with
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Figure 3.7: The first step of our transition for the tiling with tiles on lo-
cations {1, 2, 3, 5, 8, 13} and string “XYYXYX”. Note that the only Y tiles
which have been moved down to the lower board were those which were
part of an “XY” pair. This leaves a Y tile on position 2 in the top board. We
have decided how far left to move each tile based on the transformation
described in the proof of the standard binomial equation.
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weight q4 after this step of the transformation, reflecting the single Y before
it not involved in an “XY” pairing.

Hence, in total, this first step of the transformation increases the expo-
nent on the weight by adding to it the sum of the number of unpaired tiles
before each Y involved in an “XY” pair. This value is entirely dependent
upon which of the X’s and Y’s were selected to be involved in pairing. In
fact, over all sequences with j “XY” pairs, the sum contributed by unpaired

X’s is
[

x
j

]
and the sum contributed by unpaired Y’s is

[
y
j

]
.

Now we perform the second step of our transformation. All that is left
to do is move the Y’s which weren’t involved in “XY” pairs from the first
board to the second board (without changing their position.) First we con-
sider the effect of this change on the tilings involved in “XY” pairs. Note
that if moving a tile down to the second board increases the weight of an
X in an “XY” pair it must simultaneously decrease the weight of the cor-
responding “Y” in the second board. Hence, the net effect on the weight
of tiles involved in “XY” pairings is zero. All that remains is to look at
the weight contributed to unpaired X’s and Y’s by this change. We should
get an additional weight of q for each interaction between an unpaired X
and an unpaired Y. If the X comes first, then the Y will count that one ex-
tra red tile when moved down to the second board. On the other hand, if
the Y comes first, then it empties an extra tile to be counted by the X when
it moves to the second board. Thus, the total effect on the weight of the
tiling is to add to its exponent the number of unpaired X’s multiplied by
the number of unpaired Y’s. That is, this second step multiplies the weight
of the tiling by a factor of q(x−j)(y−j).

With the transformation complete, we can now assess the sum of the
weights of the tilings for a fixed j. We find this sum to be[

x
j

][
y
j

][
n + j
x + y

]
q(x−j)(y−j)

as desired, and thus our final answer to the question of the sum of the
weights of the pairs of tilings is

∑
j

q(x−j)(y−j)
[

x
j

][
y
j

][
n + j
x + y

]
,

completing the proof.





Chapter 4

Identities Requiring more than
two Colors

4.1 A Three-Color Identity

The following binomial identity, despite its simple proof and the simple
form of its generalization, nevertheless requires that we introduce a third
color tile to provide a tiling proof.(

n
m

)(
m
p

)
=
(

n
p

)(
n− p
m− p

)
(4.1)

Proof sketch:
Question: How many ways are there to choose a committee of size m

with a subcommittee of size p from a class of n students?
Answer 1: (n

m)(m
p). First choose the committee, then choose the subcom-

mittee.
Answer 2: (n

p)(
n−p
m−p). First choose the subcommittee, then choose the

remainder of the committee.
We see that to translate this into a proof using tilings, we will need to

have a way to distinguish between tiles which are “in the subcommittee”,
“in the committee”, and neither. We will choose to do so by introducing
a third color of tiles. Then our question for the standard binomial identity
becomes: “How many ways can we tile a board of length n using n−m red
squares, m− p green squares, and p super-green squares?”

To q-ify this interpretation, we need a way of calculating the weight of a
tiling with red, green, and super-green squares. As before, each red square
gets weight 1 and each green square gets weight qr where r is the number
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of red squares before it. However, each super-green square gets weight qs

where s is sum of the number of red squares and green squares before it.
Under this interpretation, we get the q-identity[

n
m

] [
m
p

]
=
[

n
p

] [
n− p
m− p

]
. (4.2)

Proof:
Question: What is the sum of the weights of the tilings of a board of

length n using n−m red squares, m− p green squares, and p super-green
squares?

Answer 1: First choose the locations of the m green and super-green
squares. Each red square contributes weight q to each of these squares,

so we have a factor of
[

n
m

]
. Next, choose which p of these m squares are

super-green. We’ve already accounted for the weight contributed to the

super-green squares from the red squares, so multiplying by
[

m
p

]
gives us

the weight of the super-green squares by including the contribution of the
green squares. Thus, our final answer is[

n
m

] [
m
p

]
.

Answer 2: First choose the location of the p super-green squares. Since
they get weight q for each non-super-green square before them, the total

weight of the super-green squares is
[

n
p

]
. Next, ignore the super-green

squares and choose where to place the m− p green squares in the remaining

n− p spots. This gives us a total weight of
[

n− p
m− p

]
for the green squares.

All together, this gives us a weight of[
n
p

] [
n− p
m− p

]
as desired.

4.2 The q-Multinomial Coefficient

In general, we would like to have a way of handling tiles with an arbitrarily
large color set. In the proof of Equation (4.2), we saw that the sum of the
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tilings of length n with p super-green squares, m − p green squares, and
n−m red squares was[

n
m

] [
m
p

]
=

[n]q!
[m]q![n−m]q!

[m]q!
[m− p]q![p]q!

=
[n]q!

[n−m]q![m− p]q![p]q!

which looks similar to the multinomial coefficient ( n
n−m,m−p,q).

More generally, say we have c colors ranked from color 1 which is the
“reddest” to color c which is the “greenest”. We define our weighting
scheme by saying that a tile counts all the tiles to its left of lower rank (i.e.
all tiles to its left which are “redder” than it is.)

Suppose we want to create a tiling of length n using ai tiles of color i

where
c
∑

i=1
ai = n. We can start by placing the greenest tiles and working

our way downward to the reddest tiles. The weights of the ac greenest tiles

will be
[

n
ac

]
. Once these are placed, we can ignore them and look at the

next greenest tiles. The weights of the ac−1 second-greenest tiles placed on

the remaining n− ac positions will be given by
[

n− ac
ac−1

]
. Continuing in this

fashion, we find that the total sum of the weights of the tilings created is

[
n
ac

] [
n− ac
ac−1

]
. . .
[

a2 + a1
a2

]
=

[n]q !
[ac]q ![n−ac]q !

[n−ac]q !
[ac−1]q ![n−ac−ac−1]q ! . . . [a2+a1]q !

[a2]q ![a1]q ! =
[n]q !

[ac]q ![ac−1]q !...[a1]q !

In fact, this final formula is the algebraic definition of the q-multinomial

coefficient
[

n
a1, a2, . . . ac

]
q
. In the future, we will leave off the q subscript

unless we have reason to include it.
Our combinatorial interpretation of the q-multinomial coefficient is that

it gives the sum of the weights of the tilings of length n using c different
colors ranked from lowest (reddest) to highest (greenest) with ai tiles of
color i.
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4.3 A q-Analogue to Fermat’s Little Theorem

Benjamin and Quinn [3] present a simple tiling proof to Fermat’s Little The-
orem, which states that for a prime p and any natural number a,

ap ≡ a(mod p) (4.3)

Proof:
Question: How many ways are there (mod p) to create a tiling of length p
using squares which come in a different colors?

Answer 1: For each of the p positions in the tiling, we have a choices
for color, so our answer is ap.

Answer 2: For each tiling which is not monochromatic, we place the
tiling in the set of p tilings created by repeatedly removing the front tile
and moving it to the back. Since p is prime, this procedure is guaranteed to
give us p distinct tilings.

Thus, we can group all polychromatic tilings into groups of size p and
all that remains (modulo p) are the a monochromatic tilings.

Thus,
ap ≡ a(mod p),

as desired.

The q-analogue proceeds along the same lines, but uses a different weight-
ing scheme than we might expect. The q-identity we will prove is that for
a prime p and a natural number a,

p

∑
k=1

[
p
k

] a

∑
j=1

(a− j)p−k ≡ a(mod [p]q) (4.4)

Proof:
Question: What is the sum of the weights (mod [p]q) of the tilings of length
p using squares which come in a different colors?

Note that for this question we must define a different weighting scheme
which can deal with the presence of a different colors. (The weighting
scheme defined by the multinomial coefficient turns out to be insufficient
for this theorem.) To do so, we label the a colors so that color 1 is the “red-
dest” and color a is the “greenest”. To determine the weight of a tiling, we
first look for the tile or tiles whose color is lowest ranked (i.e. the “reddest”
tiles.) We then treat all tiles of this color as red and all other tiles as green
and calculate the weight of the tiling using the usual method.
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Answer 1: Let k count the number of tiles of lowest rank which appear

in the tiling. For a fixed k, the sum of the weights of these tilings is
[

p
k

]
multiplied by the number of ways to distribute colors so that k tiles are of
the lowest rank and p− k tiles are of higher rank. If we fix the lowest rank
at j, this means we have a− j choices for each of the p− k tiles which aren’t
of lowest rank. Thus, letting j and k vary, we find that the total sum of the
weights of the tilings is

p

∑
k=1

[
p
k

] a

∑
j=1

(a− j)p−k.

Answer 2: Recall from the proof of Lemma 3.1 that if we take a poly-
chromatic tiling of length p and create p distinct tilings by successively re-
moving the first tile and placing it at the back, then the sum of the weights
of these tilings will be a multiple of [p]q. Despite the fact that our tiles now
come in a colors rather than 2, the same lemma still holds since our weight-
ing algorithm only considers a difference between the reddest tiles and all
other tiles. Hence, we can group all polychromatic tilings into groups of
size p where the sum of the weights of the tilings in each group is a multi-
ple of [p]q.

The only remaining tilings are the a monochromatic tilings, all of which
have weight 1. Hence, our answer is simply a.

Thus,
p

∑
k=1

[
p
k

] a

∑
j=1

(a− j)p−k ≡ a(mod [p]q),

as desired.





Chapter 5

Alternating Sum Identities

In this chapter we will combine techniques from the previous chapters to
examine several identities involving alternating sums.

5.1 A Tricolor Alternating Sum

This identity and its combinatorial proof were taken from Benjamin and
Quinn’s Proofs that Really Count [3].

∑
k

(
n
k

)(
k
m

)
(−1)k = (−1)nδn,m (5.1)

Proof sketch:
Question: From the set of numbers 1 through n, give the alternating

sum for the number of ways to select a subset of size k with a subsubset of
size m. (Keep n and m fixed and alternate on the parity of k.)

Answer 1: We can do this directly by first selecting the subset of size k
and then the subsubset of size m, giving us the alternating sum

∑
k

(
n
k

)(
k
m

)
(−1)k

Answer 2: If n = m, the only way we can select a subset of size k = n
with a subsubset of size m is by letting both the subset and the subsubset
be the entire set of numbers 1 through n. This selection gets sign (−1)n.

If n 6= m, we can associate each subset/subsubset selection with an-
other selection where k has opposite parity. To do this, we simply consider
the largest number not selected in the subsubset. (Since n 6= m, we are
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guaranteed to have at least one such number.) Toggling this number into
and out of the subset of size k gives the desired bijection.

Thus, our answer is (−1)n if n = m and 0 otherwise. That is, (−1)nδn,m.
The equivalent q-identity is

n

∑
k=0

[
n
k

] [
k
m

]
(−1)k = (5.2)

0 if n-m is odd

(−1)n
[

n
m

]
(1− q)(1− q3)(1− q5) · · · (1− qn−m−1) if n-m is even

Proof:
Question: Give the alternating sum for the weights of the tilings of

length n with n − k red squares, k − m green squares, and m super-green
squares.

Answer 1: As in the standard binomial identity, we can calculate this as

n

∑
k=0

[
n
k

] [
k
m

]
(−1)k.

Answer 2: Note that, as we saw in Equation (4.2), instead of first choos-
ing which k tiles aren’t red we can choose which m tiles are super-green.

These selections contribute weight
[

n
m

]
. Having selected the super-green

tiles, the problem is reduced to giving the alternating sum of ways to select
k − m green squares and n − k red squares from the remaining n − m po-
sitions. However, we have already solved this problem in the form of the
Gaussian formula (3.4) and found an answer of{

0 if n-m is odd
(1− q)(1− q3)(1− q5) · · · (1− qn−m−1) if n-m is even

We get an additional factor of (−1)n to account for whether the term in
our sum with the largest value of k receives positive or negative weight.
Putting these elements together, our final answer is

0 if n-m is odd

(−1)n
[

n
m

]
(1− q)(1− q3)(1− q5) · · · (1− qn−m−1) if n-m is even

as desired.
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5.2 What if q = −1?

We already saw that if we let q = 1, we get
[

n
k

]
1

=
(

n
k

)
.

However, we may additionally want to consider the case where q = −1.
I claim in this case that

[
n
k

]
−1

=


0 if n is even, k is odd(⌊ n
2

⌋⌊
k
2

⌋) otherwise
(5.3)

Proof:
Question: Of the tilings of length n using k green squares and n− k red

squares, what is the number whose weights have an even exponent minus
the number whose weights have an odd exponent?

Answer 1: To count all the tilings positively, we would simply let q = 1

and take
[

n
k

]
1
. However, if we instead let q = −1, we get all the tilings

whose weights have an even exponent counted positively and all tilings
whose weights have an odd exponent counted negatively. Thus, one an-
swer is [

n
k

]
−1

.

Answer 2: We’d like an involution which takes us from the set of tilings
whose weights have even exponent to the set of tilings whose weights have
odd exponent. Once we have an involution that works for almost all tilings,
we’ll count the remaining tilings for which it doesn’t.

Divide the board into pairs of tiles. That is, look at the first two tiles as
a unit, the third and fourth tiles as a unit, and continue in this fashion until
the end of the board. (If n is odd, there will be one unpaired tile left at the
end of the board.) Now find the first pair of tiles which is either rg or gr.
Our involution will be to toggle this pair of tiles between rg and gr.

Note that this toggling doesn’t change the interactions between the tiles
in the pair and the remainder of the tiling. The r in the pair will still be
counted by the same number of greens external to the pair and the the g
will similarly count the same number of reds external to the pair. Thus,
if this pair is rg and we change it to gr, the net effect on the tiling will
be to decrease the weight by a factor of q since we are no longer counting
the internal rg interaction. Similarly, toggling from gr to rg increases the
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weight by a factor of q. Thus, our involution always toggles the exponent
on the weight between an even number and an odd number, as desired.

Now we need only consider the tilings which consist entirely of rr and
gg pairs (with possibly one extra tile at the end). Note that the weight of
any such tiling must have an even exponent. This is the case because each
pair of red tiles contributes a weight of q2 to each green square and a final
unpaired red square contributes no weight, so we have no possibility for
an odd exponent.

Thus it only remains to count the number of tilings with no rg or gr
pairs. We will split our problem into cases depending on the parity of n
and k.

• Case 1: n even, k odd
Since n is even, we have no leftover tile at the end, so every tile is part
of a pair. Furthermore, since k is odd, we can’t possibly put every
green tile in a gg pair. Thus, in this case, the number of tilings missed
by the involution is 0.

• Case 2: n even, k even
With both n and k even, we can create a tiling of entirely rr and gg
pairs. Since we have n/2 pairs and k/2 of them are gg, the number of
ways to do this is ( n

2
k
2

)
• Case 3: n odd, k odd

With an odd n, we will have one unpaired tile at the end of our tiling.
If the unpaired tile is red, the rest of the tiling is reduced to a situation
of n even, k odd as in Case 1. Thus, we only have exceptions when
the final tile is green. If this is the case, we are reduced to a Case 2
situation and therefore have ( n−1

2
k−1

2

)
exceptions.

• Case 4: n odd, k even
Again we will have an unpaired tile at the end. Since k is now even, if
the unpaired tile is green we will be reduced to Case 1. If the unpaired
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tile is red, we will be reduced to case 2 and thus have( n−1
2
k
2

)
exceptions.

Thus, we have

[
n
k

]
−1

=


0 if n is even, k is odd(⌊ n
2

⌋⌊
k
2

⌋) otherwise

as desired.

5.3 An Alternating-Sum Multinomial Identity

The following alternating sum identity, taken from Benjamin and Quinn’s
Proofs that Really Count [3], generalizes in a particularly interesting way.
In particular, it involves the introduction of a multinomial coefficient even
though the standard binomial identity uses only a binomial coefficient.

We present first a proof of the standard identity and then the q-generalization.
Theorem:

∑
k

(
n
k

)
(n− k)n(−1)k = n! (5.4)

Proof:
Question: Give the alternating sum for the number of ways to create a
tiling of length n with k dark squares and n − k light squares where every
square in the tiling must point to a light square. (The sum should alternate
on the parity of k.)

Note: I have intentionally chosen to use “light” and “dark” squares
instead of red and green because the upcoming q-analogue will not assign
weight based on the lightness or darkness of each tile but on a color which
will be assigned later.

Answer 1: For a fixed k, first choose the locations of the k dark squares.
(There are (n

k) ways to do this.) Once the locations of the dark squares have
been selected, there are n − k light squares which may be pointed to, so
we have an additional n − k choices for each of the n squares. Thus, our
alternating sum is ∑

k
(n

k)(n− k)n(−1)k.
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Answer 2: We can create an involution to cancel out most of the terms
in the alternating sum. Our involution will be to find the first tile which
is not pointed to and toggle it between light and dark. The only excep-
tions which remain after this involution are the tilings in which every tile
is pointed to. Since every tile is pointed to, these tilings must consist of all
light squares (k = 0), so all of the exceptions will be counted positively in
the sum. Furthermore, the number of ways to create a tiling in which every
tile is pointed to by another tile is the same as the number of ways to order
the numbers 1 through n. That is, our answer is simply n!.

Thus,

∑
k

(
n
k

)
(n− k)n(−1)k = n!,

as desired.

I will now prove the following q-generalization: Theorem:

∑
k

(
n
k

)
∑
ai

[
n

a1, a2, . . . an−k

]
(−1)k = [n]q! (5.5)

Proof:

Question: Give the alternating sum for the weights of the tilings of
length n with k dark squares and n − k light squares where every square
in the tiling must point to a light square. (The sum should alternate on the
parity of k.)

The weighting scheme we use here is somewhat unusual. We allow our
tiles to be any of n colors ranked from 1 (reddest) to n (greenest) in addition
to being dark or light. The color assigned to a tile is given by the position of
the tile it points to. For example, a tile which points to the tile on position
3 receives color #3. The weight of the tiling as a whole is given by having
each tile count all tiles to its left of lower rank than itself. The darkness or
lightness of a tile doesn’t affect its weight in any way.

Answer 1: For a fixed k, first choose the locations of the k dark squares.
(There are (n

k) ways to do this.) Once the locations of the dark squares have
been selected, we now have n− k color choices for each of the n tiles. The
sum of the weights of the tilings of length n using n− k ranked colors is

∑
ai

[
n

a1, a2, . . . an−k

]
,
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so our alternating sum is

∑
k

(
n
k

)
∑
ai

[
n

a1, a2, . . . an−k

]
(−1)k.

Answer 2: As before, we can look for the first tile which is not pointed
to and toggle it between light and dark. Note that this toggling has no effect
on the weight of the tiling, so this works as a weight-preserving involution.
The only exceptions are the tilings in which every tile is pointed to (i.e. the
tilings which contain one tile of each color.) Our goal now is to determine
the sum of the weights of the tilings of length n which use exactly one
square of each color 1 through n.

To create such a tiling, we can choose the location of one square at a
time, starting from the greenest square. If the greenest square is placed
in the first position, it will get weight 1. In the second position, it will
always count the one tile to its left and therefore get weight q. In general,
in position i, the greenest square will get weight qi−1, so the sum of the
possible weights for the greenest square is 1 + q + · · ·+ qn−1 = [n]q.

With the greenest tile placed, now choose where to place the second-
greenest tile from the remaining n− 1 positions. In the first of the available
positions, it will get weight 1. In the second it will get weight q, and so
forth. Altogether, the sum of the possible weights for the second-greenest
tile is 1 + q + · · ·+ qn−2 = [n− 1]q.

Continuing in this fashion, we get that the sum of the possible weights
for the i + 1st greenest tile is [n− i]q so the sum of all the possible weights
for the tiling is

[n]q[n− 1]q . . . [1]q = [n]q!

as desired.





Chapter 6

The Lattice Path Interpretation

As discussed in chapter 1, combinatorial proofs of q-identities usually make
use of the lattice path interpretation for the q-binomial coefficients. It is nat-
ural to ask whether the tiling interpretation or the lattice path interpretation
provides a clearer explanation of these identities. In that spirit, this chapter
presents the lattice path proofs of several identities from previous chapters
which work particularly well under the tiling interpretation.

6.1 Basic Identities

The identities presented in Section 2.2 translate fairly directly between the
lattice path and tiling interpretations. I present them here with their proof
sketches under the lattice path interpretation:

[
n
k

]
=

[
n

n− k

]
(6.1)[

n
k

]
=

[
n− 1

k

]
+
[

n− 1
k− 1

]
qn−k (6.2)[

n
k

]
=

[
n− 1

k

]
qk +

[
n− 1
k− 1

]
(6.3)[

2n
n

]
=

n

∑
j=0

qj2
[

n
j

]2

(6.4)

Proof sketch for Equation 6.1: Transform a lattice path from (0, 0) to
(n− k, k) to a lattice path from (0, 0) to (k, n− k) by flipping it along a line
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Figure 6.1: By reflecting this lattice path across the dotted line, we change
its destination from (2, 4) to (4, 2) while preserving its weight.

through the upper left corner, as shown in Figure 6.1. (This is equivalent to
the tiling interpretation in which we toggled the color of each square and
reversed the order.)

Proof sketch for Equation 6.2:
Question: What is the sum of the weights of the lattice paths from (0, 0)

to (n− k, k)?

Answer 1: By definition,
[

n
k

]
.

Answer 2: Consider the direction of the last step in the path.
If the last step is right, then it contributes nothing to the weight of the

lattice path, so the total weights of the paths of this form is just
[

n− 1
k

]
.

On the other hand, if the last step is up, it must contribute a weight of
qn−k to the path and the total weight of the paths that can precede the final

step is
[

n− 1
k− 1

]
.

Thus, the total weight of the paths from (0, 0) to (n− k, k) is[
n− 1

k

]
+ qn−k

[
n− 1
k− 1

]
as desired.

Proof sketch for Equation 6.3:
Proceed in the same manner as the previous proof, but instead of look-

ing at the last step in the path, consider the direction of the first step in the
path.
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Proof sketch for Equation 6.4:

Question: What is the sum of the weights of the lattice path from (0, 0)
to (n, n)?
Answer 1: By definition, [

2n
n

]
Answer 2: Consider the number of steps to the right out of the first n steps.
Say j of the first n steps are to the right. Then the weight of the lattice path

determined by just the first n steps is
[

n
n− j

]
. If we temporarily ignore the

first n steps of the path, the sum of the weights of the last n steps of the

lattice paths is
[

n
j

]
. However, there is also an interaction between the two

portions of the path. This interaction is a square of side length j which lies
above and to the left of the lattice path, as shown in Figure 6.2.

Hence, for a fixed j, the total weight of the lattice paths is

qj2
[

n
n− j

] [
n
j

]
.

Finally, the weight of all desired paths is the sum over j. That is, our answer
is

n

∑
j=0

qj2
[

n
n− j

] [
n
j

]
.

By applying Equation (2.1), we get the desired identity:[
2n
n

]
=

n

∑
j=0

qj2
[

n
j

]2

6.2 The q-Lucas’ Theorem Revisited

In section 3.8, we saw a tiling-based proof of the theorem[
pn + a
pk + b

]
≡
(

n
k

) [
a
b

]
(mod [p]q)

where p is prime and a and b are non-negative integers with 0 ≤ a, b < p.
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Figure 6.2: A lattice path from (0, 0) to (n, n) with j right steps out of the
first n. The first n steps of the path lie in the lower left rectangle and the
final n steps lie in the upper right rectangle. Regardless of how we choose
these paths, there is an additional area of j2 above and to the right of the
paths.

To translate this proof into lattice path language, we start with a new
version of Lemma 3.1.

Lemma: Suppose we have a lattice path from (0, 0) to (x, y) where x
and y are both positive and x + y = p for a prime p. If we create a set of p
distinct lattice paths by successively removing the first step from the path
and placing it at the end (and translating the resulting path either left or
down so it still goes from (0, 0) to (x, y)), then the sum of the weights of
those paths will be divisible by [p]q.

Proof: Recall that we are considering everything modulo [p]q and that
qp ≡ 1 modulo [p]q.

Note that it is equivalent to show that the exponent on the weight of
each of these p paths is distinct mod p. (Why? If each path has a different
exponent (mod p), then their sum will be equivalent to 1 + q + q2 + · · ·+
qp−1 (mod [p]q). Since 1 + q + q2 + · · · + qp−1 = [p]q, this shows that the
sum of the weights is congruent to [p]q, as desired.)

Now let’s look at the effect on a path of moving the first step to the back.
If the first step is up, moving it to the end will change the weight of the
path by a factor of qx since the up move contributed no weight at the start
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of the path, but at the end contributes weight equal to its x-coordinate. If,
on the other hand, the first step is right, moving it to the back will change
the weight of the tiling by a factor of q−y since the right was previously
increasing the x-coordinate of each up move by 1, and does not do so at the
end of the path. However, since qp = qx+y ≡ 1, we also have qx ≡ q−y, so
these actions have equivalent effects on the weight of the path (mod [p]q).

Hence, if the weight of the first path is qs, the weight of the second path
is congruent to qs+x. The weight of the third is congruent to qs+2x, and so
forth until the last tiling which has weight qs+(p−1)x. However, since p is
prime and x is strictly between 0 and p, these exponents are all distinct
modulo p, as desired.

With this lemma in place, we can proceed to the proof of the q-Lucas’
theorem.

Proof:
Question: What is the sum of the weights of the lattice paths (mod [p]q)

from (0, 0) to (p(n− k) + (a− b), pk + b)?
Answer 1: By definition, [

pn + a
pk + b

]
.

Answer 2: Split the path up into regions. Consider the first p steps in the
path as the first region, the next p steps as the second region, and so forth
until the nth group of steps, which forms the nth region. The remaining a
steps form the last region.

Look for the first region among the first n regions whose steps aren’t
all the same direction and perform the shifting procedure outlined in the
lemma to create p different paths. (Leave the rest of the path the same, just
permute the order of these p steps.) Our lemma showed that the sum of the
weights of these paths will be a multiple of [p]q. Furthermore, since per-
muting the steps within a region doesn’t change the interactions between
that region and the rest of the path, the sum of the weights of these p ver-
sions of the full lattice path is also a multiple of [p]q. Hence, since we are
working mod [p]q, we need only consider the paths for which this shifting
procedure is inapplicable, i.e. the paths in which each of the first n regions
is comprised entirely of moves in the same direction.

To calculate the sum of the weights of these tilings, we will split them
into two parts. First we consider the weight of the first n regions, then the
weight of the final region, and finally the interactions between them.

We know the first n regions must have k regions of entirely up moves
and n − k regions of right moves. Since each region has p moves, we see
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that every region of right moves contributes weight qp2
for each region of

up moves after it. However, since we are working modulo [p]q, we know
qp ≡ 1 and therefore qp2 ≡ 1 as well. Hence, the weight of the first n
regions will always be 1, so their contribution is simply the number of ar-
rangements of the k regions of up moves and n− k regions of right moves,
i.e. (n

k).
The sum of the weights of the final is easy to obtain. We have a path of

length a with b up moves, so the sum of the weights is
[

a
b

]
.

Finally, we must consider the interaction between the strip and the
board. Each of the b up moves in the final region counts each of the p(n− k)
right moves in the first n regions, so we must multiply our answer of(

n
k

) [
a
b

]
by an additional factor of qb p(n − k). However, modulo [p]q, we

have qbp(n−k) = (qp)b(n−k) = 1. Thus, our answer is simply
(

n
k

) [
a
b

]
, as

desired.

6.3 A Three-Color Identity Revisited

Recall that in the tiling interpretation, adding extra colors has very little
effect on the complexity of the problem. That is, if we use red, green,
and super-green squares instead of just red and green, it doesn’t make the
counting significantly more difficult. However, under the lattice path inter-
pretation, this is not the case. Every additional color in the tiling interpre-
tation corresponds to an extra dimension in the lattice-path interpretation.
For example, recall Equation (4.2):[

n
m

] [
m
p

]
=
[

n
p

] [
n− p
m− p

]
which we solved in Section 4.1 by considering a tiling with three colors.

To provide a combinatorial proof via lattice paths, we must extend our
definition of the weight of a lattice path to the three-dimensional case. We
do so by considering projections of the lattice path onto two-dimensional
planes. For simplicity, we name the directions cardinally, so that the posi-
tive x direction is “east”, the positive y direction is “north”, and positive z
direction is “up.” Given a lattice path with unit steps in the east, north, and
up directions, we calculate its weight in the following way:
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• First, project the path onto the xy plane. (That is, look at our three-
dimensional path from above.) This gives a two-dimensional lattice
path. Calculate its weight in the standard way.

• Second, project the path onto the xz plane. (Look at the path from
the south.) This gives another two-dimensional lattice path. Again,
calculate the weight of this path in the standard way.

• Finally, project the path onto the yz plane. (Look at it from the east.)
Calculate the weight of this two-dimensional projection.

The total weight of the lattice path is the product of the weights of these
three projections.

With this weighting scheme in place, we are ready to provide a lattice-
path combinatorial interpretation of our three-color tiling identity.

Lattice Path Proof of Equation 4.2:
Question: What is the sum of the weights of the lattice paths from

(0, 0, 0) to (n−m, m− p, p) comprised of unit steps east, north, and up?
Answer 1: First choose the locations of the m north and up moves. Each

step to the right contributes weight q to each north move in the xy-plane
projection as well as contributing weight q to each up move in the xz-plane
projection. Thus, we can select the locations of the m north and up moves at

the same time. The total combined contribution of the two is
[

n
m

]
. In fact,

the locations of the north and up moves entirely determines the combined
weights of the xy- and xz-plane projections. All that is left to determine is
the interaction between the north and up moves to give us the weight of
the yz-plane projection. To do so, choose which p of these m steps in this
projection will be up steps. By definition, the number of ways to do this is[

m
p

]
. Thus, we have accounted for the weights of all three projections and

our final answer is [
n
m

] [
m
p

]
.

Answer 2: First choose the location of the p up moves. If we look at
the combined interactions of up moves with all other moves in the xz- and
yz-plane projections, we see that the up moves get weight q for each non-
up move preceding them. Hence, selecting the locations of the p up moves
from the total n moves gives us the combined weights of the xz- and yz-

plane projections as
[

n
p

]
. Next, we must consider the weight of the xy-
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plane projection. This is just a lattice path with m − p north moves and

n−m east moves. This gives us a total weight of
[

n− p
m− p

]
for the xy-plane

projection. Considering all three projections together, we obtain a weight
of [

n
p

] [
n− p
m− p

]
for the three-dimensional lattice paths, as desired.

This proof is far less intuitive than the one using the tiling interpretation,
and requires much more complicated visualization. Furthermore, if we
wanted to extend this process to dimensions higher than three, the num-
ber of projections we consider would grow very quickly, not to mention
the additional difficulty of visualizing nonspatial dimensions.



Chapter 7

Conclusion and Future Work

7.1 Future Work

In my research, I primarily searched for either known q-identities which
lacked satisfactory combinatorial proofs or binomial identities with known
combinatorial proofs which I might try to translate into q-language. Both
these categories contain a vast number of identities, and although I accom-
plished much this semester, there are still many possible avenues for future
research.

Several identities stand out as strong candidates for combinatorial proof
under my tiling interpretation:

Jacobi’s Triple Product Identity:

∞

∑
n=−∞

znq(n+1
2 ) =

∞

∏
n=1

(1− qn)(1 + zqn)(1 + z−1qn−1)

This well-known identity has a relatively simple algebraic proof given
in Andrews and Eriksson [2], but seems likely to have a nice combi-
natorial interpretation as well.

q-Wilson’s Theorem: If p > 3 is a prime and p ≡ 3 (mod 4), then

p−1

∏
j=1

[j]qj ≡ −1 (mod [p]q).

This identity is presented in a paper by Robin Chapman and Hao
Pan [4] and proven using concepts from abstract algebra including
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field extensions and automorphisms. However, the simple form of
the equation suggests that a combinatorial explanation might be pos-
sible.

Sums of q-quarts and quints: I presented q-analogues to the identities on
the sums of consecutive integers, integer squares, and cubes. Michael
Schlosser [11] has also provided q-generalizations for the sums of
fourth and fifth powers. Their current forms are rather hard to inter-
pret from a combinatorial standpoint, but it is likely that they could
be converted to forms which more closely resemble the standard bi-
nomial identities with an additional error term of (q− 1) · f (q) which
would disappear when q = 1.

There are also several concepts which I presented in this paper but
didn’t have a chance to fully explore. For example, I gave formulas for
q-multichoose and q-multinomial coefficients but only used them in one
proof each. A good warm-up for a reader interested in conducting research
into q-identities might be to seek out multichoose and multinomial identi-
ties and attempt to find their q-generalizations.

7.2 Strengths of the Tiling Interpretation

In the previous chapter, I briefly discussed the strengths of the tiling inter-
pretation I introduce in this paper as compared to the canonical lattice-path
interpretation. In particular, we saw how certain proofs can be completed
with the addition of extra colors in the tiling interpretation but may require
the addition of extra dimensions when working with lattice paths.

More generally, I have found that my tiling interpretation is easier to
work with because it more formulaic than the lattice-path interpretation.
The effect of, say, adding a green tile to the end of a tiling is immediately
obvious because of the way in which we defined our weighting function.
The corresponding addition of an up move to the end of a lattice path may
require us to think a little more to determine how that changes the weight of
the path. By thinking of everything in terms of tilings and considering the
weight of each tile, we have distilled the essence of the weighting scheme.
On the other hand, in doing so, we have taken away some of the versatility
of the lattice-path interpretation.

In my opinion, the trade-off is a worthwhile one. By considering q-
binomial coefficients as sums of weighted tilings, we are able to strike to
the heart of their meaning with a simple and direct weighting algorithm as
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well as always limiting ourselves to an easy-to-visualize, one-dimensional
case.
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