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Abstract

We analyze a pair of nonlinear PDEs describing viscoelastic fluid flow in
one dimension. We give a summary of the physical derivation and non-
dimensionlize the PDE system. Based on the boundary conditions and pa-
rameters, we are able to classify three different categories of traveling wave
solutions, consistent with the results in [?]. We extend this work by analyz-
ing the stability of the traveling waves. We thoroughly describe the numeri-
cal schemes and software program, VISCO, that were designed specifically
to analyze the model we study in this paper. Our simulations lead us to
conjecture that the traveling wave solutions found in [?] are globally stable
for all sets of initial conditions with the appropriate asymptotic boundary
conditions. We are able give some analytical evidence in support of this
hypothesis but are unsuccessful in providing a complete proof.
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Chapter 1

Introduction

Viscoelastic fluids are a broad class of fluids that exhibit both viscous and
elastic properties. Fluid elasticity is the measure of a fluid’s tendency to re-
turn to its original shape in the absence of external forces, and fluid viscos-
ity is the measure of its resistance to flow. Common examples of viscoelas-
tic fluids include bio fluids, tempurpedic mattresses, egg white, and corn
starch in water. What distinguishes viscoelastic fluids from Newtonian flu-
ids, such as water, is that their viscosity changes when stress is applied. A
Newtonian fluid has no elastic property and thus keeps a constant viscosity
under shear stress1.

The philosophy behind the model studied in this paper is to give a vis-
coelastic generalization to well-studied Newtonian fluid flow. This entire
physical derivation is a basic summary of the more complete derivation
which can be found in [?]. The Navier-Stokes equation2 for incompressible
fluid flow of Newtonian fluids in three dimensions is

ut + u · ∇u =
∇P

ρ
+ ν∆u, (1.1)

where u is the fluid velocity, P is the pressure and ν is the fluid viscosity. In
one dimensional flow we may ignore the pressure gradient, so the above
equation simplifies to

ut + uux = νuxx. (1.2)

For Newtonian fluids, one makes the assumption that the shear stress on
the fluid, σ, is proportional to the velocity gradient (i.e. aux = σ), and thus

1The shear stress on a fluid is the projection of the stress vector onto the direction of fluid
flow.

2See [?] for a discussion of the physical derivation and history of the Navier-Stokes equa-
tions.



2 Introduction

the shear stress does not need to be accounted for in (??). However, for
viscoelastic fluids we must relax this assumption since the fluid viscosity
changes with shear stress. We modify (??) to generalize the law of incom-
pressible flow:

ut + uux = σx. (1.3)

What we need now is an equation governing the shear stress based on
known parameters. In order to model the shear stress we construct a me-
chanical analog based on known physical properties of viscoelastic fluids.
To account for both the viscous and elastic properties of a viscoelastic fluid,
we assume that each fluid particle can be approximately represented by a
spring and damper connected in series, known as a Maxwell element, as
shown in Figure ??. The strain on any object is calculated as the difference
between its current length and rest length, divided by its rest length. In
other words it is the percentage of the rest length by which the object is
being stretched.

 

spring springkσ ε=

damper damperσ µε= &

Figure 1.1: Maxwell Element: A spring and damper connected in series. In
our model we assume this to be the mechanical analog to viscoelastic fluid
particles. The spring constant represents the elasticity while the damper
constant represents the polymeric viscosity.

In Figure ??, ε denotes the strain and σ denotes the shear stress. The
force exerted on the spring is proportional to the displacement from its rest
length, and analogously the shear stress on the spring is proportional to the
strain. Thus σs = kε, where k is the spring constant. It can also be shown
that the shear stress on the damper is proportional to the strain rate so that
σd = µεt. When two objects are placed in series, the total strain is calculated
as the sum of the strain on the two objects (ε = εs + εd), and the total shear
stress is equivalent to the shear stress on either object (σ = σs = σd). Using
these two facts we find that

λσt + σ = µεt, (1.4)

where λ = k/µ. The parameter λ has the units of time represents the re-
laxation time of the fluid, that is, the relative timescale on which the fluid



3

recalls its original shape. We may further simplify equation (??) as follows.
Let w denote the displacement of a Maxwell element from its resting length.
Then the strain, ε, at any point is simply wx. So the time derivative of the
strain is,

εt = wxt = (wt)x = ux.

So we can rewrite (??) as
λσt + σ = µux. (1.5)

One may observe that the above relation is not frame invariant, which
is not physically acceptable. To account for the moving frame of the fluid
we replace the time derivative of the stress, σt, with an upper convected
time derivative. The one dimensional analog of this is

σt → σt + uσx − σux.

A precise explanation of why this works is beyond the scope of this paper
but the inquisitive reader may refer to the derivation of this model in [?].
After making this substitution we now have a complete governing equa-
tion for the shear stress. So our generalization of incompressible fluid flow
for viscoelastic fluids is given as

ut + uux = σx (1.6a)
λ(σt + uσx − σux) = µux − σ. (1.6b)

Recall that the parameter µ was the proportionality constant of the damper
in our physical analog. In the context of fluids, it represents the polymeric
viscosity3.

One small test of validity for our model is to see that it works for New-
tonian fluids. Newtonian fluids have no memory and thus the relaxation
time is zero since the fluid will not return to its original shape without the
help of external forces. Thus λ = 0 for Newtonian fluids. In this case, (??b)
simplifies to µux = σ which implies that the stress is equivalent to the ve-
locity gradient. Recall that this is the exact assumption one makes when
modeling Newtonian fluids. With this substitution, (??a) simplifies to the
one dimensional version of the Navier-Stokes equation describing incom-
pressible flow of Newtonian fluids, as desired. This paper investigates the
various properties of (??) to test its validity in all other cases.

3The polymeric viscosity of a fluid is a measure of the friction that the individual parti-
cles experience when moving past each other, which is similar to but not the same as fluid
viscosity, the fluid’s resistance to flow.
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1.1 Non-Dimensionalization

In this paper we shall study solutions to (??) that have asymptotically con-
stant boundary conditions. In other words, we assume that

lim
|x|→∞

σ(x, t) = 0, lim
x→−∞

u(x, t) = uL lim
x→∞

u(x, t) = uR,

where uL and uR are real constants. To simplify the appearance of (??), we
shall non-dimensionalize all of the variables. As demonstrated above, the
units of each variable are

[u] =
length
time

[σ] =
length2

time2 [µ] =
length2

time
[λ] = time.

First we shall prove translational invariance of the solutions. Suppose
u(x, t) and σ(x, t) solve (??). Consider the moving coordinate system (ζ, τ) =
(x − γt, t) and the functions u∗(x, t) = u(ζ, τ) + γ and σ∗(x, t) = σ(ζ, τ).
We see that γ is a velocity, with the same units as u. Thus ζ has units length
and τ has units time. We find that u∗(x, t) and σ∗(x, t) solve (??) as well.
Substituting this into (??a) gives

u∗t + u∗u∗x = σ∗x
(ut − γux) + (u + γ)ux = σx

ut + uux = σx,

which is true by assumption. Plugging into (??b) gives

λ(σ∗t + u∗σ∗x − σ∗u∗x) = µu∗x − σ∗

λ((σt − γσx) + (u + γ)σx − σux) = µux − σ

λ(σt + uσx − σux) = µux − σ,

which is also true by assumption. Thus we may set γ arbitrarily and expect
to observe the same behavior for solutions. One very convenient transla-
tion is γ = −(uL + uR)/2. The new boundary conditions in this case are

u∗L =
uL − uR

2
u∗R =

uR − uL

2
.

What is special about this case is that u∗L = −u∗R. We may therefore as-
sume without loss of generality that solutions to (??) have the property that
uL = −uR.
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Next, we shall non-dimensionalize all of the variables in this problem.
We do several rescalings to produce the following dimensionless variables
denoted with an overline.

u = uLu σ = u2
Lσ x = λuLx t = λt µ = u2

L A

Substituting these dimensionless quantities into (??) and simplifying gives
the following dimensionless PDE.

ut + uux = σx (1.7a)

σt + uσx = (σ + A)ux − σ (1.7b)

Notice that λ was completely eliminated from the equation and that the
dimensionless parameter A is defined as A = µ/u2

L. Further, the bound-
ary conditions become uL = −uR = 1. It is (??) with the aforementioned
boundary conditions that shall be studied for the remainder of this paper.





Chapter 2

Traveling Wave Solutions

2.1 ODE Simplification

The goal of this section is to describe the traveling wave solutions of the
PDE system introduced in the last chapter:

ut + uux = σx (2.1a)
σt + uσx = (A + σ)ux − σ, (2.1b)

subject to the boundary conditions

lim
x→−∞

u(x, t) = 1 lim
x→∞

u(x, t) = −1 lim
|x|→∞

σ(x, t) = 0,

where A > 0. Let us assume that there exists a traveling wave of speed c
for both u(x, t) and σ(x, t) in the form u(x, t) = U(ζ) and σ(x, t) = S(ζ)
where ξ

def= x− ct. Plugging these functions into the above system yields

S′ = U′(U − c) (2.2a)
S′(U − c) = (A + S)U′ − S. (2.2b)

Integrating (??a) gives

S =
U2

2
− cU + θ, (2.3)
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where θ is a constant of integration. The boundary conditions of the PDE
imply the following boundary conditions for U and S.

lim
ζ→∞

U(ζ) = −1 (2.4a)

lim
ζ→−∞

U(ζ) = 1 (2.4b)

lim
|ζ|→∞

S(ζ) = 0 (2.4c)

For this model we assume that t is bounded so that |ζ| → ∞ implies that
|x| → ∞. By substituting these boundary conditions into (??) and solving
the resulting system we find that

c = 0 (2.5a)

θ = −1
2

. (2.5b)

Substituting these quantities into (??) gives

S =
U2 − 1

2
. (2.6)

2.2 Phase Plane Analysis

Although S can be solved for completely in terms of U, a phase plane analy-
sis of the system will provide some very useful information. By rearranging
(??), we obtain

U′ = − S
S− (A− 1)

(2.7a)

S′ = − SU
S− (A− 1)

. (2.7b)

The equilibrium points of this system correspond with S = 0. We want
both (−1, 0) and (1, 0) to be equilibrium points in the phase plane1 since
they represent the asymptotic boundary conditions.

We need to be careful about the possibility of the denominator of (??)
being zero. This happens when S = A− 1. We know that the solution must
obey (??), which is a quadratic function relating S and U. The equation

1In the phase plane, we shall always assume U to be on the horizontal axis and S on the
vertical axis.
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Figure 2.1: Phase portrait of the ODE system for two cases: (a) A > 1,
(b) 0 < A < 1/2

has roots at (1, 0) and (−1, 0), which correspond to the initial and terminal
points of the solution trajectory. This quadratic function is concave up so to
satisfy the boundary conditions the trajectory must only exist in the plane
corresponding to S < 0, as shown in Figure ??. The minimum value of this
quadratic function is Smin

def= −1/2, which does not depend on A. Thus
the range of possible S values in a valid solution is [Smin, 0]. Therefore,
whenever (A− 1) ∈ [Smin, 0], it will be possible for S = A− 1 which will
result in a zero denominator of (??).

In the case when A > 1, all conditions are satisfied and there is no
possibility for S = A− 1, as seen in Figure ??a. When Smin ≤ A− 1 ≤ 0, or
stated differently, 1/2 < A < 1, there is a singularity in (??) and so a more
careful analysis will be required in order to investigate this problem. When
0 < A < 1/2 everything is satisfied except for the boundary conditions.
As seen in Figure ??b, the solution trajectory will begin at the point (−1, 0)
and terminate at (1, 0), which is the reverse of what it should do. Thus
0 < A < 1/2 does not satisfy the boundary conditions and so we will
need to analyze this case more carefully as well. The three cases described
above will form the basis for our classification of the types of traveling
wave solutions of our model.

2.3 Classification of Traveling Waves

Recall from the first section of this chapter that S can be written completely
in terms of U as shown in (??). Substituting this expression into (??b) and
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simplifying, we obtain the following ODE for U:

U′ =
1−U2

U2 + 1− 2A
. (2.8)

The particular translation of the solution is not important so we arbitrarily
choose to have the center of the wave at ζ = 0. We therefore set U(0) = 0.
Using this initial data we can implicitly solve (??) as

2(A− 1) log
∣∣∣∣U − 1
U + 1

∣∣∣∣ + U + ζ = 0. (2.9)

In Figure ?? we have implicitly graphed U versus ζ for five different values
of A which were chosen based on the results of the previous section. That
is, we select one sample of A from each of the intervals (0, 1/2), (1/2, 1),
and (1, ∞), and we test the two boundary cases, A = 1/2 and A = 1. When
A > 1 the implicit solution is analytic. When A = 1 the solution is the line
U = −ζ, which does not satisfy the boundary conditions. When 1/2 <
A < 1 the solution is multivalued in the central region and the boundary
conditions are reversed. When A = 1/2 the solution has an infinite slope at
ζ = 0, which can be shown by implicitly differentiating (??). Finally, when
0 < A < 1/2, the solution is analytic with reversed boundary conditions.
This figure clearly marks the three categories of traveling wave solutions
we want to study. We can describe the first category analytically by (??),
but for the last two categories we will need find non-classical2 solutions.
In the next chapter we regularize (??) to determine the weak solutions for
these two special categories.

2.4 Similarity Solutions

It may be natural to ask what other types of special solutions exist for the
PDE. Similarity solutions can be thought of as solutions of the form

u(x, t) = xat f (ζ) (2.10a)

σ(x, t) = xbtg(ζ) (2.10b)

where ζ
def= xpt, and a, b, p are real. After substituting these solutions into

(??) we find that certain choices of a, b and p will not satisfy the PDE. In

2Non-classical solutions to a PDE are not differentiable and thus do not satisfy the PDE
in its differential form. They are more often referred to as weak solutions and require a
careful analysis of the system in order to demonstrate their existence and stability.
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Figure 2.2: Implicit solutions to (??) for various values of A. (a) A > 1,
(b) A = 1, (c) 1/2 < A < 1, (d) A = 1/2, (e) A < 1/2.

fact, we found that the only possible similarity solutions for (??) have the
form

u(x, t) = x f (t) (2.11a)
σ(x, t) = g(t). (2.11b)

Plugging these solutions into ?? gives

x f ′ + x f 2 = 0 (2.12a)
g′ = (g + A) f ′ − g. (2.12b)

Solving (??) for f and g gives

f (t) =
1

t + C1
(2.13a)

g(t) = exp
(
−t2 − tC1 + 1

t + C1

) C2 − A
∫ exp

(
t2+tC1−1

t+C1

)
(t + C1)2

 dt

 (2.13b)

where C1 and C2 are integration constants. There is no closed form solution
for g(t).

Normally, these similarity solutions are used to understand the dynam-
ics of non-classical solutions to a PDE. As will be demonstrated in the next
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chapter, there do exist weak solutions to (??), however we were unable to
find a good use for the similarity solutions to contribute to our analysis.

Another type of solution we tested were purely linear solutions that are
invariant over time. We let u(x, t) = mx where m ∈ R. Then (??a) forces
σ(x, t) = m2x2/2 + C where C is an integration constant. Substituting these
solutions into (??b) and simplifying gives

(m3 + m2)
x2

2
+ C−m(C + A) = 0.

Since m, C, and A are all constants, then we need to eliminate the x2 term for
this equation to be valid. By setting m = 0 or m = −1, the coefficient (m3 +
m2) diminishes. This is surprising because it shows that linear solutions
are only possible with these two slopes. Substituting m = −1 forces the
condition A = −2C. Thus, given a value for A, there is a unique translation
of σ that will satisfy the PDE. For traveling wave solutions we found that
S = (U2 − 1)/2, in which case the term C = −1/2. This forces A = 1,
which is precisely the value of A that we found to exhibit a linear traveling
wave solution in the last section.



Chapter 3

Regularization

3.1 Introduction of Viscous Term

To understand the behavior of (??) when A ≤ 1, we shall modify (??) so
that its solutions are guaranteed to be smooth, and unique. Our model has
non-analytic traveling wave solutions for bad values of A because we have
not directly accounted for fluid viscosity. As shown in the introductory
chapter, we have accounted for the polymeric viscosity µ and the relaxation
time λ. Fluid viscosity will prevent an actual fluid from experiencing non-
analytic behavior. To account for fluid viscosity in our system, we add a
diffusion term to (??a). The governing equations become

ut + uux = σx + εuxx (3.1a)
λ(σt + uσx − σux) = µux − σ, (3.1b)

where ε is a positive constant. This new system has smooth and unique
solutions because of the diffusion term. Further, solutions to (??) approach
the behavior of solutions to (??) as ε → 0.

We shall now non-dimensionalize this system in the same fashion as
Section 1.1. If we change to the moving coordinate system (ζ, τ) = (x −
γt, t) and translate u(x, t) vertically by γ units so that u∗(x, t) = u(ζ, τ) +
γ and σ∗(x, t) = σ(ζ, τ), we find that u∗xx(x, t) = uζζ(ζ, τ). Substituting
u∗(x, t) and σ∗(x, t) into (??) and simplifying gives

uτ + uuζ = σζ + εuζζ (3.2a)
λ(στ + uσζ − σuζ) = µuζ − σ. (3.2b)

Since u and σ are assumed to be solutions to (??), then this shows that
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u∗(x, t) and σ∗(x, t) are solutions to (??) as well. We may therefore assume
without loss of generality that uL = −uR.

Now, non-dimensionalize the variables u, σ, x, t, λ and µ as they were in
Section 1.1. Let ε = ε/(µλ) so that ε is dimensionless. Substituting these
expressions into (??) gives

ut + uux = σx + εuxx (3.3a)

σt + uσx = (σ + A)ux − σ (3.3b)

It is important to note that ε → 0 as ε → 0.

3.2 Modified ODE

We will now perform the same traveling wave analysis on (??) as we did
for (??) in Chapter 2. The traveling wave solutions are of the form u(x, t) =
U(ζ) and σ(x, t) = S(ζ), where ζ = x− ct. Substituting these solutions into
(??) and simplifying yields

εU′ =
U2 − 1

2
− S (3.4a)

εUS′ = (S + A)
(

U2 − 1
2

− S
)
− εS. (3.4b)

The boundary conditions force c = 0. The singularities of this system will
no longer occur as a result of a particular choice of A. When U = 0 there is a
potential problem, but it will be dealt with by the end of this chapter. Recall
that the old traveling wave solutions satisfied S = (U2 + 1)/2, which need
not be the case here. For simplicity of notation, we define

F def= (U2 − 1)/2− S.

3.3 Phase Plane Analysis

In this section we shall conduct a phase plane analysis of the system (??).
We rewrite it below in more concise notation.

U′ =
F
ε

(3.5a)

S′ =
(S + A)F− εS

Uε
(3.5b)
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The U-nullcline can easily be described as F = 0. When this condition
is satisfied, (??b) shows that S′ = 0 only if S = 0. Therefore, the only
equilibrium points in the phase plane are (1, 0) and (−1, 0). The condition
of the U-nullcline forces the exact same relationship between U and S that
solved (??). There are two S-nullclines:

S± =
1
2

(
K− (A + ε)±

√
(K− (A + ε))2 + 4AK

)
, (3.6)

where K def= (U2 − 1)/2. Observe that

lim
ε→0

S+ = K (3.7a)

lim
ε→0

S− = −A. (3.7b)

The limit (??a) implies that F → 0. Thus the higher S-nullcline, denoted S+,
converges to the U-nullcline (which shall be denoted as SU) as ε → 0.
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Figure 3.1: Phase portraits of the viscous system for various values of A
where ε = 0.001. (a) A > 1, (b) 1/2 < A < 1, (c) A < 1/2.

Figure ?? shows three different phase planes for the system (??) when
ε is very small. In each graph, the curves S+ and SU are indistinguish-
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able since they converge when ε is small. Notice the qualitative difference
among the phase portraits for the three values of A. When A > 1, the so-
lutions remains very close to SU . When 1/2 < A < 1, the solution travels
linearly from (1, 0) to SU , then travels close to the curve SU , and finally
travels linearly to (−1, 0). When A < 1/2, the solution travels linearly
from (1, 0) to (0,−A), and then linearly from (0,−A) to (−1, 0), without
ever approaching SU . Each solutions trajectory is symmetric about the line
U = 0.

3.3.1 Analysis of the Equilibrium Points

To better understand why these solutions look qualitatively different, we
begin by studying their behavior near the equilibrium points. We denote
the information corresponding to the initial equilibrium point, (1, 0), with
a subscript L, and the terminal equilibrium point, (−1, 0), with a subscript
R. The Jacobian matrices for this system, at each equilibrium point, are

JL =

[
ε − 1

ε
A
ε − (A+ε)

ε

]
JR =

[
− 1

ε − 1
ε

A
ε

(A+ε)
ε

]
. (3.8)

The eigenvalues of these matrices are

λ±L =
1
2ε

(
Q±

√
Q2 + 4ε

)
λ±R = − 1

2ε

(
Q±

√
Q2 + 4ε

)
, (3.9)

where Q def= 1 − A − ε. These eigenvalues are of opposite parity for all
ε > 0. Therefore, each equilibrium point must be a saddle point. Since our
solutions should begin at (1, 0) and end at (−1, 0), we will only concern
ourselves with the unstable manifold1 of (1, 0) and the stable manifold of
(−1, 0). The associated eigenvectors of these eigenvalues of interest are

~v+
L =

[
1,

2−Q−
√

Q2 + 4ε

2

]
(3.10a)

~v−R =

[
1,−2−Q−

√
Q2 + 4ε

2

]
. (3.10b)

1Associated with a saddle equilibrium point are two curves, defined approximately by
the eigenvectors, passing through that point. Trajectories traveling along one of the curves
is attracted to the equilibrium point, corresponding to the positive eigenvalue, while the
other repelled, corresponding to the negative eigenvalue. We call these two curves the
stable and unstable manifolds respectively.
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The limit of this eigendata as ε → 0 is

lim
ε→0

λ+
L = lim

ε→0

Q + |Q|
2ε

(3.11a)

lim
ε→0

λ−R = lim
ε→0

−Q + |Q|
2ε

(3.11b)

lim
ε→0

~v+
L = lim

ε→0

[
1,

2− (Q + |Q|)
2

]
(3.11c)

lim
ε→0

~v−R = lim
ε→0

[
1,−2− (Q + |Q|)

2

]
. (3.11d)

Each of these limits depend on the value of

lim
ε→0

(Q + |Q|) = lim
ε→0

(1− A + |1− A|).

Recall that we are doing this analysis to understand the behavior of the
traveling wave solutions when A ≤ 1. This condition forces

lim
ε→0

(Q + |Q|) = 2(1− A).

Substituting this quantity into the above eigendata gives

lim
ε→0

λ+
L = ∞ (3.12a)

lim
ε→0

λ−R = −∞ (3.12b)

lim
ε→0

~v+
L = [1, A] (3.12c)

lim
ε→0

~v−R = [1,−A] (3.12d)

This eigendata implies that, along the unstable manifold of (1, 0) and
the stable manifold of (−1, 0), the solution travels infinitely fast in the
phase plane within the locality of the equilibrium point, as ε → 0.

3.3.2 Symmetry

From Figure ?? it appears that the solutions of (??) are symmetric about the
line U = 0. If we are able to prove this, then it will only be necessary to
study the phase plane in the region U > 0.

Let T : R2 → R
2 be a function that maps any point in the phase plane

to its corresponding symmetric point about the line U = 0. One can easily
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verify that T(U, S) = (−U, S). Now make the variable transformation V =
−U and W = S, and reverse time by setting τ = −ζ.

Rewriting (??) in terms of this new variable transformation yields

V ′ =
F
ε

(3.13a)

W ′ =
(W + A)F− εW

Vε
, (3.13b)

which is precisely the same governing equation as (??). So solutions to this
system are symmetric about the line U = 0 and inverse in time. This proves
the symmetry of solution to (??) about the line U = 0.

3.3.3 Trajectory Approximation Analysis

Let us focus our attention on the initial equilibrium point, (1, 0). The anal-
ysis from the Jacobian matrix showed that the solution travels very quickly
along a linear path, starting from (1, 0). One natural question to ask is how
far the solution will move away from the U-nullcline. The slope of SU at
(1, 0) is

dSU

dU

∣∣∣∣
U=1

= U|U=1 = 1. (3.14)

The local slope of the unstable manifold at (1, 0) is A. Figure ?? shows
what happens when A < 1. The unstable manifold will initially travel
away from the U-nullcline. We can set ε small enough so that the solution
will continue its linear trajectory to a point outside of an ε neighborhood of
the curve SU .

Now we consider the solution’s behavior in a region outside of an ε
neighborhood of SU . In this region, |F| � ε. With this approximation we
can make the following simplification to (??), assuming that |U| � ε.

U′ =
F
ε

(3.15a)

S′ ≈ (S + A)F
εU

=
S + A

U
U′. (3.15b)

From the second equation we find,

dS
dU

=
S′

U′ ≈
S + A

U
. (3.16)

This simple ODE can be solved analytically for S in terms of U as

S = MU − A, (3.17)



Phase Plane Analysis 19

where M is an integration constant. So we expect approximately linear
behavior of the solution trajectory in a region far from SU , when ε is small.
If we assume that line passes through (1, 0), this forces M = A. Therefore
this line will have precisely the same slope as the unstable manifold! This
explains the linear behavior of the solutions in the phase plane when A < 1,
as seen in Figure ??.
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Figure 3.2: Behavior of solution far from the U-nullcline for when A < 1

We define the particular solution to ?? as Sl
def= A(U − 1). As ε → 0, the

speed at which the solution travels away from (1, 0) approaches infinity.
From (??), it is clear that the solution will always travel quickly and linearly
whenever F � ε. It then makes sense that linear pieces of the solution in
the phase plane correspond to shocks, since U(ζ) and S(ζ) will appear to
change instantaneously as ε → 0.

In Figure ??, it appears that once the solution re-approaches SU , it re-
mains close to it. In the next section we shall prove this rigorously. For now,
given that Sl is the only piece of the solution corresponding to a shock, it
is possible to calculate the height of the shock. The shock height is simply
the difference between the two points at which Sl and SU intersect. Setting
Sl = SU gives

A(U − 1) = (U − 1)(U + 1)/2.

By solving this equation we find that the two points of intersection are(
2A− 1, 2A2 − 2A

)
and (1, 0).
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Taking the componentwise difference between these two points gives the
shock heights for U and S, respectively:

hU = 2− 2A (3.18a)

hS = 2A2 − 2A. (3.18b)

When A < 1/2, the second point at which Sl intersects SU is beyond
the line of symmetry, U = 0. In this case, the solution travels linearly to the
point (0,−A), and from there it travels linearly to the point (−1, 0). The
solution never slows down and so the entire shock ranges from (1, 0) to
(−1, 0). Taking the componentwise difference between these points gives
the shock heights:

hU = 2 (3.19a)
hS = 0. (3.19b)

From Figure ?? we observe that the solution passes through the point (0,−1/2)
when 1/2 < A < 1. However, when A < 1/2 the solution will passes
through (0,−A). This will be proven rigorously in the next section. Fig-
ure ?? illustrates qualitative structure of the two classes of weak traveling
wave solutions.
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Figure 3.3: Qualitative structure of weak traveling wave solutions for two
cases: (a) 1/2 < A < 1, (b) A < 1/2

3.4 Trapping Region Arguments

In this section, we use several trapping region arguments in the phase plane
to rigorously prove a few propositions of the previous section. Due to the
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symmetry of the solutions, it will only be necessary to study the region in
the phase plane corresponding to U > 0.

We begin by assuming that 1/2 < A < 1. It will first be necessary to
show that solutions are trapped above S+ (see (??)). It suffices to show that
SU < S+ when U ∈ (−1, 1). Taking the difference between the two curves
gives

S+ − Su = −1
2

(
K + A + ε−

√
(K + A + ε)2 − 2εK

)
. (3.20)

Recall that K = (U2 − 1)/2. Notice that K < 0 when U ∈ (−1, 1). The
minimal value for K is −1/2, which implies that K + A + ε > 0 since A >
1/2. It follows that (??) must be positive which verifies that S+ > SU when
U ∈ (−1, 1).

For all point lying above the curve SU we know from (??) that U′ < 0.
Along S+, the vector field has no vertical component. Therefore, any point
existing above S+ is trapped above this curve. So S+ provides a lower
boundary for solutions, as shown in Figure ??.

 -1.2  -0.8  -0.4 0 0.4 0.8 1.2
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Figure 3.4: The curve S+ provides a lower left bound for solution trajecto-
ries.

In the phase plane analysis of the previous section, we observed that the
solution travels linearly from (1,0) to SU , after which time it remains close
to SU . We will prove the latter property by constructing an appropriate
trapping region. We have already constructed the bottom of this trapping
region, S+. We shall now construct the top.

Consider the curve defined as Sε
def= Su + ε. We first demonstrate that
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Sε > S+ when U ∈ (−1, 1). Taking their difference and simplifying yields

Sε − S+ = ε +
1
2

[
K + ε + A−

√
(K + ε + A)2 − 4Kε

]
> ε +

1
2

[
K + ε + A−

√
(K + ε + A)2

]
= ε

> 0,

as desired.
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Figure 3.5: Trapping region between the curves S+ and S√ε

Since ε is small, then
√

ε > ε Therefore, the curve S√ε
def= Su +

√
ε > Sε >

S+ when U ∈ (−1, 1). The curve S√ε shall define the top of the trapping
region, shown in Figure ??. We have already shown that solutions must be
trapped above S+, so what remains to be shown is that they are trapped
below S√ε. We do this by demonstrating that the vector field along S√ε

flows into the trapping region. That is, the slope of the vector field along
the curve S√ε exceeds the slope of the curve itself. This can be expressed
more formally as dS/dU|S=S√ε

> dS√ε/dU. Simplifying this inequality
yields

U2 < (S√ε + A) +
√

εS√ε.

Letting ε → 0 makes this inequality as restrictive as possible. Further sim-
plification yields

0 < U <
√

2A− 1, (3.21)

as long as A > 1/2.
This trapping region must be valid for the non-linear part of the solu-

tion trajectory. That is, we would like it to be valid for U ∈ (0, 2A − 1).
The above inequality shows that it is valid for (0,

√
2A− 1). Observe that
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√
2A− 1 > 2A − 1 as long as 1/2 < A < 1, which is we have assumed.

The vertical width of this trapping region depends on ε, so we can make it
arbitrarily small by letting ε → 0. This trapping region shows that once the
solution re-approaches SU , the solution is forced to remain close to SU until
U = 0.
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Figure 3.6: Trapping region between S+ and the line SL = (U − 1)/2

Now we shall construct a trapping region that demonstrates that the so-
lution trajectory passes through the point (0,−1/2). As a lower bound we
use S+ once again. For the upper bound, we use the line passing through
points (1, 0) and (0,−1/2), as seen in Figure ??. We define this line by
SL

def= (U − 1)/2. To show that solutions are trapped below SL, we need to
verify the inequality dS/dU|S=SL

> dSL/dU. Simplifying this inequality
gives

U >
2ε

(2A− 1)
. (3.22)

When ε small enough so that 0 < ε � 2A − 1, then this inequality sim-
plifies to U > O(ε).2 So the trapping region is valid for U ∈ (O(ε), 1), as
we would like. Since ε can be made arbitrarily small, this trapping region
shows that the solution trajectory must pass through the point (0,−1/2).
Our analysis has not been successful in demonstrating that the solution
trajectory reaches the point (0,−1/2) in finite time when 1/2 < A < 0.

2In this case the symbol O(ε) is meant to denote some term that is proportional to ε, and
thus goes to 0 as ε → 0.





Chapter 4

Characteristic Analysis

4.1 Characteristic Variable Transformation

Recall our original PDE system derived in Chapter 1:

ut + uux = σx (4.1a)
σt + uσx = (σ + A)ux − σ. (4.1b)

The characteristics of this PDE system are curves in (x, t)-space that show
how information is being propagated. The functions u and σ may vary
along these characteristic curves. In a hyperbolic system, such as (??),
the speed at which information travels, and hence influences other points,
must be finite. To determine the characteristic curves of (??) we will rewrite
the system into its matrix-vector form, ~qt + B~qx = ~b, and diagonalize. For
our system we have

~q def=
[

u
σ

]
B def=

[
u −1

−(A + σ) u

]
~b def=

[
0
−σ

]
. (4.2)

The eigenvalues of B and their associated left eigenvectors (i.e. the eigen-
vectors of BT) are

λ± = u±
√

A + σ (4.3a)

~v± =
[√

A + σ,∓1
]

. (4.3b)

Multiplying both sides of the PDE by ~v+ gives

~v+(~qt + B~qx) = ~v+~b (4.4a)

~v+(~qt + λ+~qx) = ~v+~b. (4.4b)
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Dividing (??b) by
√

A + σ gives(
ut −

σt√
A + σ

)
+ (u +

√
A + σ)

(
ux −

σx√
A + σ

)
=

σ√
A + σ

(u− 2
√

A + σ)t + (u +
√

A + σ)(u− 2
√

A + σ)x =
σ√

A + σ
.

Similarly, following the same process with ~v− gives

(u + 2
√

A + σ)t + (u−
√

A + σ)(u + 2
√

A + σ)x = − σ√
A + σ

.

The PDE written in this alternative form is rather useful. These equation
look similar to a system of transport equations with a source term. To see
this we define

L def= u + 2
√

A + σ (4.5a)

R def= u− 2
√

A + σ, (4.5b)

which is the proper change of variables for the characteristic analysis. Now
the PDE system becomes

Lt + (u +
√

A + σ)Lx =
σ√

A + σ
(4.6a)

Rt + (u +
√

A + σ)Rx = − σ√
A + σ

. (4.6b)

We know how to write L and R in terms of u and σ, but notice how it is also
possible to write u and σ in terms of L and R. From the definitions we find
that

u =
L + R

2
(4.7a)

σ =
(

L− R
4

)2

− A. (4.7b)

Rewriting the entire system completely in terms of L and R gives

Lt +
(

3R + L
4

)
Lx =

(L− R)
4

− 4A
(L− R)

(4.8a)

Rt +
(

3L + R
4

)
Rx = − (L− R)

4
+

4A
(L− R)

. (4.8b)
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The initial conditions for L and R can simply be transformed based on
their definitions in terms of u and σ. The boundary conditions are

L(−∞, t) = 1− 2
√

A L(∞, t) = −1− 2
√

A (4.9a)

R(−∞, t) = 1 + 2
√

A R(∞, t) = −1 + 2
√

A. (4.9b)

We can study the characteristics in this transformed PDE system and un-
derstand how information propagates.

4.2 Characteristic Analysis

In any hyperbolic partial differential equation there is a certain way that in-
formation propagates in the system. Characteristic curves are curves in the
(x, t)-plane, starting at (x0, 0), that move continually along a path that de-
scribes where information is being propagated to (see Figure ??). In many
cases, solutions to the system will be invariant along the characteristics.
However, because of the source terms1 in (??), the solutions will not nec-
essarily remain constant along the characteristics. The transformation of
the previous section allows us to analyze the characteristics of the system.
Since there are two equations, and two distinct wave speeds,2 we will need
to define two families of characteristic curves. Namely,

Cξ = {(xξ(ξ), tξ(ξ)) | ξ ≥ 0} Cη = {(xη(η), tη(η)) | η ≥ 0},

where ξ and η are the parameters for each family of characteristic curves.
We can think of the functions L and R as functions of the parameters ξ and
η:

L(xξ , tξ), L(xη , tη), R(xξ , tξ), R(xη , tη).

The eigenvalues, expressed in (??a), describe the speed of propagation for
the two characteristic curves. The characteristic speed of propagation is
given by dxξ/dtξ and dxη/dtη , respectively. Therefore, these functions of ξ
and η must satisfy the following set of differential equations.

dxξ

dtξ
= λ+ =

3R + L
4

(4.10a)

dxη

dtη
= λ− =

3L + R
4

(4.10b)

1In this context, the source terms refer to those terms in (??) that do not contain an x or
t derivative

2The eigenvalues in (??a) are defined to be the two distinct wave speeds in the system.
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Observe that we have the freedom to set dtξ/dξ and dtη/dη arbitrarily. We
found that it is easiest to let

dtξ

dξ
= 1 (4.11a)

dtη

dη
= 1. (4.11b)

As mentioned earlier, L and R will not be constant along the character-
istics. However, we can easily calculate their rate of change based on the
dynamics of xξ , tξ , xη and tη . Using (??) we have

∂L
∂ξ

= Lt
dtξ

dξ
+ Lx

dxξ

dξ
= Lt +

(
3R + L

4

)
Lx =

(
ω− A

ω

)
(4.12a)

∂R
∂η

= Rt
dtη

dη
+ Rx

dxη

dη
= Rt +

(
3L + R

4

)
Rx = −

(
ω− A

ω

)
, (4.12b)

where ω
def= (L− R)/4.
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Figure 4.1: An example of a characteristic diagram for our system. Time is
represented by the vertical axis and x on the horizontal axis.
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Each individual characteristic starts at t = 0 and some unique value
x = x0, as seen in Figure ??. From this we can uniquely determine the val-
ues of L and R, depending on how the initial conditions are defined. This
characteristic information will lead us to design an alternative numerical
scheme that solves for the characteristics and the solutions, L and R, at the
same time.

Let us now make a few observations about the characteristics them-
selves. Suppose that L and R take on their boundary values, as seen in
(??). We demonstrate here that the values along each of their respective
characteristics will not change locally. On the left boundary we have ω =
[(1 + 2

√
A)− (1− 2

√
A)]/4 =

√
A, and on the right boundary we have

ω = [(−1 + 2
√

A)− (−1− 2
√

A)]/4 =
√

A as well. So in either case we
have

∂L
∂ξ

=
(√

A− A√
A

)
= 0 (4.13a)

∂R
∂η

= −
(√

A− A√
A

)
= 0, (4.13b)

as desired. This fact will be useful when we develop the method of charac-
teristics in the next chapter.





Chapter 5

Numerical Algorithms

A helpful tool in our analysis of (??) has been our numerical approxima-
tions. A graphical user interface program, with many powerful features,
uses each of the numerical schemes that will be described in this chapter.
The inner-workings of the program itself will be described in Chapter 7.

5.1 Lax-Wendroff Method

Let us first describe some notation. We define the space and time inter-
vals as [0, T] and [XL, XR]1, respectively. Both intervals are discretized into
step sizes of ∆x and ∆t, respectively. Let xi denote the ith spatial point in
this discretization, starting from XL, where i = 1, 2, ...I. Let tn be the nth
time point in the discretization starting from zero, where n = 1, 2, ...N. For
shorthand we shall denote un

i ≈ u(xi, tn) and σn
i ≈ σ(xi, tn).

The program is designed to step forward through time and update the
entire spatial interval at each step so as to simulate the solution. We use
a Taylor approximation to approximate the value of the solution using
known values from previous time steps:

u(xi, tn+1) = u(xi, tn) + ∆tut(xi, tn) +
∆t2

2
utt(xi, tn) + O(∆t3) (5.1a)

σ(xi, tn+1) = σ(xi, tn) + ∆tσt(xi, tn) +
∆t2

2
σtt(xi, tn) + O(∆t3). (5.1b)

1Although we would like our spatial interval to be infinite, this is impossible for a com-
puter program to simulate. Thus we define XL and XR to be far enough away from the
center of the solution so that asymptotic boundary conditions can be approximated. In
fact, it suffices to simply make the interval larger than the domain of dependence for the
segment of the solution that does not satisfy a boundary condition.
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The t-derivatives of u and σ, can be expressed completely in terms of x-
derivatives using (??). We modify (??) slightly so that the system is split
into two easier subsystems2. The numerical algorithm will solve the two
subsystems in sequence at each time step. The algorithm will first account
for the effect of

ut = σx − uux (5.2a)
σt = (A + σ)ux − uσx, (5.2b)

and then accounts for the effect of

σ∗t = −σ∗. (5.3)

To calculate the effect of (??), we use the Taylor approximation given in
(??). To calculate the effect of (??) we multiplying the result of the first
substep by e−∆t. This will be made more clear in a moment.

To complete the second order Taylor approximation in terms of only x-
derivatives, we must calculate utt and σtt. We therefore differentiate both
sides of (??) with respect to t and after repeated application of the chain
rule and some further simplification, we obtain

utt = (A + σ + u2)uxx − 2uσxx − uxσx + 2u(ux)2 (5.4a)

σtt = (A + σ + u2)σxx − 2u(A + σ)uxx − (σx)2. (5.4b)

Now that we are able to express all t-derivatives completely in terms of
x-derivatives, we may simplify (??) into an explicit method where the x-
derivatives are calculated using centered first order finite difference ap-
proximations. Define the quantities

θn
i ≈ ut(xi, tn)∆x πn

i ≈ σt(xi, tn)∆x

Θn
i ≈ utt(xi, tn)∆x2/2 Πn

i ≈ σtt(xi, tn)∆x2/2.

Observe that each of these quantities can be expressed in terms of the ele-
ments of the set

{un
i−1, un

i , un
i+1, σn

i−1, σn
i , σn

i+1}.

2In [?] this is referred to as the fractional step method. LeVeque shows that the method
converges to the solution as ∆x, ∆t → 0
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Now our numerical method can be computed by the following steps:

un′
i = un

i +
∆t
∆x

θn
i +

∆t2

∆x2 Θn
i (5.5a)

σn′
i = σn

i +
∆t
∆x

πn
i +

∆t2

∆x2 Πn
i (5.5b)

un+1
i = un′

i (5.5c)

σn+1
i = σn′

i e−∆t. (5.5d)

To calculate the solution values at the spatial boundaries we introduce
ghost cells,3 which are defined beyond the spatial boundaries. We set the
value in these ghost cells to be the boundary values given for (??). This
is justified because we’re assuming asymptotically constant boundary con-
ditions on both variables. The ghost cells allow us to use a centered finite
difference approximation to approximate the x-derivatives on the spatial
boundary.

The above method is not TVD4. However, we can always refine the grid
so that it passes the CFL stability conditions5. The eigendata in (??) tells
us the rate at which information travels in this system. To pass the CFL
condition we need

∆x > ∆t max
x∈[XL,XR]

∣∣∣∣u(x, t)±
√

A + σ(x, t)
∣∣∣∣ (5.6)

As expected, there is minor oscillation near a shock solution that cannot
be resolved regardless of the choice of ∆x. The method passed the test for
traveling wave solutions of all speeds and, based on many simulations,
the traveling wave solution appear to be numerically stable. This will be
explored further in the next chapter.

3Ghost cells are artificial spatial grid cells that are defined on the left and right spatial
boundary. Since this model assumes asymptotically constant boundary conditions, we hold
the ghost cells constant. See [?] for a more complete explanation of ghost cells.

4Total Variation Diminishing. Total variation is defined as TV =
∫ XR

XL
|ux|+ |σx| dx. The

total variation of a numerical solution should diminish over time in order for the method
to be considered TVD. For more details, see [?].

5The CFL condition is a condition that some numerical methods must pass in order to
ensure that the numerical domain of dependence contains the analytic domain of depen-
dence. In this numerical method, it does not make sense for a point to influence points that
are outside of its range of influence. If the CFL condition were not passed it may result in
the numerical method being highly unstable. See [?] for further details.
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5.2 Method of Characteristics

The method of characteristics is a numerical method for computing solu-
tions that utilizes the characteristic information of the solutions. To develop
the algorithm, we draw from the results of the previous chapter. We de-
fine the space and time intervals as [0, T] and [XL, XR], respectively. Both
intervals are discretized into step sizes of ∆x and ∆t, respectively. Let xi
denote the ith spatial point in this discretization, starting from XL, where
i = 1, 2, ...I. Let tn be the nth time point in the discretization starting from
zero, where n = 1, 2, ...N. For all times after the initial time, the spatial grid
need not be uniformly spaced. In fact, at each time step, we shall redefine
the grid. Let xξ(i, n) represent the x-coordinate of the ξ characteristic orig-
inating from xi, at time tn. Likewise, let xη(i, n) represent the x-coordinate
of the η characteristic originating from xi, at time tn.

We will keep track L along the ξ characteristic and R along the η char-
acteristic. We do this because we can easily determine how they change
along these characteristic by (??). When it is necessary to find R on the ξ
characteristic or L on the η characteristic, they will be determined by in-
terpolation. Since it is likely that the characteristics will travel together in
a small region, we will keep track of the boundary values far outside of
the domain of dependence. For clarity of notation, we will let Rξ(i, n) de-
note the value of R along the ξ characteristic originating from xi, at time tn.
Rη(i, n), Lξ(i, n) and Lη(i, n) are denoted analogously. The pseudocode for
the algorithm is shown below.

for n = 1 through n = N

ωξ(i) = Rξ (i,n)−Lξ (i,n)
4

ωη(i) = Rη(i,n)−Lη(i,n)
4

λξ(i) = 3Rξ (i,n)+Lξ (i,n)
4

λη(i) = 3Lη(i,n)+Rη(i,n)
4

xξ(i, n + 1) = xξ(i, n) + λξ(i)∆t

xη(i, n + 1) = xη(i, n) + λη(i)∆t

Lξ
′(i, n) =

(
ωξ(i)− A

ωξ (i)

)
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R′η(i, n) = −
(

ωη(i)− A
ωη(i)

)
Lξ(i, n + 1) = Lξ(i, n) + L′ξ(i, n)∆t

Rη(i, n + 1) = Rη(i, n) + R′η(i, n)∆t

Lη(i, n + 1) = Interpolate {xξ(i, n + 1), Lξ(i, n + 1)} onto xη(i, n + 1)

Rξ(i, n + 1) = Interpolate {xη(i, n + 1), Rη(i, n + 1)} onto xξ(i, n + 1)

end loop

for n = 1 through n = N

Ln
i = Interpolate {xξ(i, n), Lξ(i, n)} onto xη(i, 1) for all n

Rn
i = Interpolate {xη(i, n), Rη(i, n)} onto xξ(i, 1) for all n

end loop

The boundary conditions are incorporated into the interpolation steps.
Because the ξ characteristics moves to the right relative to the η character-
istics, we know xη(i, n) < xξ(i, n) for all i and n. Thus for each time step n,
we consider the interval

[xη(1, n), xξ(I, n)]. (5.7)

In particular, we calculate the length of (??) and multiply it by 2 which we
set to the quantity Bn. Then, at the interpolation of Lη , we define the addi-
tional points (xη(1, n)− Bn, uL +

√
A) and (xξ(I, n) + Bn, uR +

√
A). Like-

wise, at the interpolation of Rξ , we define the additional points (xη(1, n)−
Bn, uL −

√
A) and (xξ(I, n) + Bn, uR −

√
A). We can define these points in

this way because we learned in the previous chapter that L and R remain
constant along the characteristics when they are both equal to the bound-
ary conditions. In particular, this was shown in equation (??). It is assumed
that the user will define an interval that is large enough so that, for the
given initial condition, the asymptotic boundary conditions are met in the
interval [XL, XR]. If that is the case, then because the points being added
are far away from the domain of dependence, they will remain equal to
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the boundary values along their characteristics. Thus it is safe for us to as-
sume that, at any given time, the points being added take on the boundary
values.

Using these numerical schemes, we verified the apparent global conver-
gence of initial data to traveling wave solutions, which will be discussed in
the next chapter.



Chapter 6

Stability and Convergence

6.1 The Global Convergence Conjecture

Using the numerical methods described in the previous chapter, we ob-
served that all initial, defined as a perturbation to the traveling wave so-
lution with compact support, seem to converge to some translation of the
traveling wave solution. In particular, the solution will converge to the
unique translation of the traveling wave solution such that the area be-
tween the perturbed solution and the said traveling wave solution, over
the entire spatial domain, is equal to zero. The conjecture can be stated
more formally as follows.

Conjecture: Let u(x, t) and σ(x, t) be solutions to the boundary valued
problem (??) on the domain x ∈ (−∞, ∞) and t ∈ [0, ∞). Let uw(x, t)
and σw(x, t) be traveling wave solutions (i.e. solutions to (??)) such that∫
R

[u(x, 0)− uw(x, 0)] dx = 0. Then

lim
t→∞

∫
R

(|u(x, t)− uw(x, t)|+ |σ(x, t)− σw(x, t)|) dx = 0 (6.1)

While we have been unsuccessful in proving this conjecture, we are able
to show convergence and stability in a few special cases.

6.2 Perturbation Analysis

We now analyze the stability of these traveling wave solutions under slight
perturbations with compact support. Let U and S represent traveling wave
solutions to the system. Consider a solution to the system of the form
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u(x, t) = U(x) + ε(x, t) and σ(x, t) = S(x) + δ(x, t) where ε(x, t) and δ(x, t)
are defined to be zero everywhere except for when x ∈ Ω where Ω ⊂ R is
closed and bounded. Plugging u(x, t) and σ(x, t) into (??) and simplifying
gives

εt + Uεx + U′ε + εεx = δx (6.2a)
δt + Uδx + S′ε + εδx −U′δ− Sεx − εxδ = Aεx − δ. (6.2b)

We can simplify (??a) using the product rule to get

εt + (Uε)x +
(

ε2

2

)
x

= δx, (6.3)

which after integrating both sides with respect to x and rearranging some
terms, becomes

∂

∂t

∫
R

ε dx =
[

δ−Uε− ε2

2

]∞

−∞
= 0. (6.4)

Recall that ε and δ have compact support. Equation (??) shows that there
is no change in the area of the perturbation, ε(x, t), over time, regardless of
its magnitude (see Figure ??).

-10 -8 -6 -4 -2 0 2
-1

0

1

2

x

U

4

Figure 6.1: Example of a perturbation we have studied. The area of ε here
is zero, and will remain zero for all time.

Now let us make the simplifying assumption that the perturbations,
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and their derivatives, are extremely small. We could then simplify (??) to

εt + Uεx + U′ε ≈ δx (6.5a)
δt + Uδx + S′ε−U′δ− Sεx ≈ Aεx − δ. (6.5b)

We make the second simplifying assumption that U ≈ u0 and S ≈ 0,
where u0 is a constant, when x ∈ Ω. This is possible if Ω is far away from
the center of the wave so that the asymptotic boundary conditions force
u(x, t) and σ(x, t) to be nearly constant. Now (??) can be simplified to

εt + u0εx ≈ δx (6.6a)
δt + u0δx ≈ Aεx − δ. (6.6b)

After integrating on both sides with respect to x over the entire real line we
find

∂

∂t

∫
R

ε dx ≈ 0 (6.7a)

∂

∂t

∫
R

δ dx ≈ −
∫
R

δ dx. (6.7b)

We already know that (??a) is a strict equality from (??). However, notice
that (??b) implies that the area of of the perturbation δ(x, t) is exponentially
decaying over time. However, this is not sufficient to show convergence
since the perturbations could be converging to anything with zero area. It
would be more useful to see what happens to the integrals of ε2 and δ2 over
time. We can analyze this by multiplying (??a) by ε and (??b) by δ and then
integrating both equations with respect to x. After some simplification we
obtain

∂

∂t

∫
R

ε2 dx ≈ −2
∫
R

δεx dx (6.8a)

∂

∂t

∫
R

δ2 dx ≈ 2A
∫
R

δεx dx− 2
∫
R

δ2 dx. (6.8b)

The quantity δεx makes this system rather difficult to analyze. However,
there is one extremely important fact to take note of. The function ε2 will
diverge the fastest when δ ∝ −εx. However, when this is the case, notice
that δ2 will diminish as quickly as possible. In the reverse case, when δ ∝ εx,
then ε2 will diminish as quickly as possible but δ2 may or may not dimin-
ish, depending on its current value. Notice that if ε2 is small enough, then
it would follow that εx is small, meaning that δ2 will decay exponentially
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over time. Therefore, if one can show from the equations that εx is ap-
proximately proportional to δ, then it would easily follow from the above
argument that the traveling wave solutions are locally stable when u and σ
are approximately constant.

6.2.1 Plane Wave Analysis

Using plane waves, we can show perturbations in the constant region of u
and σ tend to diminish. Suppose that the functions ε(x, t) and δ(x, t) take
on the following forms

ε(x, t) = a(t)eikx δ(x, t) = b(t)eikx,

where k is the wave number of the plane wave and, ε(t) and δ(t) are the
amplitudes of the plane waves over time. Substituting these solutions into
(??) and simplifying yields

at(t) = −iu0ka(t) + ikb(t) (6.9a)
bt(t) = iAka(t)− (1 + iu0k)b(t). (6.9b)

To show that these amplitudes decay over time, we need only show that
the real part of the eigenvalues of this system are negative. We calculate
these eigenvalues to be

λ± = −1
2
±

(
1
2

√
1− 4Ak2 − iu0k

)
.

Clearly, Re[λ−] < 0. However, for Re[λ+] < 0, we need
√

1− 4Ak2 < 1,
which is equivalent to the condition that k2 > 0. This conditions must
always hold since we have assumed that k is real. Therefore, the real part
of both eigenvalues must always be negative. This result verifies the linear
stability of (??) in regions where U and S are approximately constant.

Unfortunately, it is only in this simple linearized case that we are able to
perform this sort of analysis. More complicated arguments are necessary
to analyze the full system. In any case, this set of arguments sets a good
foundation.

6.3 Measures and Energy Arguments

Another way to show convergence is to construct an energy for the system
that diminishes over time. For simplicity of notation, we will define Lw and
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Rw to be traveling wave solutions to (??). The measure

M(L, R) def= (L− Lw)2 + (R− Rw)2, (6.10)

satisfies M(Lw, Rw) = 0 and M(L, R) ≥ 0 for all x ∈ R. In particular,
M(L, R) must be non-zero somewhere if (L, R) 6= (Lw, Rw). We shall define
an energy function, E(t), as follows:

E(t) def=
∫
R

M(L, R) dx. (6.11)

To show convergence to a traveling wave solution, (Lw, Rw), we must
to show that limt→∞ E(t) = 0. It will suffice to show that Et(t) < 0 for all
t ∈ R+. This inequality has been verified numerically (See Section 7.2.2).

d
dt

E(t) =
∫
R

d
dt

M(L, R) dx (6.12a)

So we calculate

d
dt

M(L, R) = 2(L− Lw)(L− Lw)t + 2(L− Lw)(L− Lw)t (6.13a)

= 2Lt(L− Lw) + 2Rt(R− Rw) (6.13b)

Unfortunately, we were not able to simplify this quantity to anything use-
ful, even when many assumptions were made about L and R.

The measure above was special because it appears as though its en-
ergy decrease monotonically given any initial perturbation (See Figure ??).
We have tested measures that do not necessarily decrease monotonically,
instead they are bounded below some monotonically decreasing function
(See Figure ??). For example, we have tested the measure

M(ε, δ) = (δ− ε
√

σw + A)2 + (δ + ε
√

σw + A)2.

The time derivative of the energy of this measure can be simplified to Et(t) =
Q1 + Q2, where

Q1 =
∫ ∞

−∞

[(
3
2
(uw)x − 1

)
δ2 +

(uw)xε2

4
(u2

w + 1)
]

dx (6.14a)

Q2 =
∫ ∞

−∞
[Aδεx − uw(uw)xδ(δ + ε)] dx. (6.14b)

We can easily show that Q1 is always negative. We must therefore show
that Q2 is smaller in absolute value than Q1, or that Q2 is negative. We
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observe in our simulations that this is true under certain conditions, but
we have been unsuccessful in proving anything. One may notice that Q1
also contains a δεx term, which we are not sure how to treat. Much of the
analysis that we have done in this section relies on knowing the behavior
of this particular product.



Chapter 7

The VISCO Software Package
for Numerical Simulations

In this chapter we discuss the inner workings of the VISCO software pack-
age that was used to do much of the numerical simulations and numerical
analysis of this PDE system. We begin with a general discussion of the user
interface and then move on to explain some of the deeper functionality and
how it can be used to analyze this PDE system.

7.1 User Interface

7.1.1 Buttons and Bars

To begin VISCO simply type the command visco at the command line
prompt in Matlab. This will open a window similar to the one depicted
in Figure ??. All the buttons, text fields and checkboxes may seem a bit
overwhelming at first, but they will all be explained in this section. Ini-
tially, all the fields are set to their default settings and the user can click the
Run button in the top left corner of the screen to run the first simulation.
Several things will happen after this button is clicked. Text at the very bot-
tom of the window will change to indicate the status and the progress of the
program. The status window is the text displayed at the bottom left corner
of the screen. The text will indicate at what point in the simulation VISCO
is currently at, such as Calculating Initial Conditions and Running Simulation.
This feature is helpful because it can help the user determine if VISCO is
frozen or if certain calculations or processes are taking a very long time.
The Running Simulation step is the main part of the program which uses
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Figure 7.1: Basic screen shot of the startup screen.

the numerical algorithms explained in Chapter 5. This step normally takes
the longest, and to keep track of its progress we display the percent to com-
pletion in the progress bar, located in the bottom right corner of the screen.
When the simulation is complete the progress bar displays Simulation Com-
plete. While the simulation is running, the status bar conveniently gives the
estimated time for calculating the solution which is determined based on
how long the first 200 time steps took.

Once this simulation is complete, several things will happen. The sta-
tus bar reads Playing Solution and the two large set of axes in the window
are animated and play the solution that was just calculated. The default
solution is a simple traveling wave solution with c = 0 and hence does not
move. In the default simulation, the solution was solved out to t = 5 and so
the animation will continue to play until Time = 5. The Time is displayed on
the title of each axis respectively. If the user wishes to pause the animation
they may click anywhere on either of the axes.
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Once the animation is complete, several more things will happen. The
other three buttons in the figure, which shall be explained in a bit, become
active. Furthermore, the status bar indicates the amount of memory that
is currently being used. This is a courtesy to the user who should be con-
science of memory allocation to VISCO. Memory is increased if either the
solution grid is refined, the solution space is expanded, or the solution time
is increased. Memory is being used after each simulation because the so-
lution is stored so that the user may replay the animation. VISCO already
takes many memory conserving measures, such as saving only the mini-
mum number of time frames that are necessary to play a smooth anima-
tion. However, as a consequence, the user does not have control over the
playback speed.

To playback the simulated solution, simply click the Play button. This
feature always plays back the most recently simulated solution. There are
two text boxes next to the play button which allow the user to specify the
time window on which the solution is played. For example if the solution
was simulated in the time domain t ∈ [0, 5] and the user only wants to play-
back the part corresponding to t ∈ [3, 4], then simply enter 3 into the first
text box and 4 into the second. VISCO catches bad user input and displays
an appropriate error message in the status window. All error messages are
displayed with red text to draw the users attention to the problem. The
default color of text in the status bar is black.

In some cases, the user may have mistakenly defined a time domain
that was too small. Instead of recalculating the piece of the solution that
has already been solved, the user has the option of calculating the solution
in a larger time domain by appending to the current solution. By clicking
the Continue button, VISCO uses the last time frame of the previous simu-
lation as the initial conditions for the new simulation, while saving the old
simulation. The new simulation runs for the amount of time specified in
the text box next to the button. Once the simulation is complete, only the
new part of the solution is played. To play back the entire solution the user
must click the Play button.

There is one final button in the window, labeled Analyze, which shall be
discussed in further detail later on.

7.1.2 Grid and Parameter Settings

The series of small text boxes in the top right corner of the window spec-
ify all of the parameters and grid settings. The purpose of most of these
variables have been discussed in previous chapters, but we shall quickly
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review some of them here.

• uR: Specifies the value of uR as described in Chapter 1. More specif-
ically, uR = limx→∞ u(x, t). In Chapters 2 through 6 we assumed
uR = −1.

• uL: Specifies the value of uL as described in Chapter 1. More specif-
ically, uL = limx→−∞ u(x, t). In Chapters 2 through 6 we have as-
sumed that uL = 1

• beta: Specifies the parameter value β = 1/λ, where λ has the same
meaning as in (??). In Chapters 2 through 6 we assumed that β = 1
after non-dimensionalizing.

• alpha: Specifies the parameter value α = µ/λ where µ and λ carry
the same meaning as in (??). In Chapters 2 through 6 we have as-
sumed that α2 = A.

• xprec: Defines the precision of the grid on which the solution will be
calculated. In particular, xprec indicates the number of data points
that are saved per unit of space (i.e., xprec = 1/∆x). The precision for
the time domain is calculated automatically by VISCO. The program
chooses the smallest possible precision that will yield a stable solution
using the particular algorithm. This is done to conserve memory and
to ensure that the CFL conditions are satisfied. [Note: Increasing xprec
will increase memory usage proportionally]

• tfinal: Specifies the size of the time domain. Essentially, the time do-
main on which the solution will be simulated is t ∈ [0, tfinal]. [Note:
Increasing tfinal will increase memory usage proportionally]

• xmin/xmax: The spatial domain on which the solution will be solved
is x ∈ [xmin, xmax].

7.1.3 Initial Conditions

One of the more complicated aspects of running VISCO is defining initial
conditions properly. Initial conditions can be defined in two ways: in terms
of u(x, 0) and σ(x, 0), or in terms of perturbations to the traveling wave
solution for the given parameter settings, that is ε(x, 0) and δ(x, 0), as dis-
cussed in Chapter 6. To toggle between these two modes the user may use
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the checkbox in the upper left corner of the screen labeled Wave Perturba-
tion.

The user specifies the initial conditions in the boxes near the top of the
window labeled u(x, t) and σ(x, t) or ε(x, t) and δ(x, t), depending on the
current mode. There are some important subtleties to be aware of when
specifying the initial conditions, and several very useful features.

In the text box, the user enters an expression as if it were a Matlab com-
mand. The binary operator symbols have the same significance. The user
may also enter any built in Matlab function such as sin() and cos() and
built in Matlab variables such as pi. There are certain other functions that
the user may enter which will be explained later. The letter x represents
the independent spatial variable and may be entered as such into the ex-
pression. The letters a and b represent the parameters α and β, respectively.
The letter c represents the quantity (uL + uR)/2, and the letter d is given
by the quantity |uL − uR|. In Chapters 2 through 6 we have assumed that
c = 0 and d = 2. To use the boundary conditions, the user may enter the
variables uL and uR to represent uL and uR, respectively.

VISCO specific functions are very helpful in constructing initial condi-
tions. We give a brief description of them here.

• waveu(uR,uL,a,b,center): This function outputs the traveling wave
solution, U(ζ), given the parameter settings specified by the argu-
ments. As demonstrated in previous chapters, there exists a unique
traveling wave solution once uL, uR, α2 and β have been specified.
Here a represents α2 and not α. The last argument, labeled center,
specifies the particular translation of the traveling wave solution. In
particular, center specifies the initial location of the center of the trav-
eling wave solution with respect to the x-axis.

• waves(uR,uL,a,b,center): This function has the same purpose as
waveu except it pertains to S(ζ). That is, the traveling wave solution
for σ(x, t). Again, this can be uniquely determined based on uL, uR,
α2 and β. The argument labeled center specifies the initial location
of the center of the traveling wave solution with respect to the x-axis.

• blob(start, finish): This function outputs the hump of a sine wave
so that it can transition smoothly with a surrounding flat function.
The width of the hump is determined by the input variables start
and finish. The hump function is defined to be zero everywhere ex-
cept within the interval [start, finish]. The height of the hump is
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set to be of unit height by default, however this height may be ad-
justed by multiplying the function by any scalar.

VISCO makes it possible to define a piecewise function in the following
way. Specify an expression immediately followed by $start,finish$. Do-
ing this will set everything outside the interval [start,finish] to zero, re-
gardless of the expression that came before it. Then to define another piece
of the piecewise function, simply add a second expression after the dollar
sign, followed by another interval of the form $start2,finish2$ which
defines the interval on which the second expression is defined. In general
the input should have the form

expression1 $start1,finish1$ expression2 $start2,finish2$...

In this way the user may define a piecewise function. Note that it is possible
for the intervals to overlap, what happens in this case is that the functions
are simply added. If there is a syntax error when specifying the initial con-
ditions such as too few arguments in a function or not enough dollar signs
etc., an error message will be displayed in the status bar.

7.1.4 Axis Settings

Figure 7.2: This is a close up view of the section of the startup screen where
the user may adjust the axes settings.
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One of the more powerful features of VISCO is the ability to adjust the
variables that are being tested on each axis. On the right hand side of each
axis there are two activated text boxes, two radio buttons and two inactive
text boxes as shown in Figure ??. The active text boxes display what vari-
able is being represented on the x and y axes of each graph. There is a wide
range of possibilities for what can be entered into these boxes. By default,
the top axes displays u(x, t) against x and the bottom axis displays σ(x, t)
against x. Here are some more options.

• u = u(x, t)

• s = σ(x, t)

• x = x

• t = t

• e = ε(x, t)

• d = δ(x, t)

• a = α

• b = β

• uL = uL

• uR = uR

• c = c (Recall that c = (uL + uR)/2)

• d = d (Recall that d = |uL − uR|)

What’s more amazing is that any function of any combination of these
variables can be used as one of the axis settings (e.g. c*u + a*s *d ). Fur-
ther, any built-in Matlab function can be applied to any of these variables,
and several functions are provided by VISCO for the users convenience.
These include the following.

• dt(function) = takes the t derivative of function which must be a
function in terms of x and t (e.g. dt(u + 3*e )).

• dtt(function) = takes the second t derivative of function.
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• dx(function) = takes the x derivative of function.

• dxx(function) = takes the second x derivative of function.

The user may also adjust the viewing window for the graph that is being
plotted. By default, the radio button auto is selected which means that the
axis settings will be set as tightly as possible. To change the axis settings,
select the fixed radio button. Notice that the text boxes ymax and ymin then
become activated. It is assumed that the user would like to view the entire
x-axis, so this option is only relevant for adjusting the viewing window of
the y-axis. Enter the lower bound of the y-axis in ymin and the upper bound
in ymax. To return to the auto axes mode, select the auto radio button and
VISCO will disregard the values entered in ymin and ymax.

7.1.5 Analyze Button

As mentioned in the above, there is one button that remains to be discussed,
and it deserves its own subsection. After a simulation is complete and the
solution has been stored, the user may press the Analyze button. This action
will open up a new window called Analysis, as seen in Figure ??. The main
features of this window are two text boxes, a button, a pull-down menu,
and a large set of axes. The pull-down menu sets the mode for the window
of which there are two. Namely, Measure mode and Characteristic mode. We
shall begin by describing Measure mode.

Measure mode, is used to graph one or two different measures of the
solution over time, where measure has the same meaning as in Chapter 6.
The user may enter two different measures in the two text boxes to com-
pare them on the same set of axes. To define a measure, the user has access
to the same pre-defined variables described in the previous subsection. In
addition, the user may access the following quantities.

• uw = the traveling wave solution for u(x, t).

• sw = the traveling wave solution for σ(x, t)

• L = the function L(x, t) as described in Chapter 4.

• R = the function R(x, t) as described in Chapter 4.

• Lw = the traveling wave solution for L(x, t).

• Rw = the traveling wave solution for R(x, t).
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Figure 7.3: Basic screen shot of the analysis screen in Measure mode.

• int(function) = takes the integral of function with respect to x (e.g.
int(L2 + R2)).

The measure is the part defined inside the integrand while the energy is the
integral of the measure. In the text boxes the user must enter the energy.
So the command should read int(measure) where measure is the measure
that the user specifies. The user is not required to enter two energies since
the second text box is allowed to be left blank. After entering the measures
correctly, click the Plot button and the energies will be plotted on the large
set of axes. The energy specified in the upper text box is the blue curve
while the energy specified by the lower text box is the red curve. In general
this plotting tool is most useful in checking whether energies converge to
zero over time.

To switch to characteristic mode, select Characteristics in the popup menu.
After doing this, several things will happen as shown in Figure ??. The la-
bel on the first text box is changed to Refinement. The second text box dis-
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Figure 7.4: Basic screen shot of the analysis screen in Characteristic mode.

appears and is replaced with two checkboxes labeled Left and Right. The
purpose of this mode is to graph the characteristic curves of the solution
as described in Chapter 4. The refinement is how spaced apart each sample
characteristic will be. So a smaller refinement implies that more character-
istic curves will be plotted. As mentioned in Chapter 4, there are two char-
acteristic curves emerging from each initial condition which we referred to
as left and right characteristics. When the checkbox Left is checked, the left
moving characteristics will be displayed in red. When the checkbox Right
is checked, the right moving characteristics will be displayed in blue on the
same set of axes. When the user reaches a desired setting, click the Plot but-
ton and watch the magic! The characteristic curves for all initial conditions
between xmin and xmax will be calculated and plotted right before your
eyes. This is one of the more beautiful aspects of VISCO. While it is not put
into good use in this thesis, it is certainly worth mentioning.
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7.1.6 Other Settings and Options

There are a few more settings and options in the main window that have
not yet been discussed. At the top center of the window there are two
popup menus, each of which specify a numerical algorithm that will be
used to simulate a solution. The option <None> is available in the second
menu in case the user only wishes to run only one simulation at a time. The
purpose of having two choices here is to compare two different numerical
algorithms on the same set of axes. Two of the three numerical algorithms
available in the menu are Lax-Wendroff and Characteristic. These are the
same two algorithms that were described in Chapter 5. The third algorithm,
labeled Finite Volume, is a finite volume method written by Bob Guy. In
general, Guy’s algorithm is first-order accurate and tends to smooth out
shocks in order to prevent the oscillations observed from using the Lax-
Wendroff scheme. If the user decides to plot two different algorithms, the
first algorithm is plotted using solid line(s) while the second algorithm is
plotted with dotted line(s).

There is a third pull down menu in the window labeled Examples. There
are several pre-defined example simulations that the user can select and
then run. When selecting an option from this menu, all of the parameters,
grid settings, initial conditions etc. are adjusted automatically so that so
user need only click the Run button. These particular examples give a gen-
eral overview of the types of perturbations that were simulated in order to
convince us of the global convergence conjecture explained in Chapter 6.

Finally, there are three checkboxes that have yet to be explained. The
one labeled visco in the top center of the screen tells VISCO whether or not
to simulate viscous solutions. This is basically a toggle between having
VISCO simulate solutions to (??) as opposed to (??). When the checkbox is
active, a text box will appear next to the text box where the user needs to
specify the desired value for ε, where in this context, ε takes on the same
meaning as it did in Chapter 3. The checkbox labeled Save Movie will save
the most recent playback to a .avi movie file called visco01.avi. VISCO
does not update the name of the file to avoid overwriting files, so the user
must manually copy or rename the movie file once a desirable movie has
been created. The Display Wave Solution check box allows the user to decide
whether the traveling wave solutions should be displayed on the same set
of axes as the simulated solution. In some cases it is desirable to compare
the simulated solution to the corresponding traveling wave solution, other
times it is not. The particular translation of the traveling wave solution is
chosen so that the initial conditions will converge to it as t → ∞, assuming
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the global convergence conjecture is true.

7.2 Contribution to Analysis

In this section we explain how VISCO has contributed to our analysis of
this problem. There are several important problems that will be discussed
separately.

7.2.1 Traveling Wave Solution Analysis

One of the most important uses for VISCO was to numerically verify the
shape and behavior of the traveling wave solutions. In a way, this was also
a good test for the numerical scheme, since at least for A > 1 we are certain
of the shape of the traveling wave solutions. When entering a traveling
wave solution as the initial conditions with boundaries uL = 1, uR = −1,
and A > 1, we find that the solution is invariant over time. This is verified
for all three available numerical schemes. When translating uL and uR up
by one unit, that is uL = 2, uR = 1, we find that the solution now translates
to the right with a speed of one unit per time, as expected.

The challenge of any numerical scheme is to properly deal with shocks.
While the Lax-Wendroff method is very accurate, it is not TVD and thus
oscillations will naturally develop near shocks in the solution as seen in
Figure ??a. The finite volume method is TVD and will not develop such
oscillations but instead smooth out the shock as seen in Figure ??b. So there
is a small degree of trade-off between accuracy and oscillation around the
shocks. In this way, the two methods are good at reinforcing each other
since the accuracy of one can be checked against the other.

When the traveling waves that contain shocks are used as the initial
condition for a simulation, they will change slightly over time, however,
the user must be careful to check for numerical inaccuracies. In Figure ??,
a pure shock solution was used as the initial condition, corresponding to
0 < A < 1/2. Ideally, we would have wanted this solution to remain a
shock for all time, however something different happens with each method.
We expect the Lax-Wendroff method to produce the oscillations seen in Fig-
ure ??a. Like-wise, we expect the finite volume method to smooth out the
shock somewhat, as seen in Figure ??b. So in fact, this small change in form
observed by both numerical schemes does not prove that the pure shock is
not a traveling wave, instead we interpret this as expected numerical inac-
curacy. One may observe that although the finite volume method causes
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Figure 7.5: These graphs depict typical behavior of our two numerical
methods near shocks. For this example A = 0.3. (a) Lax-Wendroff Method:
Notice the small oscillations near the shock. (b) Finite Volume Method:
Notice how the sharp corners have been rounded off.

the solution to change initially, eventually it will converge to a smooth
curve, which is very close in appearance to the original shock. A good
test for numerical the numerical inaccuracy of this method is to see what
happens as xprec is made larger. If the smooth convergent solution appears
to converge to the shock as xprec is made very large, then this is a good
indication of numerical inaccuracy and convincing evidence that the actual
solution should indeed be a shock.
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Figure 7.6: These graphs show the result of letting each numerical scheme
take smooth initial data and letting it run for two seconds. We have set
A = 0.3. Observe that the initial data converges to a shock under both
methods. The slight numerical inaccuracies are an expected result.
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By the global convergence conjecture, we expect any set of initial condi-
tions to converge to the weak traveling wave solution for the given bound-
ary conditions and value of A. If we assume this conjecture is true, this
gives a good way to test for the shape of the actual weak traveling wave
solution. There are many weak traveling wave solutions that could poten-
tially satisfy (??) in some way, however we are mainly concerned with the
one that is being converged to. To test that the initial conditions converge
to a shock when A < 1/2, we set the parameter values suitably and set
the initial conditions to a curve that resembles the traveling wave for when
A > 1. Figure ?? shows the before and after shots of this convergence for
both numerical schemes. By setting a very high precision, we can convince
ourselves that the solution being converged to is in fact a shock.
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Figure 7.7: These graphs show the result of letting each numerical scheme
take smooth initial data and letting it run for two five seconds. The smooth
initial conditions we used in this example are the same as in Figure ??. We
have set A = 0.8. Observe that the initial data appears to converge to the
double shock solution we describe in Chapter 3.

Figure ?? shows the same analysis for the case when 1/2 < A < 1. Ob-
serve that it is difficult to resolve the two smaller shocks, even for very high
spatial precisions. The smooth part of the solution in between the shocks
is seen to converge to the middle piece of the implicit formula displayed in



Contribution to Analysis 57

equation (??) which is depicted in Figure ??c. By setting the spatial preci-
sion high enough and zooming in by the correct magnitude, we were able
to convince ourselves that the shock heights in each case are consistent with
our predictions in (??). By systematically working past the numerical inac-
curacies of the two algorithms, we were able to verify the shape of the weak
traveling wave solutions depicted in Figure ??. Therefore, VISCO was very
useful in this part of the analysis.

7.2.2 Analysis of Global Convergence

The second major contribution of VISCO to our analysis was the investi-
gation of our global convergence conjecture. Certainly this conjecture was
not invented by looking at the equations but rather by observing thousands
of simulations in VISCO. The global convergence conjecture is most easily
tested using the measure and energy arguments described in Section 6.3.
For the majority of test cases we tried, the value of A was set to be greater
than 1 so that we didn’t need to concern ourselves with the numerical inac-
curacies of either algorithm around shocks. Further, when A < 1/2 we run
into trouble with the definitions of L and R since they can take on imagi-
nary values at some points.

The way we test for convergence is to use the Analyze feature to define a
measure and test that it goes to zero over time. That is, we define the initial
conditions to be some perturbation of a traveling wave solution and then
see that its measure goes to zero over time. While it is evident from the
animation that the area between of the perturbation diminishes, the graph
of the energy over time gives a more objective view of this.
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Figure 7.8: This is a graph of the energy of the measure M(ε, δ) = ε2 + δ2

against time for a simple blob perturbation similar to the one depicted in
Figure ??. Notice that it decays monotonically to zero.
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The most basic measure to try is M(ε, δ) = ε2 + δ2 whose energy is
clearly non-zero unless the perturbed solution has completely converged
to the traveling wave solution. The most fundamental perturbation is the
blob function, described in the previous section. Figure ?? shows the graph
of the energy of this measure over time for a simple blob perturbation. One
nice aspect of this decay in energy is that it is monotonic. If this property
were true for all perturbations then we would only need to show analyti-
cally that the time derivative of the energy is negative. However, Figure ??
shows the graph of the energy over time when the initial perturbation is si-
nusoidal rather than a simple blob. This disproves the assumption of mono-
tonic decrease in energy. One may observe however that the energy still
appears to be bounded below some exponentially decaying function over
time. Unfortunately, establishing this bound analytically is much harder
than simply showing that the time derivative is always negative.
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Figure 7.9: This is a graph of the energy of the measure M(ε, δ) = ε2 + δ2

against time with a sinusoidal perturbation. In this picture we see that
the energy does not decrease monotonically however it does appear to be
bounded by an exponentially decaying function.

One special measure that was mentioned in Section 6.3 was

M(L, R) = (L− Lw)2 + (R− Rw)2.

When given sinusoidal initial conditions, the energy of this measure ap-
pears to decrease monotonically, as seen in Figure ??. In fact, we were
unsuccessful in finding a set of initial conditions for which the energy of
this measure did not decrease monotonically. Based on these empirical ob-
servations, we set out to prove that the time derivative of this energy is
always negative. Unfortunately, we were unsuccessful in finding an ana-
lytical demonstration of this hypothesis.
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Figure 7.10: This is a graph of the energy of the measure M(L, R) = (L−
Lw)2 + (R− Rw) against time with a sinusoidal perturbation. In this case
the energy decreases monotonically which is a desirable property.

7.2.3 Analysis of Plane Waves

The final piece of analysis that was verified by VISCO was the behavior
of plane wave perturbations. In this case, we defined plane wave pertur-
bations as bounded sinusoidal perturbations1, as seen in Figure ??. Recall
that our analysis of linear stability showed that these plane waves have the
eigenvalues

λ± = −1
2
±

(
1
2

√
1− 4Ak2 − iu0k

)
.

The real part of these eigenvalues determine the decay rate of the plane
waves while the imaginary part should determine the rate of oscillation.
Since these eigenvalues were calculated for the linearized system and in a
region where u and σ were assumed to be constant, we can only take these
eigenvalues to be an approximation to what will actually happen. How-
ever, for small perturbations in constant regions we have two major expec-
tations: (1) the decay rate should increase as the wave number, k, and A
increase, (2) the amplitude of the plane waves should oscillate under cer-
tain conditions, and this rate of oscillation should depend proportionally
on the wave number. Both of these expectations were verified when the
perturbation were relatively small and defined in a region where u and σ
were relatively constant.

We did not expect this general behavior to continue outside of such
regions and for larger perturbations. After trying several simulations we

1We were able to bound the sinusoidal solutions using the piecewise function feature in
VISCO.
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Figure 7.11: This graph depicts the sort of perturbation that was studied to
investigate the behavior of plane waves in this system. Notice that the per-
turbation is bounded within a region in which u and σ are approximately
constant

found the behavior to be true for all types of plane waves. While the shapes
of the plane waves may have become slightly distorted over time, the am-
plitudes decayed an oscillated almost exactly as we would have expected
for smaller perturbations.



Chapter 8

Future Directions

While a great deal of important work has been accomplished in this thesis,
there is much that remains. There are several different ways in which the
full three-dimensional viscoelastic model, shown in [?], could have been
reduced to one dimension. This thesis only studies one such model, how-
ever one may wish to study the behavior of other possible one-dimensional
simplifications1. A slightly more challenging problem is to study the two-
dimensional model.

Some of the work presented in Chapter 3 was left unresolved. For ex-
ample, observe the phase portrait in Figure ??b. We are able to give a justifi-
cation for the shape of this trajectory but are unable to prove that it reaches
the point (0,−1/2) in finite time. This is a very interesting dynamical sys-
tems problem and could be studied more carefully.

Proving the global convergence conjecture would make for a very in-
teresting thesis topic in and of itself. This paper presents a few simple
approaches that were tried in attempt to prove the conjecture. However,
we have only provided evidence for the conjecture in very special cases. It
might be interesting to generalize these methods or try new methods en-
tirely.

The VISCO software program has the potential to be portable, however,
no attempt has been made to have it solve other PDE systems. An excellent
project might be to work with the shell of VISCO and make it capable of
simulating a variety of hyperbolic PDE systems, depending on user input.
This would take some work but I am confident that it can be done.

1Two additional one-dimensional simplifications are shown in [?].
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