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Abstract

One of the restrictions used in all of the works done on phylogenetic in-
variants for group-based models has been that the group be abelian. In my
thesis, I aim to generalize the method of invariants for group-based models
of DNA sequence evolution to include nonabelian groups. By using a non-
abelian group to act one the nucleotides, one could capture the structure of
the symmetric model for DNA sequence evolution. If successful, this line
of research would unify the two separated strands of active research in the
area today: Allman and Rhodes’s invariants for the symmetric model and
Strumfels and Sullivant’s toric ideals of phylogenetic invariants. Further-
more, I want to look at the statistical properties of polynomial invariants
to get a better understanding of how they behave when used with real,
“noisy” data.
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Chapter 1

Introduction

1.1 Phylogenetic Trees

Charles Darwin, in his Origin of the Species, hypothesized that life evolves
due to natural selection and gene variation. The field of phylogenetics
looks to understand these evolutionary relationships between both living
and extinct species today. Trying to unravel these relationships is often
known as phylogenetic inference since there is an unknown true history of
evolution which we are trying to infer. It involves collecting and analyzing
data in an attempt to obtain a best estimate for this true history.

The field of phylogenetics has applications to molecular biology, genet-
ics, evolution, epidemiology, ecology, conservation biology, and forensics
to name a few. Phylogenies are the historical and evolutionary relation-
ships among organisms. Scientists can use this data to better understand
how viruses spread or to study common biological processes between dif-
ferent species of life.

The overall goal within phylogenetics is to obtain the true phylogenetic
tree, or phylogeny, for a given group of species, or taxa. A phylogenetic tree
is a mathematical object which consists of a series of nodes and edges. A
phylogenetic tree of vascular plants is shown below in Figure 1.1.

The leaves of the tree represent the taxa, or species, in consideration.
The lines in the tree are called branches or edges and represent lines of
evolutionary descent. Any point on an edge corresponds to the point of
time in the life of an ancestor of some individual taxon. The internal nodes
of the tree represent times in which the line of evolutionary descent for the
taxa diverged. Leaves that are closer on the tree are more closely related
than those which are far apart.



2 Introduction

Figure 1.1: A phylogenetic tree of vascular plants. (Doyle, 1998)

1.2 Methods of Phylogenetic Tree Reconstruction

The earliest of techniques to reconstruct phylogenetic trees for a number
of species used the physical, or morphological, characteristics of the organ-
isms as a means to classify them. These techniques were extremely limited
due to the simplicity of the data. With the advent of modern DNA tech-
niques, the field of phylogenetics took a different turn. DNA sequences
consists of two strands of molecules made up of the four DNA nucleotides:
adenine, cytosine, guanine, and tyhmine. Sequences of DNA could be ob-
tained for each of the organisms under consideration; assuming that organ-
isms with similar DNA sequences are closely related, one could determine
these relationships solely by looking at the DNA sequences.

One of the first methods of phylogenetic tree reconstruction based on
DNA sequences was maximum parsimony. It seeks to determine the tree so
that the total number of changes in the sequences along the edges is mini-
mized. The technique is very simple and straightforward. For this reason,
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it was one of the most popular method for phylogenetic tree reconstruction
for a number of years. Unfortunately, maximum parsimony was shown
not to be statistically consistent by Joseph Felsenstein in 1978. This means
that for certain trees, maximum parsimony will produce an incorrect tree
no matter how much data one had.

Other methods of phylogenetic tree reconstruction based on DNA se-
quences were developed in order to overcome this problem of statistical
inconsistency. The most popular one, even to this day, is maximum like-
lihood. It uses an explicit model for DNA sequence evolution. With maxi-
mum likelihood, the DNA sequence evolution is modeled by some stochas-
tic Markov process where the DNA nucleotides can mutate along the edges
of the tree. Additionally, the lengths of the edges in a tree are proportional
to the probability that a mutation occurs along that edge. For a given tree,
one can estimate the likelihood (which is proportional to the probability) of
that particular tree producing the DNA sequence data in question. The tree
with the highest likelihood is the one selected by maximum likelihood.

One of the major drawbacks for maximum likelihood is that one must
estimate all of the parameters in the model. In addition to the tree topology,
maximum likelihood needs to estimate the rates of change between the nu-
cleotides along each edge as well as the length of each of the edges. Maxi-
mum likelihood only works well when the assumptions about the model of
sequence evolution actually hold for the given set of DNA sequence data.

The method of invariants for phylogenetic tree reconstruction is related
to maximum likelihood in that it too requires a model of DNA sequence
evolution. With a tree and that model of sequence evolution, one can cal-
culate the probability of seeing a given pattern of nucleotides at the leaves
of the tree. The invariants for the tree and model are multivariate polynomi-
als with one indeterminate for each of the possible patterns of nucleotides
along the leaves. The invariants vanish when they are evaluated at any of
these pattern probabilities which come from the model of DNA sequence
evolution. Unlike maximum likelihood, the method of invariants has the
advantage of not requiring one to estimate all of the model parameters.

If one had all the invariant polynomials for a tree and model of sequence
evolution, one could test whether or not a given set of DNA sequence data
comes from that tree (and model). One can obtain estimates for the pattern
probabilities by looking at the frequency that a given pattern appears in the
DNA sequences.



4 Introduction

1.3 Literature Review

The method of invariants was first introduced in Lake’s “A rate indepen-
dent technique for the analysis of nucleic acid sequences: evolutionary par-
simony” (1987) and in Cavender and Felsenstein’s “Invariants of phyloge-
nies: a simple case with discrete states” (1987). They were able to produce
invariants for a tree with four leaves considering only two-state charac-
ter data as opposed to the four-state DNA data. With two-state data, the
only Markov model of sequence evolution is the Jukes-Cantor model which
specifies a probability for a character to change state and the complemen-
tary probability for the character to stay the same. The invariants found by
Lake and Cavender–Felsenstein were linear invariants (i.e. the polynomials
did not have quadratic or higher order terms).

In 1993, both Evans and Speed and Székely, Steel, and Erdös published
work on the invariants for group-based models of DNA sequence evolu-
tion. A group-based model is one that can be represented by an algebraic
group acting on the nucleotides. A group element is randomly selected
and applied to a nucleotide to yield a new (not necessarily different) nu-
cleotide. The Jukes-Cantor model, for both two and four character data,
and Kimura’s (1981) two or three parameter models are group-based mod-
els. They both employ the use of the Fourier transform in order to construct
invariants for the group-based models.

The audiences for Evans and Speed (1993) and Székely et al. (1993) were
different. Székely, Steel, and Erdös published their work in Advances in Ap-
plied Mathematics; thus, it presents the ideas from the perspective of the-
oretical mathematics. As Evans and Speed was written for the Annals of
Statistics it makes heavy use of the language of probability and statistics.
The Fourier transform is thought of in terms of an expected value.

In 2004, Sturmfels and Sullivant published “Toric Ideals of Phylogenetic
Invariants” (2005). Their paper continues the work of Evans and Speed
(1993) and Székely, Steel, and Erdös (1993) in the area of invariants for
group-based models of DNA sequence evolution. They too make use of
the Fourier transform and use it to define a change of coordinates for the
pattern probabilities. Under this new coordinate system, every single in-
variant for the group-based models turns out to be a binomial. Further-
more, Sturmfels and Sullivant are able to describe all of these invariants in
terms of the structure of the tree. That is, one can compute all of the in-
variants in this new coordinate system by simply looking at the tree. This
paper caps off the research done in the invariants for group-based models
giving a complete, elegant characterization of all the invariants.
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In 2003, Elizabeth Allman and John Rhodes published “Phylogenetic
invariants for the general Markov model of sequence mutation” (Allman
and Rhodes, 2003). In it, they studied the invariants for the general or sym-
metric model of sequence evolution. Under this model, the rates at which
one character (DNA nucleotide) can change into another can be indepen-
dent for every pair of characters. They use four different techniques to ar-
rive at their invariants using commutation and symmetry relations among
the transition matrices for the model. This work is the furthest attempt
at finding all of the invariants for the symmetric model of DNA sequence
evolution.

1.4 My Work

One of the restrictions used in all previous work on invariants for group-
based models has been that the group be abelian. In my thesis, I have at-
tempted to generalize the method of invariants for group-based models of
DNA sequence evolution to include nonabelian groups. By using a non-
abelian group to act one the nucleotides, one could capture the structure of
the symmetric model for DNA sequence evolution. If successful, this line
of research would unify the two separated strands of active research in the
area today: Allman and Rhodes’s invariants for the symmetric model and
Strumfels and Sullivant’s toric ideals of phylogenetic invariants.

In addition to investigating the invariants for the symmetric model of
DNA sequence evolution, I have studied the statistical properties of alge-
braic invariants for phylogenetic trees (for any of the models of sequence
evolution). The technique of phylogenetic tree reconstruction via algebraic
invariants can be made much more robust by understanding how these
polynomials behave when working with real data. In the technique’s cur-
rent state, ad-hoc procedures must be used to tell when an algebraic invari-
ant is “close enough” to zero.

I’d like to close this section with a quote from Joseph Felsenstein in his
work “Inferring Phylogenies” (2003).

But, these uses aside, invariants are worth attention, not for
what they do now, but what they might lead to in the future.
They are a very different way of considering tree topologies and
branch lengths. Instead of crawling about in a tree space, trying
to find the tree of best fit, they have us look at the relationship
of pattern probabilities in a space of pattern frequencies, and
build up our inferences of the tree in that space. For the cases
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in which both invariants and the Hadamard conjugation apply,
this is essentially the same as looking at which partitions show
support in the Hadamard transform analysis. Both invariants
and the Hadamard conjugation lead to interesting mathemat-
ics, and both give us a view of phylogenetic inference from a
new direction. That alone would be enough to justify contin-
ued development of these interesting methods.



Chapter 2

Models of DNA Sequence
Evolution

In order to use the method of invariants for phylogenetic tree reconstruc-
tion we need a model to describe how the DNA nucleotides evolve over
time. The most often used models for DNA substitution are Markov models.
These models assume that the probability that the character i changes to
character j at a given site does not depend on its past history, only its cur-
rent state. For these Markov models, we will further assume that each of
the sites in a sequence evolve independently of each other. This condition
can be relaxed with work, but we will maintain it for this thesis.

For DNA sequences, there are at most 16 substitution rates which we
must consider: the probability that each character in {A, G, C, T} is re-
placed by an alternative one. These rates are most often written as a 4x4
instantaneous rate matrix. The i, jth element of the matrix represents the
rate of change from character i to character j over an infinitesimal amount
of time dt.

According to Swofford et al. (1996), the most general form of this matrix
is

Q =


−w µaπC µbπG µcπT

µgπA −x µdπG µeπT
µhπA µjπC −y µ f πT
µiπA µkπC µlπG −z


where the rows and columns correspond to the bases A, C, G, and T re-
spectively. The variables w, x, y, and z are just the sums of the rest of the
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parameters in their respective row:

w = µ(aπC + bπG + cπT)
x = µ(gπA + dπG + eπT)
y = µ(hπC + jπC + f πT)
z = µ(iπA + kπC + lπG)

The factor µ represents the average substitution rate, which is modified by
the relative rate parameters a, b, . . ., l. The product of the average rate
parameter and a relative rate parameter constitute a rate parameter. The
remaining parameters, πA, πC, πG, πT, are frequency-parameters which cor-
respond to the frequencies of the bases over time. We generally assume
that the frequencies are constant over time.

All DNA substitution models can be seen as some restriction of this
most general model. In almost all cases, we want the model to be time-
reversible, which means that the rate that a character i changes to j is the
same as the rate at which j changes to i. This restriction corresponds to
setting g = a, h = b, i = c, j = d, k = e, and l = f . A nice consequence
to using time-reversible models is that calculations are not dependent on
where a tree is a rooted.

The Jukes-Cantor model assumes that all the base frequencies are equal
and that all substitutions occur at the same rate. The rate matrix for the
Jukes-Cantor model looks like

Q =


−3α α α α

α −3α α α
α α −3α α
α α α −3α


We can divide the substitutions into two different classes: transitions and
transversions. Transitions are substitutions from one purine (A, G) to an-
other or one pyrimidine (C, T) to pyrimidine (i.e., A↔ G, C ↔ T). Transver-
sions are substitutions from a purine to a pyrimidine or vice verse. The
Kimura 3-parameter model allows for transitions and 2 classes of transver-
sions to occur at different rates. Its rate matrix is of the form

Q =


−3α α α α

α −3α α α
α α −3α α
α α α −3α
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A number of other DNA substitution models along with their assump-
tions can be seen in the figure below. We will be concerned with extending
the technique of spectral analysis to be used with the symmetric (SYM)
model of DNA substitution.

Figure 2.1: Relationships among some substitution models. The arrows go
from a more general model to a more specific one with the assumptions
stated on the side. (Swofford et al., 1996)

2.0.1 Group-based Models

One approach used in determining the invariants for various groups has
been to use algebraic groups to model the DNA substitutions models. If
we think of the elements of some group acting on the set of DNA bases,
then we can think of the group elements as representing DNA mutations.
We next assign values to each group element representing the probability
that the substitution represented by the group element occurs over a period
of time.

For example, the Jukes-Cantor model can be represented by the group
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Z2 = S2. The identity element leaves the bases unchanged while the non-
identity element switches a purine to a pyrimidine and vice verse. Note
that this group does not take into consideration transitions and assumes
that all transversions occur at the same rate.

By having the group Z2 × Z2 act on the set of DNA bases, one is able to
represent Kimura’s 3-parameter model. The probabilities are assigned to
group elements in the following manner:

(0, 0) ⇔ No substitution
(0, 1) ⇔ Transition
(1, 0) ⇔ Transversion 1 (A-T, G-C)
(1, 1) ⇔ Transversion 2 (A-C, G-T)

This group and group action is the one that is considered in previous works
on the invariants for group-based models.

If we do not require that the group acting on the bases be abelian, then
the group S4 can be used to represent SYM model of DNA substitution. It
is still unclear whether or not the technique remains valid if the we relax
the assumption of equal base frequencies in the SYM model to get the GTR
model. We assign the probability that the bases remain unchanged to the
identity element. The probability that base X mutates to base Y and vice
verse is assigned to the transposition (XY) ∈ S4. For example, the proba-
bility that an A changes to a C is assigned to the group element (AC). All
of the other group elements are assigned a value of zero.

All of the work previously done on invariants required the use of abelian
group-based models. This restricted the models to Kimura’s 3-parameter
model (1981) and its various submodels. Because the technique only works
when the assumptions specified by the model hold, it is beneficial to be able
to extend the technique to more general models.

2.0.2 DNA Nucleotides and Homogeneous Spaces

In using the method of invariants, one must calculate the frequency that
a nucleotide pattern occurs in a set of DNA. This is a function defined on
strings of nucleotide. For the Fourier techniques used with group-based
models to work, we need a function that is defined on the elements of the
group – not the nucleotides. This issue is not discussed in depth in any of
the literature.

In the previous work done in this area, the primary group acting on
the nucleotides is Z2 × Z2. Since there were 4 group elements and 4 nu-
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cleotides, each nucleotide was associated with a single group element:

A ↔ (0, 0)
G ↔ (0, 1)
C ↔ (1, 0)
T ↔ (1, 1).

The arbitrariness of this identification is highlighted in “Small Phylogenetic
Trees” ( http://www.math.tamu.edu/~lgp/small-trees/ ) where the Gar-
cia and Porter point out that the identification traditionally used did not
follow the assumptions of Kimura’s 2 parameter model. Thus, a replace-
ment character table representing the correct identification is given.

When we deal with groups with more than four elements acting on
the nucleotides, we cannot simply make this one to one association. Thus,
it becomes more important to understand what is really going on when
converting from functions defined on the nucleotides to functions defined
on group elements.

The solution comes in terms of homogeneous spaces. In order to make
precise this notion, we need some definitions.

Definition 2.1. Let G be a group that acts on a set X. We say the group action is
transitive if for every x, y ∈ X, there exists a g ∈ G such that g · x = y.

This amounts to there being only one orbit under the group action.
Since we want a nucleotide to be able to mutate into any of the other nu-
cleotides, all the group actions under consideration will be transitive.

Definition 2.2. A homogeneous space is a set upon which a group acts transi-
tively.

Thus, we can think about the nucleotides as being elements of a homo-
geneous space.

Definition 2.3. The stabilizer subgroup S of an element x of a homogeneous
space X is the set of all elements s ∈ S such that s · x = x.

Suppose we have a stabilizer subgroup S ⊂ G for an element x ∈ X.
Each of the elements of X can be identified with a coset of S in G. More
precisely, there exists a bijection φ : X → G/S such that

φ(g · x) = gφ(x)

for all x ∈ X and g ∈ G.
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A function defined on X can then be converted to a function defined on
G which is constant on the cosets of S. Suppose f : X → C. We define a
function h : G → C by

h(g) = f
(

φ−1(gS)
)

.

This gives us a method for handling groups with more than four elements
acting on the nucleotides.

Example 2.1. Consider the group Z2×Z2 acting on the nucleotides X = {A, G, C, T}.
We notice that the only group element which leaves A fixed is (0, 0). Thus, the sta-
bilizer of A is SA = {(0, 0)}. Then, we can identify the elements of X with the
cosets of SA:

A ↔ (0, 0)SA = {(0, 0)}
G ↔ (0, 1)SA = {(0, 1)}
C ↔ (1, 0)SA = {(1, 0)}
T ↔ (1, 1)SA = {(1, 1)}.

Note that this is the same identification as previously given.

Example 2.2. Consider the group S4 acting on the nucleotide X = {A, G, C, T}.
The group elements that leave A fixed are the permutations which do not involve
A. Thus, the stabilizer of A is

SA = {(), (GC), (GT), (CT), (GCT), (GTC)}
∼= S3.

Therefore, we can identify the elements of X with the cosets of SA:

A ↔ ()SA = SA

G ↔ (AG)SA

C ↔ (AC)SA

T ↔ (AT)SA.



Chapter 3

Invariants for Abelian
Group-based Models

I will illustrate the method of invariants using some simple examples. With
these in mind, we will be able to build up the theory of invariants for both
abelian and nonabelian groups in the next chapter. Although the examples
deal with only two character 0/1 sequences, the ideas carry over naturally
to the four character DNA case.

Before we begin with the example, we will need a few definitions. Sup-
pose we have the following three aligned DNA sequences:

Taxon 1: A G A C G T T A C G T A ...
Taxon 2: A G A G C A A C T T T G ...
Taxon 3: A A A C G A T A C G C A ...

Then, we define a pattern σ to be the sequence of characters we get when
we look at a single site (column) of our sequence data. In the sequences
above, we can look at the second site in the sequences and see the pattern
“GGA”. A pattern frequency p̄σ is the percentage of time that σ appears in
our set of sequence data. In the above sequences, we see that the pattern
“AAA” has a frequency of 2/12 = 1/6 among the visible nucleotides.

Finally, if we assume that the DNA sequences come from a particular
tree and model of DNA sequence evolution, then we define the pattern prob-
ability pσ to be the percentage of time that expect to see the given pattern σ
under that model of sequence evolution.

Now, we can finally define what an algebraic invariant of a phyloge-
netic tree and model of sequence evolution actually is.
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Definition 3.1. An invariant f for a phylogenetic tree and a model of sequence
evolution is a polynomial in indeterminates xσ such that

f ((pσ)) = 0.

In other words, an invariant is a polynomial (with indeterminates for
each pattern) such that when one plugs the pattern probabilities into their
associated indeterminates, the polynomial evaluates to 0.

Example 3.1. One example of an invariant for all trees and all models of sequence
evolution is the trivial invariant: (

∑ xσ

)
− 1.

This is an invariant because we know that in any probability model the sum of the
probabilities for all possible outcomes is 1.

If we have all the invariants for a tree and a particular model of se-
quence evolution, we can determine whether or not a set of sequences
comes from that particular tree. In order to do so, we simply compute the
pattern frequencies p̄σ from the sequences. Since we assumed that each site
in the sequence evolved independently and identically to the other sites,
the pattern frequencies serve as estimators for the pattern probabilities pσ.
We then evaluate each of the invariants using the pattern frequencies. If
the sequence data came from the tree and model of evolution associated
with the invariants, then we would expect the evaluated polynomials not
to differ significantly from zero.

A First Example

We will again be looking at 0/1 sequences with the group Z2 acting on
each of the “nucleotides” (characters). We will assume that the characters
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0 and 1 are uniformly distributed at the root of the tree. Along each edge,
we will random select an element of Z2 with the probability of randomly
selecting the element 1 ∈ Z2 being p and the probability of selecting the
identity 0 ∈ Z2 being q = 1− p. These act naturally on the characters 0 and
1. Thus, we can propagate a character at the root down the tree according
to the group action. The pattern probabilities are the probabilities of seeing
a given pattern at the leaves obtained in this manner.

With these assumptions, we can then explicitly calculate the pattern
probabilities for this tree and model of sequence evolution:

p00 =
1
2
(
q3 + p3)+

1
2
(

pq2 + qp2)
p11 =

1
2
(
q3 + p3)+

1
2
(

pq2 + qp2)
p01 = pq2 + qp2

p10 = pq2 + qp2.

We can think about this as a parametrization of a curve in a four di-
mensional space with coordinates given by x00,x01,x10, and x11. As we let p
range from 0 to 1, the curve will be traced out:

x00(p) = p00 =
1
2
(
(1− p)3 + p3 + p(1− p)2 + (1− p)p2)

x01(p) = p11 =
1
2
(
(1− p)3 + p3 + p(1− p)2 + (1− p)p2)

x10(p) = p01 = p(1− p)2 + (1− p)p2

x11(p) = p10 = p(1− p)2 + (1− p)p2.

This curve is a 1-dimensional algebraic variety sitting in a 4-dimensional
“ambient space”. As such it can be described as the roots of three differ-
ent multivariate polynomials in the variables x00, x01, x10, and x11. These
polynomials are the invariants

2x01 + 2x11 − 1, 2x10 + 2x11 − 1, x00 − x11.

No matter what the value of p is, when we plug the pattern probabilities
into the invariants, we will always get zero. Thus, the invariants depend
only on the tree topology and the particular model of sequence evolu-
tion used; they do not depend on any particular parameters of the model.
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The problem of computing these polynomials from the parametrization is
known as the implicitization problem in algebraic geometry. For small trees,
generic methods using Gröbner bases can be used to determine these in-
variants. For larger trees or models with many characters, more specialized
and sophisticated methods must be employed.

Example: The 1,3 Claw Tree (Sturmfels and Sullivant, 2005)

The tree that we will be considering is the following:

We call π the root of the tree. At the root, we assume that the “nu-
cleotides” (0 or 1) are randomly distributed according to the following dis-
tribution:

P(π = 0) = π0

P(π = 1) = π1.

Then, along each of the edges α, β, and γ, we randomly choose a group
element from Z2 = {0, 1} according to the distributions

P(α = 0) = α0

P(α = 1) = α1

P(β = 0) = β0

P(β = 1) = β1

P(γ = 0) = γ0

P(γ = 1) = γ1.

These random group elements will act naturally on the nucleotide at the
root to yield the nucleotides at the three leaves of the tree.

We can explicitly write out the pattern probabilities, that is the probabil-
ity of seeing a given pattern of 0’s and 1’s along the leaves, in terms of the
parameters along the edges. We can think of this as a parametrization of
the pattern probabilities and will call this the parametrization in probability
coordinates.
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p000 = π0α0β0γ0 + π1α1β1γ1 p001 = π0α0β0γ1 + π1α1β1γ0
p010 = π0α0β1γ0 + π1α1β0γ1 p011 = π0α0β1γ1 + π1α1β0γ0
p100 = π0α1β0γ0 + π1α0β1γ1 p101 = π0α1β0γ1 + π1α0β1γ0
p110 = π0α1β1γ0 + π1α0β0γ1 p111 = π0α1β1γ1 + π1α0β0γ0

The key insight in the Fourier-based methods is to use the Fourier trans-
form as a change of coordinates. (The Fourier transform will be discussed
in much more detail in the next chapter; for now, we can just think of it
as a black box that provides a change of coordinates.) Along each of the
edges, we have a function defined on a group (the probability of selecting
an individual group element), and we can apply the Fourier transform to
this function. Additionally, we can think of the patterns as being elements
in Z2 × Z2 × Z2. Thus, the pattern probabilities are functions defined on
Z2 × Z2 × Z2. We will also use the Fourier transform on the pattern prob-
ability function as well. These change of parameters and coordinates are
shown below:

π0 = 1
2 (r0 + r1) π1 = 1

2 (r0 − r1)
α0 = 1

2 (a0 + a1) α1 = 1
2 (a0 − a1)

β0 = 1
2 (b0 + b1) β1 = 1

2 (b0 − b1)
γ0 = 1

2 (c0 + c1) γ1 = 1
2 (c0 − c1)

pijk =
1

∑
r=0

1

∑
s=0

1

∑
t=0

(−1)ir+js+ktqrst.

Under this new coordinate system, the each coordinate is parametrized
by a monomial:

q000 = r0a0b0c0 q001 = r1a0b0c1
q010 = r1a0b1c0 q011 = r0a0b1c1
q100 = r1a1b0c0 q101 = r0a1b0c1
q110 = r0a1b1c0 q111 = r1a1b1c1.

We call this parametrization the parametrization in Fourier coordinates.
In this new coordinate system, the invariants are much easier to de-

scribe. The set of all invariants is known as a toric ideal and is generated by
binomials. The invariants for this tree and model are shown below:

{q001q110 − q000q111, q010q101 − q000q111, q100q011 − q000q111} .

If we wanted, we could convert these polynomials back to the prob-
ability coordinates. In doing so, each of the binomials would become a
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quadratic polynomial with eight terms. One of these is shown below:

p001 p010 + p001 p100 − p000 p011 − p000 p101+

p100 p111 − p101 p110 + p010 p111 − p001 p110.



Chapter 4

Representation Theory

4.1 Introduction to Representation Theory

In order to understand the Fourier transform for finite groups, we will need
to know about the representation theory of finite groups. An excellent in-
troduction to this area is Jean-Pierre Serre’s “Linear Representations of Fi-
nite Groups” (1977).

Let V be a vector space over the complex numbers and GL(V) be the
group of invertible linear transformations from V to itself.

Definition 4.1. A linear representation of a finite group G in V is a homomor-
phism φ from the group G to GL(V). Thus, we map each group element g to an
element φ(g) ∈ GL(V) such that

φ(g1g2) = φ(g1)φ(g2)

for any g1, g2 ∈ G. We define the degree of the representation dφ to be dim V.

Note that we can identify each linear transformation in GL(V) with an
invertible square matrix by choosing a basis for V.

Example 4.1. Every group has a trivial representation Td of degree d which maps
every group element to the d× d identity matrix.

Example 4.2. Let G = Z2, the cyclic group of order two. A one-dimensional
representation φ1 and a two-dimensional representation φ2 are given below:

φ1(0) = 1 φ1(1) = −1

φ2(0) =
[

1 0
0 1

]
φ2(0) =

[
1 0
0 −1

]
.



20 Representation Theory

Notice that φ2 looks like the direct sum of the degree 1 trivial represen-
tation T1 and φ1. In general, if φ and ψ are representations of a group G, the
the map ρ defined by

ρ(g) = φ(g)⊕ ψ(g)

is also a representation of G.

Definition 4.2. We say a linear representation φ of G is irreducible if V is not 0
and no vector subspace of V is closed under the action of G, except of course 0 and
V.

Example 4.3. The only subspaces that a one-dimensional vector space V can have
are the trivial vector space and V itself. Those are the only vector subspaces that
are stable under the action of G. Therefore, every one-dimensional representation
is irreducible.

These irreducible representations are the fundamental building blocks
for every possible representation of G.

Theorem 4.1. Every representation is a direct sum of irreducible representations.

If we want to understand all the representations for a finite group, we
simply need to understand the irreducible representations for that group.

Next, we turn our attention to direct products of groups. The irre-
ducible representations for a direct product H be constructed from the irre-
ducible representations of its factors.

Theorem 4.2. Let H = G1×G2× · · · ×Gn. Then, every irreducible representa-
tions for H is of the form

φ1 ⊗ φ2 ⊗ · · · ⊗ φn

where φi is an irreducible representation for Gi for 1 ≤ i ≤ n. Additionally, if

Φ = φ1 ⊗ φ2 ⊗ · · · ⊗ φn

and
Ψ = ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn

are representations of H with φi 6= ψi for some 1 ≤ i ≤ n, then Φ 6= Ψ.

Note that if each Gi has ni irreducible representations, then H = G1 ×
G2 × · · · × Gn has

n

∏
i=1

ni
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irreducible representations.
It is easier to think about tensor products of irreducible representations

as Kronecker products of matrices.

Definition 4.3. Suppose A is an m× n matrix and B is a p× q matrix. We define
the Kronecker product A⊗ B to be the mp× nq matrix given by

A⊗ B =

 a11B · · · a1nB
...

...
am1B · · · amnB

 .

Now, we return to our direct product of groups H = G1×G2× · · ·×Gn.
Suppose that φi is an irreducible representation of the group Gi for 1 ≤ i ≤
n. Then, φ1 ⊗ · · · ⊗ φn is an irreducible representation for H and is defined
by

(φ1 ⊗ · · · ⊗ φn)(g1 × · · · × gn) = φ1(g1)⊗ · · · ⊗ φn(gn).

All of the irreducible representations for H can be constructed in this man-
ner.

We can also think about tensor products of representations for a single
group G. If φ and ψ are representations for a group G, then φ⊗ ψ, defined
by (φ⊗ ψ)(g) = φ(g)⊗ ψ(g) for all g ∈ G, is a representation of G.

Example 4.4. Let H = Z2 × Z2. Since Z2 is abelian, all its irreducible represen-
tations are one-dimensional. As we saw before, Z2 has the trivial representation
T1 and the alternating representation A1 of degree one. Therefore, H has four
irreducible representations:

T1 ⊗ T1

T1 ⊗ A1

A1 ⊗ T1

A1 ⊗ A1.
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Characters

None of the previous work done on invariants for group-based models
makes use of the language of irreducible representations. Instead, the math-
ematics is framed in terms of characters. As we will see, the language of
characters is particularly well-suited to abelian groups.

The irreducible representations of an abelian group are well character-
ized by the following theorem.

Theorem 4.3. Every irreducible representation for an abelian group is one dimen-
sional.

With this in the back of our mind, we are now ready to define the char-
acter of a representation.

Definition 4.4. The character χρ of a representation ρ is the map from the group
G to the complex numbers defined by

χρ(g) = Tr(ρ(g)).

Since every irreducible representation of an abelian group is one dimen-
sional, the characters and irreducible representations of an abelian group
are equivalent. In generalizing results from the abelian case to the non-
abelian case, we will often need to view the abelian group characters as
irreducible representations instead.

Fourier Transform

The Fourier transform plays a key role in the method of invariants for
group-based models of DNA sequence evolution. The Fourier transform
provides a change of coordinates

Theorem 4.4. Let G be a group, Ĝ be the set of all irreducible representations of
G, and f be a function from G to the complex numbers. Then, we define the Fourier
transform f̂ of f at an irreducible representation φ by

f̂ (φ) = ∑
g∈G

f (g)φ(g).

The inverse Fourier transform is given by

f (g) =
1
|G| ∑

φ∈Ĝ

dφTr( f̂ (φ)φ(g−1))

where dφ is the degree of φ.
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Figure 4.1: Ferrer’s diagrams for symmetric group 4.

Furthermore, if G is an abelian group, then the set of its irreducible
complex representations Ĝ forms a group under multiplication. When en-
dowed with this group structure, Ĝ is isomorphic to G itself.

4.2 Representation Theory of the Symmetric Group

Since the group S4 acts naturally on the four DNA nucleotides, it will be
useful to know its representation theory. The encyclopedic text for this
topic is “The Representation Theory of the Symmetric Group” written by
James and Kerber (1984).

The irreducible representations for the symmetric group are indexed by
integer partitions. For example, there are 5 integer partitions of the number
4:

4 = 4
= 3 + 1
= 2 + 2
= 2 + 1 + 1
= 1 + 1 + 1 + 1.

Therefore, the group S4 has 5 distinct irreducible representations. These
partitions are typically represented as Ferrer’s diagrams as in Figure 4.1.

We can specify the shape of a partition by specifying the number of boxes
in each row. The shapes of the 5 integer partitions of 4 are λ1 = (4), λ2 =
(3, 1), λ3 = (2, 2), λ4 = (2, 1, 1), and λ5 = (1, 1, 1, 1).

The dimension of each representation can be determined from these
Young diagrams and is given in terms of standard Young tableaux. A stan-
dard Young tableaux is a filling of a Young diagram with the numbers 1
though n such that the numbers increase as one moves down and to the
right. The dimension of a representation of shape λ is the number of stan-
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1 2 3 4

1 2 3
4

1 2 4
3

1 3 4
2

1 2
3 4

1 3
2 4

1 2
3
4

1 3
2
4

1 4
2
3

1
2
3
4

Figure 4.2: Standard Young tableaux for the partitions of 4. The number of
standard Young tableaux gives the dimension of the corresponding repre-
sentation.

dard Young tableaux of shape λ. The standard Young tableaux for the par-
titions of 4 are shown in Figure 4.2.

As can be seen in the figure, the dimension of the irreducible represen-
tation corresponding to partition λ = (2, 2) is 2.

The trivial partition (4 = 4) corresponds to the one dimensional trivial
representation. That is, ρ(4)(π) = 1 for all π ∈ S4. The all-ones partition
(4 = 1 + 1 + 1 + 1) corresponds to the one-dimensional alternating repre-
sentation which is defined in terms of the sign of a permutation. The sign
sgn(π) of a permutation π is (well-)defined to be 1 if π can be written as a
product of an even number of transpositions; otherwise, it is defined to be
−1. The mapping from S4 to {1,−1} defined by

ρ(1,1,1,1)(π) = sgn(π)

is a homomorphism and is known as the alternating representation.
For the higher-dimensional representations, there are an infinite num-

ber of ways to choose the specific matrices. Each of these ways corresponds
to choosing a basis for the space. Young’s seminormal form and Young’s
orthogonal form are two of the most common forms for these matrices.
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Although the particular form chosen will not play a role in the theoreti-
cal aspects of my work, one will need to choose a form for any practical
implementation of the ideas. It is typically easier to work with Young’s or-
thogonal form as all of the matrices are orthogonal. Young’s Orthogonal
representations of the generators for the symmetric groups S2, S3, and S4
can be found in Appendix A.





Chapter 5

Invariants for Nonabelian
Group-based Models

In this chapter, I will present the progress I have made in generalizing
the Fourier-based methods for determining the invariants of nonabelian
group-based models. I will try to make my notation consistent with the
notation used in Székely et al. (1993).

5.0.1 Basic Model

We will start with a tree T with a set of leaves L∗ where |L∗| = n. We will
denote one of the leaves as the root R and denote the set of non-root leaves
L∗ \ R by L. The edges of the tree will be denoted by E(T) and the nodes
by V(T).

Let G be a finite group which acts transitively on the set of four DNA
nucleotides {A, G, C, T}. Along each edge e ∈ E(T), we will have inde-
pendent G-valued random variables ξe. These will represent the random
mutation of the DNA nucleotides along the edges of the tree. The probabil-
ity mass function for ξe is given by the function pe defined for each g ∈ G.
That is

pe(g) := Prob(ξe = G)

with ∑g∈G pe(g) = 1.
We will consider the direct product Gn−1 to be the set of all leaf col-

orations σ : L → G, and we denote the value of σ at a leaf l ∈ L by σl .
We can produce a random leaf coloration by evaluating each of the ran-
dom variables ξe along the edges and giving each leaf the group element
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obtained by multiplying all of the group elements along the unique path
R → l from the root to the leaf. We will denote by fσ the probability of
seeing a leaf coloration obtained in this manner.

Suppose we now associate an irreducible representation of G, ψl , with
each leaf l ∈ L. Then, we can define an irreducible representation for the
direct product Gn−1 by

ψ = ⊗l∈Lψl .

Conversely, given an irreducible representation for the group Gn−1, we can
obtain an irreducible representation φl of G for each of the leaves l ∈ L.

Next, we define the leaf set of an edge e ∈ E(T) by

Le = {l ∈ L : e separates l from R}.

For an edge e ∈ E(T) and an irreducible representation φ of Gn−1, we can
define a new representation for Gn−1 in the following manner:

ψe = ⊗l∈Lψl,e (5.1)

where ψl,e is defined to be ψl if l ∈ Le and the trivial representation of
degree dψl if l /∈ Le. Notice that for all edges e, e′ ∈ E(T), the degree of ψe
and ψe′ are equal. Also note that ψe can be viewed as a representation for G
by using the natural, injective homomorphism between G and Gn−1.

Now, suppose that φ is a representation of G and e ∈ E(T). We can
make the following two definitions:

le(φ) = ∑
g∈G

pe(g)φ(g) (5.2)

rψ = ∏ le(ψe). (5.3)

Notice that le(φ) is just the Fourier transform of the probability mass func-
tion pe along the edge e. Thus, it may be more intuitive to denote this
function by p̂e.

The main theorem relates the Fourier transform of the probability func-
tion defined on the leaf colorations to the Fourier transforms of the proba-
bility mass functions along the edges. It is a direct application of the lemma
below. The lemma will be presented in a more general setting, but we will
note the connections to our previous tree-based setting.

Let A = (aij) be a p× q matrix with integer entries. Let

x = (x1, x2, . . . , xq)T ∈ Gq
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be a vector of length q with each entry xi ∈ G. The, we define a vector
y ∈ Gp by y = (y1, y2, . . . , yp)T with

yi ∏
q
j=1 x

aij
j .

We will abbreviate this as y = Ax. This notation resonates with the no-
tation used in the works by Evans (2004) and Evans and Speed (1993). In
those works, a group-valued random variable at each of the leaves of the
tree is defined to be a sum (product) of random variables along the edges.
Indeed, this relationship is occasionally represented by an appropriate ”de-
sign matrix” in Evans and Speed.

Thus, we will think of the vector x as representing an evaluation of all
the random variables along the edges of the tree. The vector y will corre-
spond the the leaf coloration obtained by propagating the group elements
down the tree from the leaves to the root.

Let us be given functions pj : G → C for j ∈ {1, 2, . . . , q}. For each
x ∈ Gp, we define

F(x) =
q

∏
j=1

pj(xj).

In our original setting, the functions pj correspond to the probability mass
functions pe along each edge. With this in mind, F(x) is the probability of
obtaining a particular evaluation x of group elements along the edges.

Then, for y ∈ Gp, we define

f (y) = ∑
Ax=y

F(x).

Note that this sum is over all possible evaluations of the random variables
along the edges which give rise to the leaf coloration y. Thus, f (y) will
represents the probability of seeing a leaf coloration y.

The following lemma relates the Fourier transform of f to the probabil-
ity mass functions along the edges.

Lemma 5.1. Let ψi be an irreducible representation of G for 1 ≤ i ≤ n and ψ =
ψ1 ⊗ ψ2 · · · ⊗ ψp be the corresponding irreducible representation of Gp. Then,

f̂ (ψ) =
q

∏
j=1

∑
g∈G

(
pj(g)

p⊗
i=1

ψi (gaij)

)
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Proof. By definition, we have that

f̂ (ψ) = ∑
y∈Gp

ψ(y) f (y)

= ∑
y∈Gp

(
ψ(y) ∑

Ax=y
F(x)

)
= ∑

x∈Gq
F(x)ψ(Ax).

Now, we have that

ψ(Ax) = (ψ1 ⊗ · · · ⊗ ψp)(Ax)

=
p⊗

i=1

ψi((Ax)i)

=
p⊗

i=1

ψi

(
q

∏
j=1

x
aij
j

)

=
q

∏
j=1

p⊗
i=1

ψi

(
x

aij
j

)
.

Therefore,

f̂ (ψ) = ∑
x∈Gq

F(x)ψ(Ax)

= ∑
x∈Gq

(
q

∏
j=1

pj(xj)

)(
q

∏
j=1

p⊗
i=1

ψi

(
x

aij
j

))

= ∑
x∈Gq

q

∏
j=1

(
pj(xj)

p⊗
i=1

ψi

(
x

aij
j

))

=
q

∏
j=1

∑
g∈G

(
pj(g)

p⊗
i=1

ψi (gaij)

)
.

Now, we can apply this lemma in the context of our tree.
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Theorem 5.1. Let ψ = ⊗l∈Lψl . Then, we have the following Fourier inverse pair:

rψ = ∑
σ∈Gn−1

ψ(σ) fσ (5.4)

fσ =
1

|G|n−1 ∑
φ∈Ĝn−1

dφTr(φ(σ−1)r(φ)). (5.5)

Proof. First, notice that this theorem just states that rψ is the Fourier trans-
form of f , f̂ (ψ). Thus, we know that the two equations above are equiva-
lent. Thus, we just need to show that rψ as originally defined is equivalent
to the one in the theorem.

To do this, we will apply the previous lemma in the following setting:
p = n− 1, q = |E(T)|, and A = (ale) with ale = 1 if e lies on the path from
R to l and zero otherwise. From the original definition of rψ, we have

rψ = ∏
e∈E(T)

le(ψe)

= ∏
e∈E(T)

∑
g∈G

pe(g)ψe(g)

= ∏
e∈E(T)

∑
g∈G

pe(g)

(⊗
l∈Le

ψl

)
(g).

Thus, by the previous lemma, we have that rψ = f̂ψ.
Finally, we confirm that the functions f and F work in our setting. Let

Ξ = (ξe : e ∈ E(T)) be the vector of random group elements selected
independently on the edges, pe(g) = Prob(ξe = g), and Υ be the vector of
the resulting leaf coloration. As we noted before, independence among the
edges implies F(x) = Prob(Ξ = x) and f (y) = Prob(Υ = y).

Since le(ψe) is a Fourier transform of a probability mass function along
an edge, this theorem allows us to express the Fourier transform of f (σ) as
a product of Fourier transforms of functions along the edges.

5.1 Free Algebras

Exploiting this product structure was the key to Sturmfels and Sullivant’s
work in determining the invariants the abelian group-based models. Since
all the irreducible representations for abelian groups are one dimensional,
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all of their Fourier transforms were just complex numbers ( 1× 1 matrices
over C). This allowed them to define the following monomial map:

aψ1⊗···⊗ψn−1 7→ ∏
e∈E(T)

be,ψe .

This can be extended to a complex polynomial ring homomorphism from
the ring with an a-indeterminate for all the irreducible representations of
Gn−1 to a ring with a b-indeterminate for each pair e and ψe′ . The invariants
are the kernel of this homomorphism.

When a nonabelian group is acting on the nucleotides, some of the
Fourier transforms are matrices and not numbers. In this case, the poly-
nomial ring homomorphism defined above may not be appropriate. In
general, matrices do not commute like the complex numbers or the inde-
terminates in a polynomial ring.

The most natural noncommutative generalization of the the polynomial
ring K [x1, x2, . . . , xn] is the free (associative) algebra X〈x1, x2, . . . , xn〉.
Definition 5.1. Let X be a nonempty, finite set. We think of the elements of X as
letters in an alphabet. A word of length n is an ordered n-tuple of elements of X.

Example 5.1. For example, if X = {a, b}, then the following are all the words of
length 2.

aa
ab
ba
bb

Definition 5.2. We will define the set X∗ to be the set of all words of finite length
from X. Suppose x, y ∈ X∗. Then, we define their product vw to be the word
obtained by concatenating w to the end of v.

Example 5.2. Again, suppose X = {a, b}. Let x = abba and y = bbb. Then,

xy = abbabbb
yx = bbbabba.

Notice that this multiplication is a noncommutative operation.

Now, consider the vector space V with basis X∗ over some field K. We
extend the product in X∗ to V by distributivity:(

∑
i

αivi

)(
∑

j
β jwj

)
= ∑

i,j
αiβ jviwj.
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This multiplication turns V into an associative algebra. If |X∗| = n , then
we call V the free (associative) algebra over K on n generators. We will
denote the free algebra by K〈X〉.

A free algebra K〈x1, x2, . . . , xn〉 behaves much like the polynomial ring
K [x1, x2, . . . , xn] with the exception that the indeterminates of

K〈x1, x2, . . . , xn〉

do not commute while the elements of K [x1, x2, . . . , xn] do. However, there
are indeed some differences. For example, free associative algebras do not
have a unit element while the polynomial rings do.

5.1.1 Ideals for Free Associative Algebras

Just as we consider ideals of polynomial rings, we can consider ideals of
free algebras. For example, let I be the ideal in K〈a, b, c〉 generated by the
following commutivity relations:

ab− ba
ac− ca
bc− cb.

The (left, right, or double-sided) ideal I consists of all scalar multiples,
sums of the elements of I, and products of the elements of I by the ele-
ments of K〈a, b, c〉 (on the left, on the right, or on both sides). If we see were
to look at the quotient of K〈a, b, c〉 with the double-sided ideal I, we’d see

K〈a, b, c〉/I ∼= K [a, b, c] .

Given an ideal in a free algebra, we can ask about a minimal set of gen-
erators for the ideal. The theory of Gröbner bases of commutative (polyno-
mial) rings has been extended to the noncommutative case of free algebras.
For a brief introduction, see Teo Mora’s “An introduction to commutative
and noncommutative Gröbner bases” (1994). Unlike the commutative case,
there not exist an algorithm for producing a set of generators ( a Gröbner
basis ) for a generic ideal in the noncommutative case. This is due to the
fact that not all ideals are finitely generated.

As proved in Helton and Stankus (1999), the theory of elimination ide-
als carries over to the noncommutative case. Elimination ideals are useful
in solving implicitization problems – going from a parametric form of an
algebraic variety to an implicit form. This suggests a definition for a non-
commutative generalization of toric ideals.
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Definition 5.3. Let X and T be finite sets. A noncommutative toric ideal is the
kernel of a homomorphism φ between free algebras K〈X〉 and K〈T〉 which maps
monomials in K〈X〉 to monomials in K〈T〉.

One method by which to begin investigating these objects would be
the free software package Bergman which can be found at http://servus.
math.su.se/bergman/. It provides an easy to use interface for computing
noncommutative Gröbner bases in free algebras. In addition, it has elim-
ination orderings (for elimination ideals) built in. It would be interesting
to see if these noncommutative toric ideals are as highly structured as their
commutative counterparts.

http://servus.math.su.se/bergman/
http://servus.math.su.se/bergman/


Chapter 6

Statistical Properties of
Algebraic Invariants for
Phylogenetic Trees

In order for the reconstruction of phylogenetic trees via algebraic invari-
ants to be applicable, it needs to be able to deal with data from real DNA
sequences. Allman and Rhodes (2003) gives the following characterization
of the current state of affairs:

Then, in order to apply invariants to real data, one must decide
what it means for an invariant to be “close to vanishing” on ob-
served frequencies. A statistical understanding of the behavior
of these polynomials on noisy data is highly desirable. More-
over, as there are infinitely many invariants, choosing a finite
set of generators with good statistical properties is necessary.
Finally, robustness of the method under violation of model as-
sumptions is critical to applications, since models of sequence
evolution are only approximate assumptions of reality. While
much work remains to implement such a plan, the approach
has intrigued a number of researchers.

We can see this lack of a thorough statistical understanding of the in-
variant polynomials when we look at, say, Chapter 15 of “Algebraic Statis-
tics for Computational Biology” (Pachter and Sturmfels, 2005). When they
evaluated the effectiveness of reconstructing tress with the method of in-
variants, they used an ad-hoc method which selected the tree that mini-
mized the sums of the squares of the polynomials after evaluating them at
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the observed pattern frequencies. With this in mind, I plan to investigate
the statistical behavior of the polynomial invariants on noisy data due to
the effects of only having finite DNA sequences.

A Multinomial Experiment

Suppose we have a m aligned sequences of length n from an alphabet of
` letters. Furthermore, suppose that these sequences were produced via
some Markov process model for DNA sequence evolution on some tree
topology T.

Given a tree and transition mechanism, we can calculate the probability
pσ of seeing a given pattern σ. Then, each column can be thought of as
the result of a Benuoulli trial where there are `m possible outcomes (one for
each σ) and the probability of obtaining outcome σ is pσ.

Let Xσ be the number of “successes” of seeing σ upon n of these inde-
pendent Bernoulli trials. Then, Xσ has a binomial distribution with param-
eters n and pσ. The covariance between between any two distinct Xσ1 and
Xσ2 is given by

cov (Xσ1 , Xσ2) = −npσ1 pσ2 .

As n→ ∞, we have

Xσ − npσ√
npσ(1− pσ)

→ N
(
µ = 0, σ2 = 1

)
.

We are interested in the pattern frequencies p̄σ = Xσ/n. As n→ ∞, we can
calculate the distribution of the pattern frequencies:

X− npσ ∼ N
(
µ = 0, σ2 = npσ(1− pσ)

)
X ∼ N

(
µ = npσ, σ2 = npσ(1− pσ)

)
p̄σ = X/n ∼ N

(
µ = pσ, σ2 = pσ(1− pσ)/n

)
.

Note that this approximation only holds for relatively large n. A typical
rule of thumb is that both npσ and n(1− pσ) both must be greater than 5.
This presents somewhat of a problem in the general case since pσ is not
known when we are trying to reconstruct a phylogenetic tree.

Since we do know what pσ is, we the following worst case bound for
p̄σ:

p̄σ ∼ N
(
µ = pσ, σ2 = 1/4n

)
since the largest value pσ(1− pσ) can take on is 1

4 .
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Invariants in Probability Coordinates

Now, we want to see how the algebraic invariants of a phylogenetic tree
behave when we plug in these pattern frequencies. We will first consider
the case of linear invariants in the probability coordinates. As a first ap-
proximation, assume that X and Y are independent random variables. If
X ∼ N(µX, σ2

X) and Y ∼ N(µY, σ2
Y), then

X + Y ∼ N(µX + µY, σ2
X + σ2

Y)

and

aX ∼ N(aµX, a2σ2
X).

Suppose we have a linear invariant f ((xσ)) = f0 + ∑ cσxσ in the probability
coordinates. Then,

f ((Xσ)) = f0 + ∑ cσXσ

∼ N
(

f0 + ∑ cσµσ, ∑ c2
σσ2

σ

)
∼ N

(
f0 + ∑ cσ pσ, ∑ c2

σ

(
1

4n

))
∼ N

(
0,

1
4n ∑ c2

σ

)
in the worst case.

Now, consider a set of DNA sequences as described above. We can cal-
culate each of the pattern frequencies p̄σ by just going through the sequence
and counting the number of times we see the pattern σ. We evaluate the
linear invariant by plugging in the pattern frequencies p̄σ to obtain

x = f (( p̄σ)).

If the DNA sequences come from the tree topology and model of DNA
sequence evolution associated with f , then x will come from the distribu-
tion N

(
0, 1

4n ∑ c2
σ

)
. We want to calculate the probability that x does indeed

come from this distribution. Approximately 95% of the samples drawn
from f ((Xσ))’s probability distribution will be within two standard devia-
tions of the mean (which is 0 in this case). Thus, if

|x| > 2

√
1

4n ∑ c2
σ

=

√
1
n ∑ c2

σ
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then we can be 95% sure that the sequences do not come from the tree
topology and model of DNA sequence evolution associated with f .

Unfortunately, the invariants in probability coordinates become extremely
large and it becomes prohibitive to write them down and evaluate them.
Furthermore, linear invariants are relatively rare and do not have the dis-
tinguishing power as the higher-degree invariants. Thus, it is more useful
to consider the invariants in Fourier coordinates.

Invariants in Fourier Coordinates

Now, we will look how the invariants behave in Fourier coordinates. For
now we will just consider the case when the model of DNA sequence evo-
lution is an abelian group-based model. In that case, for every pattern τ
we will define a new quantity qτ that is obtained by applying the Fourier
transform F to the pσ’s at a representation character χτ where χτ is the
image of τ under the natural isomorphism between G and Ĝ.

Example. Suppose we are considering 2 sequences of 0s and 1s. Let

p = (p00 p01 p10 p11)T

and

q = (q00 q01 q10 q11)T.

Then,

q = F (p)

=
1
2


1 1 1 1
1 −1 1 1
1 1 −1 −1
1 1 −1 1

 p

Similarly, we define q̄ = F (p̄). Since the invariants in Fourier coordi-
nates will be polynomials of indeterminates corresponding to qτ, we must
look at the distributions of each of the qτ’s.

Multivariate Normality

Multivariate normal distributions have the convenient property that every
linear combination of the individual marginal distributions is normally dis-
tributed. Because every q̄τ will be a linear combination of the p̄σ’s, we will
want the pσ’s to be distributed as a multivariate normal distribution.
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As each of the marginal binomial distributions converge to normal dis-
tributions, the multinomial distribution converges to the multivariate nor-
mal distribution. Because normal distributions are extremely well-studied
and their statistical properties are often well-behaved, it will be useful to
approximate the multinomial distribution by its associated multivariate
normal distribution. Unfortunately, I was not able to find specific rates
of convergence to the multivariate normal. The closest paper I was able to
find was Andrew Carter’s “Deficiency Distance between Multinomial and
Multivariate Normal Experiments” (2002), but that appears to not quite be
what we need in addition to imposing “smoothness” constraints on the
multinomial distribution probabilities.

Therefore, if we want to have sense for how the q̄τ’s behave, we can
apply tests of multivariate normality to multinomial distributions to see
how many samples need to be drawn for the approximation to hold.

Tests of Multivariate Normality

In their paper “A New Test for Multivariate Normality” Székely and Rizzo
(2005), Székely and Rizzo present a test for multivariate normality based
on the Euclidean distance between samples. We will call this test the E -
test. When compared against tests such as Marida’s skewness and kurtosis
tests, they find the E-test to be a powerful competitor. They proposed the
following test statistic E for d-variate normality:

E = n

(
2
n

n

∑
i=1

E ‖yi − Z‖ − E
∥∥Z− Z′

∥∥− 1
n2

n

∑
i=1

n

∑
j=1

∥∥yi − yj
∥∥)

where y1, . . . , yn is the standardized sample. The random variables Z and
Z′ are independent standard d-variate normal variables, and ‖·‖ represents
the standard Euclidean norm. The null hypothesis for the test is that the
distribution from which the samples come from is the standard d-variate
normal. Thus, at a significance level of α = 0.01, we would fail to reject
the null hypothesis that our (standardized) data comes from the standard
multivariate normal whenever the p-value was greater than 0.01.

An R implementation of Székely and Rizzo’s E -test can be found in the
energy package which can be obtained from any R CRAN mirror. (R Devel-
opment Core Team, 2007) For each of the sequence lengths n listed below, R
was used to sample 2000 times from a multinomial distribution with 16 dif-
ferent “patterns” whose probabilities were uniformly distributed between
0 and 1. Due to implementation issues with the E-test in R, the multino-
mial samples could not be used directly; otherwise, a divide by zero error
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n

< 500 < 2 ∗ 10−16 · · ·
500 < 2 ∗ 10−16 · · ·
1000 0.01005 0.2513 0.05025 0.005025 0.2814
1500 .3819 0.2211 0.01508 0.2613 0.6784
> 1500 > 0.05 · · ·

Table 6.1: p-values for multivariate normal E -test.

would occur. A small error term, normally distributed with mean 0 and
standard deviation .3, was added to each of the values; changing the devi-
ation did not produce significant changes in the result of the test. Each test
took approximately 1 minute to complete. The average p-values for each
of the sequence lengths can be seen in Table 6.1.

If we use a confidence value of α = 0.05, then we almost always reject
the null hypothesis of the data being multivariate normal for n < 1500.
On the other hand, for n ≥ 1500, we fail to reject the null hypothesis.
While this is mere anecdotal evidence, it suggests that sequences lengths
of approximately 1500 are needed to obtain approximate multivariate nor-
mality. However, a theoretical result on the rate of convergence would be
much preferred and is something worth investigating.

Assuming Multivariate Normality

Thus, assuming that the multivariate normal approximation holds, we ob-
tain

q̄τ = ∑ cσ p̄σ

∼ N
(
∑ cσµσ, ∑ c2

σσ2
σ

)
∼ N

(
∑ cσ pσ,

(
1

4n

)
∑ c2

σ

)
.

We can always choose a Fourier Transform F so that each row has length
1. This implies that ∑ c2

σ = 1. Thus,

q̄τ ∼ N
(

∑ cσ pσ,
1

4n

)
∼ N

(
qτ,

1
4n

)
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Figure 6.1: A histogram for one of the “pattern frequencies” when n =
2500. Plotted with the histogram is the curve for a normal distribution with
the same mean and standard deviation as the data.
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Notice that the variance of q̄τ is inversely proportional to the length of the
sequence. This highlights the fact that the technique of using algebraic in-
variants for tree reconstruction improves as the length of the sequences
increase.

In the Fourier coordinates, we have the nice property that all invariants
will be binomials. Suppose we have a monomial r of the q̄τ’s that has de-
gree d = ∑ aτ. Then, we must look at the distribution of r. First, we will
compute the covariance between two arbitrary q̄τ’s:

cov(q̄τ1 , q̄τ2) = E [q̄τ1 q̄τ2 ]− qτ1 qτ2

= E[
(
∑ cσ p̄σ

) (
∑ dσ p̄σ

)
]

=

(
∑
σa

∑
σb

cσa dσb E [ p̄σa p̄σb ]

)
−
(
∑ cσ pσ

) (
∑ dσ pσ

)
=

(
∑
σ

cσdσE [ p̄σ p̄σ]− cσdσ pσ pσ

)

−
(

∑
σa 6=σb

cσa dσb E [ p̄σa p̄σb ]− cσa dσb pσa pσb

)
= ∑

σ

cσdσvar( p̄σ)

= ∑
σ

cσdσσ2
σ

≤ ∑
σ

cσdσ

(
1

4n

)
=

`m

4n ∑
σ

cσdσ.

Note that if τ = τ1 = τ2 then we have

cov(q̄τ, q̄τ) ≤
|G|
4n

since |G| = `m and ∑σ c2
σ = 1. In the case where τ1 6= τ2, then

cov(q̄τ, q̄τ) ≤ 0

since the rows of the Fourier transform matrix are orthogonal, that is ∑ cσdσ =
0.

Now, we consider r = ∏ q̄aτ
τ .
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E[r] = E
[
∏ q̄aτ

τ

]
= ∏ E [q̄aτ

τ ]

= ∏ E [q̄τ]
aτ .

If aτ > 1 for any τ, then we are in trouble since (in general) E [Xaτ ] 6=
E[X]aτ . Luckily, all of the invariants (at least for abelian groups) in Fourier
coordinates are square-free. Thus, we will have that E [q̄τ]

aτ = qaτ
τ for all τ.

Then, we obtain

E[r] = ∏ qaτ
τ .

Now, suppose we have an invariant f ((xτ)) = r1((xτ))− r0((xτ)) where
r1 and r0 are monomials. Then,

E [ f ((q̄τ))] = E [r1((q̄τ))− r0((q̄τ))]
= E [r1((q̄τ))]− E [r0((q̄τ))]
= ∏ qaτ

τ −∏ qbτ
τ

= r1((qτ))− r0((qτ))
= f ((qτ))
= 0.

Thus, when we plug in the transformed pattern frequencies into the Fourier
coordinate invariants, we should “expect” to get 0.

The variance is a bit more difficult to calculate. For each term in the
binomial, we have a product of normally distributed random variables.
Additionally, since the binomials are square-free, it is a product of inde-
pendent normally distributed random variables. There are two promising
methods I’ve found for understanding the distribution of a product of ran-
dom variables: a 1947 result by Aroian and the use of the Mellin transform.

Approximating the Distribution for Sums of Products of Normal
Variables

To begin, we will limit ourselves to quadratic invariants. Then we can rely
on some previous research – “Approximating the Distribution for Sums
of Products of Normal Variables” by Ware and Lad (2003). They present
three different methods for constructing an approximation to the p.d.f. of
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a product of two normal random variables: a numerical integration pro-
cedure in MATLAB, a Monte Carlo construction, and an approximation to
the analytic result using the Normal distribution. I want to look at the ap-
proximation using a normal distribution.

Let Y = X1X2 be the product of two normally distributed random vari-
ables with X1 ∼ N(µ1, σ2

1 ) and X2 ∼ N(µ2, σ2
2 ). We can approximate of

the p.d.f. f (y) of Y by calculating the first two moments of Y and using
a normal distribution with those moments. In Craig’s 1936 paper “On
the frequency function of xy” (1936), he determined the algebraic form of
the moment-generating function for a product of two random variables.
Aroian (1947) showed that the product is asymptotically normal as either
δ1 = µ1/σ1 or δ1 = µ1/σ1 approach infinity. Aroian et al. (1978) considered
six different cases depending on what is known about the parameters δ1,
δ2, and ρ, the correlation coefficient between X1 and X2.

I will consider the case when ρ = 0, that is when we are looking at the
product of two independent normally distributed random variables. As
we have seen above, this is true for qτ1and qτ2 when τ1 6= τ2. The moment
generating function for Y is given by

MY(t) =
(√

1− σ2
1 σ2

2 t2

)
e

µ1µ2t+ 1
2 (µ2

1σ2
1 +µ2

2σ2
2 )t2

1−σ2
1 σ2

2 t2 .

The mean, variance, and skewness are given by

E(Y) = µ1µ2

V(Y) = µ2
1σ2

2 + µ2
2σ2

1 + σ2
1 σ2

2

α3(Y) =
6µ1µ2σ2

1 σ2
2(

µ2
1σ2

2 + µ2
2σ2

1 + σ2
1 σ2

2

)3/2 .

These moments can also be found by noticing E [Yr] = E [Xr
1] E [Xr

2] and
using the moments of the normal distribution. Although Ware and Lad
(2003) only consider products of two normally distributed random vari-
ables, the above technique will hold for products of any number of inde-
pendent normally distributed random variables. For example, consider the



45

product Z = X1X2 · · ·Xn. Then,

E[Z] = E [X1] E [X1] · · · E [Xn]
= µ1µ2 · · · µn

V[Z] = E
[
Z2]− E[Z]2

= E
[
X2

1
]

E
[
X2

1
]
· · · E

[
X2

n
]

=
n

∏
i=1

(
µi + σ2

i
)
−

n

∏
i=1

µi.

From above, we see that

V(Y) = µ2
1σ2

2 + µ2
2σ2

1 + σ2
1 σ2

2

= σ2
1 σ2

2
(
1 + δ2

1 + δ2
2
)

.

Thus, as δ1 and δ2 increase, the distribution of Y tends toward

N
(
µ1µ2, µ2

1σ2
2 + µ2

2σ2
1
)

since the normal distribution is exactly specified by its first two moments.
The quality of this approximation depends on the skewness α3(Y). Be-

cause normal distributions have zero skewness, the approximation is better
with small α3(Y) and worse with large α3(Y). The skewness of Y is largest
when µ1 = σ1 and µ2 = σ2.

We will now look into the the values of δτ = µτ/στ for our independent,
normally distributed random variables q̄τ. First off, we know that

µτ = qτ

= ∑
σ

cσ pσ.

Thus, µτ is a weighted average of the cσ’s since ∑σ pσ = 1. Furthermore,
since ∑σ c2

σ = 1, we have that |µτ| ≤ 1. Also, we know that στ ≤ 1
4n

for all τ. As long as µτ is not arbitrarily close to zero, then we can obtain
approximate normality as n → ∞. For example, if n = 250 and µ2 = µ21 =
0.1, then

σ1 = σ2 ≤ 0.001
δ1 = δ2 ≥ 100

α3(Y) =
6µ1µ2σ2

1 σ2
2(

µ2
1σ2

2 + µ2
2σ2

1 + σ2
1 σ2

2

)3/2

≤ 0.0212.
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With this skewness, we could relatively accurately approximate the dis-
tribution of a product of two independent normally distributed random
variables as a normal distribution. This will require investigation into the
values of pσ obtained for “sane” model parameters. I suspect this will be
the case.

At the end of his 1947 paper, Aroian stated that his result on the product
of two normal distributions can be generalized to the product any number
of random normal variables that come from a multivariate normal distri-
bution. More concretely, if (X1, X2, . . . , Xn) form a joint normal distribution
then,

k

∏
i=1

Xai

can be approximated by a normal distribution where 1 ≤ a1 < a2 < · · · <
ak ≤ n and k ≤ n. Aroian stated that this more general result would be
proved in a later paper, but I was unable to find such a paper. A rigor-
ous proof of this result would be beneficial in understanding the statistical
behaviour of the invariants. Notice that the square-free nature of the poly-
nomials in Fourier coordinates come into play here. If the products we’re
considering are not square-free, the analysis becomes much more difficult.

Mellin Transform

The following section follows closely Lomnicki’s paper “On the Distribu-
tion of Products of Random Variables” (1967). Let f (x) be a function. Then,
then Mellin transform

M { f (x)|s} = E
[

xs−1
]

=
∫ ∞

0
xs−1 f (x)dx.

Under suitable conditions (need to look these up), there in an inversion in-
tegral when we consider M { f (x)|s} as a function of the complex variable
s:

f (x) =
1

2πi

∫ c+i∞

c−i∞
x−s M { f (x)|s} ds.

The Mellin convolution of two functions f1(x) and f2(x) is defined as

g(x) =
∫ ∞

0

1
y

f2

(
x
y

)
f1(y)dy
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which is also the p.d.f. h2(x) of the product x = x1x2 of two independent
positive, random variables with p.d.f.’s f1(x1) and f2(x2). We also have

M {h2(x)|s} = M { f1(x1)|s}M { f2(x2)|s} .

This can be extended for the p.d.f. hn(x) of the product x = x1 · · · xn of n
independent, positive random variables:

M {hn(x)|s} =
n

∏
i=1

M { fi(xi)|s} .

We can treat the more general problem with random variables that may
take on both positive and negative values by decomposing each p.d.f. fi(xi)
into two positive components with disjoint support:

fi(xi) = f−i (xi) + f +
i (xi)

where f +
i = fi on the interval [0, ∞), f−i = fi on the interval (−∞, 0], and

both are identically 0 everywhere else. Then, we can get the p.d.f. for

hn(x) = h−n (x) + h+
n (x)

whose components are defined by

M
{

h−n (−x)|s
}

= M
{

f +
n (x)|s

}
·M

{
h−n−1(−x)|s

}
+M

{
f−n (−x)|s

}
·M

{
h+

n−1(x)|s
}

M
{

h+
n (x)|s

}
= M

{
f +
n (x)|s

}
·M

{
h+

n−1(x)|s
}

+M
{

f−n (−x)|s
}
·M

{
h−n−1(−x)|s

}
.

Since we will be considering normal distributions, we will have that

f−i (−xi) = f +
i (xi)

for all i = 1, . . . , n. Thus, we get that

f−n (−x) = h+
n (x).

In the nice case where fi = f for all i = 1, . . . , n then

M
{

h+
n (x)|s

}
= M

{
h−n (−x)|s

}
= 2n−1M

{
f +(x)|s

}n .
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Unfortunately, the Mellin transform of the p.d.f. of a Gaussian distri-
bution cannot be written in closed form. In Springer and Thompson, they
numerically compute values for the p.d.f. of a product of identical Gaus-
sians. In our case, we have product of nonidentical Gaussians. There is
more work left to be done to determine how best to apply the Mellin trans-
form in our case.



Appendix A

Representations of the
Symmetric Group

In this appendix, Young’s orthogonal representations for the generators of
the S2, S3, and S4 are given. Each of the partitions whose Young diagrams
are given below correspond to an irreducible representation. In order to ob-
tain a representation for a generic element of one of the symmetric groups:

1. Write the permutation as a product of the transpositions tn = (n −
1 n).

2. Multiply the corresponding matrices together.

S2

() 7→ (1) (12) 7→ (1)

() 7→ (1) (12) 7→ (−1)
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S3

() 7→ (1) (12) 7→ (1) (23) 7→ (1)

() 7→
(

1
1

)
(12) 7→

(
−1

1

)
(23) 7→

(
1
2

√
3

2√
3

2 − 1
2

)

() 7→ (1) (12) 7→ (−1) (23) 7→ (−1)

S4

() 7→ (1) (12) 7→ (1) (23) 7→ (1) (34) 7→ (1)

() 7→

 1
1

1

 (12) 7→

 −1
1

1



(23) 7→

 1
2

√
3

2√
3

2 − 1
2

1

 (34) 7→

 1
1
3

2
√

2
3

2
√

2
3 − 1

3
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() 7→
(

1
1

)
(12) 7→

(
−1

1

)

(23) 7→
(

1
2

√
3

2√
3

2 − 1
2

)
(34) 7→

(
−1

1

)

() 7→

 1
1

1

 (12) 7→

 −1
−1

1



(23) 7→

 −1
1
2

√
3

2√
3

2 − 1
2

 (34) 7→

 1
3

2
√

2
3

2
√

2
3 − 1

3
−1



() 7→ (1) (12) 7→ (−1) (23) 7→ (−1) (34) 7→ (−1)
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