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Abstract

The average time necessary to add numbers by local parallel computation
is directly related to the length of the longest carry propagation chain in
the sum. The mean length of longest carry propagation chain when adding
two independent uniform random n bit numbers is a well studied topic,
and useful approximations as well as an exact expression for this value
have been found. My thesis searches for similar formulas for mean length
of the longest carry propagation chain in sums that arise when a random
n-digit number is multiplied by a number of the form 1 + 2d.

Letting Cn,d represent the desired mean, my thesis details how to find
formulas for Cn,d using probability, generating functions and linear algebra
arguments. I also find bounds on Cn,d to prove that Cn,d = log2 n + O(1),
and show work towards finding an even more exact approximation for
Cn,d.
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Chapter 1

Introduction

1.1 A Question Explained

Add two numbers x and y in base b by the following formula

x + y = Sxy + Cxy.

Here Cxy are the carry digits. According to the rules of addition as taught
in countless elementary schools, we carry a 1 to the ith digits if the (i − 1)th

digits of x and y add to b or more. So in this case the ith digit of Cxy is 1. If
instead the (i − 1)th digits of x and y add to less than b, then the ith digit of
Cxy is 0.

In the formula defining addition, Sxy are the sum digits. The ith digit
of this number is the sum of the ith digits of x and y modulo b. The value
for Sxy + Cxy is simply Sxy if Cxy = 0. If not, we then find Sxy + Cxy by
repeating this process. Each iteration of this algorithm can be completed
in constant time by local parallel computing. The question of how many
operations are necessary to compute the sum of two numbers then directly
relates to the number of times we must repeat this algorithm.

Below is an example of the summation process described. Note in this
paper we only consider operations in binary, although it would not be dif-
ficult to extend these results to other bases.
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01011
+ 10110

Carry 00100
Sum + 11101
Carry 01000
Sum + 11001
Carry 10000
Sum + 10001

100001
In the above example the second bit position causes a carry to occur

in the third position. This carry subsequently creates another carry, which
then causes another. We may then call bit positions 2 through 5 a carry
propagation chain of length 4, although we will consider positions 2 though
k, 2 ≤ k < 5 as carry propagation chains as well.

From the example we see that the length of the longest carry propa-
gation chain is the number of times we must repeat the described adding
algorithm. This is true since we must complete another new addition when
a carry digit causes another carry. The question of how long on average is
the longest carry chain of two random n-bit numbers when summed to-
gether then is of particular interest, since we may derive from the answer
the amount of time on average needed to sum. Accordingly carry propa-
gation is one of the oldest problems studied in the analysis of algorithms.
Over decades several formulas of varying accuracy and utility have been
discovered that answered the question described above.

My thesis deviates from established research by instead considering the
type of addition that arises from multiplying a random n-bit number by
1 + 2d. So I am investigating the average length of the longest carry propa-
gation chain when adding a random n-bit numbers of the form xnxn−1...x1
to another with bits xnxn−1...x100...0. The end goal is to find exact and ap-
proximate formulas for the mean length of the longest carry propagation
chain from such an addition. This mean length is denoted by Cn,d.

My research has been split into the following goals.

• Determine lower and upper bounds for Cn,d using only first- and
second-moment probabilistic arguments. From these bounds I found
that

Cn,d = log2 n + O(1).

• Using a recursive argument, derive a generating function that de-
scribes Cn,d and from that generating function find a more precise
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asymptotic formula. This work led to a proof that

Cn = log2 n + γ log2 e − 3
2
− F(log2 n) + O

(
(log n)4

n

)
(1.1)

with |F(v)| ≤ 1.573...× 10−6.

• Discover exact formulas for Cn,d. I ended up finding for example that

Cn,1 = ∑k>0,k even ∑j≥1 (n−jk
j ) (−1)j−1

2j(k+1) + (n−jk
j−1 ) 1

2(j−1)(k+1)+k

+ ∑k>0,k odd ∑j≥1 ∑l≥0(−1)j−1
( n − jk

j − l

)(( j − l
l

))
/2j(k+1)−l

.

I also created a method by which such exact formulas could be found
for any d, although it takes time exponential in d. I wrote a program
in Mathematica that outputs long although easy to solve generating
functions for these formula.

1.2 Terminology and Useful Basics

A bit position for two summed numbers generates a carry if both summands
are 1 in this position. If the summands are a 1 and a 0, we say that bit posi-
tion propagates a carry. Then a carry propagation chain is some consecutive
bit positions such that the rightmost position generates a carry, and the rest
propagate a carry. We call a set of k conescutive bit positions a k-block, and
if a k-block is also a carry propagation chain, then we refer to it as an active
k-block.

Suppose x has binary digit representation xnxn−1...x1. Then the multi-
plication x(2d + 1) produces a sum with an active k-block starting in the l
bit position only if xl = 1 and xl−d = 1 . This ensures the active k-block
starts with a generator. To ensure that every other bit position propagates a
carry, then xl+j = xl+j−d must hold for 1 ≥ j ≥ k. If some k + d consecutive
bits in x when multiplied by 1 + 2d gives rise to an active k-block, then we
refer to those k + d digits as an active k-block with regard to multiplication
by 1 + 2d.

According to these rules an active k-block with regard to multiplication
by 11 must be k + 1 digits of the form ...0101011. More generally, an active
k-block with regard to multiplication by 1 + 2d is k + d digits of the form
...0xd−1xd−2...x11xd−1xd−2...x10xd−1xd−2...x11xd−1xd−2...x11. Here xj may be
1 or 0 and xj is the opposite number. So there are 2d−1 different possible
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active k-blocks with regard to this multiplication. The probability that k + d
random ordered digits are an active k-block then is 2d−1/2k+d = 1/2k+1.
Note that almost every time I refer to an active k-block it will be with regard
to some multiplication, and I will bring it to the reader’s attention when
this is not the case.

If we multiply the number 11 by 1 + 21 we see that this causes one carry
which then propagates another carry. So the number 11 should be an active
2-block but according to the rules of active k-blocks above it is just an active
1-block. Notice we do not have this inconsistency if the digits 11 are not
the leftmost portion of a number, as 011 is the only set of 3-digits that is an
active 2-block. Something is happening at the very end of the number.

When we add the number to itself shifted over d digit, to the left of the
original number there are d implicit 0’s s. So the number 11 with regard
to multiplication by 1 + 21 we may consider as actually being the number
011. This does not change the results of adding or multiplying the number.
The new representation though does allow us to see that the bits 11 at the
end of a number are an active 2-block. More generally, appending d zeros
allows us to use the definition above to check whether the last few digits of
a number are an active k-block. We call an active k-block that includes any
of the implicit zeroes at to the left of a number a truncated active k-block.
We use this term because a truncated active k-block in the original repre-
sentation of the number is an active k-block but with leftmost positions that
ought to be zero removed. We count the length of a truncated k-block as
k + d minus the number of digits that aren’t in the original representation
of the number. We also call an active k-block that is not truncated a full
active k-block.



Chapter 2

Rough Bounds

2.1 An Upper Bound

In this section we derive decent bounds for Cn,d through only very basic
probabilistic properties. This proof is due to ideas from J. von Neumann’s
proof of an upper bound and V. Claus’s proof of a lower bound for Cn as
cited in [3].

Let Cn,d be the random variable denoting the length of the longest active
k-block in a random n-bit number with regard multiplication by 1 + 2d.
Note that by partial summation

Cn,d = ∑
k≥0

k Pr[Cn,d = k] = ∑
k≥1

Pr[Cn,d ≥ k]. (2.1)

Now define Bn,d,k to be the random variable denoting the number of active
k-blocks when multiplying a uniformly distributed n-bit number by 1 + 2d.
This variable is useful to consider since

Pr[Cn,d ≥ k] = Pr[Bn,d,k ≥ 1]. (2.2)

This holds because a carry propagation chain of length at least k occurs if
and only if at least one k-block is active.

A full k-block is active with probability 1/2k+1. Such a k-block requires
k + d bits and so there exists n − k − d + 1 distinct full k-blocks among n
digits. A truncated k-block is active with probability at most 1/2k, since for
each bit of the block not in the number, we gain a factor of 2 for not having
to set that bit to a specific value, but can gain a factor of 1/2 since we have
to label the bit d to the left of it as 1. We do not gain the factor of 1/2
only when a bit not in the number but in the active k-block is the (cd + 1)th
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with even c and so the bit d to the left must have been a 1 anyway. There
are altogether d possible truncated k-blocks in the number, since an active
k-block may end in at most d zeros. This all implies that

Ex[Bn,d,k] ≤ (n − k − d + 1)/2k+1 + d/2k. (2.3)

Markov’s inequality shows Pr[Bn,d,k ≥ 1] ≤ min{1, Ex[Bn,d,k]}. Using
(2.2) to rewrite the lefthand side of the inequality, and (2.3) to rewrite the
righthand side, we derive

Pr[Cn,d ≥ k] ≤ min{1, (n − k − d + 1)/2k+1 + d/2k}. (2.4)

Assuming log2 n ≥ d + 2 implies 1 ≥ (n − k − d + 1)/2k+1 + d/2k for k at
least log2 n − 1. So summing over all k and using (2.1) for a substitution
leads to

Cn,d ≤ ∑
1≤k≤log2 n−1

1 + ∑
k>log2 n−1

(
(n − k − d + 1)

2k+1 +
d
2k

)
≤ log2 n +

3d
n

+ 1.

Our analysis implicitly assumed n > d, else we’d be shifting the original
number by so much the sum could have no carries. It’s important to note
this, else the previous inequality would imply Cn,d is negative for large
enough values of d.

2.2 A Lower Bound

Let C′
n,d, C′

n,d and B′
n,k,d be defined the same as Cn,d, Cn,d and B′

n,k,d ex-
cept with regards to only full active k-blocks. So for example C′

n,d is the
average length of longest full active k-block in a random n bit number with
regard to multiplication by 1 + 2d. We can disregard the d/2k term from
(2.3) contributed by truncated k-blocks to find that

Ex[B′
n,d,k] = (n − k − d + 1)/2k+1. (2.5)

To find a lower bound for C′
n,d we will also estimate the variance of

B′
n,k,d. Recall

Var[B′
n,k,d] = ∑

β1,β2

Pr[β1, β2active]− Pr[β1active] Pr[β2active],
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where β1 and β2 represent any possible ordered pair of k-blocks. The n −
k − d + 1 summands where β1 = β2 contribute (n − k − d + 1)(1/2k+1 −
1/22k+2) in total. Disjoint pairs give no contribution since in this case β1
and β2 being active are independent events, meaning Pr[β1, β2active] =
Pr[β1active] Pr[β2active]. Pairs that overlap by more than d contribute a
negative amount to the sum since Pr[β1, β2active] = 0. On the other hand,
Pr[β1, β2active] is 1/22k+1 or 0 if they overlap by d or less. Given o is the
number of bit positions shared by the two k-blocks, there are n − k − d −
o + 1 possible positions for β1 and β2. Summing o over all values from 1
to d gives less than 2d(n − 2k − 2d + 1) places β1 and β2 might be. In all
then, the overlapping k-blocks contribute no more than 2d(n − 2k − 2d +
1)(1/22k+1 − 1/22k+2) < d(n + 1)/22k+1. So

Var[B′
n,k,d] ≤ (n − k − d + 1)/2k+1 + d(n + 1)/22k+1.

Applying (2.3) with Chebyshev’s Inequality shows

Pr[B′
n,k,d = 0] ≤ Var[B′

n,k,d]/Ex[B′
n,k,d]2

≤ 2k+1/(n − k − d + 1) + 4d(n + 1)/(n − k − d + 1)2.

Since Pr[C′
n,d ≥ k] = Pr[B′

n,k,d ≥ 1] = 1− Pr[B′
n,k,d = 0], we know that

Pr[C′
n,d ≥ k] = max{0, 1− 2k+1/(n− k− d + 1)+ 4d(n + 1)/(n− k− d + 1)2}.

If k + d ≤ log2 n − 3 then n − k − d + 1 ≥ n/2. In that case 4d(n +
1)/(n − k − d + 1)2 ≤ 16d/n + 16d/n2, which is less than 1/2 for n ≥ 33d.
Similarly, 2k+1/(n− k− d + 1) ≤ 2−d−1 < 1/2. Since Cn,d = ∑k≥1 Pr[Cn,d ≥
k], we have

C′
n,d ≥ ∑

1≤k≤log2 n−d−3
1− 2k+1/(n − k − d + 1) + 4d(n + 1)/(n − k − d + 1)2

≥ blog2 n − d − 3c − 2−d−1 − 2.

Assuming n ≥ 16d we then have

C′
n,d ≥ log2 n − d − 7.

Every number has at least as long an active k-block as the longest full
k-block in that number. This implies that the average Cn,d ≥ C′

n,d. So we
have

Cn,d ≥ log2 n − d − 7.





Chapter 3

A Better Asymptotic Formula

3.1 The Objective

In this chapter I apply the analysis from [3] to the problem of finding a
better asymptotic formula for Cn,d. Let Dλ be a random variable over the
nonnegative integers such that

Pr[Dλ ≥ k] = 1− eλ/2k
. (3.1)

To reuse Pippenger’s analysis we first must show that

Pr[Cn,d ≥ k] = Pr[Dn/2 ≥ k] + O
(

(log n)3

n

)
, (3.2)

which will be done by a similar process as in his paper. From (2.4) we have
the estimate

Pr[Cn,d ≥ k] = O(n/2k) (3.3)

mirroring the estimate

Pr[Dλ ≥ k] = O(λ/2k) (3.4)

which comes from (3.1) and the fact that as x approaches 0 we have ex =
1 + O(x). Now set

Dλ = ∑
k≥1

Pr[Dλ ≥ k].

For k ≤ 3 log2 n we apply the estimate (3.3) and for k > 3 log2 n we apply
(3.4) to (3.2) showing that

Cn,d = Dn/2 + O
(

(log n)3

n

)
. (3.5)
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3.2 The Recurrence

Let qn,k,d be the probability that a uniformly distributed random n-bit num-
ber has no full active k-blocks with regard to multiplication by 1 + 2d. This
definition allows a truncated k-block to exist in the number.

So qn−1,k,d is the probability that there is no active k-block in the n − 1
lowest bits of a n-bit multiplication. This event implies that there is either
no full active k-blocks in all n bits, which has probability qn,k,d/ of occuring,
or there is a full active k-block in the leftmost possible position and no other
active k-blocks, which has probability qn−k−d,k,d/2k + 1 of occuring. Thus
we have for n ≥ k + d that

qn,k,d = qn−1,k,d − qn−k−d,k,d/2k+1. (3.6)

For n < k + d notice that an n bit number does not contain enough bits to
house a full active k-blocks. So qn,k,d = 1 in this case.

3.3 The Generating Function and Its Roots

Consider the generating function

Qk,d(z) = ∑
n≥0

qn,k,dzn.

Then (3.6) shows after multiplying by zn, summing over n ≥ k + d and then
adding ∑0≤n<k+d qn,k,dzn to both sides that

Qk,d(z) = zQk,d(z) + zk+dQk,d(z)/2k+1 + 1.

After further formula manipulation, this leads to

Qk,d(z) =
1

Pk,d(z)
,

where
Pk,d(z) = 1− z + zk+d/2k+1. (3.7)

We have singled out Pk,d(z) from the equation since the asymptotic behav-
ior of the generating function is determined by the zeroes of this polyno-
mial.

For 0 ≤ j ≤ 1, Pk,d(j) > 0 and for k large enough, Pk,d(1 + 1/k) < 0, so
there exists a root ζ = 1 + O(1/k). Writing ζ = 1 + ε, we have from (3.7)
that

ε = (1 + ε)k+d/2k+1 = exp((k + d) log(1 + ε)− (k + 1) log 2). (3.8)
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Since log(1 + ε) = O(ε), letting ε = O(1/k) in (3.8) produces the bet-
ter estimate ε = O(1/2k). Substituting in this new formula for ε shows
ε = 1/2k+1 + O

(
k

22k

)
by utilizing the fact that exp(x) = 1 + O(x) for x

approaching 0. We now have

ζ = 1 + 1/2k+1 + O
(

k
22k

)
.

The remaining roots of Pk,d(z) are also the roots of 2k+1Pk,d(z) divided
by z − ζ which we write as

Ek,d(z) = zk+d−1 + ζzk+d−2 + ... + ζk+d−2z + ζk+d−1 − 2k+1.

For k large enough, we have ζ ≤ 3/2. Suppose as well that |z| ≤ 2
k+1

k+d−1 and
for simplicity let us label 2

k+1
k+d−1 as c. We then have

|zk+d−1 +ζzk+d−2 + ... + ζk+d−2z + ζk+d−1|
≤ ck+d−1 (

1 + ζ/c + ... + (ζ/c)k+d−2 + (ζ/c)k+d−1)
= 2k+1(1− (ζ/c)k+d)/(1− ζ/c)
≤ 2k+1.

This implies Ek,d(z) is positive for |z| ≤ c and so there are no roots within
that circle. If the roots of Pk,d(z) are ζ1, ..., ζk+d and ζ1 is ζ we know |ζ j| ≥ c
for all 2 ≤ j ≤ k + d.

Now note that any root of Pk,d(z) with multiplicity greater than one
must also be a root of the derivative P′k,d(z) = −1 + (k + d)zk+d−1/2k+1.
But any root ζp of P′k,d(z) must have the property

|ζp| =
(

2k+1/(k + d)
)1/(k+d−1)

≤ c.

The only root of Pk,d(z) that exists in that region is the simple root ζ1. Thus
every root of Pk,d(z) is simple.

We may express the generating function as

Qk,d(z) = ∑
1≤j≤k+d

−1
(1− z/ζ j)ζ jP′k,d(ζ j)

because Pk,d(z) has only simple roots. This means that

qn,k,d = ∑
1≤j≤k+d

−1
ζn+1

j P′k,d(ζ j)

=
1

ζn+1
j (1− (k + d)ζk+d−1

j /2k+1)
.
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The j = 1 term is

1
ζn+1(1− (k + d)ζk+d−1/2k+1)

=
1

(1 + 1/2k+1 + O(k/22k))n (1 + O(k/2k))
,

by employing the estimates for the first root we found earlier. Since all roots
besides the first have absolute value greater than c, we know for j > 1 that
|1− (k + d)ζk+d−1

j /2k+1| ≥ k + d− 1. So we may express every term where
j > 1 in the sum as

1
ζn+1

j (1− (k + d)ζk+d−1
j /2k+1)

= O
(

1
cn(k + d)

)
.

The j > 1 terms sum together into O (1/cn) . In total the sum gives us that

qn,k,d =
1

(1 + 1/2k+1 + O(k/22k))n (1 + O(k/2k))
+ O

(
1
cn

)
.

Since qn,k,d represents the probability that there is no full active k-block,

Pr[Cn,d ≥ k] = 1− qn,k,d + Pr[some truncated k − block is active]

= 1− qn,k,d + O
(

1
2k

)
.

So if 1 ≤ k ≤ log2 n − log2(4 log2 n), we get by substituting for qn,k,d that

Pr[Cn,d ≥ k] = 1 + O
(

1
n2

)
.

For the same values of k equation (3.1) gives us that

Pr[Dn ≥ k] = 1 + O
(

1
n2

)
.

So (3.2) holds for these values of k. If k > log2 n − log2(4 log2 n) then

Pr[Cn,d ≥ k] = 1− en/2k+1
(

1 + O
(

nk
22k

))
,

which means (3.2) holds for all k. Then (3.2) being true implies (3.5) holds
by the arguments from the beginning of this chapter.
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3.4 The Asymptotic Formula

Equation (3.5) is an exact mirror of the formula found in [3] for average
length of the longest active k-block when adding two random n-bit num-
bers. By virtue of the analysis in that paper of Dλ we already know that

Cn,d = log2 n + γ log2 e − 3
2
− F(log2 n) + O

(
(log n)4

n

)
(3.9)

Here

F(v) =
∫ ∞

0

(
{v − log2 y} − 1

2

)
e−ydy

with {x} = x − bxc being the fractional part of x. This function is os-
cillating but by a miniscule magnitude. In fact, the function is bound by
|F(v)| ≤ 1.573...× 10−6.





Chapter 4

An Exact Formula

This chapter proves an exact formula for Cn,1 by a direct combinatorial ar-
gument. Although we can extend this combinatorial arguments to find
a formula for Cn,d with constant d greater than 1, the arguments become
overly convoluted for d larger than one. So this chapter will also detail a
generating function method for finding Cn,d that is more manageable for
large values of d. The direct combinatorial proof for the d = 1 case relies
highly on the proof given in [3] of the similar formula for Cn, the mean
length of longest active k-block when adding two independently chosen
unformly random n-bit numbers. This section exposes the equation for Cn
using methods from Pippenger’s article

4.1 Finding Cn

First see that
Cn = ∑

k≥0
k Pr[Cn = k] = ∑

k≥1
Pr[Cn ≥ k] (4.1)

because of partial summation. A carry propagation chain of length k occurs
if and only is some k block is active, and so

Pr[Cn ≥ k] = Pr[some k-block is active].

Then 4.1 implies

Cn = ∑
k≥1

Pr[some k-block is active]. (4.2)

Using an inclusion-exclusion argument, we have

Pr[some k-block is active] = ∑
j≥1

(−1)j−1 ∑
β1,...,β j

Pr[β1, ..., β jactive]. (4.3)
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Here the inner sum is indexed by all unordered sets {β1, ..., β j} of distinct
k-blocks.

If two k-blocks are active they must be disjoint. Also the events of
two disjoint k-blocks being active are independant. These facts allow us
to rewrite (4.3) as

Pr[some k-block is active] = ∑
j≥1

(−1)j−1 ∑
β1,...,β j

Pr[β1active]...[β jactive],

(4.4)
where β1, ..., β j are pairwise disjoint k-blocks.

We have shown when we first defined active k-blocks that Pr[βi active] =
1/2k+1. So every term of the inner sum in (4.4) is 1/2j(k+1). By collecting all
of these terms we have

Pr[some k-block is active] = ∑
j≥1

An,j,k
(−1)j−1

2j(k+1) , (4.5)

with An,j,k being the number of ways to place j distinct k-blocks among n
bits. To place these blocks, we only need to consider placing the rightmost
bit of each block. The other k − 1 bits in each block are positions where
we may not place another active k-block. So we remove k − 1 potential bit
positions where we may choose to have an active k-block’s first bits for each
active k-block in our number. Then the number of ways to place the heads
is

An,j,k =
(

n − j(k − 1)
j

)
.

Substituting this back into (4.5) gives

Pr some k-block is active] = ∑
j≥1

(
n − j(k − 1)

j

)
(−1)j−1

2j(k+1) , (4.6)

and after using this form for Pr[some k-block is active] in 4.2 we have

Cn = ∑
k≥1

∑
j≥1

(
n − j(k − 1)

j

)
(−1)j−1

2j(k+1) . (4.7)

4.2 A Combinatorial Solution for Cn,1

To appropriate the last proof about Cn’s value to finding Cn,1, first we must
notice the differences between active k-blocks in the two cases. First for
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Cn,1 active k-blocks require one more bit. There may also be truncated ac-
tive k-blocks, which require fewer bits and may only exist at the end of
the number. Having more effect on our analysis though is the fact that the
probability that two k-blocks are active is not independrnt with regar to this
or any multiplication of the form we are examining. To see this consider the
number 10101101011. The first and last 6 digits are an active 5-block with
regard to multiplication by 3, overlapping on their lowest and highest bit
positions respectively. Due to the form of active k-blocks under multiplica-
tion by 3, that is ...01011, active k-blocks may only overlap by one bit and
when k is odd.

Even with these differences, we can use the same arguments from the
last section almost verbatim to show for all positive d that

Cn,d = ∑
k≥1

Pr[some k-block is active] (4.8)

for any multiplication 1 + 2d. We also still have that

Pr[some k-block is active] = ∑
j≥1

(−1)j−1 ∑
β1,...,β j

Pr[β1, ..., β jactive]. (4.9)

Combining these two formulas, we may split the sum in (4.8) for k even
and k odd to produce

Cn,d = ∑
k≥1, k odd

∑
j≥1

(−1)j−1 ∑
β1,...,β j

Pr[β1, ..., β jactive] (4.10)

+ ∑
k≥1, k even

∑
j≥1

(−1)j−1 ∑
β1,...,β j

Pr[β1, ..., β jactive]

Notice the inner sum of (4.10) is over all unordered set of j distinct k-blocks.

4.2.1 The Even Case

When k is even then two overlapping k-blocks cannot both be active and
two distinct k-blocks being active are still independent events. So the argu-
ments leading to (4.6) still apply almost exactly. One change now is since
our full k-blocks are k + 1 bits long, we must remove k digits for each full
active k-block from our list of possible starting bits for an active k-block. So
we have that if each βi is a full k-block that

∑
β1,...,β j

Pr[β1, ..., β jactive] =
(

n − jk
j

)
1

2j(k+1) .
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Now suppose some βi is a truncated k-block. We know this happens
with probability 1/2k In that case we also know no other active k-block may
include the last k digits of the number. So, since we must merely count all
the ways to place other active k-blocks and the probability those k-blocks
are all active, we have

∑
β1,...,β j

Pr[β1, ..., β jactive] =
(

n − jk
j − 1

)
1

2(j−1)(k+1)+k

if some βi is a truncated k-block. The value for ∑β1,...,β j
Pr[β1, ..., β jactive]

with no restrictions on whether there exists some βi that is truncated is
merely the sum ∑β1,...,β j

Pr[β1, ..., β jactive] when each βi must be full, and
∑β1,...,β j

Pr[β1, ..., β jactive] given some βi is truncated. Thus, for k even we
conclude that

∑
j≥1

(−1)j−1 ∑
β1,...,β j

Pr[β1, ..., β jactive] (4.11)

= ∑
j≥1

(
n − jk

j

)
(−1)j−1

2j(k+1) +
(

n − jk
j − 1

)
(−1)j−1

2(j−1)(k+1)+k
.

4.2.2 The Odd Case

For odd k, we may still tackle the problem in a similar way. To find
Pr[β1, ..., β jactive] first suppose l ≥ 0 where l represents the number of bits
where successive active k-blocks overlap. Then

Pr[β1, ..., β jactive] = 1/2j(k+1)−l , (4.12)

since the number of bits that must be specific values is now k + 1 for each
active k-block, minus l to account for bits we double counted. Summing
over all combinations of j active k-blocks is equivalent to counting the num-
ber of possible placements of j active k-blocks which have l total overlap-
ping digits, summed over all l. So we have

∑
β1,...,β j

Pr[β1, ..., β jactive] = ∑
l≥0

An,j,k,l/2j(k+1)−l . (4.13)

Here An,j,k,l is the number of ways to arrange j active k-blocks in an n-bit
number such that there are l bit positions occupied by more than one k-
block.
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To determine An,j,k,l , define a set of active k-blocks {β1, ..., βi} as a body
if it abides by the following rules. For 0 < h < i, βh and βh + 1 must share a
bit position and any k-block in the body shares bit positions only with other
k-blocks in the same body. We refer to the rightmost k-block of a body as
the head. All other k-blocks in the body are known as tails. So 10101101011
is a body composed of active 5-blocks where the first 6 bits are its head and
the last 6 are its tail.

Now determining An,j,k,l is as simple as choosing where to place the
head k-blocks and counting the ways to attach tails onto these heads. To
place the heads, we need simply choose where the rightmost bit goes. In
total there are jk positions we may not place these bits since the rightmost
digit of each active k-block is either also the leftmost digit of another active
k-block or is one of the digits we wish to place. So even though each of the j
active k-blocks is k + 1 digits long, we may subtract one digit for each active
k-block from our count of positions we may not place the rightmost digit of
a head. The number of heads is j − l; in other words the number of active
k-blocks that are not tails since l also counts number of tails. So there are
(n−jk

j−l ) ways of positioning each head. Since we may place however many

tails onto each head, the number of ways to do this is
(( j − l

l

))
. So

An,j,k,l =
(

n − jk
j − l

)(( j − l
l

))
,

which along with (4.13) gives

∑
β1,...,β j

Pr[β1, ..., β jactive] = ∑
l≥0

(
n − jk
j − l

)(( j − l
l

))
/2j(k+1)−l . (4.14)

We now use (4.11) and (4.14) to substitute in the sums over odd and
even k in (4.10), arriving at our exact expression for Cn,1,

Cn,1 = ∑
k>0, k even

∑
j≥1

(
n − jk

j

)
(−1)j−1

2j(k+1) +
(

n − jk
j − 1

)
1

2(j−1)(k+1)+k
(4.15)

+ ∑
k>0, k odd

∑
j≥1

∑
l≥0

(−1)j−1
( n − jk

j − l

)(( j − l
l

))
/2j(k+1)−l .

From (4.15) we see what is most likely the simplest formula for any Cn,d.
Clearly the difficulty in calculating such values necessitates the simpler al-
though not exact formulas for Cn,d given in the previous sections.
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4.3 Finding Any Cn,d

4.3.1 Split Up the Problem

Our goal is to show the methods by which an exact expression for Cn,d may
be found. To do this, consider the 2d possible cases k = 1 (mod 2d), ...,
k = 2d (mod 2d) seperately. Why? The value of k mod 2d determines how
active k-blocks may overlap and how many truncated active k-blocks there
may be. For example when d = 1 we saw that depending on whether k
was even or odd, active k-blocks may or may not overlap with one another.
Combining (4.8) and (4.9) while grouping together values of k that are in
the same congruence class gives

Cn,d =
2d

∑
l=1

∑
k≥1,k≡2d l

∑
j≥1

∑
β1,...,β j

(−1)j−1 Pr[β1, ..., β jactive]. (4.16)

4.3.2 Overlap Graphs

First notice that with regard to multiplication by 1 + 2d, up to d bits may be
shared by two active k-blocks. This is because, if two active k-block overlap
by some digits, the left active k-block will have 1’s in its first and (d + 1)th

positions, to generate a carry. So if the right active k-block overlaps by more
than d positions, it will generate a carry where it should propagate a carry.
This fact allows us to see that each bit of a number multiplied by 1 + 2d is
in at most 2 active k-blocks, because active k-blocks are k + d bits long.

For k = l (mod 2d), we may represent all the possible ways to arrange
k-blocks among n bits using a directed graph with weighted edges. Vertices
represents active k-blocks ending on the left with a specific d bits and single
bits that are not necessarily in any active k-blocks. An edge to a vertex
represents a way we may append that active k-block or a single bit to the left
of some block of bits. The weights, of the form 2exaybzc, give information
on how these digits are added as follows. Here e is the number of bits of
the appended active k-block that are not contained in the original binary
representation of the number. So e is nonzero only for edges that represent
appending a truncated active k-block. The power of x is number of new
bits we gain by appending those bits. The value b is the number of new
active k-blocks. Finally, c is the number of bits of the new active k-block
that already were in the original block of bits, or 0 if we did not append a
k-block.
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(a) Overlap graph for odd k. (b) Overlap graph for even k.

Figure 4.1: Overlap graphs corresponding to Cn,1.

We call such a graph an overlap graph and we can make one in the fol-
lowing manner. Create 2d−1 vertices and label each uniquely with the d
bits a k-block may end in. Note one of those bits is a fixed value, and so we
need only 2d−1 vertices. Let one vertex called v represent bit positions that
are not within any active k-blocks. Every vertex has an edge to all vertices
other than v of weight xk+dy, and every vertex has an edge to v of weight
x. Suppose vertices x and y correspond to active k-blocks ending in 01 and
11 respectively. Also imagine we may overlap an active k-block ending in
11 onto the left-hand side of an active k-block ending in 01. If the amount
of overlap between the two active k-blocks is o bits, then our graph would
have a directed edge from x to y with weight xk+d−oyzo.

Finally create a vertex u that represents a truncated active k-block. Since
we may have no more bits after forming a truncated active k-block, there
exists no edges from u to any other vertex in the graph. If any other vertex
in the graph s has an edge of weight xk+dyzc to a vertex whose label has at
least e 0-bits from the leftmost end, we add an edge from s to u of weight
2exk+d−eyzc. This corresponds to the fact that adding this truncated k-block
with c bits not in the actual number is possible and requires c less bits than
if this were a full k-block.

4.3.3 Deriving Formulas from the Graphs

Let V(p) be the product of the weights of all edges along some path p. For
p starting at v and V(p) = xnyjzo, p represents an n bit number built by
adding active k-blocks and single bits in the order of vertices visited by p
after the first vertex v. This number has at least j active k-blocks and o digits
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shared among successive active k-blocks. Path p also uniquely represents
how we may place those j active k-blocks in the number. Notice as well the
overlap graph gives all ways in which we may create n bit numbers with
at least j active k-blocks from all possible V(p) with p starting at v.

Substituting y = −2−(k+d) and z = 2, then if there exists an edge from
vertex s to t with weight pxa this then means that there is probability |p|
appending a random bits to the left of the bits that s represents creates the
bits that t represents. Here p is negative if and only if t represents an active
k-block. This is true since there are k + d bits in an active k-block, and so
appending an active k-block to the left of some number requires that k + d
bits are set to certain values. The bits of the appended active k-block that
were also in the original number we do not need to set though, and we also
do not need to set zeroes at the end of a truncated active k-block that will
not be in the binary representaion of the number.

So we may simplify the innermost two sums from (4.16) as

∑
j≥1

(−1)j−1 ∑
β1,...,β j

Pr[β1, ..., β jactive] = −[xn] ∑
p

V(p).

Note the second sum is over all paths p that start with v.
Let T be a transition matrix of the graph such that the first row corre-

sponds to vertex v. Tm then contains in the ith row and jth column the sum
of V(p) over all paths p that start at the vertex represented by the ith row
and end at the jth column vertex. Then since (I − T)−1 = ∑m≥0 Tm, the first
row contains the weights of all paths that start at v and end at any vertex.
This implies

Pr some k-block is active] = [xn][100...0](I − T)−1


1
1
...
1

 ,

since all n digit numbers are represented uniquely by a path from v to any
other vertex in the graph.

4.3.4 The Cn,1 Example

From the graph (4.1a), when k is odd we have

T =

 x xk+1y 2xky
x xk+1y 2xky
0 0 0

 .
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So

Pr[some k-block is active] = [xn]
1 + 2yxk

1− x − xk+1y
.

Note 1
1−x−xk+1y = ∑m≥0(x + xk+1y)m. This then implies

Pr[some k-block is active] = ∑
n=c1+c2(k+1)

(
c1 + c2

c2

)
(−1)c2−1/2(k+1)c2

− 2−k ∑
n−k=c1+c2(k+1)

(
c1 + c2

c2

)
(−1)c2−1/2(k+1)c2

We may rewrite this sum in the same form as given by (4.11) found by
the direct combinatorial approach. Finding the exact formula for odd k the
same way then leads to a formula for Cn,1.

4.3.5 The Program

The method above for finding exact expressions for Cn,d requires creating
2d overlap graphs each with 2d−1 + 2 vertices, and then placing an edge po-
tentially between every pair of vertices. This is extremely tedious if done by
hand, and one can easily create an error in the overlap graph that would be
difficult to notice. For this reason, I have created a two functions in Mathe-
matica to handle all of this. One creates a transition matrix if you specify k
mod 2d and d for that overlap graph. This information is useful to examine
the structure of the overlap graph. The other function takes the same input
and outputs the generating function for the probability that such a k-block
is active. This generating function is always in the form of a fraction with
polynomial numerator and denominator. So we can always easily extract
from these generating functions exact expressions for the probability a k-
block is active. We may then apply (4.16) to arrive at the expression for
Cn,d.

Here are the program for finding the transition matrix.

gettransitionmatrix[k_, d_] := (
(*gettransitionmatrix takes k of values 1 through 2d of k

mod 2d, and it takes d which corresponds to d as
defined in my thesis. It then outputs the transition
matrix of the overlap graph for those values.*)

(*Trans becomes the transition matrix we desire.
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lastdigits takes on the value of all possible bits in
the last d positions.

We get all possible values for the last d digits
from i, which equal to all possible base 10
representations of lastdigits. Note one of the
last d digits must be a specific value since the

d + 1 digit must be a 1,
the 2d + 1 digit must be a 0 and so on.*)

Trans = IdentityMatrix[2^(d - 1) + 2] *0;
For[ i = 0, i < 2^(d - 1), i++, lastdigits =
IntegerDigits[i, 2];

While[Length[lastdigits] < d - 1, lastdigits =
Prepend[lastdigits, 0]];
If[ k < d + 1, lastdigits = Insert[lastdigits, 1,

Mod[k - 1, d] + 1], lastdigits = Insert[lastdigits,
0, Mod[k - 1, d] + 1]];

(*append represents the last d digits of an active
k-block that shares p digits with the k - block ending
with lastdigits.*)

For[ p = 1, p <= d, p++,
If[lastdigits[[p]] == 1,
append = Table[3, {d}];

If[k = d, append[[Mod[k - 1, d] + 1]] = 1,
append[[Mod[k - 1, d] + 1]] = 0];

(*j represents a number of digits to the left of the
pth digit of lastdigits. We use the digit digit
at the p - j position in lastdigits to set the

appropriate digit in append*)

For[j = 1, j < p, j++, placer = Mod[k - j, 2d];
If[placer < d , If[placer != 0,

append[[Mod[k - j,
d]]] = Mod[lastdigits[[p - j]] + 1, 2],

append[[d]] = lastdigits[[p - j]]],
If[placer != d, append[[Mod[k -
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j, d]]] = lastdigits[[p - j]],
append[[d]] = Mod[lastdigits[[p - j]] + 1, 2]]]];

(*Some digits
in append still are not set to 1 or 0. These digits

may be replaced by any set of 1’s and 0’s.
freedigitslist is a list of bits we will replace

those not-set bits in append with. freedigitslist
is determined by the base 10 number freedigits,

which takes on values so that we end up replacing
those not set bits with all possible lists of 1’s

and 0’s of the correct size.*)

For[freedigits = 0, freedigits < 2^Count[append, 3],
freedigits = freedigits + 1,
freedigitslist = IntegerDigits[freedigits, 2];
While[Length[freedigitslist] < Count[append, 3] ,
freedigitslist = Prepend[
freedigitslist, 0]]; replacelist =

Position[append, 3];
nofreeappend = append;

(*replacelist is a
list of all positions in append that have not

been given set values. replacecounter tells us
how many of those digits have already been
replaced. nofreeappend becomes
append except all digits are now 1 or 0.*)

For[replacecounter = 1,
replacecounter
= Count[append, 3], replacecounter++,

freeposition = replacelist[[replacecounter]][[1]];
nofreeappend[[freeposition]] =
freedigitslist[[replacecounter]]];

(*After doing all this, we find that a k - block
ending in lastdigits may have a k - block
ending in append to the left of it and
sharing p of its bits. After every
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iteration, we will know all ways two
k-blocks may overlap. This allows us to put
appropriate entries into
Trans.*)

Trans = ReplacePart[Trans, x^(kv + d -p)*y*z^p +
Trans[[i + 1]][[1 + FromDigits[Delete[nofreeappend,
1 + Mod[k - 1, d]], 2]]], {i + 1,
1 + FromDigits[Delete[nofreeappend, 1 +

Mod[k - 1, d]], 2]}];

(*zeroesatend counts the number of zeroes at the
end of nofreeappend. This info is used to

edit Trans so we include edges to u*)

zeroesatend = 0;
While[nofreeappend[[1]] == 0,
zeroesatend++;
Trans = ReplacePart[Trans,

2^zeroesatend*x^(kv + d - p - zeroesatend)
*y*z^p+ Trans[[1 + i]][[2^(d - 1) + 2]],
{ 1 + i, 2^(d - 1) + 2} ];

nofreeappend = Delete[nofreeappend, 1];
];

]]]];

(*We now add to Trans entries corresponding to edges not
having to do with overlapping k - blocks. singlebits,
ro and col are all indices to help us add these
entries everywhere necessay.*)

For[singlebits = 1, singlebits < 2^(d -
1) + 2, singlebits++, Trans = ReplacePart[
Trans, x^(kv + d)y, { 2^(d - 1) + 1,
singlebits}];

Trans = ReplacePart[Trans, x, { singlebits,
2^(d - 1) + 1}]];

For[ro = 1, ro = 2^(d - 1), ro++, For[col = 1,
col = 2^(d - 1), col++,
Trans = ReplacePart[Trans, x^(kv + d)y +
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Trans[[ro]][[col]],
{ro, col}]]];

Trans)

The next function outputs the generating function for the probability
that such a k-block is active. Note this function calles gettransitionmatrix.

getgenfunction[k_, d_] := (
(*getgenfunction takes k of values 1 through 2d of k mod 2d, and

it takes d which corresponds to d as defined in my thesis.
It then outputs the generating function
for the probability such a k - block is active.*)

(*genfunction will become the generating function, and allpaths
is the inverse of I minus the transition matrix.*)

genfunction = 0;
allpaths =
Inverse[IdentityMatrix[d + 2] - gettransitionmatrix[k, d]];

(*We create the generating function by summing over all the
columns in the 2^(d - 1) + 1, since this row corresponds
to vertex v.*)

For[col = 1, col = 2^(d - 1) + 2, col++,
genfunction = genfunction +
allpaths[[2^(d - 1) + 1]][[col]]];

Simplify[genfunction])

Even though these functions would take time exponential in d to run,
they are more reliable and faster than calculations by hand.
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Conclusion

My thesis sought expressions for Cn,d, the average length of the longest ac-
tive k-block with regard to multiplaction by 1 + 2d in a random n bit num-
ber. This value directly related to the average time necessary to multiply an
n bit number by 1 + 2d using local parallel computation. First we found up-
per and lower bounds for Cn,d using first- and second-moment probabilistic
arguments. These gave the asymptotic formula

Cn,d = log2 n + O(1).

Then by finding a recurrence that described the probability that there does
not exist full active k-blocks, we discovered the even tighter asymptotic
formula

Cn = log2 n + γ log2 e − 3
2
− F(log2 n) + O

(
(log n)4

n

)
. (5.1)

Finally we created a method that allows us to derive exact formula for Cn,d.
These results are all interesting since they answer with varying detail

a basic question concerning a basic algorithm. These results also allow
comparisons of varying precision between the runtime of the addition al-
gorithm we considered and other algorithms. They can be used to derive
running time of algorithms that multiply by 1 + 2d as well. Perhaps most
usefully, the analyses used in my thesis are applicable to problems besides
the one considered. Different problems concerning average running time
of other special cases or variants of the this algorithm may rely on the
work done here, as I relied on my sources [1] and [3]. Even more gener-
ally though, this analysis can be used to determine expressions for average
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length of the longest appearence of certain patterns in random n bit num-
bers. The need to find such an average could arise in problems from many
different fields, and so we see utility for the work accomplished.
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