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Abstract

Voting theory is plagued by seemingly contradictory results, called voting
paradoxes. For example, different methods of tallying votes can result in dif-
ferent election results; these voting paradoxes give contradictory answers
to the question of what the voting population “really” wants.

This paper studies voting paradoxes brought about by considering the
effect of dropping one or more candidates in an election after the voting
data has already been collected. Dropping a candidate may change the
election results for the remaining candidates. This paper adopts an alge-
braic framework to approach this voting theoretic problem.
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Chapter 1

Introduction

1.1 The Problem

The question of how to analyze voting data is a fascinating voting theo-
retic problem. Consider an election where each voter is asked to rank the
candidates from favorite to least favorite (or, in a more complicated prob-
lem, we might allow the voters to give a so-called “partial ranking” of the
candidates, where ties are allowed). Once all of the voting data has been
collected, we must find the “best” method of tallying the voting data to de-
clare a winner. As we will see, there are a multitude of ways to tally the
voting data: several of which seem quite reasonable. Surprisingly, the ap-
plication of two different methods may lead to different conclusions, so the
choice of voting method has an impact on the result of the election.

Furthermore, consider a situation where one or more candidates in the
election drop out after the voters have submitted their voting preferences.
Then, the election outcomes for the remaining candidates may change as
the data is reinterpreted. Situations such as these may cause us to won-
der what the voters really prefer. These seemingly contradictory results are
called voting paradoxes, and are the subject of much interesting mathemati-
cal study.

This paper adopts an algebraic framework in order to understand the
voting paradoxes caused by dropping candidates in an election.

1.2 History

The concept of voting has existed at least since the creation of democracy by
the Greek city-state of Athens in the 6th century BC. In one early instance
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of voting, Athenian citizens could vote to force a fellow citizen into exile
for a period of ten years (?). The voting method in use then (and almost
exclusively in the early history of democracy) is now referred to as plurality
voting: each Athenian citizen could vote for one person during the election
period. Then, the votes were tallied, and the citizen with the most votes
was forced to leave Athens.

The voting method described above is now understood to be a specific
kind of positional voting method. In a positional voting method, each voter
ranks all of the candidates from favorite to least favorite, creating a so-
called “full ranking” of the candidates. Then, each candidate in the election
receives a number of “points” based on the voters’ rankings. The candidate
with the most points tallied wins the election.

We can describe each positional voting method with a so-called weight-
ing vector, which determines how many points to give to each candidate
based on his or her ranked position (?). To tally a set of voting data using
the weighting vector [a1, a2, a3, . . . , an], consider each voter’s ranking of the
candidates and award the first ranked candidate with a1 points, the second
with a2 points, and so on. Thus each weighting vector gives the rule for
tallying the votes and finds a winner. For example, the weighting vector
for the plurality voting method described above is

w = [1, 0, 0, . . . , 0],

since a voter’s favorite candidate receives one point and all other candi-
dates receive zero points.

Although we do not make any assumptions about weighting vectors in
this paper, there are several reasonable assumptions which can be made.
Since the jth entry in a weighting vector corresponds to the number of
points given to the jth candidate in the ranking, many voting theorists as-
sume that the entries in the vector are weakly decreasing (i.e., a1 ≥ a2 ≥
· · · ≥ an) so that more popular candidates receive more points (and also
that a1 > an to avoid a voting method which would always result in a tie
between all of the candidates). Also, note that scaling all of the entries in a
weighting vector by a constant, or adding a scalar multiple of the vector

[1, 1, . . . , 1]

to a given weighting vector does not effect the outcome of an election. Thus
many voting theorists assume without loss of generality that a1 = 1 and
an = 0 for a given weighting vector [a1, a2, a3, . . . , an].
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The topic of voting theory did not receive much academic interest un-
til the time of the French Revolution. In the late 18th century, Charles de
Borda and the Marquis de Condorcet suggested two methods of interpret-
ing voting data. Although both methods were quite reasonable, they were
very different (?).

Charles de Borda proposed a method now called the Borda Count. Borda
recommended that each voter rank all n candidates according to prefer-
ence. Then, for each such ranking, he assigned n− 1 points to the favorite
candidate, n− 2 points to the second, n− 3 points to the third, and so on.
This method is a positional voting method, so we can associate the vector

[n− 1, n− 2, n− 3, . . . , 0]

with the Borda Count. Equivalently, the Borda Count can be described by
the weighting vector [1, n−2

n−1 , n−3
n−1 , . . . , 0]. Note that there are infinitely many

weighting vectors which correspond to the Borda Count; we can character-
ize them all by noting that all such weighting vectors form an arithmetic
sequence:

ai − ai+1 = aj − aj+1 6= 0

for {i, j} ∈ {1, 2, . . . , n− 1}.
In contrast to a positional voting method, Condorcet suggested a pair-

wise voting method in which a winner is declared based on considering
each pair of candidates in turn. For example, if a candidate is favored rel-
ative to each of his opponents in one-on-one comparisons, then he should
win the election (this requirement is called the Condorcet Criterion). Unfor-
tunately, this condition does not always apply. A set of voting data may
rank candidate c1 over c2, c2 over c3, and c3 over c1. In that case, we con-
clude that there is no Condorcet winner (?).

The question of which is the “perfect” voting method could not be an-
swered. In fact, Kenneth Arrow proved in 1951 that there is no perfect
voting method which satisfies several reasonable requirements (?). This
theorem silenced the debate over which voting method is “perfect,” but
it awakened a discussion of comparisons between different positional and
pairwise methods, and a search for explanations as to why these voting
paradoxes occur.

1.3 A Short Example

In order to illustrate three of the voting methods mentioned above (plu-
rality, pairwise, and the Borda Count) and some of the possible paradoxes
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involved, let us examine a small example.
Consider an election of candidates c1, c2, and c3, and assume that each

voter casts his or her ballot by ranking the candidates from favorite to least
favorite. Then the collection of all of the voters’ preferences, called a voting
profile, might be represented using the following table:

Ranking Number of Votes
c1 � c2 � c3 6
c1 � c3 � c2 0
c2 � c1 � c3 6
c2 � c3 � c1 3
c3 � c1 � c2 9
c3 � c2 � c1 1

.

Here, we write c1 � c2 if candidate c1 is favored over candidate c2 in a given
vote. For example, the last row in the above table indicates that 1 voter
liked candidate c3 most, followed by candidate c2, and then candidate c1.
In this election, there are only 25 voters.

Then, using the plurality voting method (defined by the weighting vec-
tor [1, 0, 0]), we can conclude that the result is

c3 � c2 � c1

with a 10:9:6 tally. However, the Borda Count (with weighting vector [2, 1, 0])
yields the opposite ranking:

c1 � c2 � c3,

with a 27:25:23 tally. Finally, pairwise analysis compares the candidates in
pairs only. For example, candidate c1 was ranked above candidate c2 by
15 voters, while c2 was ranked over c1 by only 10 voters; thus the voters
prefer candidate c1 over candidate c2. Similar analysis for the other pairs
yields the statements

c1 � c2, c2 � c3 and c3 � c1,

showing that the pairwise rankings are not transitive, and there is no Con-
dorcet winner. Thus, applying different voting methods to this voting pro-
file can produce different voting outcomes.

Furthermore, note that “dropping candidates” can also be problematic.
For example, recall that the plurality voting method returns

c3 � c2 � c1.
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However, if candidate c3 drops out of the election after the votes have been
collected, then the resulting voting profile for the remaining candidates
would be

Ranking Number of Votes
c1 � c2 15
c2 � c1 10

.

Considering this profile with the plurality voting method (which has weight-
ing vector [1, 0]), we can conclude that

c1 � c2,

with a 15:10 tally. Note that the relative ranking between c1 and c2 was
reversed when c3 dropped out of the election even though the same voting
method was used both times.

Thus we can see that different voting methods achieve different results,
and that dropping candidates may completely change the results of an elec-
tion for the remaining candidates. As the following pages will show, there
are several ways to consider these voting paradoxes using mathematics.





Chapter 2

Mathematical Background

2.1 A Vector Space Approach to Voting Theory

Donald Saari has added to the field of voting theory using an approach
which provides several deep and surprising insights (see ? and ?). As
usual, Saari considers an election of n candidates in which each voter chooses
a ranking of all n candidates. Since there are n! possible rankings, the vot-
ing profile may be expressed as a vector in Qn!, where each basis element
corresponds to one of the n! rankings. Saari defines the profile space to be
the vector space Qn! which contains all such voting profiles. For example,
the voting profile from Section ?? may be expressed using the vector

p = [6, 0, 6, 3, 9, 1]T,

assuming the appropriate basis (c1 � c2 � c3, c1 � c3 � c2, . . .). Although
voting profiles with fractional or negative entries might seem unintuitive,
we still consider such elements of the profile space since a voting profile’s
outcome does not change if it is scaled by a constant, or added to the vector
[1, 1, . . . , 1]T.

Note that we can associate each possible ranking with an element of Sn.
To do this, consider a ranking as a function which maps a number j to the
candidate in the jth position. Thus the basis elements for the profile space
are the elements of Sn.

By bringing the subject of voting theory into the context of vector spaces,
Saari was able to ask: Which subspaces of the profile space Qn! cause voting para-
doxes? In other words, Saari decomposed the profile space in order to un-
derstand it. He was able to identify several subspaces of the profile space
which correspond to different kinds of voting paradoxes.
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Saari defined several subspaces of the profile space which consist of all
of the elements of the profile space satisfying certain characteristics. Al-
though these special subspaces will not be discussed further here, see ?
and ? for more information.

• There is a surprisingly large universal kernel, which consists of all pro-
files which do not effect the outcome of an election, regardless of po-
sitional or pairwise voting method. For n ≥ 3, the dimension of the
universal kernel UKn is n!− 2n−1(n− 2)− 2. For n ≥ 5, this is more
than half the dimension of the profile space (in fact, the universal ker-
nel accounts for over 99% of the dimension of the profile space for
n ≥ 9).

• The Basic space is the (n− 1)-dimensional subspace in which no elec-
tion outcomes differ. Specifically, all voting paradoxes correspond to
profiles with components orthogonal to the Basic space.

• The Condorcet space is responsible for all pairwise voting paradoxes,
and is related to Condorcet triplets, in which three candidates c1, c2,
and c3 are ranked

c1 � c2, c2 � c3, and c3 � c1.

In fact, all of the paradoxes involving differences between the Borda
Count and pairwise counting are due to the Condorcet Space.

Using these subspaces (and many more), Saari was able to prove deep
statements about voting theory. In particular, Saari was able to show that
election results using different voting methods may be extremely unre-
lated.

Theorem 2.1 (?). For n ≥ 4 candidates, there exists a profile p such that for any
choice of candidate cj and position (first, second, . . . , last), there exists a positional
voting method which places cj in the chosen position when it is applied to the profile
p.

Furthermore, choose any ranking for each of the pairs of candidates. There
exists a profile where the above conclusion holds and each pairwise ranking is the
selected one.

In other words, there is a special profile p which yields extremely dif-
ferent election results depending on the voting method in use.

Saari was also able to prove that any imaginable voting paradox caused
by considering the effect of dropping candidates (in terms of final rankings)
can actually be realized for the plurality and pairwise voting methods.



Algebraic Background 9

Theorem 2.2 (?). Assume there are n ≥ 3 candidates. Select, in any manner,
a transitive ranking for each of the 2n − (n + 1) subsets of candidates (so the
rankings of the different subsets need not be related in any manner). Then there
exists a profile so that the sincere plurality (or pairwise) ranking for each subset is
as selected.

Note that Saari considers all subsets of candidates with two or more
candidates (hence the figure 2n − (n + 1)). Surprisingly, Theorem ?? applies
to many other positional voting methods.

Theorem 2.3 (?). With the exception of a set αn of weighting vectors for all of the
subsets of candidates, all other choices of weighting vectors for all of the subsets of
candidates satisfy the same property as described in Theorem ??. Furthermore, αn

can be described as the zeroes of a particular set of polynomials.

These theorems are extremely important for two reasons. First, they
state that voting paradoxes caused by dropping candidates in an election
are unavoidable for most choices of weighting vectors; any imaginable
such paradox can actually be realized (for most weighting vectors).

However, the theorems are also important because they give hope to the
voting theorist; there are a few choices of weighting vectors which some-
how decrease the possibilities of voting paradoxes for dropping candidates.
What weighting vector choices does αn include (note here that an element
of αn includes a choice of weighting vector for each of the subsets of candi-
dates)? Equivalently, how do we explicitly construct the set of polynomi-
als mentioned in Theorem ??? What makes these elements of αn special?
Saari does not explicitly answer these questions, but he does state that αn

contains sets of weighting vectors which include Borda and “Borda-like”
weighting vectors (?). In this paper, we will be able to make an informed
conjecture describing how to determine the set αn by finding the set of poly-
nomials which define it.

2.2 Algebraic Background

Recent student research has shown that an algebraic approach to voting
theory can give alternate proofs to Saari’s theorems, and even generalize
them by taking advantage of the module structure inherent in Saari’s vector
spaces. The following section is adapted from ? and ?.

First, let us recall some important definitions from abstract algebra:
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Definition 2.4. Let R be a ring with identity. Then a (left) R-module or a
(left) module over R is an abelian group M together with an action of R on
M (i.e., a map R× M → M) denoted by rm, for all r ∈ R and for all m ∈ M
which satisfies

• (r + s)m = rm + sm

• (rs)m = r(sm)

• r(m + n) = rm + rm

• 1m = m

for all r, s ∈ R and m, n ∈ M.
A nonzero R-module M is called irreducible if it has no nontrivial sub-

modules.

Definition 2.5. Let R be a ring, and M, N be R-modules. A map ϕ : M → N
is an R-module homomorphism if:

• ϕ(x + y) = ϕ(x) + ϕ(y)

• ϕ(rx) = rϕ(x)

for all x, y ∈ M and r ∈ R.

Note that requesting that voters provide full rankings of the n candi-
dates in an election might not actually be feasible because it allows for so
many different possible votes. Thus, one might decide to request a partial
ranking, where voters can place the candidates into ranked sets. Saari’s
work only touches on such circumstances, but an algebraic perspective
sheds new light on the subject (see ?, ?).

In order to study partial rankings, we must first introduce a few helpful
combinatorial objects.

• λ = (λ1, λ2, . . . , λ`) is a composition of a positive integer n if each λi is
a positive integer n such that

λ1 + λ2 + · · · λ` = n.

The integers λi are called the parts of λ.

• λ = (λ1, λ2, . . . , λ`) is a partition of a positive integer n (written λ ` n)
if λ is a composition of n such that

λi ≥ λi+1

for i = 1, 2, . . . , `− 1.
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• Given a composition λ of n, its associated partition, denoted λ, is the
partition found by ordering the parts of λ in nonincreasing order.

• Given a partition λ of n, a Young tableau of shape λ is a left-justified
array tλ containing each of the numbers 1, 2, . . . , n exactly once such
that the ith row in the array contains λi numbers. For example, for
the partition λ = (4, 2, 1, 1) of n = 8,

1 4 5 8
3 6
2
7

is a Young tableau of shape λ.

• A tableau is standard if its rows and columns are increasing sequences.
For example,

1 2 3
4 6
5

is standard.

• We say that two Young tableaux s and t are equivalent (written s ∼ t)
if one can be created from the other by rearranging the elements of
each row. For example,

1 2
3

∼ 2 1
3

.

• A tabloid of shape λ is the equivalence class

{t} = {t1|t1 ∼ t},

where t is a tableau of shape λ. Given a partition λ of n, we define Xλ

to be the set of all Young tabloids of shape λ.

• Given a set S, then

QS = {∑
i

ais|ai ∈ Q, s ∈ S}

is the set of formal sums with coefficients in Q.
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• Given a partition λ of n, we define Mλ = QXλ to be the permutation
module corresponding to λ. That is,

Mλ = {∑
i

aitλ
i |ai ∈ Q, tλ

i ∈ Xλ},

the set of all linear combinations of tabloids with coefficients in Q.
For any partition λ of n, Mλ is a QSn-module, where Sn acts on the
Young tabloids by permuting the numbers {1, 2, . . . , n} in a tabloid.
For example,

(1, 2, 3) 1 2
3

= 2 3
1

.

• Note that the definitions for equivalence, tabloids, and permutation
modules do not explicitly depend on λ being a partition, so the re-
striction may be relaxed by some authors to include all compositions.

Note that a tabloid of shape λ corresponds to a partial ranking of can-
didates 1, 2, 3 . . . , n into sets of size λ1, λ2, . . . , λ`. For example, the tabloid
of shape λ = (2, 1, 1)

1 4
3
2

corresponds to one vote which ranks candidates c1 and c4 as tied in first
place, followed by candidate c3, and then finally by candidate c2. Thus a
voting profile corresponds to an element of Mλ. Note that the full ranking
case studied by Saari corresponds to the Sn-module

M(1,1,...,1) ∼= QSn,

which is an n!-dimensional vector space over Q as expected. For example,
we expressed the voting profile from Section ?? using the vector

p = [6, 0, 6, 3, 9, 1]T,

assuming the appropriate basis (c1 � c2 � c3, c1 � c3 � c2, . . .). Now, we
can write the profile as an element of M(1,1,1):

6
1
2
3

+ 6
2
1
3

+ 3
2
3
1

+ 9
3
1
2

+
3
2
1

.

Now, consider the case where each voter ranks the candidates accord-
ing to a composition µ. For example, consider the case where each voter is
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asked to vote for his favorite candidate only; this corresponds to the com-
position λ = (1, n− 1) and an example vote may be

2
1 3 4 5

.

Then, since Mµ ∼= Mµ, we can consider each voter’s ranking in terms of the
partition µ. In this example, such a voting profile could be considered as
an element of M(n−1,1) even though the shape of the vote is (1, n− 1).

Given a voting profile consisting of each voter’s partial ranking of the
candidates in an election, positional and pairwise analysis can be used to
tally partially ranked data. For example, given a voting profile correspond-
ing to the partition λ = (λ1, λ2, . . . , λ`), we define a weighting vector

w = [a1, a2, . . . , a`]

to denote a positional voting method in which the λi candidates in the ith
set receive ai points for each voter. In the pairwise case, we need only
explain how to assign points for two candidates who are tied; if two candi-
dates ci and cj are tied, then we assign t points to the ranking ci � cj and t
points to cj � ci (here, t is a constant usually chosen to be 1/2).

In this algebraic setting, the different methods of tallying votes are QSn-
module homomorphisms (?). For example, the pairwise method of tallying
votes (given a choice for the constant t) corresponds to a map

Pt : Mλ → M(n−2,1,1)

because it uses the votes of shape λ to consider each pair separately. The
positional tally map (for a given weight vector w) corresponds to a map

Tw : Mλ → M(n−1,1)

because it uses the votes of shape λ to assign points to each candidate indi-
vidually.

Furthermore, these tally maps can be expressed as matrices once bases
for Mλ, M(n−2,1,1), and M(n−1,1) have been chosen. For example, consider
a 3-candidate election where λ = (1, 1, 1) (i.e., the voters each provide full
rankings of the candidates). Then the map

Tw : M(1,1,1) → M(2,1)
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can be written in terms of a matrix once the basis 1
2
3

,
1
3
2

,
3
1
2

,
2
1
3

,
2
3
1

,
3
2
1

 (2.1)

has been chosen for M(1,1,1) and the basis(
2 3
1

, 1 3
2

, 1 2
3

,
)

(2.2)

has been chosen for M(2,1) For example, if w = [2, 1, 0], then we can express
the tally map using the matrix

Tw =

 2 2 1 1 0 0
1 0 0 2 2 1
0 1 2 0 1 2

 . (2.3)

Here, the rows of the matrix correspond to the candidates c1, c2, and c3 (in
that order), and the columns correspond to the 6 possible rankings of the
candidates (in the order given by Equation ?? above). This expression of the
tally map as a matrix operator can facilitate many computations (at least
for small n). For example, the voting profile from the example in Section ??
could be tallied using the Borda Count as follows:

Tw(p) =

 2 2 1 1 0 0
1 0 0 2 2 1
0 1 2 0 1 2




6
0
9
6
3
1

 =

 27
25
23

 , (2.4)

which agrees with Section ??. Thus, in practice, we often choose a basis for
the candidate rankings and consider the problem in terms of matrices and
vectors.

2.3 Algebraic Results

This algebraic framework for studying voting theory has proven successful
for both fully and partially ranked data. The following results consider the
Borda count as well as generalize it, and assert the existence of voting para-
doxes due to differences between voting methods. These theorems were
proven using algebraic techniques (although Theorem ?? was not originally
proven algebraically).
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Theorem 2.6 (?). The Borda Count is the unique positional weighting scheme
which minimizes conflict with the pairwise map for fully ranked data.

Theorem 2.7 (?). The unique analog to the Borda Count for data of shape λ =
(n − k, 1, 1, . . . , 1) is a positional map which gives the ith place candidate 1 −
2(i−1)
n+k−1 points for 1 ≤ i ≤ k and 0 otherwise.

Theorem 2.8 (?). Let {w1, w2, . . . wk} be a completely different set of weighting
vectors (for either a full or partial ranking), and let {r1, r2, . . . rk} be arbitrary
results vectors in Qn. Then there exists a profile p such that Twj(p) ≡ rj for
j = 1, 2, . . . k (i.e, Twj(p) and rj differ by at most a multiple of the all-ones vector
[1, 1, . . . , 1]).

Theorem 2.9 (?). For a given ties vector t (which corresponds to ties in a pairwise
analysis of partially ranked data), let Tw be a positional map not compatible with
the partial pairwise map Pt. For any pairwise results vector a ∈ img(Pt) and any
positional results vector b ∈ Qn, there exists a partial profile p such that Pt = a
and Tw ≡ b.

Thus, studying voting theory from an algebraic perspective has allowed
us to understand full ranking voting theory better, and to generalize it to
the partial ranking case.

2.4 Open Questions

Although previous research has yielded powerful statements regarding vot-
ing paradoxes, there are few questions which remain unanswered.

As discussed earlier, voting paradoxes may occur when one or more
candidates drop out of the election. How can we characterize the behavior
of different voting methods when this occurs? Are some voting methods
“better” than others? These questions serve as the topic for this paper.

Note that a positional tally map has a nontrivial kernel (for example,
consider that the tally map in Equation ?? has a 3-dimensional kernel). By
writing the tally map as a matrix and using linear algebra to compute the
kernel of the linear transformation, we can easily determine the kernel of a
positional tally map. However, the reverse question remains unanswered:
given the kernel of a positional tally map, how can we determine which
weighting vector characterizes that map?

There are voting methods which cannot be explained as either pairwise
or positional voting methods. How could this algebraic approach be ap-
plied to these other voting methods?





Chapter 3

An Algebraic Approach to
Dropping Candidates

3.1 Dropping Candidate Maps

Let us consider the effect of dropping candidates by merely “erasing” the
dropped candidates to create a ranking for the remaining candidates. For
example, if candidate c2 drops out of an election, we have

1
3
2
4

7→
1
3
4

,

since a sincere voter would rank candidate c1 over candidate c3, and candi-
date c3 over candidate c4 as shown above. This procedure defines a map

D2 : M(1,1,1,1) → M(1,1,1).

In general, when a set I of m candidates drop out of an election, we can
define the map

DI : M(1n) → M(1n−m)

as described above to understand the situation.
Note, however, that there are two important facts to consider regard-

ing such dropping candidate maps. Let DI be the map as described above
which corresponds to the set I of m candidates dropping out of an n-candidate
election. First, DI is not a QSn-module homomorphism. However,

DI : M(1n) → M(1n−m)
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is clearly an S{1,2,...,n}\I-module homomorphism. For example, one might
rearrange the candidates 1, 3, and 4 before or after dropping candidate 2,
with no change in the final result. Here, SA denotes the group of permuta-
tions of a set A.

Also, this approach does not generalize easily to partial rankings. For
example, consider an election of 5 candidates, where each voter gives a
partial ranking according to the partition (2, 2, 1). Consider the map D1 in
which candidate 1 drops out of the election. Then note that

2 3
4 5
1

7→ 2 3
4 5

and
1 2
3 4
5

7→
2
3 4
5

.

While the above statements do represent the desires of the sincere voter,
they do not correspond to the same partition. Thus, given partial rankings
of shape λ, then the appropriate µ such that the dropping candidate map is
of the form

DI : Mλ → Mµ

does not necessarily exist. Thus we will consider the fully ranked case in
this report.

3.2 Generalizing Important Theorems

Recall from the previous chapter that Saari has already proven several state-
ments regarding the subject of dropping candidates in an election. Most
notably, Saari proved Theorem ?? and Theorem ??.

Given these two theorems, several important questions come to mind:

• Can these theorems be proven easily using algebraic methods?

• Can these theorems be proven to apply to all possible choices of final
tallies for each subset (rather than rankings)?

• What is the algebraic set αn?

• Can these theorems be generalized to partial rankings?
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This chapter discusses the answers to some of these natural questions.
First, I conjecture that the theorems can be applied easily to arbitrary choices
of final tallies for the subsets of candidates:

Conjecture 3.1. Assume there are n ≥ 3 candidates. Select, in any manner, a
final tally for each of the 2n − (n + 1) subsets of candidates such that the sum of
voters for each subset is the same. Then there must exist a profile so that the sincere
plurality (or pairwise) tally for each subset is as selected.

Furthermore, with the exception of an algebraic set αn of weighting vectors for
all of the subset of candidates, all other choices of weighting vectors for all of the
subsets of candidates satisfy the same property as described above.

Note that this conjecture contains an extra restriction which Saari’s The-
orem did not require. Since the dropping candidate maps described above
are defined by mapping each vote for all of the candidates to a new vote
for the remaining ones, the sum of voters for all of the subsets must be the
same if they are derived from the same voting profile. In other words, the
number of voters should remain constant. Without loss of generality, we
assume that the sum of voters is 0 (this is possible because one can always
add a multiple of the all-ones voting profile [1, 1, . . . , 1]T). Thus we assume
that the final tally for each subset is “sum-zero,” i.e., that the sum of the
entries in the result vector equals 0.

In the next section, I will give a constructive proof of the first statement
of Conjecture ??.

3.3 Special Case: Plurality

Let us first consider the plurality voting method. We can choose a tally
for each of the subsets of candidates, and we must find a voting profile
which yields those tallies using the dropping candidate maps described
above and the plurality voting method for all of the subsets of candidates.
In fact, such a voting profile can easily be calculated. Let us consider the
case where n = 3.

Example 3.2. Let there be n = 3 candidates (call them c1, c2, and c3). Note that
there are 4 subsets of candidates to consider. Assume that the tally for:

{c1, c2} is [a,−a]T

{c1, c3} is [b,−b]T

{c2, c3} is [c,−c]T

{c1, c2, c3} is [d, e,−d− e]T
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where a, b, c, d, e are constants. Then we can calculate a voting profile correspond-
ing to these tallies by noting that:

• The element

v1 =
3
1
2
−

3
2
1

corresponds to a tally of [1,−1]T for the subset {c1, c2}, but a tally of all
zeroes for all other subsets of candidates.

• The element

v2 =
2
1
3
−

2
3
1

corresponds to a tally of [1,−1]T for the subset {c1, c3}, but a tally of all
zeroes for all other subsets of candidates.

• The element

v3 =
1
2
3
−

1
3
2

corresponds to a tally of [1,−1]T for the subset {c2, c3}, but a tally of all
zeroes for all other subsets of candidates.

• The element

v4 =
1
3
2
−

3
1
2
−

2
1
3

+
2
3
1

corresponds to a tally of [1, 0,−1]T for the subset {c1, c2, c3}, but a tally of
all zeroes for all other subsets of candidates.

• The element

v5 = −
1
2
3

+
1
3
2

+
2
3
1
−

3
2
1

corresponds to a tally of [0, 1,−1]T for the subset {c1, c2, c3}, but a tally of
all zeroes for all other subsets of candidates.

Thus, the voting profile

av1 + bv2 + cv3 + dv4 + ev5

yields the desired results for each subset of candidates.
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Thus, the above conjecture is true for 3-candidate elections which use
the plurality voting method only. Note that the voting profile above was
created by considering each subset of candidates of size k and defining k− 1
special voting profiles (i.e., elements of M(1n)) for each. Each such profile vi
influenced the tally for only one subset of candidates. This method can be
generalized to any value of n.

Theorem 3.1. Assume there are n ≥ 3 candidates. Select, in any manner, a final
sum-zero tally for each of the 2n − (n + 1) subsets of candidates. Then there must
exist a profile so that the sincere plurality tally for each subset is as selected.

Proof: Let N be the set of all n candidates in an election. For each k-
candidate subset S of candidates, it suffices to find k − 1 voting profiles
such that:

• the k − 1 profiles map to k − 1 linearly independent tallies for the
subset S, and

• the k− 1 profiles map to the tally of all zeroes for any other subset of
candidates.

Thus, we need only find voting profiles which, for any two distinct candi-
dates ci, cj ∈ S, allot ci with 1 vote, cj with -1 votes, and all other candidates
with 0 votes when considering the voting profile for subset S. Furthermore,
these profiles must yield the all zero tally for any other subset of candidates.

To define such profiles, we will need to temporarily abuse our tabloid
notation to include tabloid whose entries may be sets of candidates. In that
case, simply place the candidates in the tabloid in any order (as long as the
same order is always used). For example, if X = {c1, c2}, then

X
3
4
−

X
4
3

might be written
1
2
3
4

−
1
2
4
3

.

Now, let
R = N − S,

and
T = S− (X ∪ {ci, cj})
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given a set X ⊆ S− {ci, cj} and consider the voting profile

v = ∑
X⊆S−{ci ,cj}

(−1)|S−X|


R
X
i
j
T

−

R
X
j
i
T

 .

In order to show that the voting profile v satisfies the requirements,
note that a term in the sum of v results in a tally of zeroes for a subset of
candidates if and only if the first entry in the tabloids (after the appropriate
candidates are dropped) is the same.

• Consider the tally of v for the subset S. Note that the set of candidates
R = N − S is dropped from each tabloid when the corresponding
candidates drop out of the election. Note that for each term in the
sum where X 6= ∅, the tally for all candidates is 0 (for the plurality
voting method). Thus the only term which results in a nonzero tally
is the term corresponding to the case where X is the empty set,

(−1)|S|

 i
j
T
−

j
i
T


(where in this case T = S−{ci, cj}). Thus v results in the desired tally
for the subset S.

• Consider the tally of v for a subset of candidates S1, where S1 contains
a candidate which is not an element of S. In each term of the sum,
note that at least one candidate ck ∈ R will remain in the top portion
of the tabloids because S1 ∩ R 6= ∅. Thus the tally of v for S1 is

[0, 0, . . . , 0]T,

the tally of zeroes for each candidate in S1.

• Consider the tally of v for a subset of candidates S2, where S2 ( S.
That is, there exists an element c` ∈ S such that c` /∈ S2. Then

v = ∑
X⊆S−{ci ,cj}

c` /∈X

(−1)|S−X|


R
X
i
j
T

−

R
X
j
i
T

+ ∑
X⊆S−{ci ,cj}

c`∈X

(−1)|S−X|


R
X
i
j
T

−

R
X
j
i
T
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= ∑
X⊆S−{ci ,cj,c`}

(−1)|S−X|




R
X
i
j
T

−

R
X
j
i
T

−


R
Y
i
j
T

−

R
Y
j
i
T


 ,

where Y = X ∪ {c`}. Note that each term in this new sum will map
to zero when the appropriate candidates are dropped to consider the
subset S2.

Thus, by calculating v for appropriate values of ci, cj, and S, we can eas-
ily define a set of voting profiles which satisfy the desired characteristics.

�

This proves Conjecture ?? for the plurality voting method. Further-
more, the proof of the theorem is a constructive one, unlike Saari’s exis-
tence proofs. Thus, we now have the ability to easily create profiles which
exhibit any desired paradox of this form, although the paradoxical profiles
we create are not unique. A simple Maple program can easily calculate
any voting paradox you can imagine regarding dropping candidates and
exclusively using the plurality voting method.

3.4 Finding αn

It remains to find the choices of weighting vectors for the different subsets
of candidates for which Theorem ?? will not apply. For example, if the
Borda Count is chosen for any subset of 3 or more candidates, the theorem
will not be true. The theorem fails because the Borda Count awards each
candidate with a point value equal to the number of times he or she “beats”
another candidate in a one-on-one comparison. Thus the Borda Count is
inextricably related to the tally results for the “pairs” of candidates (i.e.,
subset of size two). However, these Borda weighting vectors are not the
only possible weighting vectors in αn. The construction of these choices of
weighting vectors remains to be found.





Chapter 4

Decompositions of the Profile
Space

In order to better understand the voting paradoxes involving the dropping
of a candidate in an election, it useful to understand the algebraic structure
of the profile space by decomposing it into submodules.

This chapter explores two different decompositions of the profile space:
the isotypic decomposition and the inversion decomposion, as well as their
respective contributions to voting theory.

4.1 Isotypic Decomposition

Since Mλ is a QSn-module, it can be decomposed into its so-called isotypic
subspaces:

Mλ ∼= a1N1 ⊕ a2N2 ⊕ · · · ⊕ amNm,

where the Ni are m distinct irreducible submodules of Mλ and the ai are
positive integers. Furthermore, this decomposition is unique (up to order-
ing).

Fortunately, the decomposition of Mλ into its isotypic subspaces can
be understood easily because the representation theory of QSn-modules
is well-known in terms of algebraic objects called Specht modules and as-
sociated numbers called Kostka numbers. Although the constructions of the
Specht modules Sλ and the Kostka numbers Kλµ are not included here, they
are well-understood objects which can be computed fairly easily. Each par-
tition λ ` n corresponds to a Specht module Sλ. Furthermore, every irre-
ducible QSn-module is isomorphic to a Specht module Sλ for some λ ` n.
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Thus, we can generate the isotypic decomposition (up to isomorphism) of
Mµ using the equation

Mµ ∼=
⊕

λ

KλµSλ,

where the Kostka number Kλµ is the multiplicity of Sλ.
In the case where µ = (1, 1, . . . , 1), Kλµ is quite easy to compute. Here,

Kλµ = f λ

and
dimSλ = f λ,

where f λ is the number of standard tableaux of shape λ. For example,

M(1,1,1) ∼= S(3) ⊕ 2S(2,1) ⊕ S(1,1,1).

For more information, see (?).
This isotypic decomposition of the profile space (and, similarly, the

space of all result vectors) has proven extremely useful to better under-
stand the tally maps from an algebraic point of view. We can understand
these maps by decomposing the domain and range of these tally maps ac-
cording to their isotypic subspaces. For example, considering the kernels
of a positional tally map

Tw : Mλ → M(n−1,1)

and the pairwise tally map

P : Mλ → M(n−2,1,1)

allows us to compare the two maps and understand which subspaces of Mλ

cause differences in voting outcomes. The following theorem helps explain
how:

Theorem 4.1 (Schur’s Lemma). Let M and N be irreducible R-modules, and let
ϕ : M → N be a homomorphism. Then ϕ is either an isomorphism, or the zero
map.

This theorem states that a given tally map, when restricted to an irre-
ducible submodule of the domain Mλ, is either the zero map or an isomor-
phism. Thus, by considering the isotypic decomposition of the permutation
modules and using Schur’s Lemma, we can deduce statements about the
kernel of different pairwise and positional maps.
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For example, consider the tally map

Tw : M(1,1,...,1) → M(n−1,1).

Now,
M(1,1,...,1) ∼= S(n) ⊕ (n− 1)S(n−1,1) ⊕ · · ·

and
M(n−1,1) ∼= S(n) ⊕ S(n−1,1).

Thus, for a given tally map Tw, the effective space, defined to be the orthog-
onal complement to the kernel, is always isomorphic to S(n), S(n−1,1), or
S(n) ⊕ S(n−1,1).

In other words, any profile in the profile space which is orthogonal to
the S(n) and S(n−1,1) isotypic subspaces must be in the kernel of every tally
map Tw (i.e., the “· · · ” portion of the decomposition of the profile space
above is contained in the kernel of every tally map Tw).

Thus the isotypic decomposition has proven helpful in past research
(i.e., by Daugherty, Eustis, and Minton) to help understand what the kernel
and effective space of a tally map actually are. In fact, Schur’s Lemma
and the isotypic decomposition play a central role in the previous research
regarding voting theory from an algebraic perspective (see ?, ?).

4.2 Inversion Decomposition

Although the isotypic decomposition is extremely important, an alternate
decomposition may also be useful when considering the question of drop-
ping candidates. The inversion decomposition is based on examining dif-
ferent sized subsets of candidates (created by dropping different numbers
of candidates). In the following discussion, consider the fully ranked case
only. The following definitions are based on ?.

In order to define the inversion decomposition, we must first define the
indicator vectors x(s,r) used to define it. For any subset s ⊆ {1, . . . , n},
r ∈ Ss, and y ∈ Sn, let

x(s,r)
y = I[Ds(y) = r],

where Ds is the “dropping candidate map” described in the beginning of
Chapter ??. That is, to define the indicator vector x(s,r), we set the compo-
nent of the vector corresponding to an element y ∈ Sn to be 1 if y ranks the
candidates in s according to r, and 0 otherwise (see example below). While
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the above definition is phrased in terms of the profile space as a vector
space, we could alternately define x(s,r) in terms of the group algebra:

x(s,r) = ∑
{y|Ds(y)=r}

y.

For example, given the basis for S3 1
2
3

,
1
3
2

,
3
1
2

,
2
1
3

,
2
3
1

,
3
2
1

 ,

letting s = {1, 2}, and r = 2
1

, we have

x(s,r) =



0
0
0
1
1
1

 =
2
1
3

+
2
3
1

+
3
2
1

since the elements of S3 which rank the candidates of s according to r are

2
1
3

,
2
3
1

, and
3
2
1

.

Then, for h = 1, . . . , n, let

W∗
h = span{x(s,r)|s ⊆ {1, . . . , n}, |s| = h, r ∈ Ss}.

In other words, W∗
h is spanned by all of the indicator vectors correspond-

ing to all of the permutations of the candidates for all of the subsets of
candidates of size h. Thus W∗

h is the subspace of the profile space which
determines the rankings for the subsets of candidates of size h. Note that
the vectors which define W∗

h are not necessarily linearly independent.
Note that W∗

h is indeed a submodule of the profile space since it is closed
under addition and acting on an indicator vector x(s,r) with an element π ∈
Sn will only change s or r (or both) as follows: for any π ∈ Sn,

πx(s,r) = π ∑
{y∈Sn|Ds(y)=r}

y
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= ∑
{y∈Sn|Ds(y)=r}

πy

= ∑
{y∈Sn|Dπ(s)(πy)=πr}

πy,

because Ds(y) = r if and only if Dπ(s)(πy) = πr,

= x(π(s),πr).

Furthermore,
Wi ⊆ Wj

if i ≤ j since any of the vectors spanning Wi can be written as an element of
Wj as follows: for s ⊆ {1, . . . , n}, |s| = i, and r ∈ Ss, choose s′ ⊆ {1, . . . , n}
such that |s′| = j and s ⊆ s′. Then

x(s,r) = ∑
r′∈Ss′

Ds(r′)=r

x(s′,r′).

To see this, note that each permutation y in the sum

x(s,r) = ∑
{y|Ds(y)=r}

y

satisfies
Ds′(y) = r′

for some r′ ∈ Ss′ (where Ds(r′) = r). It follows that

x(s,r) = ∑
{y|Ds(y)=r}

y

= ∑
r′∈Ss′

Ds(r′)=r

 ∑
{y|Ds′ (y)=r′}

y

 = ∑
r′∈Ss′

Ds(r′)=r

x(s′,r′).

Note that W1 is spanned by

[1, 1, . . . , 1]T

and Wn is spanned by the standard basis for M(1,1,...,1), so M(1,1,...,1) = W∗
n .

Finally, in order to define the inversion decomposition, let

Wh = W∗
h

⋂
(W∗

h−1)
⊥.
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This creates the inversion decomposition

M(1,1,...,1) = W1
⊕

W2
⊕

· · ·
⊕

Wn.

Note that this decomposition has been constructed such that Wh is the
subspace of the profile space which defines the profiles for the subsets of
candidates of size h but not size h− 1.



Chapter 5

The Inversion Decomposition

5.1 Example Calculations

In order to better understand the inversion decomposition, let us calculate
the decomposition for a few small subsets of candidates. First, let us con-
sider n = 3 candidates (c1, c2, and c3).

To calculate the inversion decomposition for 3 candidates, let us use the
familiar basis  1

2
3

,
1
3
2

,
3
1
2

,
2
1
3

,
2
3
1

,
3
2
1

 .

First recall that W1 = W∗
1 is spanned by the vector

[1, 1, 1, 1, 1, 1]T

since each permutation of 3 candidates is the same when dropped to a sub-
set of candidates of size 1.

In order to calculate W∗
2 , we must consider each two-element subset of

{c1, c2, c3}. For {c1, c2}, the ranking 1
2

yields

[1, 1, 1, 0, 0, 0]T

and the ranking 2
1

yields

[0, 0, 0, 1, 1, 1]T.

Similarly, the subset {c1, c3} gives the profiles

[1, 1, 0, 1, 0, 0]T
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and
[0, 0, 1, 0, 1, 1]T.

Finally, the subset {c2, c3} yields the vectors

[1, 0, 0, 1, 1, 0]T

and
[0, 1, 1, 0, 0, 1]T.

Together, these 6 vectors span W∗
2 , a 4-dimensional subspace of the pro-

file space, with W1 as a 1-dimensional subspace of W∗
2 . Thus, W2 is a 3-

dimensional subspace of the profile space.
Finally, W∗

3 is calculated by considering all of the rankings of the set
{c1, c2, c3} (since it is the only subset of size 3). Thus W∗

3 is spanned by each
of the standard basis vectors. In other words, W∗

3 is the entire profile space.
Thus W3 is a 2-dimensional subspace of the profile space.

By looking at the algebraic structure of the subspaces, we can deduce
the isotypic decomposition of the Wh in terms of Specht modules. Here,

W1
∼= S(3),

W2 ∼= S(2,1) ⊕ S(1,1,1),

and
W3 ∼= S(2,1).

Now, we can use the inversion decomposition to gather information
about different weighting vectors. For example, one can deduce which
weighting vectors contain Wi in the kernel of their tally maps, and which
weighting vectors have effective spaces which are entirely contained in Wi.
Remember, a given weighting vector has an effective space which is iso-
morphic to either S(n), S(n−1,1), or S(n)⊕ S(n−1,1) and kernel of the tally map
consists of the orthogonal complement of this effective space. In this exam-
ple, we find that a weighting vector [a, b, c] which contains W1 in the kernel
of its tally map must satisfy

 a a b b c c
b c c a a b
c b a c b a




1
1
1
1
1
1

 =

 0
0
0

 ,
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using the familiar basis from Equation ??. Thus we must have

a + b + c = 0.

Similarly every weighting vector which contains W2 in the kernel of its tally
map must satisfy

a− c = 0

and every weighting vector which contains W3 in the kernel of its tally map
satisfies

a− 2b + c = 0.

On the other hand, any weighting vector whose effective space is en-
tirely contained in W1 must contain W2 and W3 in the kernel of its tally
map, so it must satisfy

a− c = 0

and
a− 2b + c = 0,

so it must be a multiple of
[1, 1, 1]T.

This result makes sense because the weighting vector [1, 1, 1]T merely counts
the number of voters in the election; this is exactly the information that one
receives by dropping candidates until only one candidate remains. Thus
we can easily calculate what equations a weighting vector [a, b, c] must sat-
isfy in order to contain Wk in its kernel, and what the weighting vector must
be if its effective space is entirely contained in Wk (up to scalar multiples).
This information yields the following table:

Wk dimension to have Wk in kernel effective space ⊆ Wk.
W1 1 a + b + c = 0 [1, 1, 1]
W2 3 a− c = 0 [1, 0,−1]
W3 2 a− 2b + c = 0 [1,−2, 1]

Here, the importance of the Borda Count is quite clear, since the vector

[1, 0,−1]T

appears in the second row of the above table (indicating that if a weighting
vector’s effective space is a subset of W2, it must be a multiple of [1, 0,−1]).
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In fact, every weighting vector [a, b, c] which corresponds to the Borda Count,
i.e.,

a− b = b− c 6= 0,

can be written as a linear combination of [1, 1, 1]T and [1, 0,−1] (where the
coefficient of [1, 0,−1] is nonzero).

Recall that the Borda Count is the unique positional voting method
which agrees most with the pairwise voting method (Theorem ??). Math-
ematically, this theorem states that the effective space of the Borda Count
tally map is contained in the effective space of the pairwise map. This con-
nection between the Borda Count and the pairwise map helps explain why
the Borda Count appeared in the second row; the Borda Count is associated
with pairs of candidates, which are determined by W∗

2 .
Thinking about this connection algebraically helps express the impor-

tance of the Borda Count. The pairwise map has an effective space isomor-
phic to

S(1,1,1) ⊕ S(2,1) ⊕ S(3),

and is equal to W∗
2 . Of course, no positional voting method can have the

same effective space as the pairwise map because the S(1,1,1) isotypic is in
the kernel of every positional voting method. However, the Borda Count’s
effective space is actually a subspace of the pairwise map’s effective space.
That is, the Borda Count corresponds to the same S(2,1) submodule of the
profile space as the pairwise map does. Furthermore, the Borda Count is
unique in this property, so we say that the Borda Count is unique because
its effective space “agrees most” with the pairwise map. Thus the Borda
Count’s weighting vector will always correspond to W∗

2 .
Similar computations can easily be made using Maple to calculate the

corresponding data for 4 and 5 candidate elections.
For n = 4,

Wk dimension to have Wk in kernel effective space ⊆ Wk.
W1 1 a + b + c + d = 0 [1, 1, 1, 1]
W2 6 3a + b− c− 3d = 0 [3, 1,−1,−3]
W3 8 a− b− c + d = 0 [1,−1,−1, 1]
W4 9 a− 3b + 3c− d = 0 [1,−3, 3,−1]

For n = 5,
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Wk dimension to have Wk in kernel effective space ⊆ Wk.
W1 1 a + b + c + d + e = 0 [1,1,1,1,1]
W2 10 2a + b− d− 2e = 0 [-2,-1,0,1,2]
W3 20 2a− b− 2c− d + 2e = 0 [2,-1,-2,-1,2]
W4 45 a− 2b + 2d− e = 0 [-1,2,0,-2,1]
W5 44 a− 4b + 6c− 4d + e = 0 [1,-4,6,-4,1]

In the above tables, the Borda Count appears as expected as the po-
sitional voting method whose effective space is entirely contained in W∗

2 .
That is, the Borda Count is always a linear combination of the first two en-
tries in the last column. For an equivalent characterization of the Borda
Count, note that the weighting vector in the ith row of the table is calcu-
lated by simultaneously solving all of equations from the other other rows
of the table (since to be in the effective space of Wi, a weighting vector must
be in the kernel of the others). Thus the Borda Count can be found by si-
multaneously solving the equations from Rows 3 through n. For example,
for n = 3, the Borda Count is characterized by definition by the equation

a− b = b− c,

or
a− 2b + c = 0,

as shown in the table for n = 3 above.

5.2 Alternate Definition of the Inversion Decomposi-
tion

In this section, we will consider an alternate definition of the inversion de-
composition.

First note that the calculations in the previous section considered lin-
early dependent voting profiles. To calculate a basis for W∗

i , we first create
a set of linearly dependent voting profiles and then find a basis for the vec-
tor space spanned by those vectors. While this is correct, it can be useful to
state another definition of the inversion decomposition which avoids the
confusion arising from these redundant weighting vectors. For example,
the linear dependence of the weighting vectors adds computational diffi-
culty to the calculations, and makes it difficult to predict the dimension of
a given Wi.

Previous work by ? refers to a conjecture that inversions are the key to
an appropriate alternate definition of the inversion decomposition. Simply



36 The Inversion Decomposition

stated, an inversion (or derangement) is a permuation with no fixed points
(although the definition is slightly different in the case of S1). Thus we can
define the set of inversions on n elements as

I1 = {π|π ∈ S1}

and (for n 6= 1)

In = {π ∈ Sn|π(i) 6= i for i = 1, 2, . . . , n}.

Marden stated a conjecture (originally proposed by P. McCullagh) that for

V∗
i = Span{x(s,r)|s ⊆ {1, 2, . . . , n}, |s| ≤ i, r ∈ I|s|},

V∗
i = W∗

i .
In order to prove the correctness of the alternate definition, it suffices to

show that the elements of the set

In = {x(s,r)|s ⊆ {1, 2, . . . , n}, |s| ≤ n, r ∈ I|s|}

are linearly independent. To see this, assume linear independence and note
that V∗

k is a subspace of W∗
k for k ≤ n, and that the elements spanning

V∗
n actually span the entire profile space W∗

n because there are n linearly
independent elements. Thus it follows that V∗

k = W∗
k .

Example 5.1. Let n = 3. In this case, we have the following basis for the profile
space W∗

3 : 



1
1
1
1
1
1

 ,



0
0
0
1
1
1

 ,



0
0
1
0
1
1

 ,



0
1
1
0
0
1

 ,



0
0
1
0
0
0

 ,



0
0
0
0
1
0



 .

Here, the first basis element corresponds to one candidate subsets, the next 3 basis
elements correspond to the subsets of candidates of size two, and the last 2 basis
elements correspond to the set of all three candidates. Thus W∗

1 is spanned by
the first basis element, W∗

2 by the first four basis elements, and W∗
3 by all 6 basis

elements. Note all of the elements in the basis are linearly independent.
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Although it may seem elementary for this example, let us prove that the above
vectors are indeed linearly independent. Let us consider a linear combination

c1



1
1
1
1
1
1

+ c21



0
0
0
1
1
1

+ c31



0
0
1
0
1
1

+ c32



0
1
1
0
0
1

+ c312



0
0
1
0
0
0

+ c231



0
0
0
0
1
0

 =



0
0
0
0
0
0


We wish to show that all of the constants ci are equal to 0. First note that the first

entry (corresponding to the ranking
1
2
3

) helps us conclude that

c1 = 0.

Then, the second entry corresponds to the ranking
1
3
2

and implies

c1 + c32 = 0 ⇒ c32 = 0

since c1 = 0. The fourth entry corresponds to
2
1
3

and yields

c1 + c21 = 0 ⇒ c21 = 0.

The sixth entry corresponds to
3
2
1

and says

c1 + c32 + c21 + c31 = 0 ⇒ c31 = 0.

Next, the fifth entry corresponds to the ranking
2
3
1

and implies that

c1 + c21 + c31 + c231 = 0 ⇒ c231 = 0.

Finally, the third entry corresponds to
3
1
2

and yields

c1 + c31 + c32 + c312 = 0 ⇒ c312 = 0.
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Thus we have proven that all of the coefficients equal zero by considering them
one by one. Note that at each step (except the first one), we used the fact that we
had already proven that some of the other coefficients were zero; by considering the
derangements in a particular order, it was easy to show that each one in turn had
a coefficient of zero. We conjecture that this method will be effective in the general
case.

In the example above, there was a relationship between the coefficient
which was proven to be zero at a given step, and the permutation π ∈ Sn
(i.e., the entry in the vector) which was considered to prove it was the case.
This relationship is given by a function

f : In → Sn.

To define f , we will define a permutation f (x(s,r)) ∈ Sn as a function from
{1, . . . , n} to {1, . . . , n} :

f (x(s,r))(i) =

{
i i /∈ s
r(i) i ∈ s

.

In other words, f (x(s,r)) is a permutation on all n candidates which ar-
ranges the candidates in s according to r, and then places all of the other
candidates in their “original” positions. For example,

f (x
({1,3}, 3

1
)
) =

3
2
1

.

Because there are n! elements of In, and the map is injective, f is a bijection
between In and Sn.

We conjecture that there is an appropriate ordering of the elements of
In such that considering each element x(s,r) ∈ In in that order allows us to
show that the coefficient of x(s,r) is 0 by considering the entry corresponding
to f (x(s,r)). Such an ordering is not necessarily unique.

Conjecture 5.2. (?) The elements of the set

In = {x(s,r)|s ⊆ {1, 2, . . . , n} , |s| ≤ n, r ∈ I|s|}

are linearly independent.

Note that if proven, this conjecture would yield a basis (as given above)
for the submodules W∗

i , and a formula for the dimension of the Wi.
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5.3 Algebraic Structure of the Inversion Decomposi-
tion

The tables from Section ?? assign exactly one weighting vector to each Wi
(as the only weighting vector, up to scalar multiples, whose effective space
is contained in Wi). Here, we conjecture that this is always the case, and
explore some of the consequences if the conjecture is true.

Note that the profile space contains only one S(n) submodule (which is
W1), and n− 1 orthogonal copies of S(n−1,1). Thus we conjecture that each
Wi for i > 1 contains its own copy of S(n−1,1) (which then corresponds to a
unique weighting vector by ?).

Conjecture 5.3. Let n ≥ i > 1. Then Wi contains an irreducible submodule
isomorphic to S(n−1,1).

If the above conjecture can be proven, then each Wi must correspond to
exactly one weighting vector wi such that the effective space of wi, ker(Twi)

⊥,
is contained in Wi. This would provide a set of n weighting vectors which
must be linearly independent by construction. Thus, Conjecture ?? implies
a decomposition of the space of all weighting vectors according to the in-
version decomposition.

5.4 Further Conjectures Regarding the Inversion De-
composition

The inversion decomposition still remains to be understood. Although it
has proven difficult to create proofs regarding the properties of the inver-
sion decomposition, there are many conjectures which can be made regard-
ing the inversion decomposition.

• The connection between the inversion decomposition and the set αn

still remains to be investigated. Remember, elements of αn are choices
of weighting vectors for all of the subsets of the candidates (with at
least 2 candidates).

Conjecture 5.4. A choice of weighting vectors for all of the subsets of can-
didates is an element of αn if and only if at least one of the weighting vectors
has length i and contains the submodule Wi in the kernel of its tally map.
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That is, we conjecture that we can easily determine if a choice of
weighting vectors for each subset is an element of αn by checking
each weighting vector of length i and determining if it satisfies the
equation in the last row of the table (from Section ??) for n = i.

For example, if n = 3, a choice of weighting vectors for each subset
of candidates (say, w{1,2}, w{1,3}, w{2,3}, and w{1,2,3}) is an element of
αn if and only of

w{1,2,3} = [a, b, c]

satisifies
a− 2b + c = 0,

i.e., it is a Borda vector, or a multiple of the all-ones vector [1, 1, 1].
This result agrees with ?.

• Given the decomposition of the profile space for n candidates, the
weighting vector corresponding to Wn bears a resemblance to the
(n − 1)th row of Pascal’s triangle. We conjecture that the weighting
vector is the (n− 1)th row of Pascal’s triangle with alternating sign.

For example, starting with n = 0, the first few rows of Pascal’s trian-
gle are

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

.

Now, for n = 3, every weighting vector whose effective space is con-
tained in W3 is a multiple of

[1,−2, 1].

This weighting vector is merely the second row of Pascals Triangle,

1 2 1 ,

with alternating signs added.

Similarly, for n = 4, every weighting vector whose effective space is
contained in Wn is a multiple of

[1,−3, 3,−1].
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This weighting vector is merely the third row of Pascals Triangle,

1 3 3 1 ,

with alternating signs added.

Note that if this conjecture were proven as well as the first conjecture
(regarding a characterization of αn based on the inversion decompo-
sition), then we would be able to characterize all elements of αn with
ease.

• One class of weighting vectors is the so-called “reversible” weight-
ing vectors. These weighting vectors have the property that if each
voter reverses his/her ranking of the candidates, then the resulting
tally (for that weighting vector) is the reverse of the original tally. We
conjecture that the weighting vectors corresponding to Wi where i is
even are always reversible weighting vectors, and that these form a
basis for all reversible weighting vectors.





Chapter 6

Future Work

There are still many questions regarding the topic of dropping candidates
in elections, so future work in this area is needed to address several issues.

Most importantly, future work should include clean proofs of Conjec-
tures ?? and ??. These two conjectures are important because they would
help us better understand the structure of the inversion decomposition. In
the case of Conjecture ??, a proof will help us determine the dimension of
each subspace Wi, as well as a cleaner way to calculate the inversion de-
composition. A proof of Conjecture ?? would shed light on the algebraic
structure of the submodules and have consequences in its application to
voting theory.

Further work may also include a careful consideration of the three con-
jectures outlined in Section ??: the first two of which are especially influen-
tial in finding a clean way to calculate the elements of αn.

There is also a need to complete the generalization of Theorems ?? and
??. Can these two theorems apply to all final tallies of the subsets (instead
of final rankings)?

This paper does not consider the case where votes are given in partial
rankings (i.e., voters may rank candidates as tied). Previous work (i.e.,
by ?) has successfully generalized important results to the partial ranking
case. However, there is still a need to consider the problem of dropping
candidates in elections which use partial rankings.

Work by Saari considers an important subspace of the profile space
called the Condorcet space (see Section ??, ?, and ?) and suggests that it is
instrumental in understanding the problem of dropping candidates for the
Borda Count. One might like to clarify this connection, perhaps using an
algebraic approach, and try to make equivalent statements for some other
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positional voting methods like the plurality voting method (or prove that
equivalent statements can not exist).
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