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THE MOTION OF A THIN LIQUID FILM DRIVEN BY
SURFACTANT AND GRAVITY∗

R. LEVY† AND M. SHEARER‡

Abstract. We investigate wave solutions of a lubrication model for surfactant-driven flow
of a thin liquid film down an inclined plane. We model the flow in one space dimension with a
system of nonlinear PDEs of mixed hyperbolic-parabolic type in which the effects of capillarity
and surface diffusion are neglected. Numerical solutions reveal distinct patterns of waves that are
described analytically by combinations of traveling waves, some with jumps in height and surfactant
concentration gradient. The various waves and combinations are strikingly different from what
is observed in the case of flow on a horizontal plane. Jump conditions admit new shock waves
sustained by a linear surfactant wave traveling upstream. The stability of these waves is investigated
analytically and numerically. For initial value problems, a critical ratio of upstream to downstream
height separates two distinct long-time wave patterns. Below the critical ratio, there is also an exact
solution in which the height is piecewise constant and the surfactant concentration is piecewise linear
and has compact support.
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1. Introduction. Spatial variations in surface tension on the free surface of a
fluid induce a surface force, known as a Marangoni force [8]. Such variations can
occur through temperature changes [2, 4] or by introducing surfactants. In thin film
flow, surfactants have been studied in the context of industrial coating processes
[9, 16] and as a component in the treatment of premature babies, whose lungs are in
danger of collapse due to insufficient natural surfactant [3, 11]. Both applications have
motivated extensive recent research on thin films driven by surfactant [12, 13, 17, 18].

In much of the research into surfactant spreading, the effect of gravity in driving
the flow has been assumed to be negligible [10]. In this paper, we consider flow on an
inclined plane, building on the work of Edmonstone, Craster, and Matar [6, 7] that
explores the effect of adding gravity to the driving force. Our results demonstrate that
gravity has a profound effect and probably should not be neglected in simulations of
surfactant spreading.

For constant Marangoni force, as in studies of thermally driven thin films [2,
4, 8], the equations of motion are reasonably represented by a scalar fourth order
PDE, known as the thin film equation. In the presence of surfactant, however, the
Marangoni force is not constant; the density and motion of the surfactant molecules
are modeled by an additional equation. The full model, derived using lubrication
theory in [3], consists of a system of two nonlinear coupled PDEs for the film height
and the surfactant concentration.

The PDE system exhibits a complicated combination of wave-like structures in the
solution of initial value and boundary value problems [6, 7]. The complexity comes
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about in part because the underlying equation for the transport of surfactant is a
degenerate parabolic equation resembling the porous medium equation, the degeneracy
occurring at zero surfactant concentration. In contrast with the scalar thin film
equation [15], we cannot appeal to the theory of hyperbolic equations to predict
the long-time behavior of solutions, and indeed we find that it is different from the
combination of shocks and rarefaction waves of the hyperbolic theory. Nonetheless, we
explore the point of view that long-time behavior of the underlying equations should
be predictable from basic information in the initial and boundary conditions, and it
should be given by combinations of similarity solutions of the equations.

The underlying equations we study are derived from the full lubrication system
(in section 2) by omitting terms related to surface diffusion and capillarity, i.e., taking
the Péclet number to be infinite and the capillary number to be zero. We also neglect
a second order diffusive term that is small for steep inclines. This enables us to focus
on the underlying structure of solutions by analogy with the connection between
hyperbolic systems and their parabolic regularization.

Numerical simulations of the reduced system, described in section 3, contain
discontinuities in film height and surfactant concentration gradient. These solutions
have a recognizable structure, and the goal of much of the rest of the paper is to
explain the structure analytically. There is extensive numerical evidence [6] that
the omitted regularizing terms primarily smooth the discontinuities without changing
their structure or speeds, provided the coefficients are small.

The analysis of traveling waves in section 4 and jump conditions in section 5
reveals a surprisingly rich variety of individual waves. In section 6, we show how these
waves can be combined to explain the wave patterns in the numerical simulations.
However, the combination is possible only below a critical value of the ratio hR/hL

of downstream height hR to upstream height hL. This analysis is used in section 7 to
generate special exact solutions that are piecewise constant in h and piecewise linear
in Γ, with Γ having compact support.

Above the critical value a different wave pattern emerges, described through nu-
merical experiments in section 7. A notable feature of these new patterns is a hyper-
bolic precursor wave propagating ahead of the surfactant front. Also in this section we
probe the critical value in PDE simulations and investigate the stability of individual
waves predicted by jump conditions. In section 8 we summarize the catalogue of new
individual waves and discuss the results in the context of ongoing research into the
role of gravity in surfactant spreading.

2. The model. Consider a flat solid substrate, inclined as shown in Figure 1, in
which z = h̃(x, y, t) is the height of a thin film flowing down the slope. On the surface
of the film is a layer of surfactant with concentration Γ̃(x, y, t), which measures the
density of surfactant molecules on the free surface. The surfactant is assumed to be
immiscible and does not add to the height of the film.1

The full multidimensional model consists of a system of two nonlinear PDEs de-
rived from the Navier–Stokes equations and the well-known lubrication approximation
[1, 6, 13, 19]:

ht + ∇ ·
[
C
h3

3
∇∇2h− G cos θ

h3

3
∇h− h2

2
∇Γ

]
+

[
G sin θ

h3

3

]
x

= 0,(2.1)

1The amount of surfactant is also assumed to be below the critical micelle concentration [5].



1590 R. LEVY AND M. SHEARER

 

  

x

hh L

hRθ

surfactant      layer
=

h =

Fig. 1. A thin film on an inclined substrate with partial coating by surfactant of varying
concentration and negligible height.

Γt + ∇ ·
[
C
h2

2
Γ∇∇2h− G cos θ

h2

2
Γ∇h− hΓ∇Γ

]
+

[
G sin θ

h2

2
Γ

]
x

− D∇2Γ = 0.

(2.2)

Here h,Γ are dimensionless variables: h = h̃/H, Γ = Γ̃/Γm, where H is a character-
istic length scale for the film thickness, and Γm is a typical surfactant concentration.
The system contains nondimensional parameters associated with gravity, G = ρgHL

Π ,

surface diffusion D = 1
Pe = μDs

ΠH (where Pe is the Péclet number), and capillarity

C = ε2σm

Π . These parameters depend on density ρ, gravity g, viscosity μ, and surface
diffusivity Ds of the surfactant, all taken to be constant. They also depend on a
characteristic length L of the film and on the small parameter ε = H

L . The spreading
pressure Π is given by Π = σ0 − σm, where σ0 is the surface tension in the absence
of surfactant, and σm is a typical reduced surface tension in the presence of a typical
concentration of surfactant. The spreading pressure Π is related to the Marangoni
number, which after nondimensionalization is effectively set to 1. Note that in (2.1),
(2.2) we have used a linear relation σ = 1 − Γ (in nondimensional form) between
surface tension and surfactant concentration. We refer the reader to [6] for typical
values of the parameters.

In this paper, we consider a reduced model in which the variables are considered to
be independent of the transverse variable y, and the regularizing effects of capillarity
and surface diffusion are neglected by taking C = 0 and D = 0. Letting α = G sin θ,
the reduced equations are

ht −
1

2

(
h2Γx

)
x

+
α

3

(
h3

)
x

= 0,(2.3)

Γt − (hΓΓx)x +
α

2

(
h2Γ

)
x

= 0.(2.4)

In this system we have also neglected the gravity terms with coefficient G cos θ.
This coefficient is small for θ near π

2 , where it has a minor smoothing effect on solu-
tions [6]. It is well known that fourth order diffusion gives rise to a capillary ridge [20],
which is not captured in the reduced system. Neither capillarity nor surface diffusion
affects wave speeds significantly, at least for small values of C and D, as verified
numerically in [6].
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It is perhaps helpful to compare this system to familiar PDEs. For a given function
Γ(x, t), (2.3) would be a scalar conservation law

ht + f(h)x = 0,

with f(h) = − 1
2h

2Γx + α
3 h

3. Similarly, for a given h(x, t), (2.4) resembles a porous
medium equation. Specifically, if h is constant, and α = 0, then (2.4) is

Γt =
1

2
h
(
Γ2

)
xx

.

Consequently, we may expect discontinuities in h and Γx, while Γ itself remains con-
tinuous; this would be typical in a quasi-linear conservation law for h and a porous
medium equation for Γ.

As this discussion suggests, the system of equations is of parabolic-hyperbolic
type. In a series of papers [17, 18], Renardy examined analytical issues such as local
existence, propagation speed, and formation of shocks in the case α = 0. While some
of these results may generalize to the case α > 0, we do not pursue this line of analysis
in this paper.

3. Numerical experiments I. The numerical algorithm used to compute so-
lutions of the system of PDEs (2.3), (2.4) is a first order composite finite difference
scheme that couples a fully implicit time step and central spatial differences for sec-
ond order derivatives with an upwind scheme for the more hyperbolic first order terms
(with coefficient α in (2.3), (2.4)).

We define a spatial finite difference operator acting on un
j = u(xj , tn) as

(δxu)nj+ 1
2
≡

un
j+1 − un

j

Δx
.(3.1)

We also use standard notation for spatial averages:

(ū)nj+ 1
2
≡

un
j+1 + un

j

2
,(3.2)

and let λ ≡ Δt
Δx . The finite difference scheme is then defined as

hn+1
j = hn

j + λ

(
1

2

(
h̄2δxΓ

)n+1

j+ 1
2

− 1

2

(
h̄2δxΓ

)n+1

j− 1
2

− α

3

(
(h3)nj − (h3)nj−1

))
,(3.3)

Γn+1
j = Γn

j + λ
((

h̄Γ̄δxΓ
)n+1

j+ 1
2

−
(
h̄Γ̄δxΓ

)n+1

j− 1
2

− α

2

(
(h2Γ)nj − (h2Γ)nj−1

))
.(3.4)

The resulting nonlinear system is solved with Newton’s method; the composite scheme
is formally first order in both time and space.

The goal of our analysis is to understand the structure of long-time solutions as
a function only of boundary data. In order to simulate initial value problems with
initial data in which h and Γ are constant outside an interval, and Γ = 0 downstream,
we impose simple boundary conditions at the end points of the computational domain
[0, xmax]:
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Fig. 2. Typical solution profiles h(x, 60) (left) and Γ(x, 60) (right) with hR = 0.1. Initial data
h(x, 0) and Γ(x, 0) are represented by dashed lines. Numbered labels: (1) nonlinear traveling wave;
(2) jump in h,Γx; (3) linear traveling wave with Γ linear and h constant; (4) jump in h,Γx.

h(0, t) = hL, Γ(0, t) = ΓL; h(xmax, t) = hR, Γ(xmax, t) = 0.

In the PDE simulations, we exploit the following scalings in the equations. Let
h = H(x, t), Γ = g(x, t) satisfy (2.3), (2.4) with H(0, t) = 1, g(0, t) = 1, and α = 1.
Then h,Γ given by

h(x, t) = hL H

(
αhL

ΓL
x,

α2h3
L

ΓL
t

)
and Γ = ΓL g

(
αhL

ΓL
x,

α2h3
L

ΓL
t

)
(3.5)

satisfy (2.3), (2.4) with h(0, t) = hL, Γ(0, t) = ΓL, provided ΓL > 0. Thus, to explore
variation in wave structures, we can fix α = hL = ΓL = 1 and vary hR (note that
ΓR = 0). We employ this simplification in numerical simulations. In the analysis, we
retain all the parameters so that their effect can be seen explicitly.

Figure 2 contains graphs of numerical simulations of (2.3), (2.4) at time t = 60.
The initial data (indicated by dashed lines) contain a single (smoothed) jump in h
from hL = 1.0 to hR = 0.1 and in Γ from ΓL = 1.0 to ΓR = 0. The same structure
emerges from the same upstream and downstream heights for more general smooth
height data (including oscillatory data) after transients have died away. The figure
is annotated to show the broad wave structure of the solution. In the graph of h,
note that at (1) the height increases monotonically from the fixed boundary value hL

to a maximum height hM ; at (2) there is a jump from hM to the height hm of the
horizontal “step” at (3). Finally, the step contains a second jump at (4) from hm to
the precursor layer of fixed height hR.

The graph of the surfactant concentration Γ has jumps at the same locations
as those of the height, but the jumps are in the slope Γx (henceforth denoted by
G, as in the figure), while Γ is continuous. The surfactant concentration increases
monotonically (1) to a maximum concentration Γ0 at the corner (2), where there is a
jump in Γx from GM > 0 to Gm < 0. In (3), Γ appears to be linear, extending down
to Γ = 0, where there is a second jump (4) in Γx from Gm < 0 to zero.

As the spatial grid is refined, the discontinuities are better resolved, and no
additional data points appear in the discontinuities. We demonstrate this for the
jump in height in Figure 3, in which the number of grid points is doubled from 2500
(Δx = 0.012) to 5000 (Δx = 0.006).
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Fig. 3. Grid refinement to distinguish the discontinuity in height from a steep gradient. The
coarse grid on the left has 2500 points; the fine grid on the right has 5000 points. The number of
points in the shock is approximately the same in both cases.
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Fig. 4. Numerical solutions showing the evolution of h and Γ for hR = 0.1. The profiles are
separated by 40 time steps, and the final profiles at t = 180 are in bold. The computational time
step is Δt = 0.001, and the grid is fairly coarse with Δx = 0.04.

Figure 4 illustrates the evolution of the solution, with a dashed line indicating the
initial profile. After a rapid initial transient between the first two plots, the maximum
height h slowly asymptotes to a constant value, whereas the maximum surfactant
concentration Γ increases without bound. (Note that surfactant is supplied from
the left boundary.) The step height hm develops at a very early time and remains
constant, although the width of the step increases slowly.

To visualize the data from Figure 4 in a different way, in Figure 5 we plot the
curves (h(x, t),Γ(x, t)), 0 < x < xmax, for various values of t > 0. Starting from
(hL,ΓL) = (1, 1), there is a sequence of curves on the right that appears to be con-
verging. A jump in h occurs at the maximum value of Γ, which is increasing in time.
On the left of the figure, Γ decreases to zero at a height h which is constant in space
and time. The final step occurs on the h-axis.

4. Traveling waves. In this section we explore analytical solutions of the PDE
(2.3), (2.4) that capture some of the features observed in the numerical simulations.

The traveling waves we consider are smooth solutions h = ĥ(x − ct), Γ = Γ̂(x − ct)
that move with constant speed c. Substituting into system (2.3), (2.4) and integrating
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Fig. 5. Phase portrait of numerical PDE solutions (h,Γ) with hR = 0.1.

once, we obtain the ODE system (dropping the hats)

−ch− 1

2
h2Γ′ +

α

3
h3 = K1,(4.1)

−cΓ − hΓΓ′ +
α

2
h2Γ = K2(4.2)

in which Γ′ = dΓ
dξ , ξ = x−ct. First, we observe that there are traveling waves in which

h is constant and Γ is linear. We refer to these traveling waves as simple traveling
waves. Note that simple traveling waves should be considered to be defined only for
values of x− ct where Γ is nonnegative.

Theorem 4.1. Let h > 0 be constant, and let Γ = Γ0 + Gξ, with G = Γ′ =
constant. Then (4.1) is satisfied identically with K1 = −ch− 1

2h
2G+ α

3 h
3, and (4.2)

is satisfied if and only if K2 = 0 and

c = −hG +
α

2
h2.(4.3)

Proof. The only complication is in the Γ equation, where the left-hand side has a
constant term and a term linear in ξ. The restrictions on K2 and c come from equating
coefficients.

Interestingly, the speed in (4.3) is the transport velocity in (2.4); it is neither
the transport velocity − 1

2hG + α
3 h

2 nor the characteristic speed −hG + αh2 for the
conservation law (2.3) with Γx = G constant. This is not a contradiction, since h is
constant.

There are also nonlinear traveling waves corresponding to solutions of system
(4.1), (4.2) in which h is not constant and Γ is not linear. Consider a solution h(ξ),
Γ(ξ) with boundary conditions at ξ = −∞:

h(−∞) = hL, Γ(−∞) = ΓL, Γ′(−∞) = 0.(4.4)
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These conditions serve to determine the constants K1,K2, so that (4.1), (4.2) become

−ch− 1

2
h2Γ′ +

α

3
h3 = −chL + α

h3
L

3
,(4.5)

−cΓ − hΓΓ′ +
α

2
h2Γ = −cΓL +

α

2
h2
LΓL.(4.6)

Eliminating Γ′, we obtain an invariant curve through (hL,ΓL) in the (h,Γ)-plane:

Γ(h) =
hΓL

(
c− α

2 h
2
L

)
c(2hL − h) + α

(
1
6h

3 − 2
3h

3
L

) .(4.7)

On the curve Γ(h), the flow is given by solving (4.1) for Γ′ and using the chain
rule dΓ

dξ = dΓ
dh

dh
dξ to obtain an expression for h′. Differentiating (4.7), we obtain

dΓ

dh
=

6ΓL(2c− αh2
L)(6chL − αh3 − 2αh3

L)

(12chL − 6ch + αh3 − 4αh3
L)2

.(4.8)

Therefore, after some processing, we find

dΓ

dξ
=

2
3 (hL − h)(3c− α(h2 + hhL + h2

L))

h2
,(4.9)

dh

dξ
=

− 1
9 (h− hL)(3c− α(h2 + hhL + h2

L))(12chL − 6ch + αh3 − 4αh3
L)2

h2ΓL(2c− αh2
L)(6chL − αh3 − 2αh3

L)
.(4.10)

In particular, the point (hL,ΓL) is an equilibrium; whether it is stable or unstable
depends on the signs of the various factors in (4.9), (4.10). It is unstable for the
traveling waves we seek.

As suggested by the numerical results of the previous section, the traveling waves
of most interest to us in this paper have h and Γ increasing, with h approaching finite
limits at ±∞, and Γ unbounded at +∞. The following result establishes the existence
of such waves.

Theorem 4.2. For each hM ∈ (hL, 2
2
3hL), there is a traveling wave solution

h(ξ), Γ(ξ), ξ = x− ct satisfying
(i) h′(ξ) > 0; Γ′(ξ) > 0;
(ii) h(−∞) = hL, Γ(−∞) = ΓL, h(∞) = hM , Γ(∞) = ∞, Γ′(∞) = GM

with speed

c = −hMGM +
α

2
h2
M ,(4.11)

where

GM =
α

3

(hL − hM )

hM (2hL − hM )
(h2

M − 2hLhM − 2h2
L).(4.12)

Proof. Let

d(h; c, hL) = c(2hL − h) +
α

6
(h3 − 4h3

L),

the denominator in the expression (4.7) for Γ = Γ(h). Solving d(h; c, hL) = 0, we find

c = c(h) =
α

6

(
h3 − 4h3

L

h− 2hL

)
.(4.13)
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By considering the graph of this rational function of h, we find c has a positive local
maximum at h = hL, a zero at h = 2

2
3hL < 2hL, and c(0) = α

3 h
2
L. Consequently, for

hM in the range of the theorem, there is a single zero of d, parameterized by either
h = hM or by c ∈ (0, α

2 h
2
L). For α

3 h
2
L < c < α

2 h
2
L, there is a second positive root

h0 < hL, which crosses h = 0 at c = α
3 h

2
L.

In summary, the zero of d that we seek is given by (4.13) with h = hM :

c = c(hM ) =
α

6

(
h3
M − 4h3

L

hM − 2hL

)
, hL < hM < 2

2
3hL.(4.14)

Then Γ(h) has a vertical asymptote at h = hM and, moreover, Γ stays positive:
Γ(h) → ∞ as h ↗ hM . Examining the flow (4.9), (4.10), we find that (hL,ΓL) is
an unstable equilibrium. Let (h(ξ),Γ(ξ)) be the corresponding trajectory satisfying
(4.5), (4.6) with (h(−∞),Γ(−∞)) = (hL,ΓL), h′ > 0, Γ′ > 0. Then h(∞) = hM and
Γ(∞) = ∞.

The final step is to set h = hM in (4.9), from which we find (after substitution
for c from (4.14)) Γ′(ξ) → GM , as given in (4.12). Formula (4.11) is then easily
checked.

Remarks. 1. Formula (4.11) suggests that the traveling wave approaches a simple
traveling wave as ξ → ∞. Indeed, h(ξ) → hM , a constant, and Γ′(ξ) → GM , as
ξ → ∞.

2. Equations (4.11), (4.12) link the asymptotic behavior as ξ → ∞ to the equilib-
rium (hL,ΓL) without needing to integrate the ODEs. The formulae are independent
of ΓL, reflecting the scale invariance of the equations. Moreover, these formulae per-
sist as ΓL → 0. In this limit, the traveling wave approaches a simple nonsmooth wave
(see Corollary 5.5 below).

3. From (4.14), we observe that c(hM ) ∈
(
α
3 h

2
L,

α
2 h

2
L

)
, an interval that collapses

onto zero as α → 0. Consequently, the nonlinear traveling waves of the theorem do
not appear in the case α = 0 of the horizontal substrate.

5. Jump conditions. As discussed above, and as observed in numerical simula-
tions, solutions of system (2.3), (2.4) typically contain discontinuities in h and Γx. In
this section, we begin a systematic study of the Rankine–Hugoniot jump conditions
for the system.

Consider the Cauchy problem for system (2.3), (2.4) with initial data

h(x, 0) = h0(x), Γ(x, 0) = Γ0(x), −∞ < x < ∞.(5.1)

By a weak solution of the Cauchy problem, we mean a function (h,Γ) : R×R+ → R
2
+

with h,Γ,Γx ∈ L∞ ∩ L1
loc such that for every test function φ ∈ C∞

c (R × R+),

∫ ∞

0

∫ ∞

−∞

{
hφt − ( 1

2h
2Γx − α

3 h
3)φx

}
dx dt =

∫ ∞

−∞
h0φ(x, 0)dx,

∫ ∞

0

∫ ∞

−∞

{
Γφt − (hΓΓx − α

2 h
2Γ)φx

}
dx dt =

∫ ∞

−∞
Γ0φ(x, 0)dx.

(5.2)

Note that in this definition of weak solutions, Γ(x, t) is continuous with respect to x
for each time t.

In analyzing jump conditions, we will always assume that h is C1 and Γ is C2,
apart from a finite number of curves x = γ(t) across which h and Γx can have
jump discontinuities. We refer to such solutions as piecewise-smooth. We shall be
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particularly interested in solutions in which surfactant spreads into a region with
initially uniform film height. Let (h,Γ) be a piecewise-smooth weak solution, and
suppose the leading edge of the surfactant is located on a curve x = γ�(t):

Γ(x, t) = 0, x ≥ γ�(t).(5.3)

The following theorem determines the speed at the leading edge of the surfactant.
Theorem 5.1. Let h,Γ be a piecewise-smooth weak solution of (2.3), (2.4) sat-

isfying (5.3). If G− ≡ Γx(γ�(t)−, t) < 0, then

γ′
�(t) = −h−G− +

α

2
h2
−,(5.4)

where h− = h(γ�(t)−, t).
Proof. Differentiating Γ(γ�(t)−, t) = 0, we have

Γxγ
′
�(t) + Γt = 0.

But from (2.4), Γt = (hΓΓx)x − α
2

(
h2Γ

)
x

= h−G
2
− − α

2 h
2
−G−, since Γ = 0 at the

leading edge x = γ�(t). The formula (5.4) now follows, since Γx = G− 
= 0.
Now we derive a set of equations from the Rankine–Hugoniot conditions for the

discontinuities in h and Γx and an equation enforcing the continuity of Γ at the
discontinuities. Consider a solution (h,Γ) that is smooth away from a differentiable
curve C = {x = γ(t)} such that Γ is continuous across C, and h,Γx have well-defined
one-sided limits at C. Let [u] denote the jump in a function u across C, and let
c = γ′(t). It is also convenient to use the notation

G = Γx, Γ = Γ(γ(t), t).

Then the jump conditions are as follows. From (2.3) we obtain

−c[h] +

[
−1

2
h2G +

α

3
h3

]
= 0,(5.5)

while (since Γ is continuous) (2.4) yields

Γ
[
−hG +

α

2
h2

]
= 0.(5.6)

The continuity of Γ provides an additional equation matching the left and right
limits of Γ at x = γ(t):

Γ(γ(t)−, t) = Γ(γ(t)+, t).(5.7)

We refer to weak solutions that consist of a simple traveling wave (see section 4)
on either side of a jump in h,Γx as a simple jump. In a simple jump, both h and G
are constant, so that the jump condition (5.5) implies the speed is constant also. By
translation invariance, we may without loss of generality take the simple jump to lie
along the line x = ct:

h(x, t) =

⎧⎨
⎩

h− if x < ct,

h+ if x > ct,
Γ(x, t) =

⎧⎨
⎩

Γ0 + G−(x− c−t) if x < ct,

Γ0 + G+(x− c+t) if x > ct.

(5.8)
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In this solution, we are leaving open the possibility that the simple traveling waves
on either side of the jump travel with different speeds. In this case, continuity of Γ
(5.7) requires

G−(c− c−) = G+(c− c+).(5.9)

The jump conditions (5.5), (5.6) for a simple jump (5.8) become

−c(h+ − h−) − 1

2
(h2

+G+ − h2
−G−) +

α

3
(h3

+ − h3
−) = 0,(5.10)

(Γ0 + G−(c− c−)t)
(
−h+G+ + h−G− +

α

2
(h2

+ − h2
−)

)
= 0.(5.11)

Equating coefficients in the second equation, we have a pair of conditions:

Γ0

(
−h+G+ + h−G− + α

2 (h2
+ − h2

−)
)

= 0,

G−(c− c−)
(
−h+G+ + h−G− + α

2 (h2
+ − h2

−)
)

= 0.
(5.12)

The analysis of the jump conditions is organized as follows. First, we show that
for α = 0, and Γ = 0, there is a simple jump in h; the height doubles across the jump,
and the speed is determined by the height and surfactant concentration gradient on
one side of the jump. However, when Γ > 0, there are no simple jumps when α = 0.
For α > 0, there are two simple jumps: one at the leading edge, but with the jump
in height coupled to the surfactant concentration gradient, and another in the bulk,
where the jump conditions can be solved explicitly.

The horizontal substrate: α = 0. First, we investigate the structure of the
leading edge of the surfactant when α = 0. The speed c = γ′

�(t) of the leading edge
x = γ�(t) was characterized in Theorem 5.1.

Theorem 5.2.
2 Let h,Γ be a piecewise-smooth weak solution of (2.3), (2.4) with

α = 0 satisfying (5.3). If G− = Γx(γ�(t)−, t) < 0, then

h− = 2h+,(5.13)

where h± = h(γ�(t)±, t).
Proof. The result follows immediately by substituting the expression for the speed

at the jump (5.4) into the height jump condition (5.5). Specifically, (5.5) with α = 0
becomes

−c(h+ − h−) +
1

2
h2
−G− = 0,(5.14)

since G+ = Γx(γ�(t)+, t) = 0. But from (5.4), c = −h−G−. Substitution into (5.14)
leads to the result, since G− 
= 0.

Next, we show there are no simple jumps with Γ > 0.
Theorem 5.3. Let α = 0, Γ > 0. There are no simple jumps with c 
= 0. For

c = 0, there is a nonphysical solution with a stationary jump in h and no jump in Γx.
Proof. Set α = 0 in the jump conditions (5.10), (5.12) to get

−c(h+ − h−) − 1

2
h2

+G+ +
1

2
h2
−G− = 0(5.15)

2These jumps were first characterized by Borgas and Grotberg [3].
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and

Γ0 (−h+G+ + h−G−) = 0,

G−(c− c−) (−h+G+ + h−G−) = 0.
(5.16)

Since Γ0 > 0, we see that

h−G− = h+G+.(5.17)

Consequently, the speeds c−, c+ of the simple traveling waves on each side of the
simple jump are equal (see Theorem 4.1 with α = 0):

c− = −h−G− = c+ = −h+G+.(5.18)

Substituting (5.17) into (5.15), we conclude that either h+ = h−, in which case
G+ = G− and there is no jump, or h+ 
= h− and a jump in h and G would have speed

c = −1

2
h−G−.(5.19)

But then (5.9), (5.18) imply that either c = c− = c+ = 0, so that G− = G+ = 0, or
G− = G+ 
= 0. In the former case, we regard the solution with an arbitrary stationary
jump in h as unphysical, since the fluid discontinuity would collapse in the presence
of additional smoothing terms such as capillarity or second order diffusion. In the
latter case, (5.17) implies h− = h+, and we are back to the simple traveling wave of
the previous section with no jump in h or Γx.

The inclined substrate: α > 0. When we consider a film flowing down an
inclined substrate in which α > 0, we find solutions of the jump conditions that are
strikingly different from the α = 0 case. We explore the wave structures analytically
here and numerically in section 7. As with α = 0, we treat the leading edge of
surfactant separately.

Theorem 5.4. Let h,Γ be a piecewise-smooth weak solution of (2.3), (2.4) with
α > 0 satisfying (5.3). Let h± = h(γ�(t)±, t), and suppose G− = Γx(γ�(t)−, t) < 0.
Then

(a) h− < h+ or (b) 2h+ < h− < (1 +
√

3)h+;(5.20)

in both cases

G− =
α

3

(h− − h+)(h2
− − 2h−h+ − 2h2

+)

h−(h− − 2h+)
, γ′

�(t) = −h−G− +
αh2

−
2

.(5.21)

Proof. The speed in (5.21) is given by Theorem 5.1 (see (5.4)). Substituting
c = γ′

�(t) and G+ = 0 into the jump condition (5.10) gives the formula for G− in
(5.21). The inequalities (5.20) are equivalent to G− < 0. (The inequality G− ≤ 0 is
needed to ensure Γ > 0 behind the leading edge of the surfactant.)

Remarks. 1. For α > 0, the jump in h and the surfactant concentration gradient
are linked, in contrast to the α = 0 case, in which the jump in h is determined, and
G− is a free parameter that influences only the speed.

2. Conditions (5.21) correspond to the limit ΓL → 0 of the nonlinear traveling
wave in Theorem 4.2.

3. The case h− < h+ appears to be unphysical; both gravity and the surfactant
concentration gradient act downwards and cannot sustain such a jump in the height.
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We conjecture that this jump is unstable, as suggested by the numerical evidence in
Figure 8. Further explanation for the instability of the wave is suggested by the obser-
vation that the speed of the discontinuity in (5.21) is smaller than the characteristic
speed αh2

+ in the surfactant-free region ahead of the discontinuity.
The following corollary parallels the result of Theorem 5.4, except that it concerns

the trailing edge of the surfactant, so the roles of h+, h− are exchanged. However, the
cases are not symmetric, since gravity and the Marangoni force are now opposed. In
particular, h+ > h−.

Corollary 5.5. Let h,Γ be a piecewise-smooth weak solution of (2.3), (2.4)
with α > 0 satisfying Γ(x, t) = 0, x ≤ γT (t). Let h± = h(γT (t)±, t), and suppose
G+ = Γx(γT (t)+, t) > 0. Then

(a) h+ > (1 +
√

3)h− or (b) h− < h+ < 2h−;(5.22)

in both cases

G+ =
α

3

(h+ − h−)(h2
+ − 2h−h+ − 2h2

−)

h+(h+ − 2h−)
, γ′

T (t) = −h+G+ +
αh2

+

2
.(5.23)

Proof. The proof parallels that of Theorem 5.4 with h−, h+ switched; the bounds
on h± ensure G+ > 0.

Theorem 5.6. For α > 0, let h,Γ be a piecewise-smooth weak solution of (2.3),
(2.4) with a simple jump across the line x = ct, where Γ = Γ0 > 0. Then either
(a) Γ = Γ0 + G(x− st) is linear, in which case

G =
α

2
(h+ + h−); s = −α

2
h+h−; c =

α

12
(h+ − h−)2,(5.24)

or (b) Γx has a jump with

G− = − α

6h−
(h+ − h−)(h+ + 2h−); G+ =

α

6h+
(h+ − h−)(2h+ + h−);

c =
α

6
(h2

+ + h+h− + h2
−).

(5.25)

Proof. In case (a), we substitute Γ = Γ0 + G(x− st), h = h± into (2.4) to find

s = −h+G +
α

2
h2

+ = −h−G +
α

2
h2
−.

(That is, (h±,Γ) is a simple traveling wave with the same speed s and surfactant
gradient G on each side of x = ct but with a jump in h.) The second equality gives
the formula for G (consistent with (5.6)) from which the expression for s follows. The
speed of the jump in h comes from the jump condition (5.10) in which G± = G.

In case (b), since Γ > 0, the jump condition (5.11) together with Theorem 4.1 for
simple traveling waves implies

c+ = −h+G+ +
α

2
h2

+ = −h−G− +
α

2
h2
− = c−.

But now continuity of Γ (see (5.9)) and G+ 
= G− imply c = c+ = c−. Substituting
into the jump condition (5.10) leads to the result (noting that h+ = h− implies
G+ = G−).

Remark. The motion of the film in this case is somewhat surprising, since the lin-
ear wave with slope G = α

2 (h++h−) moves to the left with speed s = −α
2 h+h−, while

simultaneously the jump in height moves to the right with speed c = α
12 (h+ − h−)2.
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6. Combining waves when α > 0. The numerical experiments of section 3
suggest that as time increases, the solution approaches a combination of traveling
waves and simple jumps. We can now interpret this structure in terms of the traveling
waves of section 4 and the jumps of section 5. Each of the four numbered features
in the figure is associated with formulae relating the parameters labeled in the figure
to each other and to the wave speeds. In processing the equations, we observe that
the jump condition (5.6) effectively equates wave speeds of simple traveling waves on
either side of a jump. Consequently, the four wave speeds are all equal to a single
speed c. We combine the following:

(1) A traveling wave with speed c connecting hL to hM (see Theorem 4.2):

c =
α
(

1
6h

3
M − 2

3h
3
L

)
hM − 2hL

,(6.1)

GM =
α

3

(hL − hM )(h2
M − 2hLhM − 2h2

L)

hM (2hL − hM )
.(6.2)

(2) A simple jump in h,Γx (see Theorem 5.6):

GM = − α

6hM
(hm − hM )(hm + 2hM ),(6.3)

Gm =
α

6hm
(hm − hM )(2hm + hM ).(6.4)

(3) A simple traveling wave with Γ descending to zero and (4) a simple jump in h (see
Theorems 4.1 and 5.4):

Gm =
α

3

(hm − hR)(h2
m − 2hmhR − 2h2

R)

hm(hm − 2hR)
.(6.5)

Noting the symmetry in the expressions for Gm and GM , we solve the equations
by treating hL and hR as parameters. We can then simplify the equations by equating
GM in (6.2), (6.3) and equating Gm in (6.4), (6.5), giving two simultaneous equations
for hM , hm:

2hL(h2
m + h2

M − 2h2
L) − hMhm(hM + hm − 2hL) = 0,(6.6)

2hR(h2
m + h2

M − 2h2
R) − hMhm(hM + hm − 2hR) = 0.(6.7)

Theorem 6.1. The polynomial equations (6.6), (6.7) have two positive solutions
for 0 < hR/hL < r∗, where r∗ = 1

2 (
√

3 − 1), and no solution for r∗ < hR/hL < 1.
The only relevant solution has hm < hM .

Proof. It is perhaps easier to see the structure if we rewrite the variables in (6.6),
(6.7):

x = hM , y = hm, u = hL, v = hR.

Then the system becomes

2u(x2 + y2 − 2u2) − xy(x + y − 2u) = 0, (a)

2v(x2 + y2 − 2v2) − xy(x + y − 2v) = 0. (b)
(6.8)
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Since u 
= v, taking v(a)−u(b) leads to

xy(x + y) = 4uv(u + v).(6.9)

Substituting back into (6.8(a)), we get

x2 + y2 + xy = 2(u2 + uv + v2).(6.10)

We can eliminate x, since xy(x + y) = y(x2 + xy). Thus, x2 + xy = 4uv(u + v)/y.
Substituting into (6.10),

y2 + 4uv(u + v)/y = 2(u2 + uv + v2),

leaving a cubic in y:

y3 − ay + b = 0,(6.11)

where a = 2(u2 + uv + v2), b = 4uv(u + v). Consequently, the equation has one
negative root and zero, one, or two positive roots, since u > 0, v > 0. The number of
solutions of (6.11) changes from one to three precisely on the curve

27b2 = 4a3.

In terms of u, v this equation is

27u2v2(u + v)2 = 2(u2 + uv + v2)3.(6.12)

The polynomial 27u2v2(u + v)2 − 2(u2 + uv + v2)3 has three quadratic factors:

27u2v2(u + v)2 − 2(u2 + uv + v2)3

=
(
v2 + 4uv + u2

) (
v2 − 2uv − 2u2

) (
u2 − 2uv − 2 v2

)
.

The first factor is positive in the first quadrant, and the other factors have conjugate
roots stemming from

v

u
=

1

2

(√
3 − 1

)
≡ r∗,

the threshold beyond which we can no longer obtain solutions consistent with (6.1)
through (6.5).

To understand better how the various parameters relate to each other, first we
note that x = hm and y = hM are interchangeable in (6.8). Without loss of generality,
we take u = hL = 1 and rewrite (6.11) as a quadratic equation for v in terms of y = hm

(or hM ):

v2 + v +
y(y2 − 2)

2(2 − y)
= 0.(6.13)

For 0 < y <
√

2, the product of the two roots is negative, so they are real and of
opposite sign. In Figure 6, we plot v = hR on the horizontal axis to clarify that for
each choice of hR, 0 < hR < r∗, there are two values of y corresponding to hm, hM .
From this graph or from (6.13), we see that, as the precursor height hR = v → 0,

we have hm → 0 and hM →
√

2. From (6.3), we find that Gm → −∞, GM →
√

2
3 .
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Fig. 6. Plot of hR versus hm, hM from (6.13).

Correspondingly, the speed c → 1
3 , a value that appears in the proof of Theorem 4.2.

That is, if hM is restricted to lie in the interval (hL,
√

2hL) in Theorem 4.2, then
the traveling wave speed is in the interval

(
α
3 h

2
L,

α
2 h

2
L

)
. In Figure 6 we observe that

hm, hM both approach h = 1 as v = hR approaches the threshold r∗ = 1
2 (
√

3 − 1) of
Theorem 6.1.

For a film propagating onto a prewetted surface (i.e., with a small precursor
height hR), it might seem reasonable from Figure 6, relating the values of hM and
hm to hR, to approximate the height of the step to be twice that of the precursor
height. However, for larger precursors this is not a good approximation. The step
is always greater than twice the precursor height; in fact, for a given hR, as hm

approaches 2hR, GM approaches ∞ and the speed of the wave goes to ∞. Moreover,
hm → 1 as hR → r∗.

In the next section, numerical simulations illustrate the wave structures intro-
duced in the analysis of sections 5 and 6.

7. Numerical simulations II. PDE simulations of (2.3), (2.4) for the inclined
substrate illustrate a number of issues presented in the above analysis. First, we
explore a combination of linear waves and simple jumps using the analysis of section 6
to choose appropriate initial film profiles. Then we test the stability of linear waves
and simple jumps, presented in Theorems 5.4 and 5.6. Next, we explore simulations
near the critical threshold r∗. Finally, we vary hR to observe changes in the wave
structures that occur above the threshold.

PDE simulations for linear waves and simple jumps. Equations (6.1)–
(6.5) were derived to explain the numerical simulations shown in Figure 4. However,
the same equations apply to a combination of linear waves and simple jumps with
ΓL = 0 = ΓR, all traveling with speed c given by (6.1). The connection between the
two structures stems from the limit ΓL → 0 in the nonlinear traveling wave, which
does not affect the formulae in (6.1), (6.2).

In the PDE simulations of Figure 7, we choose initial data in which h is piecewise
constant and Γ is piecewise linear, consistent with (6.1)–(6.5). The intermediate
parameters hm, hM , Gm, and GM annotated in Figure 2 are calculated from (6.6),
(6.7), (6.3), and (6.4) for the most common boundary conditions in the simulations,
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Fig. 7. PDE simulations of simple traveling waves. Initial profiles are dashed, final profiles are
in bold, and plots are separated by 8 time units.
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Fig. 8. Numerical evidence that the linear wave and jump combination of (5.20) with h− = 0.2,
h+ = 1.0 is unstable as in Theorem 5.4. Initial data are dotted, and final profiles in bold are at time
t = 10.

hL = 1.0, hR = 0.1:

hM = 1.3787; hm = 0.2019; GM = 0.4210; Gm = −1.7316.(7.1)

The initial data have jumps at x = 10, x = 20; the initial location of the leading
edge of the surfactant is then determined by the data.

In Figure 7, the entire structure moves to the right with speed 0.37 predicted by
Theorem 5.4. Note that the maximum value of Γ remains constant, as expected.

Figure 8 provides numerical evidence that the waves conjectured to be unstable
in Theorem 5.4 are indeed so. In these plots notice that for the wave emerging from
hL, it appears that hx → ∞, followed by a jump in the height corresponding to a
corner in Γx. To the right of the discontinuity, there is a smooth wave preceded by a
hydrodynamic wave where there is no surfactant present.

The numerical experiments shown in Figures 9 and 10 explore the wave structure
introduced in Theorem 5.6(a). In this case, the positive surfactant gradient creates a
linear profile for Γ that travels up the incline and maintains the jump in film height,
which can have either sign. The depth-averaged velocity − 1

2hG + α
3 h

2 changes sign
across the jump, but the surface velocity s = −α

2 h+h− is negative, while the jump
speed c = α

12 (h+−h−)2 is positive. Since G = Γx is constant, the jump in h is a shock
wave solution of (2.3). In general, a jump down satisfies the Lax entropy condition
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Fig. 9. PDE simulation of linear wave in Γ moving to the left as jump in h moves to the right.
The initial condition is dotted, and the final profile at time t = 1.5 is in bold (Δx = .00025). For
the height plot, the dashed profile at t = 1.5 has a more coarse grid (Δx = .001); the consistent
location of grid points in the final profile at both mesh sizes and steepening with mesh refinement
indicate the presence of a shock.
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Fig. 10. PDE simulation of initially linear Γ with a jump up in h demonstrating the instability
of jump-up shocks.

and is stable, as in Figure 9, while a jump up is unstable, as shown in Figure 10.
In the latter case, it is tempting to think of the spreading solution as a rarefaction,
with Γx constant, but, in fact, the rarefaction solution fails to satisfy the surfactant
equation (2.4).

PDE simulations varying hR. Figure 11 contains the results of numerical
simulation of the PDE with hL = 1 and with hR just above and just below the
threshold of the theorem. For hR = 0.365, below the threshold, the step in h is
clearly emerging, but for hR = 0.367, above the threshold, the step fails to emerge.
To quantify this observation, in Figure 12 we plot the difference in height Δh between
the local maximum near the leading shock and the local minimum immediately behind.
Plotted as a function of time in the figure, we observe that Δh approaches zero for
hR = 0.365, whereas Δh appears to be converging to a positive value for hR = 0.367.

Numerical PDE simulations with hL = 1, ΓL = 1, and α = 1 and varying values of

hR below the critical threshold hR =
√

3−1
2 of Theorem 6.1 reproduce the same pattern

of waves shown in Figure 4. In Figure 13 we show the results of PDE simulations
for selected values of hR above the critical threshold. These wave structures have not
been observed previously, since hR is generally taken to be the thickness of a precursor
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Fig. 11. Solutions near the transition between solution types. hL = 1, hR = 0.365 (left);
hL = 1, hR = 0.367 (right). Plots are separated by 100 time units.
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Fig. 12. Comparison of step heights for the plots in Figure 11. As the step forms for the solution
below the critical threshold (hR < r∗), the difference Δh in maximum and minimum heights within
the step goes to zero. Above the threshold (hR > r∗) the height difference decreases much more
slowly, evidence that no step emerges.

layer, and therefore much smaller than hL. In all of the height plots, a distinctive jog
in the height develops, which on the incline resembles a Z-shaped wave. We call this
new wave a Z-wave, in which a shock is between two smooth waves. By comparison,
an N -wave of hyperbolic conservation laws consists of a rarefaction bounded by two
shocks. The middle height to the right of the Z is the same as hL, instead of the step
height hm observed below the threshold.

In Figure 13(a), we observe a leading shock (i.e., a jump in h) ahead of the leading
edge of surfactant. The shock is a solution of the conservation law

ht +
1

3
(h3)x = 0,(7.2)

i.e., (2.3) with α = 1 and Γ = 0. Similarly, in Figure 13(b), the fluid surface is initially
flat. The surface tension gradient and gravity force a volume of fluid out ahead of
the surfactant, forming a rarefaction wave interacting with a shock, both solutions of
(7.2) and decaying in time. For larger values of hR, as in Figure 13(c), there is also
a leading shock being eroded by the rarefaction wave behind it, once again ahead of
the surfactant.
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(above the threshold hR =
√
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(b) hR = 1.0
(initially flat film).
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(c) hR = 1.3.

Fig. 13. Variation in wave structure for fixed upstream height hL = 1 and various downstream
heights hR. Each plot has graphs for t = 0 (dotted line), t = 15 (dashed line), t = 45 (thin line),
and t = 75 (bold line).

The structure of the surfactant profiles is remarkably unchanged over the entire
range of hR. However, Γ appears to reach Γ = 0 smoothly without the corner observed
in simulations with hR below the critical value.

8. Discussion. The mixed hyperbolic-parabolic system of this paper is derived
from the lubrication approximation for the influence of surfactant on flow of a thin
liquid film on an inclined plane, neglecting smoothing terms of capillarity and surface
diffusion. The analysis of traveling waves and jump conditions leads to the identifi-
cation of a variety of individual waves.

There are traveling waves in which h and Γ are smooth and nonlinear (Theo-
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rem 4.2), and there are three cases in which h is piecewise constant and Γ is piecewise
linear:

Neither h nor Γx jumps (Theorem 4.1). h is constant and Γ is linear.

Only h jumps (Theorem 5.6(a)). In numerical simulations, we find that jumps
down are stable and jumps up are unstable. The stable waves are counterpropagating
in that the thin film and surfactant flow up the inclined plane but the jump propagates
downwards.

Both h and Γx jump (Theorems 5.4 and 5.6). Jumps at Γ = 0, the leading edge
of the surfactant, are related to the step in film height discovered by Borgas and
Grotberg [3] for horizontal substrates.

We have constructed an exact solution of the PDE with three jumps that is
piecewise constant in h and piecewise linear in Γ and propagates with constant speed.
However, this construction is possible only for the ratio of downstream to upstream
height below a critical value r∗. This ratio also limits the construction of wave combi-
nations that mimic numerical simulations of initial value problems in which surfactant
is supplied from upstream. The supply of surfactant from the boundary has the effect
of allowing the maximum surfactant concentration to grow without bound, as shown
in Figure 4. This effect is not explained by the analysis, but Taylor series expansions
can be used to capture the increase locally in space and time [14].

Above the critical ratio, solutions approach a different structure that we plan to
analyze in a future paper. These solutions have a distinctive Z-wave pattern, together
with precursor waves propagating into the undisturbed film with no surfactant. As
the Z-wave pattern forms, the film height has large dips, which might lead to dewet-
ting. This is a concern in surfactant replacement therapy [13], in which a coating of
surfactant is required for healthy lung function. This risk of dewetting does not occur
for boundary height ratios below the critical ratio.

While we have discussed stability of waves numerically and to some extent ana-
lytically, much remains to be done. It would be interesting to analyze stability of the
individual waves for C > 0 and D > 0. In a future paper, we plan to analyze the
constant volume case in which a thin liquid drop on an inclined substrate is spread
by the influence of surfactant and gravity.
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