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Abstract

Cancer is one of the most prevalent and deadly diseases in the United
States today. There are many approaches to treating cancer, but here we fo-
cus on biochemotherapy which is a combination of chemotherapy and im-
munotherapy. The intent of immunotherapy is to boost the body’s natural
resistance to cancer which is often repressed by the regulatory branch of the
immune system. Here we show that this repression may be overcome by
chemotherapy followed closely by immunotherapy. However, giving im-
munotherapy at the wrong time can may actually promote tumor growth.
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Chapter 1

Introduction

1.1 Cancer

In the United States alone, there are more than one million new cases of
cancer reported each year [25]. More than 1 in 3 people who live to age 90
will get cancer at some point in their lives [25]. Cancer is the unchecked
proliferation of a cell inside the body. The rapidly dividing cells will usu-
ally not perform their function correctly and instead impede the action of
their neighbors. This often leads to death; an estimated half a million peo-
ple will die of cancer in the US this year [25].

As a tumor grows, it requires more nutrients to feed itself. Nutrients
must diffuse through surrounding tissue, and so the center of the tumor be-
comes a necrotic core, or mass of dead tissue. Sometimes, tumors can pro-
mote angiogenesis, the growth of new blood vessels. The new blood sup-
ply allows the tumor to grow larger and spread to other tissues (metastasis).
In this paper, we do not consider angiogenesis or metastasis, but rather a
tumor limited by nutrient diffusion. Our goal is to find ways to treat tu-
mors before they can reach such an advanced stage of development.

1.2 Approaches to Modeling Cancer

Models of cancer vary in both their focus and mathematical approach. Many
models have been developed to take into account the logistics of a grow-
ing tumor. These include nutrient uptake, vascularization (the process by
which tumors acquire a blood supply), and metastasis [3]. This paper will
focus on the interaction of the immune system with cancer and the effect
that treatment has on that interaction.
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Fundamentally, the model is a system of ordinary differentials equation
or ODEs. Such a system has the form.

d
dt

~X(t) = ~f (~X(t)), (1.1)

where ~X(t) is the state variable, whose trajectory is dependent upon the
vector field, ~f . The components of ~X(t) consist of important quantities
that dynamically change in time, such as various cell or drug concentra-
tions and the vector ~f describes the interaction between these quantities.
An ODE model assumes that the body is a well-mixed system with no
spatial heterogeneity. It is also completely deterministic as opposed to a
stochastic model. Modeling approaches that include spatial structure are
partial differential equations and cellular automata. Both have been used
in the context of cancer modeling (see [11] for PDEs and [20] for cellular au-
tomata). In a partial differential equation, the state variable is a function of
more than one independent variable, often space and time. This allows for
simple models of nutrient diffusion [3] as well as complex models of blood
vessel growth [16]. In a cellular automata, each cell is modeled individu-
ally and changes its own state based upon the state of the cells adjacent to
it. These approaches can also be combined, as in [18], where a cellular au-
tomata model governs the state of each cell, but the dynamics of nutrient
concentrations are governed by a partial differential equation.

1.3 Immune Response

The human immune system consists of a variety of specialized cells de-
signed to respond in different ways to different types of invaders. Here we
focus on the cellular response, the creation of a population of cells known
as T-cells to combat a specific invader. The immune system can normally
detect the presence of abnormal cells due to changes in the proteins ex-
pressed on their surface. These proteins, known as antigens, are recog-
nized by the body as either self-antigens or foreign antigens. Normal cells
in the body express self-antigens, whereas invading bacteria or cells that
have been infected by a virus express foreign antigens. Once an antigen is
recognized, the immune system promotes the proliferation of the antigen-
specific T-cells.

T-cells which do not yet have the ability to kill other cells are called
naive T-cells. They become cytotoxic, capable of killing other cells, upon
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stimulation by an APC or antigen presenting cell. T-cells respond to spe-
cific antigens, so they can only be activated by certain antigen presenting
cells. Those that respond to self-antigens are deleted. Tumors cells are dys-
functional, not invasive, which means that they may or may not express
foreign antigens. Therefore, the cells which respond to the tumor might be
deleted. This can create difficulties in cancer treatment, because the body
may suppress its natural defense against tumor growth. A response can
also be prevented directly by the action of the tumor, through the release of
certain chemicals and the direct deletion of immune cells (see [29] and [19]
for a review of the ways in which tumors evade the immune system).

1.4 Cancer Treatment

There are many possible approaches to treating cancer. One popular ap-
proach is cytotoxic chemotherapy: the administration of a drug designed
to kill rapidly dividing cells. Although it is often effective, it harms nor-
mal tissues as well as cancerous ones and therefore has many unpleasant
side effects. An alternative approach is immunotherapy, which is a general
term for any treatment aimed to improve the bodies own immune response.
The use of immunotherapy in conjunction with cytotoxic chemotherapy is
known as biochemotherapy. Other treatment options include radiation
therapy and surgery, which try to kill or remove the tissue that contains
the tumor. In this paper, we will focus on biochemotherapy treatment
using the immunological drug Interleukin-2, referred to from now on as
IL-2. Current biochemotherapy schedules have unpredictable success [2].
These clinical results may perhaps be due to the complex action of IL-2, as
described below, which immunologists claim requires a reexamination of
cancer treatment [21]. The aim of this thesis is to model the interaction of
chemotherapy and immunotherapy to create more effective biochemother-
apy treatments.





Chapter 2

Biology Overview

2.1 Immunity and Tolerance

From our standpoint, the goal of the immune system should be to maxi-
mize the number of immune cells that are primed to kill tumor cells. The
primary difficulty for the immune system, however, is maintaining the bal-
ance between immunity and tolerance (see [21], [28], [4], [1]). On the one
hand, the immune system could err on the side of immunity and start to
attack cells within the body indiscrimately. This is called autoimmunity
and can be quite serious. On the other hand, the immune system could
err on the side of tolerance, ignoring cells which are actually harmful to
the body. In general, the immune system relies upon antigens to distin-
guish between cells “self” and “nonself”. Each T-cell, however, does not
contain a catalog of which antigens are foreign; they each have a specific
target and kill it whenever they find it. Leon et al. ([4], [15]) have written
several papers modeling immune tolerance. Their goal was to test hypoth-
esized mechanisms of immune regulation. Although subsequent exper-
iments have made their research somewhat obsolete, they demonstrated
the plausibility of immune tolerance as an emergent behavior of the im-
mune system. Here we introduce and discuss the important processes in
the regulation of immunity and tolerance.

2.2 The role of IL-2

IL-2, a naturally produced molecule, is a widely administered immunother-
apy drug, particularly for cancer. The activity of this molecule is often in-
cluded in immunological models of cancer treatment (see e.g. [6],[7],[14]).
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In these models, it is assumed that IL-2 is a growth factor for T-cells. More
recent research has shown that IL-2 may work in far more complex ways
than previously thought ([24],[21]). Antigen-stimulated T-cells become sen-
sitive to activation-induced cell death upon stimulation by IL-2 [24]. That
is to say that once activated by an APC, the T-cell may be deleted if it is
activated again by an APC. This means that although IL-2 promotes the
proliferation of T-cells, it also shortens their lifespan.

It is now thought that the most important role of IL-2 is in the mainte-
nance of immune tolerance as mediated by regulatory T-cells or Tregs [21].
IL-2 is vital for the proliferative expansion of these cells [21]. These cells
are produced in response to chronic antigen stimulation to protect against
possible autoimmunity. Tregs act upon cytotoxic T-cells by preventing the
latter cell type from producing IL-2, thus preventing their proliferation (see
[27],[22]). The size of the Treg and IL-2 producing T cell subsets has been
shown to correlate, indicating a likely negative feedback [1].

2.3 Tregs and Dendritic Cells

A basic principle of immunology is that T-cells must be activated by con-
tact with an APC. The most important type of APC are known as dendritic
cells. Tregs can modify the function of dendritic cells by making them
tolerogenic [28]. These tolerogenic dendritic cells deactivate cytotoxic T-
cells [28] and cause the creation of new Tregs from certain naive T-cells
[28].

2.4 The role of IL-10

Another cytokine, Interleukin-10, plays an important role in both processes
mentioned above. First, Tregs act upon cytotoxic T-cells through the release
of IL-10 ([28]). Second, dendritic cells can induce a subset of T-cell to pro-
duce IL-10 ([28]). Finally, IL-10 can cause some dendritic cells to become
tolerogenic ([28]).
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Prior Mathematical Models

Due to the relatively recent discovery of the immunological processes in-
volved, few mathematical models exist for them. Despite the large number
of papers modeling cancer (for a general review see [3]), no model currently
exists that combines:

• A growing tumor

• Regulatory T-cells

• Dendritic cells

• Interleukin-2

• Chemotherapy

The following papers have addressed one or more of the above compo-
nents and are of interest to us.

3.1 Kirschner and Panetta, 1997

In [14], Kirschner and Panetta consider a 3-dimensional ODE that takes into
account the basic attributes of IL-2:

dE
dt

= cT − µ2E +
pI EIL

g1 + IL
+ s1

dT
dt

= r2(1− bT)T − aET
g2 + T

dIL

dt
=

p2ET
g3 + T

− µ3 IL + s2.
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In their model, E represents the number of effector (we would say cyto-
toxic) cells, T is the number tumor cells and IL is the concentration of IL-2.
They assume that IL-2 acts as a simple growth factor for IL-2. Although this
is true, this is not what is considered the most immunologically relevant ac-
tion of IL-2, as mentioned in §2.2. The variables s1 and s2 represent outside
input from treatment, either in the form of primed effector cells (s1) or IL-2
(s2). By adding enough effector cells through s1, the population E can be
made arbitrarily large, killing the tumor. However, we know that the im-
mune system’s own self-regulation can keep the level of effector cells below
what is required to kill the tumor [19]. Thus, it seems that a new model is
necessary in order to take this into account.

3.2 Depillis et al. 2006

In a series of unpublished papers de Pillis et al. [5] develop and analyze a
model of IL-2 treatment, chemotherapy, adoptive cell transfer therapy, and
the tumor-immune interaction. In their ODE model, cytotoxic T-cells are
represented as a single population of uniform cells. Tregs are assumed to
be a subset of another population, circulating lymphocytes. Their model
assumes:

• The level of circulating lymphocytes is proportional to T-cell deacti-
vation or apoptosis;

• IL-2 is necessary for the regulation of cytotoxic T-cells by circulating
lymphocytes;

• IL-2 reduces the “natural” death rate of T-cells;

• T-cells produce IL-2 upon activation;

• Circulating lymphocyes produce IL-2 at a constant low level;

• IL-2 causes T-cells to divide and proliferate.

All of these assumptions are incorporated into 2 ODEs:

dL
dt

= − mL
1 + I

+ rT +
jT

k + T
− qLT + (pI − u0L)

IL
1 + I

dI
dt

= φ− µI I +
ωI

1 + I
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where L is the number of T-cells and I is the amount of IL-2. Analysis of the
whole model shows that chemotherapy is very important in the treatment
of cancer. It removed regulatory T-cells and allowed for a huge increase in
cytotoxic T-cells. However, the model also makes the following assump-
tions:

• Antigen stimulated T-cells are all alike;

• Antigen stimulation plays no role in regulation;

• Tregs are a constant proportion of circulating lymphocytes.

Given the important role that regulatory T-cells had in the treatment
of cancer, it seems vital that they be considered as a separate population.
Also, antigen stimulation and IL-2 have opposite effects on classes of T-cells
which were lumped together under this model. Thus, a more thorough
treatment of the T-cell dynamics is necessary.





Chapter 4

New Model Formulation

Based on the new immunological findings and lessons learned from pre-
vios models, we propose a new model. This model incorporates dendritic
cells, cytotoxic T-cells, Tregs and the two cytokines: IL-2 and IL-10. All cell
populations are assumed to be antigen specific. The following variables
will stand for important species:

• DI(t) Immature dendritic cells

• D(t) Immunogenic dendritic cells

• DT(t) Tolerogenic dendritic cells

• TN(t) Naive T-cells

• TC(t) Cytotoxic T-cells

• TCP(t) Proliferating cytotoxic T-cells

• TR(t) Regulatory T-cells

• I2(t) Interleukin 2 (IL-2)

• I10(t) Interleukin 10 (IL-10)

• C(t) Cancer cells

• M(t) Chemotherapy medicine
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4.1 Immune Responsiveness Functions

We will also consider the functions Ai = A(C) (i = 1..3) which model the
stimulation of the immune system at various tumor sizes. The first func-
tion A1 is the rate at which new dendritic cells primed against a particular
antigen are created. The function A2 is the rate at which APCs other than
dendritic cells activate cytotoxic T-cells. Finally, A3 is the rate at which cy-
totoxic T-cells are deleted through overstimulation. We assume that each
of these functions increases monotonically. We assume Ai(0) > 0 for self
antigens and Ai(0) = 0 for foreign antigens.

4.2 Dendritic Cells

As mentioned above, we assume that new immature dendritic cells, DI , are
formed at a rate A1, which is dependent upon tumor size, C. They either
mature into immunogenic dendritic cells, D, or, should they interact with
either IL-10, I10, or a Treg, TR, into a tolerogenic dendritic cell, DT. All
three populations also have linear natural death terms. This yields three
equations:

dDI

dt
= A1(C)− aDI − aTDI

TR

gR + TR
−ωI DI − bTDI

I10

g10 + I10
(4.1)

dD
dt

= aDI −ωD (4.2)

dDT

dt
= aTDI

TR

gR + TR
+ bTDI

I10

g10 + I10
−ωTDT. (4.3)

4.3 Cytotoxic T-Cells

The cytotoxic T-cells, TC, derive from the naive T-cell population, TN . The
size of this source population depends upon IL-2 indirectly. Unactivated
T-cells are subject to “death by neglect”, a process that is prevented by IL-
2. We assume that naive T-cells are created at a constant rate (αN) and
die at a rate dependent on I2. Naive T-cells become activated by antigen
presenting cells, APCs. Non-dendritic cell APCs activate naive T-cells at a
rate A2(C). Interaction of a tolerogenic dendritic cell and a cytotoxic T-cell
leads to nonresponsiveness at a rate d. This process is treated the same way
as death, as the T-cell no longer fulfills its function ([26]). In addition, this
population of cells has a natural death rate, ωC.
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The cytotoxic cells become proliferative upon interaction with IL-2 at a
rate, aCP. They become non-proliferative at a rate dCP upon interaction with
IL-10. Both of these processes plateau at high levels of the cytokines as in
prior models of cytokine activity [14]. Proliferating cells also have an intrin-
sic growth rate γ. The proliferating cells are inactivated through repeated
antigen stimulation at a rate A3(C). This yields three more equations:

dTN

dt
= αN − ωN

g2 + I2
TN (4.4)

dTC

dt
= aCTN D + TN A2(C)− dDTTC − aCPTC

I2

g2 + I2
(4.5)

+ dCPTCP
I10

g10 + I10
−ωCTC

dTCP

dt
= aCPTC

I2

g2 + I2
− dCPTc

I10

g10 + I10
+ γTCP − A3(C). (4.6)

4.4 Regulatory T-Cells

Regulatory T-cells, TR, differentiate from the Naive T-cell population upon
interaction with a tolerogenic dendritic cell at a rate aR. Interaction with
IL-2 causes the regulatory T-cells to expand at a rate c. Like all other terms
involving IL-2, its value plateaus. Finally, the Tregs have a natural death
rate, ωR. This yields:

dTR

dt
= aRDTTN + cTR

I2

n + I2
−ωRTR. (4.7)

Unlike for the cytotoxic T-cells, we do not create separate populations
for proliferating and non-proliferating regulatory T-cells. The cytotoxic T-
cells warranted two separate equations because different types of cytotoxic
T-cells respond to regulatory T-cells and APCs in opposing manners. This
is not the case for Tregs, so we find one equation sufficient.

4.5 Cytokines

We assume IL-2 is produced at a constant rate by naive T-cells. It also de-
cays at a constant rate ω2. The interaction of a cytotoxic T-cell with IL-2
causes the T-cell to release IL-2 at a rate a2 [5]. The interaction of naive
CD4+ T-cells with immature dendritic cells causes them to release IL-10
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[28]. We model this by assuming that IL-10 production is proportional to
DI . Treg-CTL interaction also induces the production of IL-10 at a rate a10.
The decay rate for IL-10 is ω10. This yields:

dI2

dt
= α2TN −ω2 I2 + a2Tc

I2

n + I2
(4.8)

dI10

dt
= α10DI + a10TRTc −ω10 I10. (4.9)

4.6 Tumor Dynamics

The interaction of the tumor with the immune system is mainly via cy-
totoxic T-cells. The rate at which cytotoxic cells kill tumor cells has been
modeled [6] as

DC = d
(L/C)l

s + (L/C)l

where C is the size of the tumor and T = Tc + TCP. In [6], it is assumed that
the tumor grows logistically.

dC
dt

= f C(1− hC)− DCC, (4.10)

which is accurate for non-vascularized tumors (see [3] for other possible
growth functions).

4.7 Chemotherapy

As in [6], we may model chemotherapy by adding on a term of the form
kXX(1 − eδX M) to dX

dt where X can be any cell already modeled and M is
the concentration of the chemotherapy drug ([12]). We assume that the
chemotherapy drug decays at a rate ωM:

dM
dt

= −ωM M.
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4.8 The Model

The complete model is:

dDI

dt
= A1(C)− aDI − aTDI

TR

gR + TR
−ωI DI

− bTDI
I10

g10 + I10
− kDI DI(1− eδDI M) (4.11)

dD
dt

= aDI −ωD − kDD(1− eδD M) (4.12)

dDT

dt
= aTDI

TR

gR + TR
+ bTDI

I10

g10 + I10
−ωTDT

− kDT DT(1− eδDT M) (4.13)
dTN

dt
= αN − ωN

g2 + I2
TN − kNTN(1− eδN M) (4.14)

dTC

dt
= aCTN D + TN A2(C)− dDTTC − aCPTC

I2

g2 + I2

+ dCPTCP
I10

g10 + I10
−ωCTC − kCTC(1− eδC M) (4.15)

dTCP

dt
= aCPTC

I2

g2 + I2
− dCPTC

I10

g10 + I10
+ γTCP − A3(C)

− kCPTCP(1− eδCP M) (4.16)
dTR

dt
= aRDTTN + cTR

I2

g2 + I2
−ωRTR − kRTR(1− eδR M) (4.17)

dI2

dt
= α2TN −ω2 I2 + a2Tc

I2

g2 + I2
(4.18)

dI10

dt
= α10DI + a10TRTC −ω10 I10 (4.19)

dC
dt

= f C(1− hC)− DCC − kC(1− eδC M) (4.20)

dM
dt

= −ωM M (4.21)

DC = d
(L/C)l

s + (L/C)l (4.22)





Chapter 5

Mathematical Background

Typically when presented with a system of equations we may be tempted
to try to solve them: find an analytic solution and then study the proper-
ties of that analytic solution. Unfortunately for large system of non-linear
differential equations there may not be an analytical solution. Often the
solution to such an equation is a function that is defined to be a solution to a
particular differential equation, such as Bessel Functions. Instead of find-
ing an exact solution there are several techniques that allow one to learn
qualitative details about the system.

In general, we can analyze systems that are either linear or have few,
ideally two or fewer, differential equations. The key, therefore, is to tweak
the model so that it has one of these two properties. First, we will discuss
linear stability analysis which can give a partial picture of the long term
behavior of a linear or nonlinear system of any size. Second, we will dis-
cuss phase plane analysis, which can give qualitative information about
the behavior of two-dimensional linear systems. Finally, we will discuss
seperation of time scales which allows for the reduction of the dimension-
ality of a system.

5.1 Linear Stability Analysis

Linear stability analysis can be used to determine the stability of a system’s
equilibria. First we must find the equilibria by solving ~f (~X∗) = 0. For
the full system (see §4.8), this requires solving 11 nonlinear equations. It is
unlikely that analytic solutions will exist for these equilibria and so some
or all of the parameters will have to be fixed so that the solutions can be
found numerically. As this is a biological system, we are only interested in
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Figure 5.1: The derivative of the state variable plotted against its value.
The black and white dots represent stable and unstable equilibrium respec-
tively. The arrows show the direction of movement within state space.

equilibria that are real and positive.
Once the important equilibria have been found, we can compute their

stability through linearization. At a given equilibrium point, ~X∗, we ap-
proximate (1.1) as ~X′ = A(~X − ~X∗), where A = J(~X∗) is the Jacobian of
the system evaluated at ~X = ~X∗. The stability of each point can be found by
computing the eigenvalues of the Jacobian. If all eigenvalues have a nega-
tive real part then the equilibrium point is stable, otherwise it is unstable.

5.2 Phase Plane Analysis

Phase plane analysis is a useful tool for two-dimensional systems. First,
consider the one-dimensional canonical equation X′(t) = f (X(t)). Depend-
ing upon the function f , such an equation can be difficult to solve analyti-
cally. However, it is fairly simple to analyze the equation qualitatively. We
can simply plot the function f (X) and look for equilibria. An example is
shown in Figure 5.1. Note that the sign of f determines which direction
X moves along the axis. In this situation, the horizontal axis is referred to
as state space. Position within state space is defined by the value of the
state variable, in this case X. Using arrows to visualize dynamics, it is sim-
ple to determine the stability of each equilibrium without relying on phase
plane analysis. There are very few possible behaviors in this, or indeed any,
one-dimensional system. A solution could travel from one equilibrium to
another, approach an equilibrium from infinity or approach infinity from
an equilibrium.

The situation is not quite as simple if there are unknown parameters in
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the equation. Changing a parameter could change the number and location
of equilibrium points causing changes in the behavior of the system. Such
changes are called bifurcations. Figure 5.2 illustrates the main types of bi-
furcations that occur in one-dimensional system. A Transcritical Bifurca-
tion occurs when two equilibria exchange stability, a Saddle-Node Bifur-
cation occurs when one stable and one unstable equilibrium both appear
simultaneously, and a Pitchfork Bifurcation occurs when one equilibrium
splits into three.

We can apply similar qualitative reasoning in two-dimensional systems.
Suppose we have the following system:

dX1

dt
= f1(X1, X2) (5.1)

dX2

dt
= f2(X1, X2). (5.2)

First, we set (5.1) equal to zero and find a relation between X1 and X2.
We plot the points that satisfy this relation as in Figure 5.3. This resulting
curve is the X1-nullcline. We find the X2-nullcline analogously. The null-
clines divide the state space into regions. In each region, we can readily
determine the sign but not the magnitude of the vector field. As in the
one-dimensional case, we can infer, often, stability of equilibria without
the need for linear stability analysis. There are more possible behaviors
in two-dimensional systems. As before, trajectories may travel between
points, heteroclinic orbits, move from an equilibrium to infinity or to in-
finity from an equilibrium. In addition, trajectories may form a closed loop
or start end finish at the same equilibrium (homoclinic orbit).

Another feature of two-dimensional systems that one-dimensional ones
lack are saddle points. These are points whose Jacobian has some eigenval-
ues with positive real part and some with negative. In a two dimensional
system, it is necessarily the case that there will be exactly one positive and
one negative eigenvalue associated with a saddle point. Saddle points are
unstable, in that, nearby trajectories tend not to stay nearby. There are re-
gions of state space which move toward a saddle point. In fact, as de-
picted in Figure 5.3 there is one trajectory, often two, that do asymptotically
approach the saddle point. These trajectories are called stable manifolds
and they have a counterpart unstable manifolds which approach the sad-
dle point going backwards in time. The importance of stable manifolds
is their role as seperatrices, meaning that they divide state space into re-
gions with fundamentally different behavior. As different trajectories can-
not cross each other, each one is trapped on one side of the stable manifold.
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(a) Transcritical Bifurcation

(b) Saddle Node Bifurcation

(c) Pitchfork Bifurcation

Figure 5.2: The bifurcations that can occur in one dimensional systems.
Each figure shows the equilibria plotted against a generic parameter, r.
Solid and dashed lines represent stable and unstable equilibria respectively.
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Figure 5.3: A generic phase plane of a two dimensional ODE system. The
black curves represent the nullclines of the state variables and the black and
white circles show node and saddle points respectively. The arrows show
the sign of the derivative in each region and the red curve is the stable
manifold of the saddle point. It is also marks the boundary of the basin of
attraction of the left equilibrium point (shaded in gray). The remainder of
the plot is in the basin of attaction of the right equilibrium point.
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Position with respect to the manifold therefore might determine which of
several stable equilibria the trajectory approach asymptotically or whether
they can approach an equilibrium at all. For this reason, a manifold might
define the edge of a basin of attraction, the set of all points in state space,
whose trajectories lead asymptotically towards a particular point.

5.3 Seperation of Time Scales

Systems with greater than two differential equations are tough to analyze,
not only because they have more equations, but also because there are a
greater variety of ways in which they can behave. Sometimes, however a
higher dimensional system may behave approximately like a system with
two or fewer equations. The synthesis and decay of cytokines, turnover of
T-cells, and turnover of dendritic cells all take place at different rates. The
rates are so different, in fact, that we would place them in separate time
scales. To understand how this simplifies the system, we can imagine that
we wish to model the distribution of mass in a bookcase infested with ter-
mites. Let’s suppose that at some point the bookshelf collapses suddenly.
As it collapses it does not make any sense to model the effect of the termites
eating, as the change is too slow to affect the dynamics of the collapse sig-
nificantly.

For a more mathematical example, let’s suppose that we have a system
of three equations,

dX1

dt
= f1(X1, X2, X3)

dX2

dt
= ε f2(X1, X2, X3)

dX3

dt
= ε2 f3(X1, X2, X3).

For small ε > 0, only the derivative of X1 is non-negligible, in which
case we can approximate the other variables as constant. Therefore we can
reduce the system to

dX1

dt
= f1(X1, X2(t0), X3(t0)) = f (X1).

Assuming this is a biological system, we assume that state variables will
not approach infinity. In the one dimensional case, we know that X1 must
instead approach an equilibrium, which can be easily determined from the
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roots of f , the initial value Xi = X1(t0) and the sign of f (Xi). If f (Xi) is
positive then we know that X1 will approach the smallest root of f greater
than Xi. If negative, X1 will approach the largest root of f less than Xi.

Now, still assuming ε > 0 is small, we consider a new time scale t1 = εt.
Note that X1 will now always be at or near its equilibrium. The new time
derivative d

dt1
= 1

ε
d
dt , so the system can be expressed as

dX2

dt1
= f2(X1, X2, X3)

dX3

dt1
= ε f3(X1, X2, X3).

As X3 does not change significantly in this time scale, the dynamics
are again approximately one dimensional (X′

2 = f (X2)) and we can per-
form the same analysis. Splitting up the behavior in this manner allows us
to gain important insights on the dynamics that would otherwise require
heavy computation. In particular, we can find the basin of attraction of
each equilibrium, or the set of all initial conditions which asymptotically
approach the given equilibrium point.





Chapter 6

Infection-Free Dynamics

6.1 Derivation of the Reduced Model

In the abscence of infection, the activation functions Ai(C) must be set to
zero. We can then rewrite (4.1)-(4.3) as:

dDI

dt
= −(a + aT

TR

gR + TR
+ ωI + bT

I10

g10 + I10
)DI (6.1)

dD
dt

= aDI −ωD (6.2)

dDT

dt
= aTDI

TR

gR + TR
+ bTDI

I10

g10 + I10
−ωTDT. (6.3)

Summing all three equations together yields

dDTot

dt
= −ωI DI −ωD −ωTDT, (6.4)

which indicates that all dendritic cell populations decay toward zero over
time. Therefore, when there is no infection we need only consider the re-
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duced model:

dTN

dt
= αN − ωN

g2 + I2
TN (6.5)

dTC

dt
= −aCPTC

I2

g2 + I2
+ dCPTCP

I10

g10 + I10
−ωCTC (6.6)

dTCP

dt
= aCPTC

I2

g2 + I2
− dCPTC

I10

g10 + I10
+ γTCP (6.7)

dTR

dt
= cTR

I2

g2 + I2
−ωRTR (6.8)

dI2

dt
= α2TN −ω2 I2 + TC

I2

g2 + I2
(6.9)

dI10

dt
= a10TRTC −ω10 I10. (6.10)

After non-dimensionalization, the system becomes:

dTN

dt
= 1− ωN

1 + I2
TN (6.11)

dTC

dt
= −aCP

(
TC

I2

1 + I2
+ dCPTCP

I10

1 + I10

)
−ωCTC (6.12)

dTCP

dt
= dCP

(
TC

I2

1 + I2
− TC

I10

1 + I10

)
+ γTCP (6.13)

dTR

dt
= cTR

I2

1 + I2
−ωRTR (6.14)

dI2

dt
= α2TN −ω2 I2 + TC

I2

1 + I2
(6.15)

dI10

dt
= TRTC −ω10 I10. (6.16)

6.2 Analysis

6.2.1 Equilibrium Points

To analyze the reduced system, first we set (6.11)-(6.16) to zero and solve
them as a system to find the equilibrium points. As this is a biological
model, we are interested only in positive equilibria. The system has either
zero, one or two equilibria depending upon parameters. The first point,
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which we shall call ~X1, is given by:

TR = TC = TCP = I10 = 0 (6.17)

TN =
ω2

ω2ωN − α2
(6.18)

I2 =
α2

ω2ωN − α2
. (6.19)

It is positive if and only if

α2

ω2ωN
= R1 < 1. (6.20)

Naive T-cells produce IL-2 which in turn lowers the death rate of the
naive T-cells. If IL-2 is produced at too high of a rate, so that R1 > 1,
then there will be unending positive feedback and both populations will
rise indefinitely regardless of antigen stimulation. Therefore we constrain
R1 < 1. The eigenvalues of ~X1 are

λ1 = γ (6.21)
λ2 = −ω10 (6.22)

λ3 = −ωC −
aCPα2

ω2ωN
(6.23)

λ4 = −ωR +
cα2

ω2ωN
(6.24)

λ5,6 =
−ωNω2

2 −ω2
Nω2 + α2ωN

2ω2ωN
(6.25)

±

√(
ωNω2

2 + ω2
Nω2 − α2ωN

)2 − G

2ω2ωN
(6.26)

G = 4ω2ωN
(
α2

2 − 2α2ω2ωN + ω2
2ω2

N
)

. (6.27)

This equilibrium point is always a saddle point as λ1 is always positive
whereas λ2 and λ3 are always negative. λ4 is positive if and only if R1R2 >
1. Finally, given that R1 < 1, the real parts of λ5 and λ6 are always negative.
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The second point, which we shall call ~X2, is given by:

TR =
γ2ω10ωN (c−ωR) ωR (cωC + aCPωR)

ca10ωC (c (γ− dCP) ωC + γaCPωR) (cα2 −ω2ωNωR)
(6.28)

TN =
c

ωN (c−ωR)
(6.29)

TC =
c (ω2ωNωR − cα2)
a2ωN (c−ωR) ωR

(6.30)

TCP =
cωC (ω2ωNωR − cα2)

γωN (c−ωR) ωR
(6.31)

I10 = − γ (cωC + aCPωR)
c (γ− dCP) ωC + γaCPωR

(6.32)

I2 =
ωR

c−ωR
. (6.33)

This point is positive if and only if all of the following are true:

R1 < 1 (6.34)
c

ωR
= R2 > 1 (6.35)

R1R2 < 1 (6.36)

dCP > γ(1 +
aCP

ωRR2
). (6.37)

Although it is difficult to find the eigenvalues of this point, as they are
the roots of a 6th degree polynomial, we may still compute the determinant
of the Jacobian:

‖J(~X2)‖ = γω10 (c−ωR)2 (cωC + aCPωR) (6.38)

× (c (γ− dCP) ωC + γaCPωR) (cα2 −ω2ωNωR)
c4dCPωC

. (6.39)

The determinant is positive whenever ~X2 is positive. If the determinant
had been negative then at least one eigenvalue would have been positive.
As it stands, however, the stability of ~X2 in inconclusive.

6.2.2 Transient Behavior

Linear stability analysis failed to reveal an asymptotically stable equilib-
rium point. We must ensure that solution trajectories remain bounded and
not grow to infinity. Unbounded solutions cannot be valid in a biological
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setting. To determine whether the system is bounded we rewrite the re-
duced model assuming that all state variables have grown arbitrarily large.
Specifically we say that:

cc
I2

I2 + 1
= 1 as I2 >> 1 (6.40)

1
I2 + 1

= 1/I2 as I2 >> 1 (6.41)

I10

I10 + 1
= 1 as I10 >> 1 (6.42)

The rewritten system is:

dTN

dt
= 1− ωN

I2
TN (6.43)

dTC

dt
= −aCPTC + dCPTCP −ωCTC (6.44)

dTCP

dt
= aCPTC − dCPTC + γTCP (6.45)

dTR

dt
= cTR −ωRTR (6.46)

dI2

dt
= α2TN −ω2 I2 + a2TC (6.47)

dI10

dt
= TRTC −ω10 I10. (6.48)

First we can see that (6.44) and (6.45) form a linear system, decoupled
from the other equations. To ensure that this subsystem is bounded, we
must show that the origin is an attractor. As it is a linear system we can
write it in the form

x′(t) = Ax(t) (6.49)

where

A =
(
−(aCP + ωC) dCP

aCP γ− dCP

)
.

In order for this linear system to be stable, both eigenvalues of A must
have negative real part which is equivalent to the determinant being pos-
itive and the trace being negative. Both of these conditions are met if and
only if dCP < γ(1 + aCP/ωC).
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6.3 Limit Cycle

If the system is bounded and there are no stable equilibrium points, then
there exists the possibility of a limit cycle. This is a trajectory that con-
tinually revisits the same points repeatedly and which nearby trajectories
approach asymptotically. In a two dimensional system we can prove the
existence of a limit cycle by demonstrating that there is a trapping region
in state space. This a region that trajectories cannot leave once they are in-
side it. By the Poincaré Bendixson we know these trajectories will either
move towards a stable equilibrium point or enter a limit cycle. If we can
demonstrate that there exist no stable points within the trapping region,
then we know that there is a limit cycle. We already know that the system
is bounded so we can find such a region as long as ~X2 is stable.

The existence of this region does not imply that there exists a limit cycle
as the system has more than two dimension. If we build a little intuition
about the system however, we will see that the system behaves as though
it were two dimensional. Consider (6.14). When the right-hand side is
equal to zero, we see that I2

1+I2
> c

ωR−c . So when IL-2 is present in high
levels TR grows otherwise it shrinks. Given that regulatory T-cells are on
a much slower time scale, we may assume that IL-2 is in equilibrium. Fig-
ure 6.1 shows the two types of behavior that can arise from this. Note that
the limit cycle arises when the relationship between Tregs and IL-2 is non-
monotonic. If it is monotonic then cytotoxic T-cells will never rise above
the a certain point. The system appears to act like a switch, if the cytotoxic
T-cells are at a high enough level, then regulatory T-cells are gradually acti-
vated to reduce them after a delay. When there is no limit cycle, the system
hovers perpetually around the switch level. Due to these biological consid-
erations, for the remaining analysis we shall use parameters that do yield a
limit cycle.
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(a) Limit Cycle

(b) No Limit Cycle

Figure 6.1: The two possible behaviors of the reduced model. The black
lines represent nullclines and the black and white dots represent stable and
unstable points. In the top picture, the red curve represents the limit cycle.





Chapter 7

Adapting the Model

Due to the large number of unknown parameters and the large number of
equations, the full model remains difficult to analyze. In this chaper, we
shall attempt to make simplifying changes to the model without stripping
it of its predictive power.

7.1 Removal of Naive T-Cell Population

The only way in which the Naive T-cell population can differ from a source
time is if it enters a positive feedback loop with the level of IL-2. In §6.2,
we constrained the parameters to preclude that from happening for other-
wise both populations would rise unchecked. Infinite exponential growth
of these populations would be unacceptable in a biological system. There-
fore, the population should either assumed to be constant or other terms
should be added to the equation to curtail the growth. We assume that the
population is constant and remove it from the equations except as a source
term.

7.2 Seperating the Cytokine Time Scale

Given the rapid decay rate of IL-2 and IL-10 within the body we shall as-
sume as in §6.3 that the levels of these chemicals is entirely dependent upon
the levels of TC and TR. This yields the following expressions for IL-2 and
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IL-10:

I2

1 + I2
=

TC − α2 −ω2 +
√

(−TC + α2 + ω2)
2 + 4TCα2

2TC
(7.1)

I10 =
TRTCP

ω10 + TRTCP
. (7.2)

The expression for IL-2 is extremely complicated compared to the ac-

tual behavior that it describes. It can be replaced by T2
C

k2+T2
C

where k2 = 1000.
Although it is not exactly the same, the original curve only represents a
model based upon an arbitrary non-linearity. Therefore, there is no rea-
son to believe that this curve is any worse than the original, yet it is much
simpler.

7.3 Removal of Dendritic Cell Populations

The focus of this model is on the effect of IL-2 therapy. Seeing as do not
have estimates for many of the parameters in the dendritic cell popula-
tions, it would seem prudent to remove them. However, we may still cre-
ate a model that reflects the following assumptions that were in the original
model.

• When a foreign antigen enters the body, dendritic cells stimulate the
production of antigen specific T-cells.

• When the antigen is present at high levels, tolerogenic dendritic cells
prevent antigen specific T-cells from proliferating.

• Regulatory T-cells and tolerogenic T-cells have positive feedback mean-
ing that when there are more Tregs, the is a higher level of tolerance
coming from dendritic cells

To accomplish all of this, let us assume that the total number of antigen
specific dendritic cells within the body is a function of the size of the tumor.
Specifically, we shall use the following term from [5]:

DTotal =
C

kC + C
.

In its original context this term modelled the activation rate of the cyto-
toxic T-cell population via antigen stimulation. Now we shall assume that
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some of these dendritic cells are immunogenic and some are tolerogenic.
The fraction that are immunogenic rises with increased antigen stimula-
tion and increased levels of regulatory T-cells. We can express this fraction
as

p =
C2

1 + C2
TR

kR + TR
.

Therefore, the numbers of tolerogenic and immunogenic dendritic cells are
pDTotal and (1 − p)DTotal respectively. Note that initially the number of
immunogenic dendritic cells will increase, but eventually the total number
of dendritic cells will plateau and the proportion that are immunogenic will
decrease to close to zero. This means that the strongest immune response
will be against an antigen present in intermediate amounts as opposed to
something ubiquitous or present in insignificant amounts.

Given that we now assume a constant level of naive T-cells, the source
term for cytotoxic T-cells is only dependent upon levels of immunogenic
dendritic cells. We assume that tolerogenic dendritic cells kill contribute to
lowering the net proliferation rate of cytotoxic T-cells. They do this both
through direct deletion and also through stimulation of Regulatory T-cells.
Given all of these changes, the new system of equations is as follows.

dTC

dt
= −TC + gI

C
C + kC

(
1− C2

(C2 + 1)
TR

(kR + TR)

)
− aCP

(
T3

C

T2
C + k2

−
T2

CPTR

ω10 + TCPTR

)
(7.3)

dTCP

dt
= TCP

(
γ− gT

C2

(C2 + 1)
C

(C + kC)
TR

(kR + TR)

)
+ dCP

(
T3

C

T2
C + k2

−
T2

CPTR

ω10 + TCPTR

)
(7.4)

dTR

dt
= cTR

T2
C

T2
C + k2

−ωRTR (7.5)

dTC

dt
= f C(1− hC)− d

(TC + TCP/C)l

s + (TC + TCP/C)l C (7.6)





Chapter 8

Analyzing the new Model

In the previous chapter, we derived the following system of four equations
in an attempt to capture the behavior of the more complete model:

dTC

dt
= −TC + gI

C
C + kC

(
1− C2

(C2 + 1)
TR

(kR + TR)

)
− aCP

(
T3

C

T2
C + k2

−
T2

CPTR

ω10 + TCPTR

)
(8.1)

dTCP

dt
= TCP

(
γ− gT

C2

(C2 + 1)
C

(C + kC)
TR

(kR + TR)

)
+ dCP

(
T3

C

T2
C + k2

−
T2

CPTR

ω10 + TCPTR

)
(8.2)

dTR

dt
= cTR

T2
C

T2
C + k2

−ωRTR (8.3)

dTC

dt
= f C(1− hC)− d

(TC + TCP/C)l

s + (TC + TCP/C)l C. (8.4)

To analyze this model, we will consider two separate time scales as in §5.3.
First, we observe that, numerically, the values of (8.1) and (8.2) are the much
greater than the values of (8.3) and (8.4). Using this knowledge, we can
approximate that (8.3) and (8.4) are equal to zero when analyzing the be-
havior of (8.1) and (8.2). Figure 8.1 shows qualitatively the possible shapes
of the nullclines of both (8.1) and (8.2). We see that there are either one or
three equilibrium points, except right at the bifurcation points where there
are two. We also see that both the high and low equilibria will be stable
whereas the the intermediate equilibrium is unstable. It is also important
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(a) Low Equilibrium Level (b) High Equilibrium Level

(c) Both Equilibria

Figure 8.1: Qualitative phase portraits for the fast time scale. Depending
upon the values of TR and C, the system has either one or three equilibria.

to note that the scales on these plots are logarithmic, so the values of the
equilibria differ by orders of magnitude. Two distinct saddle node bifurca-
tions occur between plots 1 and 2 and between plots 2 and 3 on Figure 8.1.
These bifurcations take place as we change C and TR which act as parame-
ters in this planar system.

Suppose we have a situation where there are 3 equilibria and the system
is currently at rest at the lower equilibrium. We may then tune the parame-
ters C and TR so that the lower equilibrium no longer exists. This will force
the system to move to the higher equilibrium. Changing C and TR back
to their initial values does not make the system return to its initial equi-
librium point. This irreversability is known as hysteresis. In the context
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(a) (b)

Figure 8.2: The slow time scale takes place on a folded surface. The left
panel shows the areas where there are one (red) and three (blue) equilibria.
The right panel shows a qualitative 3D representation of the surface, where
the third dimension is total cytotoxic T-cells.

of this model, that means that sudden, extreme and irreversible changes in
the levels of cytotoxic T-cells should be expected.

Because of hysteresis, the two dimensional system of (8.3)-(8.4) cannot
simply be analyzed using phase plane analysis. A crucial assumption in
phase plane analysis is that the trajectory is entirely dependent upon the
two-dimensional location in state space. Given that hysteresis occurs at
some points, the trajectory of the system will depend not only upon the
values of the state variables, in this case C and TR, but also the path taken
to get to that point in state space. Despite this, we may still visualize the
dynamics in a similar manner, recognizing that trajectory is not moving
through a plane but over a more complicated surface. Figure 8.2 shows the
regions of state space where (8.1)-(8.2) have three solutions in blue, regions
with one solution are shown in red. The picture translates into a surface
qualitatively similar to that shown in the right panel of Figure 8.2. The third
dimension is an approximate sum of proliferating and non-proliferating
cytotoxic T-cells. Representing both separately would not only require a
four dimensional picture but also confer little additional information as the
equilibrium levels of TC and TCP are almost directly proportional to one
another. The “lips” in this case represent the point where the bifurcation
occurs and there is a sudden change in T-cell levels. Such a sudden change
is referred to as a catastrophe.

Although it is possible to draw the nullclines on this surface, it is made
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more challenging than normal because it is multivalued in some places. In
Figure 8.3 we see the different possibilities for the dynamics of the tumor.
The dark blue dots represent areas where there is only one stable surface
and the tumor is shrinking. The red dots, indicate that there is only one
stable surface and the tumor is growing. The green dots indicate that there
two stable surfaces and the tumor is growing on both of them. The yellow
dots indicate that on one surface the tumor is growing and on the other
the tumor is shrinking. Finally, the light blue dots indicate that there are
two stable surfaces and the tumor is shrinking on both. Given current pa-
rameter values it is almost always the case that regulatory T-cells grow on
the lower surface and rise on the upper surface. Therefore we may refer to
Figure 8.2 to assess where the TR-nullclines lie.

Note that many of the parameter values are only estimated and so the
precise position of each region is not relevant. We can see however that,
regulatory T-cells must be at a low-level in order for a large tumor to shrink
down. The trajectory must be able to pass below the red region. We can also
see that a large tumor may go through small oscillations. In the yellow re-
gion, it shrinks on the upper surface and the regulatory T-cells grow. When
it reaches the boundary of this region, the trajectory starts traveling in the
opposite direction until it hits the other side. Therefore, we can imagine
that a large tumor’s trajectory is bouncing back and forth within the yello
region.

It’s important to note that the administration of IL-2 therapy should
move a trajectory almost instantaneously from the lower surface to the up-
per one. We can see that a one time dose of IL-2 will not have much effect,
as the trajectory will remain trapped in the yellow region. If the red re-
gion moves up and exposes the left side of the yellow region. Then it may
be possible for IL-2 to allow the trajectory to escape, as, once it is inside
the blue region, the tumor continues to shrink. Chemotherapy or different
parameter choices, would be required to move the red region upward.

Under certain parameters, it is possible that very interesting dynamics
may occur when the tumor is small. Figure 8.4 shows the a qualitative di-
agram of behavior in such a situation. The thick red curves indicate where
there are catastrophes. Between the two, there are two stable surfaces. In
the region with two stable surfaces, curves that belong on the lower sur-
face are dashed whereas curves that belong on the upper surface are solid.
The black curves represent the C-nullclines and the arrows qualitatively
represent the direction a trajectory must take through state space. The TR-
nullclines overlap with the red lines, but it is important to remember that
TR increases on the upper surface and decreases on the lower surface. Fi-



41

u

p
I

A

B C

D

E

F

Figure 8.3: The red region indicates that there is only one stable surface
and the tumor is growing. The green region indicates that there two stable
surfaces and the tumor is growing on both of them. The yellow region
indicates that on one surface the tumor is growing and on the other the
tumor is shrinking. Finally, the light blue region indicates that there are
two stable surfaces and the tumor is shrinking on both.
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Figure 8.4: Between the thick redlines the surface is folded onto itself. The
green and orange lines represent the stable manifolds of the blue and pur-
ple points respectively. Dotted lines are on the lower surface.
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nally, the green and orange curves represent the stable manifolds of the
blue and purple points respectively. These points are not true equilibrium
points, however there is a sign change of the derivatives of both state vari-
ables at these points. It is not an equilibrium because the sign change does
not occur on any of surfaces but rather in between them and cytotoxic T-
cells are only in equilibrium exactly on the surfaces. The blue point is sig-
nificant as its manifold defines the edge of the basin of attraction for the
zero tumor equilibrium point. Below the solid green curve any trajectory
on the upper surface is eventually forced towards the origin. On the lower
surface, any trajectory below the dashed green curve is forced to the ori-
gin. Curves on either surface can bounce back and forth between the two
red curves meaning that true edge of the basin of attraction is not readily
defined. Points, above the orange curve on their respective surface will not
approach the zero tumor equilibrium but rather escape to a large tumor
equilibrium. In summary, trajectories below the green curves on their sur-
face will shrink quickly. Points between the green and orange curves will
shrink eventually. Points above the orange curve will grow to a full size
tumor.

From this we can extract a key observation. Consider the small region
above the solid orange curve and below the dashed green curve. On the
lower surface, the point is below the greencurve so all trajectories starting
in this region go to the origin quickly. On the upper surface all trajectories
will grow into a full size tumor. In fact, it is the case for any point in the
region bounded by the dashed and solid orange curves that trajectories
on the lower surface will shrink and trajectories on the upper surface will
grow to a full size. This means that if IL-2 therapy is administered while
the system is in this state, the treatment will kick the system out of the
basin of attraction of the zero tumor equilibrium point. Once this has been
done, it is impossible to reverse with future treatments. This would be
an extremely unfortunate situation as it would nullify the effects of a long
treatment schedule unless chemotherapy were given promptly to force the
tumor back down again.





Chapter 9

Conclusion

9.1 Lessons From the Model

Treatment with IL-2 has mixed results and it is easy to see why when we
consider all the different ways that it interacts with the immune system.
Here we created and analyzed a model of an antigen specific immune re-
sponse to cancer. The hope was to hopefully provide some qualitative in-
formation as to how to control this system with treatment. The important
observation is that appropriateness of IL-2 treatment depends upon the size
of the tumor. For an extremely large tumor, which in this case was one at its
logistic carrying capacity, it can be useful to give IL-2 treatment initially. It
may be necessary to also give chemotherapy to also see a significant effect.

However, in smaller tumors, around one tenth of the size, it could very
well be detrimental to administer IL-2. When the tumor is at this size, the
immune system is continously mounting short lived responses that eventu-
ally become large enough to destroy the tumor entirely without help from
chemotherapy drugs. The effect of giving IL-2 therapy in this situation is
similar to pushing a child on a swing at the wrong time. Instead of adding
to the immune response, the immunotherapy drug actually greatly reduces
it. This brief interruption of the immune system allows the tumor to over-
whelm it and grow back to a large size.

When a patient is not making any progress under a particular treatment
schedule, it may be possible that this or a similar process is allowing the
cancer to return each time. Patients that are not responding well could
have their T-cell counts measured directly before and after adminstration
of IL-2 to determine whether this is happening. After administration there
should be an increase in regulatory T-cells and decrease in cytotoxic T-cells
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compared to before. As the immune system is cycling it may be necessary
to take several measurements over a period of several weeks to determine
how the administration of the drug affected the cycle. If there is a decrease,
then it may be worth repeating the cycle but ceasing IL-2 administration at
an earlier point.

Unfortunately, it is difficult to observe exactly what is occurring in the
body at any point in time. In this paper, we assume that the body is a
well-mixed system, that the concentration of each quantity is distributed
uniformly. The truth is that a blood sample may not accurately reflect the
average behavior of the system. Similarly, the change in the system may
be so subtle that it cannot be clinically detected. Therefore, the recommen-
dation of using IL-2 therapy less later on in treatment should be kept in
mind if all else fails. It would not be reasonable to plan to stop using IL-2
treatment at the moment when a tumor is no longer clinically detectable. In
truth, much more information needs to be gathered on this phenonmenon
before it can be manipulated in a clinical setting.

9.2 Future Work

To start with, there is more analysis that can be performed on this model.
The parameters need to be fit to data instead of assigned ad-hoc, as many
are now. Assuming that we know all parameters with reasonable certainty,
we can use a technique known as optimal control. This is a method to sys-
tematically find a solution that simultaneously satisfies all of these condi-
tions. Previous models of cancer treatment have been subjected to optimal
control ([5],[10]).

First we must define an objective functional, which takes one or more
functions as an argument and returns a number. In this case we might use
an objective functional of the following form:

J(u1, u2) =
∫ t f

t=0
η1u1(t) + η2u2(t)dt + C(t f ). (9.1)

The functions u1(t) and u2(t) represent the input of IL-2 and chemother-
apy respectively. The functional J, the cost associated with a given treat-
ment, is a sum of the amount of treatment given and the size of the tumor
at the end of the treatment period. Additionally we can contrain u1(t) and
u2(t) to remain within certain ranges. Finding the optimal treatment strat-
egy is the equivalent of minimizing J. It will be important to choose the
correct functional J and the appropriate constraints, but it is difficult to say
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what exactly those are before we analyze the model. Although analytic
methods for solving these problems exist, with such a large system as ours,
it will probably be necessary to use computation.

The problem highlighted by this model, however, is the response of
cytotoxic T-cells to the injection of IL-2. The next step is to make a model
that looks at this process more closely. Due to the importance of timing
in this problem, it may be necessary to use delay differential equations.
These are differential equations where the derivative of the state variables
at time t may depend on the value of the state variables at some earlier
time. This may be necessary to model the timing of the release of IL-2 by
cytotoxic T-cells as well as the proliferation of both cytotoxic and regulatory
T-cells.
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Appendix A

Parameters

Parameter Value Death/Decay Rate Of Source
ω [.1, 1] Immunogenic Dend. Cells [13]

ωC 1.20 ∗ 10−1 Cyto. T-Cells [17]
ωI [.1, 1] Immature Dend. Cells [13]
ωM Not Set Chemotherapy Medicine Never Analyzed
ωN 1.0 ∗ 10−2g2 Naive T-Cells [17]
ωR 1.0 ∗ 10−2 Reg. T-Cells Ad-Hoc Value
ωT [.1, 1] Tolerogenic Dend. Cells [13]
ω2 [8, 33] IL-2 [14]
ω10 120 IL-10 Ad-Hoc Value

Table A.1: Death and Decay Rates. Units for all death and decay rates are
days−1.

Parameter Value Description Explanation/Source
c .018 Max Growth Rate of Tregs [5]
γ 12 Growth Rate of Cytotoxic T-Cells [17]

Table A.2: Other Growth Rates. Units for all growth rates are days−1.
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Parameter Value Description Explanation/Source
c .018 Max Growth Rate of Tregs [5]
γ 12 Growth Rate of Cytotoxic T-Cells Analysis

dCP 60 Deactivation Rate of Cytotoxic Analysis
T-Cells by Tregs

d Not Set Deactivation Rate of Cytotoxic [17]
T-Cells by Dendritic Cells

Table A.3: Other Growth and Death Rates

Parameter Value Description Explanation/Source
α2 .02αN Source Rate of IL-2 [5]
α10 Not Set Source Rate of IL-10 from Never Analyzed

Dendritic Cells
αN Not Set Source Rate of Naive T-cells Removed
aT Not Set Activation Rate of Tolerogenic Never Analyzed

Dendritic Cells by Tregs
bT Not Set Activation Rate of Tolerogenic Never Analyzed

Dendritic Cells by IL-10
a10 Not Set Source Rate of IL-10 from Tregs Removed
aC Not Set Activation Rate of Naive T-Cells Never Analyzed

by Dendritic Cells
aCP .462 Activation Rate of Cytotoxic Analysis

Cells by IL-2
aR Not Set Activation Rate of Tregs Removed
d Not Set Deactivation Rate of Cytotoxic Never Analyzed

T-Cells by Dendritic Cells
dCP 60 Deactivation Rate of Cytotoxic Analysis

T-Cells by Tregs

Table A.4: Source, Activation and Deactivation Terms

Parameter Value Description Explanation/Source
gR .018 Max Growth Rate of Tregs [5]
g2 12 Growth Rate of Cytotoxic T-Cells Analysis
g10 60 Deactivation Rate of Cytotoxic T-Cells Analysis

by Tregs

Table A.5: Levels of Half-Maximal Activation
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Parameter Description Source
aC Activation Rate of Naive T-Cells by Dendritic Cells [9]
α10 Source Rate of IL-10 [8]
dCP Source Rate of Naive T-Cells [8]

c Activation Rate of Tregs Dendritic Cells by Cytotoxic [?]
T-Cells

KX Death Rate of Cell Population X due to Chemotherapy [?]

Table A.6: Some parameters may be potentially be fit from the data found
in the following sources

Parameter Description Value
kC Relative size of tumor needed for half maximal antigen stimulation .02
kR Level of Tregs necessary for half maximal activation of tolerogenic 300

dendritic cells
gI Maximum rate of T-cell activation by dendritic cells 20
gT Maximum rate of T-cell deletion by dendritic cells 2

Table A.7: Parameters of the Reduced System





Appendix B

Non-Dimensionalization

According to the Buckingham-Pi Theory, we can a create rescaled model
with fewer parameters and the same behavior. This process if called non-
dimensionalization as the rescaled model doesn’t have any units. The un-
derlying principle is that the behavior of a system does not change depend-
ing on the units used.

t̂ = ωCt

T̂N = ωC
αN

TN T̂C = a2
ωC g2

TC ˆTCP = a2dCP
ω2g2aCP

TCP

T̂R = α10g2aCP
a2g10dCP

TR Î2 = I2
g2

ˆI10 = I10
g10

ω̂N = ωN
ωC g2

ĉ = c
ωC

ω̂R = ωR
ωC

ω̂10 = ω10
ωC

γ̂ = γ
ωC

ˆaCP = aCP
ωC

ˆdCP = dCP
ωC

ω̂2 = ω2
ωC

α̂2 = α2αN
ωC g2
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Ommitting hats gives

dTN

dt
= 1− ωN

1 + I2
TN (B.1)

dTC

dt
= −aCP(TC

I2

1 + I2
− TCP

I10

1 + I10
)− TC (B.2)

dTCP

dt
= dCP(TC

I2

1 + I2
− TC

I10

1 + I10
) + γTCP (B.3)

dTR

dt
= cTR

I2

1 + I2
−ωRTR (B.4)

dI2

dt
= α2TN −ω2 I2 + a2TC

I2

1 + I2
(B.5)

dI10

dt
= TRTC −ω10 I10. (B.6)

B.1 Parameters

In the non-dimensionalized system, the parameters have no units but still
have the same meaning as in the dimensionalized model.

Parameter Value
ωN .1
ωR .1
ω2 250
ω10 1000
α2 .5
c .15

aCP .462
dCP 500
γ 100

Table B.1: Parameters of Non-Dimensionalized Model
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