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Abstract

Random triangulated surfaces are created by taking an even number, n, of
triangles and arbitrarily ”gluing” together pairs of edges until every edge
has been paired. The resulting surface can be described in terms of its num-
ber of boundary cycles, a random variable denoted by h. Building upon the
work of Nicholas Pippenger and Kristin Schleich, and using a recent result
from Alex Gamburd, we establish an improved approximation for the ex-
pectation of h for certain values of n. We use a computer simulation to
exactly determine the distribution of h for small values of n, and present a
method for calculating these probabilities. We also conduct an investiga-
tion into the related problem of creating one connected component out of n
triangles.
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Chapter 1

Introduction

This paper is concerned with the study of the properties of random triangu-
lated surfaces. Such a surface can be constructed in the following manner:
begin with an even number, n, of oriented triangles with labeled edges (in
this paper, n will always refer to the number of triangles we start with).
Randomly select two edges (the edges need not be on different triangles)
and identify them together—that is, “glue” them to each other, respecting
the orientation of the triangles. Remove these two edges from considera-
tion, so that they may no longer be identified with any edge. We may think
of the triangles as flexible, so that any two selected edges can always be
identified together, regardless of their positions in the surface being cre-
ated. After repeating this process until all edges have been identified (note
that we require n to be even so that all edges can be paired up), the result
will be a random triangulated surface, consisting of one or more closed
components. There are several equivalent ways to model these surfaces,
each of which we will adopt and use for various purposes as necessary.

1.1 The Ribbon-Graph Model

In order to discuss the idea of boundary components, it is helpful to in-
troduces as the ribbon-graph model, as described by Pippenger and Schleich
[5]. This model is quite similar to the one previously described. We be-
gin with an even number of oriented triangles and randomly select pairs of
edges to identify together. Instead of gluing them together, we attach a rib-
bon between them with an orientation such that a cycle is formed between
the two selected edges and the two sides of the ribbon. We continue this
process until all edges have been identified. The resulting surface will cor-
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respond to a random triangulated surface; if we replace each ribbon with a
simple gluing, we will be left with a triangulated surface.

As an example, consider the following figure, representing the process
of creating a random triangulated surface for the case n = 2.

Figure 1.1: Creating a surface from two triangles.

Initially, we have two oriented triangles. Suppose we then select the
two edges nearest the center of the figure. We add a ribbon between them
with the appropriate orientation. We then pair up the two upper edges,
followed by the two lower edges. All edges have been paired, so we are
done with our process. We have created surface from two triangles.

1.1.1 Boundary Cycles

A main focus of this paper is the investigation of a property of random
triangulated surfaces known as the number of boundary cycles. A boundary
cycle can best be described using the ribbon-graph model, in conjunction
with our previous example. Imagine that the interior of the triangles and
the ribbons are filled with some material, and everywhere else is empty
space. The boundary cycles are the cycles formed by the oriented ribbon
edges that separate the material from the empty space. Referring back to
figure 1.1, the three boundary cycles in the final surface are highlighted in
red, orange, and green.

The number of boundary cycles in a random triangulated surface made
from n triangles, which we will denote h, is a random variable [5]. We can
therefore study its probabilistic properties, such as its expected value and
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distribution.

1.2 The Permutation Model

Rather than thinking about triangles and ribbons, we can also view this
problem in terms of permutations. If ρ is a permutation of 3n elements
composed entirely of 2-cycles (transpositions), σ is a permutation of 3n
elements composed entirely of 3-cycles, and π is a uniformly distributed
random permutation of 3n elements, then the number of cycles in πρπ−1σ
has the same distribution as h, the number of boundary cycles in a random
triangulated surface from n triangles represented by the permutations [5].
In this case, the elements of σ represent the triangles, and the elements of
πρπ−1 represent the edge identifications. We will refer to the probability
distribution of h for permutations constructed in this manner as the ρσ dis-
tribution.

1.3 The Cubic Graph Model

Furthermore, we may also view this problem in terms of a cubic graph on
n vertices. In this case, the vertices correspond to the triangles, and the
edges in the graph correspond to identifications of the sides of the trian-
gles. Suppose that for each vertex, the three edges incident to that vertex
are randomly cyclically ordered. Then, when we embed the graph in a sur-
face of minimum genus, the number of cycles (keeping in mind the cyclic
orderings of the edges) that bound faces of the graph will have the same
distribution as the number of boundary cycles in a random triangulated
surface on n triangles [5].





Chapter 2

Previous Work

2.1 An Estimate for the Expected Number of Cycles

Pippenger and Schleich [5] proved the following theorem on the expected
value of h, the number of boundary cycles in a random triangulated sur-
face:

Theorem 2.1 As n tends to infinity through even integers, we have

Ex[h] = log n + O(1).

Their proof involves finding bounds on pk, the probability that, in a
random triangulated surface made of n triangles and described with the
ribbon-graph model, a given vertex of a triangle is found in a boundary
cycle of length k (length being defined as the number of ribbon edges in a
cycle). Specifically, they proved and used the following lemma, which we
will use in our later proofs:

Lemma 2.1 For 1 ≤ k ≤ n, we have

pk ≤
1

3n− 2k + 1

(
1 +

k
3n− 2k + 5

)
.

Based on a computer simulation of random triangulated surfaces, they
conjectured, but did not prove, the following:

Conjecture 2.1
Ex[h] = log(3n) + γ + o(1),

where γ = 0.57721 . . . is Euler’s constant.
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2.2 An Estimate for the Expectation of the Square of h

Pippenger and Schleich [5], in the course of proving an estimate for the
variance of h, proved the following:

Theorem 2.2
Ex[h2] = (log n)2 + O(log n).

They accomplished this by using the identity

Ex[h2] = ∑
1≤k≤3n

∑
1≤k′≤3n

Ex[hk · hk′ ],

where hk (respectively, hk′) is the number of cycles of length k (respectively,
k′) in the random triangulated surface. They broke the sum into several
parts by considering separate cases and finding estimates for each part. We
will later see that a similar approach can be used to prove that

Ex[hl ] = O((log n)l),

where l is any positive integer.

2.3 Closeness to the Uniform Distribution

After the work of Pippenger and Schleich, Alex Gamburd [2] obtained a
relevant and applicable result in a paper on random Belyi surfaces. He
proved the following theorem:

Theorem 2.3 Consider a random r-regular graph on m vertices with random ori-
entation. Let AN denote the alternating group of degree N, and let Cr denote
the conjugacy class of AN consisting of the product of N/r disjoint r-cycles. If
N = rm, Pr is the probability measure on AN supported by Cr, and U is the
uniform distribution on AN , then for r ≥ 3 and as m approaches infinity,

||Pr ∗ P2 −U|| → 0.

Here
|| f − g|| = max

A⊆G
| f (A)− g(A)|

is a total variation distance.
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Specifically, he proved that

||Pr ∗ P2 −U||2 = O(N−5/2+7/r) + O(N−2).

If we take the square root of both sides of the equation, we arrive at

||Pr ∗ P2 −U|| = O(N−5/4+7/2r) + O(N−1).

For our study of random triangulated surfaces, we are considering random
cubic graphs, and so r = 3, and the approximation becomes O(N−1/12).
Note that the number of vertices in the graph, m, corresponds to the num-
ber of triangles we are considering, n (with an edge between two vertices if
they are connected by a ribbon in the ribbon model). Thus we have N = 3n.
So if we let Prρσ[h = k] denote the probability of a total of k cycles under
the ρσ distribution and PrU [h = k] denote the probability of a total of k
cycles under the uniform distribution, then Gamburd’s result gives us the
following theorem:

Theorem 2.4 ∣∣Prρσ[h = k]− PrU [h = k]
∣∣ = O

(
1

n1/12

)
.

This bound, combined with knowledge about the uniform and ρσ dis-
tributions, will allow us to prove a weaker version of Conjecture 2.1. As
Gamburd’s result involves the alternating group AN , requiring even per-
mutations, we can prove Conjecture 2.1 for values of n for which n/2 is
even. Thus, we prove the following theorem as one of the main results of
this thesis.

Theorem 2.5 If n/2 is even, then

Ex[h] = log(3n) + γ + o(1),

where γ = 0.57721 . . . is Euler’s constant.





Chapter 3

A Proof for the Improved
Approximation of Ex[h]

We can prove Theorem 2.5 by combining Gamburd’s result, Theorem 2.4,
with several of the results from [5]. First, note that the expected value of h
for U, the uniform distribution on A3n, is given by

ExU [h] = H3n = log(3n) + γ + O
(

1
n

)
, (3.1)

where H3n is the 3nth harmonic number [1]. Note that for α > 0 and
n > 0,

O
(

1
nα

)
= o(1).

Therefore, in order to prove Theorem 2.5 it is sufficient to prove that

∣∣Exρσ[h]− ExU [h]
∣∣ = O

(
1

nα

)
(3.2)

for some α > 0.
Note that 3.2 can be rewritten as∣∣∣∣∣ ∑

1≤k≤3n
k(Prρσ[h = k]− PrU [h = k])

∣∣∣∣∣ = O
(

1
nα

)
. (3.3)

We might be tempted to apply the bound in Theorem 2.4 to the left side of
the equation. Were we to do so, however, note that we would be adding up
3n terms, each of which consists of the product of k, which can be as large
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as 3n, and Prρσ[h = k] − PrU [h = k], which can be as large as O(n−1/12).
Therefore, simply applying Theorem 2.4 gives us the approximation∣∣Exρσ[h]− ExU [h]

∣∣ = O(n2−(1/12)).

As 2− (1/12) > 0, this is not sufficient to prove 2.5. Instead, we will split
the left side of 3.3 into two sums, and prove the following:∣∣∣∣∣ ∑

1≤k≤nβ

k(Prρσ[h = k]− PrU [h = k])

∣∣∣∣∣ = O
(

1
nα

)
, (3.4)

∣∣∣∣∣ ∑
nβ<k≤3n

k(Prρσ[h = k]− PrU [h = k])

∣∣∣∣∣ = O
(

1
nα

)
. (3.5)

The idea is to look at the terms before and after a cutoff point, nβ, sep-
arately. For k ≤ nβ, we can straightforwardly apply the bound in Theorem
2.4. We are adding up nβ terms, and k can be at most nβ, so applying Theo-
rem 2.4, we have something close to 3.4:∣∣∣∣∣ ∑

1≤k≤nβ

k(Prρσ[h = k]− PrU [h = k])

∣∣∣∣∣ = O
(

n2β

n1/12

)
. (3.6)

This approach raises the question of how β should be chosen. It will de-
pend on the particular bound that we want to establish (in other words, it
will depend on the value of α). Note that in order to obtain 3.4, it is neces-
sary to have 2β− 1

12 < −α. As long as we ensure that this inequality holds
when choosing α and β, this approximation will be good enough to allow
us to prove 3.4.

For k > nβ, however, we cannot apply Theorem 2.4 in this manner,
as the resulting approximation will be too large, for the same reasons dis-
cussed previously. Instead, we will examine the actual probability that
h > nβ in both the ρσ and uniform distributions, and show that the proba-
bilities are small enough to prove 3.5.

First we will consider the ρσ distribution. If l is a positive integer, then
we have

Prρσ[h > nβ] = Prρσ[hl > nβl ].

Next, recall that Markov’s inequality states that for a non-negative-valued
random variable X and constant a,

Pr[X > a] ≤ Ex[X]
a

.
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Applying this to our situation, replacing X with hl (note that hl will not
take on negative values) and replacing a with nβl , we obtain

Prρσ[hl > nβl ] ≤ Ex[hl ]
nβl . (3.7)

We can then apply the following Lemma, to be proven later:

Lemma 3.1
Ex[hl ] = O((log n)l).

Applying Lemma 3.1 to 3.7, we obtain, for k > nβ, the following approxi-
mation of the probability that h > nβ for the ρσ distribution:

Prρσ[h > nβ] =
O((log n)l)

nβl . (3.8)

If we have k > nβ, then clearly

Prρσ[h = k] ≤ Prρσ[h > nβ],

and therefore, for k > nβ, we obtain the bound

Prρσ[h = k] ≤ O((log n)l)
nβl . (3.9)

Temporarily turning our attention to the uniform distribution, we can
use a Chernoff bound to obtain a good approximation. Note that if x ≥ 1,
and k > nβ, it is true that

xk

xnβ
≥ 1,

and so we have

PrU [h > nβ] = ∑
nβ<k≤3n

PrU [h = k]

≤ 1
xnβ ∑

nβ<k≤3n

PrU [h = k]xk

≤ 1
xnβ

f (x),

where f (x) is the probability generating function for h. In order to find
f (x), first note that the number of permutations of 3n elements that contain
exactly k cycles is given by the unsigned Stirling number of the first kind,
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[
3n
k

]
[1]. The generating function for these numbers (for a fixed value of

3n) is given by the rising factorial function, (x)(3n), defined as

(x)(3n) = x(x + 1)(x + 2) · · · (x + 3n− 1).

Recall, however, that 2.4 depends on the permutations being members of
the alternating group, and so we will only consider the terms with even ex-
ponents in the generating function. Finally, in order to find the probability
generating function, we must divide each coefficient by the total number
of permutations under consideration, which is (3n)!/2. Therefore we have

f (x) =
(x)(3n) + (−x)(3n)

2
2

(3n)!
.

Then, in order to obtain a bound on PrU [h > nβ], we can set x = 2. This
produces

PrU [h > nβ] ≤ 1
2nβ

(2)(3n) + (−2)(3n)

2
2

(3n)!
.

Noting that (−2)(3n) = (−2)(−1)(0)(1) · · · = 0, and using the identity

(2)(3n) =
(2 + 3n− 1)!

(2− 1)!
= (3n + 1)!,

we have

PrU [h > nβ] ≤ 1
2nβ

(3n + 1)!
(3n)!

=
3n + 1

2nβ
.

Noting that any exponential term in n will dominate the linear term 3n + 1,
we can write

PrU [h > nβ] = O
(

1
2nβ/2

)
. (3.10)

We now have bounds on both Prρσ[h > nβ] and PrU [h > nβ]. Let us
choose α, β, and l such that

βl ≥ α + 3 (3.11)

and
β <

1
24
− α

2
. (3.12)

Now we can establish the bound 3.5.
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Note that the difference of Prρσ[h = k] and PrU [h = k] is bounded by
their sum, and so we have∣∣∣∣∣ ∑

nβ<k≤3n

k(Prρσ[h = k]− PrU [h = k])

∣∣∣∣∣
≤ ∑

nβ<k≤3n

k · Prρσ[h = k] + ∑
nβ<k≤3n

k · PrU [h = k].

Noting that in each sum we are adding up fewer than 3n terms, and
that k can be at most 3n, we have

∑
nβ<k≤3n

k · Prρσ[h = k] + ∑
nβ<k≤3n

k · PrU [h = k]

≤9n2 · Prρσ[h = k] + 9n2 · PrU [h = k].

Referring to 3.9 and 3.10 to bound Prρσ[h = k] and PrU [h = k], we have

9n2 · Prρσ[h = k] + 9n2 · PrU [h = k]

≤9n2 ·O((log n)l)
nβl + 9n2O

(
1

2nβ/2

)
.

Noting that a linear term will dominate the logarithmic term and the ex-
ponential term will dominate a polynomial term, and applying 3.11, we
have

9n2 ·O((log n)l)
nβl + 9n2O

(
1

2nβ/2

)
≤9n3

nβl + 9n2O
(

1
nβl

)
≤ 9

nβl−3 + 9n3 1
nβl

=
9

nβl−3 +
9

nβl−3

=
18

nβl−3

=O
(

1
nα

)
.

Thus we have established the bound 3.5.
Note that when 3.12 is applied to 3.6, we establish the bound 3.4. Fi-

nally, combining 3.4 and 3.5 yields the desired bound in 3.2. Note that α
can be chosen arbitrarily close to 1

12 from below. The closer α is to 1
12 , the

smaller β is, becoming arbitrarily close to 0, and the larger l is.
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3.1 A Bound on the Moments of h

We now return our attention to Lemma 3.1. In order to prove this bound on
the moments of h, we use an inductive version of Pippenger and Schleich’s
[5] proof of Theorem 2.2, and use their result that

Ex[h2] = O((log n)2)

as the base case.
Supposing that

Ex[hl−1] = O((log n)l−1),

consider Ex[hl ]. We can write this as

∑
1≤k1≤3n

· · · ∑
1≤kl≤3n

Ex[hk1 · · · hkl ],

where hki is the number of cycles of length ki. As in [5], we can reduce the
summation ranges. In this case we sum up to εn instead of 3n, choosing
ε so that the extra summands are absorbed into one big O term. Thus we
have

∑
1≤k1≤3n

· · · ∑
1≤kl≤3n

Ex[hk1 · · · hkl ] ≤ ∑
1≤k1≤εn

· · · ∑
1≤kl≤εn

Ex[hk1 · · · hkl ]+O(Ex[hl−1]),

and, keeping in mind our supposition, we have

∑
1≤k1≤3n

· · · ∑
1≤kl≤3n

Ex[hk1 · · · hkl ] ≤ ∑
1≤k1≤εn

· · · ∑
1≤kl≤εn

Ex[hk1 · · · hkl ]+O((log n)l−1).

Thus, to prove Lemma 3.1, it suffices to show that

∑
1≤k1≤εn

· · · ∑
1≤kl≤εn

Ex[hk1 · · · hkl ] = O((log n)l).

As in [5], we can rewrite this sum as

∑
c1

· · ·∑
cl

∑
1≤k1≤εn

· · · ∑
1≤kl≤εn

Pr[c1 in k1, . . . , cl in kl ]
k1 · · · kl

,

where we are summing over all vertices, and ”ci in ki” represents the state
of vertex ci being in a cycle of length ki.

As in [5], we partition the sum into cases based on which of the vertices
we are summing over are in the same or different triangles or cycles. The



A Bound on the Moments of h 15

dominant sum is the case for which all of the vertices are in different cycles
and different triangles, and it suffices to consider this sum to establish the
desired estimate. For the case in which all of the vertices are in different
triangles, we have

∑
c1

∑
c2 6∼c1

· · · ∑
cl 6∼c1,...,cl 6∼cl−1

∑
1≤k1≤εn

· · · ∑
c≤kl≤εn

Pr[c1 in k1, . . . , cl in kl ]
k1 · · · kl

=
(

n
l

)
× l!× 3l ∑

1≤k1≤εn
∑

k1≤k2≤εn
· · · ∑

kl−1≤kl≤εn

Pr[c1 in k1, . . . , cl in kl ]
k1 · · · kl

,

where c1 6∼ c2 means “vertex c1 is not adjacent to vertex c2”. The factors that
replace the sums over the vertices represent choosing the l triangles that
will contain the vertices, permuting them in any way, and then choosing
one vertex from each triangle to be the one under consideration.

Now for the case where all of the vertices are in disjoint cycles, we have

∑
1≤k1≤εn

· · · ∑
kl−1≤kl≤εn

Pr[c1 in k1, c2 in disjoint k2, . . . , cl in disjoint kl ]
k1 · · · kl

≤ (3n) ∑
k1

Pr[c1 in k1]
k1

(3n) ∑
k2

Pr[c2 in disjoint k2|c1 in k1]
k2

× · · · (3.13)

× (3n) ∑
kl

Pr[cl in disjoint kl |c1 in k1, . . . , cl−1 in disjoint kl−1]
kl

.

Thus, we have a product of l terms that each look like 3n times a sum of
probabilities. Taking as a representative example the first term and apply-
ing Lemma 2.1, we have

(3n) ∑
k1

Pr[c1 in k1]
k1

≤ (3n) ∑
k1

1
3n− 2k1 + 1

(
1 +

k1

3n− 2k1 + 5

)
1
k1

.

We can write this as

(3n) ∑
k1

1
3n− 2k1 + 1

× 1
k1

+ (3n) ∑
k1

1
3n− 2k1 + 1

× k1

3n− 2k1 + 5
× 1

k1
.

For both of these terms, the 3n in front of the sum and the 3n in the denom-
inator will obliterate each other. Furthermore, in the second term, the k1 in
the numerator will be canceled by the k1 in the denominator, so this term
will be O(1). In the first term, there is no k1 in the numerator, so the k1 in
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the denominator remains, and thus we have a sum over k1 of 1
k1

, which is
O(log n).

The cases for k2, k3, . . . , kl are similar. Thus each factor in the right side
of 3.13 looks like O(log n) + O(1), and multiplying them gives O((log n)l),
completing our proof of Lemma 3.1.



Chapter 4

Computing the Exact
Distribution of h for Small
Values of n

One aspect of h that has not undergone in-depth examination is its exact
distribution. In other words, given a value of n, exactly how many ways
are there to identify edges together to obtain a surface with h boundary
cycles, for all possible values of h? The case for n = 2 is easily solvable by
hand, but the cases for all other values of n call for a computer simulation
due to their sizes.

4.1 How to Create an Efficient Algorithm

Using a computer, we can implement an algorithm that goes through the
process of identifying pairs of edges until all edges have been used. When
a closed surface is obtained, we note its number of boundary cycles. Once
we account for all possible surfaces that can be created, we will have the
exact distribution of h for the value of n that was used. The total number
of ways to identify all 3n edges in some order to create a closed surface
is (3n − 1)!! = (3n − 1) × (3n − 3) × · · · × 3× 1, as explained in [5]. An
implementation of a “brute force” algorithm that constructed each of these
(3n− 1)!! surfaces, one at a time, would only be able to compute the distri-
bution in a reasonable amount of time for the first few values of n. A more
efficient method is to recognize when steps in the identification process are
equivalent; that is, when they lead to the same surface. By watching for this
and controlling which edges we identify at each step, we can calculate the
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exact distribution of h for much larger values of n, compared to the brute
force algorithm.

Note that any identification of two edges falls into exactly one of three
categories. We will refer to these categories as options 1, 2, and 3.

1. The two edges are in the same cycle. This shortens the length of the
cycle by two (if the edges are next to each other) or splits the cycle into
two (if they are not next to each other). The genus of the connected
component containing the edges remains unchanged.

2. The two edges are in different cycles in the same connected compo-
nent. The two cycles merge into one, and the genus of the connected
component increases by one.

3. The two edges are in different connected components. The two com-
ponents merge into one. The cycles containing the two edges also
merge into one, as in option 2, and the new component contains
all the other cycles from the original components. Furthermore, the
genus of the new component is equal to the sum of the genera of the
original components.

Some of this information (in particular, options 1 and 2) was adapted from
a recurrence relationship for a similar problem presented in [4].

For each of these options, given one fixed edge that will be identified
with some other chosen edge, there can be multiple identification partners
that will result in the same surface.

1. For option 1, choosing a partner that is i edges away from the fixed
edge, traveling clockwise around the cycle, results in the same sur-
face as choosing a partner that is i edges away from the fixed edge,
traveling counter-clockwise.

2. For option 2, choosing as a partner any edge from a cycle of a given
length results in the same surface as choosing any edge in any other
cycle (in the same connected component) of the same length.

3. For option 3, choosing as a partner any edge in a cycle of a given
length in some connected component results in the same surface as
choosing any edge in a cycle of the same length in an identical con-
nected component (that is, one that has the same cycle lengths and
genus).
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This idea of equivalent identification partners can greatly reduce the
number of surfaces that must be constructed. For example, take the first
step of the process. We have an edge that we want to find a partner for.
Essentially we have two choices: pick a partner from the same triangle (this
corresponds to option 1), or pick a partner from a different triangle (option
3). Note that option 2 is not a possibility here since none of the components
have multiple cycles. If we were doing this by brute force, we would have
to consider separately the two equivalent surfaces that result from choosing
a partner from the same triangle, as well as the 3(n− 1) equivalent surfaces
that result from choosing a partner from a different triangle. By considering
equivalent partners, we only have to consider two surfaces: the one that
results from option 1, and the one that results from option 3.

Of course, we have to take into account the fact that there are only two
ways to obtain the former surface, while there are 3(n− 1) ways to obtain
the latter. This introduces the idea of giving each surface a weight, which
counts the total number of ways to start with n triangles and identify edges
in some order to arrive at the surface in question. In the example above,
the former surface would have a weight of 2, while the latter would have
a weight of 3(n − 1). In order to introduce some more useful terms and
further set the stage for the algorithm that will shortly be introduced, we
now introduce a useful way to visualize this problem.

4.1.1 Traversing a Graph

The process of constructing a surface by identifying edges can be mapped
to taking a path from the source of a directed graph to one of its sinks. Ev-
ery node in this graph represents a surface, and one node will be the parent
of another if there is a way to identify two edges in the parent surface and
thereby obtain the child surface. Thus, each edge in the graph represents an
identification of two triangle edges with each other. The source of the graph
represents the initial surface consisting of n triangles, the sinks represent
the closed surfaces with no edges left to identify, and all other nodes rep-
resent “intermediate” surfaces, where some, but not all, edges have been
identified. Also associated with each node is a weight. The weight of the
source is 1, while the weights of the other nodes have the meaning intro-
duced above. The graph for the n = 2 case is pictured below, where edge
identifications are shown by either placing the two edges on top of each
other or connecting them with a blue line. Note that in this graph, the left
sink represents a sphere, while the right sink represents a torus. Also note
that it is possible for one node to have multiple parents.
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Figure 4.1: Graph for n = 2.

The weights for the non-source nodes can be calculated with the follow-
ing formula, where w(node) is the weight of a node, and t(parent, child) is
the number of ways to identify two edges in the parent node and thereby
obtain the child node:

w(c) = ∑
p is a parent of c

w(p)t(p, c).

This formula makes intuitive sense when considering the meaning of weight:
if, for example, a child has only one parent, there are a ways to get from the
source to the parent, and there are b ways to get from the parent to the
child, then there are ab ways to get from the source to the child. For multi-
ple parents we simply add the weights.

Once the weights for all the nodes have been calculated, the distribution
of h can be found by examining the weights of the sinks. These will tell
us how many ways there are to arrive at any particular closed surface by
identifying edges.

One more idea that simplifies the algorithm is that of an “active compo-
nent”. This refers to the concept of always choosing one of the two edges to
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be identified from a particular connected component (referred to as the ac-
tive component). It then remains to pick this edge’s identification partner.
When all edges of the active component have been identified, the compo-
nent is closed, and one of the remaining non-closed components becomes
the active one. The reason this simplifies things is that it makes option 3
much easier to handle. Note that initially, every connected component is
a triangle. With options 1 and 2, the active component changes in some
way, but the other components are unaffected. With option 3, one of the
other components becomes “absorbed” into the active one, which grows,
and everything else stays the same. The implication of this is that every
non-closed, non-active connected component will always be a triangle. Therefore,
at any step in the process, there is always only one distinct surface that can
be made with option 3, and the number of ways to make this surface is
equal to three times the number of triangles remaining. A further impli-
cation of this is that any surface, be it source, sink, or intermediate, can be
completely described by three things: a list of the genera of the closed com-
ponents, a list of the lengths of the cycles in the active component, and the
number of remaining triangles.

Finally, it is worth noting that in order to accurately calculate the weights
for every node, the graph must be constructed in a breadth-first manner. In
other words, first we consider the source, then all the children of the source,
then all the children of those nodes, and so on. This is because it is neces-
sary to have knowledge of the weights of every member of a “generation”
of surfaces (that is, all of the surfaces that result after a fixed number of
identifications) before finalizing the weights of the next generation. A ben-
efit of this approach is that after we use one generation to obtain the next,
the older generation is obsolete and can be “deleted” to save space. Ulti-
mately, all that is necessary to calculate the distribution of h are the sinks of
the graph and their weights.

4.2 Description of an Efficient Algorithm to Calculate
the Distribution of h

With these methods for improving the efficiency of the process of construct-
ing closed surfaces, we are ready to use them in an algorithm. The fol-
lowing is a description of an algorithm that takes into account the ideas
of equivalent identification partners, surface weights, and active compo-
nents. The details of each kind of edge identification (how the active com-
ponent changes, and so on) are left out, but can be found above. An im-
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plementation of this algorithm in C++ can be found at http://math.hmc.
edu/seniorthesis/archives/2008/kfleming/, or by searching online for
“h distribution.cpp”.

http://math.hmc.edu/seniorthesis/archives/2008/kfleming/
http://math.hmc.edu/seniorthesis/archives/2008/kfleming/
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create a queue of surfaces and add the initial surface (n triangles);
while the queue is not empty do

pop the first surface off the queue (call it “parent”);
if there are edges left in parent to be identified then

choose a fixed edge from the active component;
for each edge in the same cycle as the fixed edge, traveling in one
direction, until the halfway point is reached do

construct the child surface by identifying the fixed edge
and the chosen edge (option 1);
if the chosen edge is not the edge at the halfway point then

w(child) := w(child) + w(parent) ∗ 2;
else

w(child) := w(child) + w(parent);
end
if child is not already in the queue then

add child to the queue;
end

end
for each cycle of distinct length in the active component besides the
one containing the fixed edge do

count how many other cycles in the active component
have the same length;
construct the child surface by identifying the fixed edge
and one of the edges in the chosen cycle (option 2);
w(child) := w(child) + w(parent) ∗
length of chosen cycle ∗ copies of chosen cycle;
if child is not already in the queue then

add child to the queue;
end

end
construct a child surface by identifying the fixed edge with an
edge in one of the remaining triangles (option 3);
w(child) := w(child) + w(parent) ∗ 3 ∗ number of triangles;
if child is not already in the queue then

add child to the queue;
end
remove parent’s node from the graph;

end
end
for each closed surface (sink) do

surface chi := 0;
for each closed component in the surface do

surface chi := surface chi + (2 - 2 * genus of component);
end
record the fact that a surface with (surface chi + n/2) boundary
cycles can be made in w(surface) ways;

end

Figure 4.2: Improved algorithm to caculate the exact distribution of h.





Chapter 5

The Distribution of Boundary
Cycles and Spherical Numbers

With the implementation of the previously described algorithm, we can
examine the exact distribution of h for small values of n. The remainder of
this paper will be devoted to the investigation of these results.

5.1 Results of the Implementation

This improved algorithm has a running time that grows like the number of
integer partitions of n. The connection to partitions comes from the fact that
any surface’s active component can be thought of as a partition of edges
into cycles. Hardy and Ramanujan [3] show that the number of partitions,
p(n), is asymptotic to

1
4
√

3n
eπ
√

2
3 n.

Compare this to the number of surfaces to consider with a brute force ap-
proach, (3n− 1)!!. This is asymptotic to

√
2

(
3n
e

)3n/2

.

Note that the former approximation is exponential in
√

n, while the latter
is exponential in n log n. As further evidence for the algorithm’s improve-
ment over a brute force approach, consider the values of these approxima-
tions for the first few values of n:
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n Approximation for p(n) Approximation for (3n− 1)!!

2 2.7 15.2
4 6.1 10467.3
6 12.9 3.4 ×107

8 25.5 3.1 ×1011

10 48.1 6.2 ×1015

12 86.9 2.2 ×1020

14 151.9 1.3 ×1025

16 257.8 1.2 ×1030

Table 5.1: Comparison of approximations: improved algorithm vs. brute
force.

On a personal computer, a C++ implementation of the algorithm was
used to calculate the exact distribution of h for values of n up to 50, with
the largest case taking about 30 minutes to solve. The output consists of
frequency tables such as the following:

h n = 4 n = 8 n = 12 n = 16

2 4536 89671548960 47613095537007369600 208492455487140641410513920000
4 5184 167751131625 111859431114774198240 568343345836882239259796160000
6 54201344400 53363490454533032235 337745361781304748044070897600
8 4448999520 8246689198672949640 70933949447208151335966759825
10 158941440 539931283054122960 6695489931194134994751828000
12 2177280 20005927297171200 345798071730794314463832000
14 446296688006400 11522850716579469185318400
16 5633633617920 265078151618980232332800
18 31039303680 4244306327710357708800
20 45503421164122521600
22 294595272799027200
24 871583647334400

Table 5.2: Sample frequency tables for n = 4, 8, 12, 16.

The full tables can be found at http://math.hmc.edu/seniorthesis/
archive/2008/kfleming/, or by searching online for “boundary cycle distributions.txt”.

5.2 Examination of the Frequency Tables

5.2.1 The Frequencies mod 10

Examining the tables produced brings about a conjecture:

http://math.hmc.edu/seniorthesis/archive/2008/kfleming/
http://math.hmc.edu/seniorthesis/archive/2008/kfleming/
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Conjecture 5.1 For even n ≥ 6, the number of surfaces constructed from n trian-
gles and having exactly h boundary cycles is congruent to 5 (mod 10) if h = n/2
and is congruent to 0 (mod 10) otherwise.

One approach to proving this conjecture would be to examine the factors
that the weights are multiplied by at each step in the surface construction
process described in chapter 4. Specifically, for n ≥ 6, there will be some
point in the process where exactly five triangles remain outside of the active
component. One of the edges in these five triangles will eventually have to
be identified with an edge in the active component, and this step introduces
a factor of 5 to the weight of the child surface. From empirical examination
of the data, it appears that the only surface with n/2 boundary cycles that
has a weight congruent to 5 (mod 10) is the surface consisting of n/2 torii. It
remains to be shown that the construction of this surface does not introduce
a factor of 2 to the weight, but the construction of all other surfaces does.
The factor of 2 seems likely to come from identifying two edges in the same
cycle, since there are almost always two equivalent ways to do this.

5.2.2 Calculating Frequencies

Pippenger and Schleich [5] obtained an exact formula for the probability
that a surface constructed from n triangles, with n/2 odd, contains exactly
one boundary cycle. The case of having one boundary cycle corresponds to
the first lines of the frequency tables for values of n for which n/2 is odd.

There is a straightforward, if lengthy, way to calculate the value of any
line a given distance from the bottom of any table. This method, however,
relies on constants found in a different set of tables produced by a slightly
modified version of the aforementioned C++ implementation. The tables
in question list the number of ways to start with n triangles and identify
edges to obtain a surface with one connected component, with a given Euler
characteristic, denoted χ. Here are the tables for the first few values of n:

χ n = 2 n = 4 n = 6 n = 8 n = 10

-4 357485480352000
-2 3061800 89414357760 2834113460935680
0 3 4536 19362240 164367221760 2332019568291840
2 12 5184 9797760 45148078080 392212641300480

Table 5.3: Number of ways to create one component from n triangles.
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In other words, there are 5184 ways to identify the edges of four trian-
gles to create a sphere (Euler characteristic 2), and so on.

As an example of the method to calculate these lines, we will look at the
cases h = 3n/2 and h = 3n/2− 2 (the last two lines of any given frequency
table).

For the case h = 3n/2: the Euler characteristic of a surface with 3n/2
boundary cycles will be 3n/2 − n/2 = n. Noting that at least two trian-
gles are needed to create any closed component, we see that there are a
maximum of n/2 closed components in any surface created from n trian-
gles. The maximum Euler characteristic of any closed component is 2, cor-
responding to a sphere. Thus we see that any surface with total Euler char-
acteristic n must have n/2 spheres and nothing else. Every sphere must
be made from two triangles, and there are no triangles left over to make
any components. From our second tables we note that there are 12 ways to
create a sphere from two triangles. Thus the process for creating a surface
with 3n/2 boundary cycles can be thought of as repeating these two steps
until all triangles have been used:

1. Pick two triangles from the remaining unused triangles.

2. Create a sphere from the two chosen triangles.

The number of ways to do the first step is a binomial coefficient, choos-
ing two from n− k, where k is the number of spheres already created. The
number of ways to do the second step, as we have seen, is 12. Finally, form-
ing the spheres in any order results in the exact same surface (all edges are
identified in the same way), so we must divide by a factor of (n/2)!. Thus
the total number of ways to create a surface with 3n/2 boundary cycles is

12
(

n
2

)
× 12

(
n− 2

2

)
××12

(
n− 4

2

)
× · · · × 12

(
n− (n− 2)

2

)
1

(n/2)!

= 12n/2
(

n
2

)(
n− 2

2

)(
n− 4

2

)
· · ·

(
n− (n− 2)

2

)
× 1

(n/2)!

= 12n/2 n!
2!(n− 2)!

(n− 2)!
2!(n− 4)!

(n− 4)!
2!(n− 6)!

· · · (n− (n− 2))!
2!(n− n)!

1
(n/2)!

= 12n/2n!
1

2n/2
1

(n/2)!

= 12n/2(n− 1)!!.

The case for h = 3n/2 − 2 is similar, but slightly more complicated.
A similar examination of the necessary Euler characteristic, n− 2, reveals
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that any such surface must consist of either one torus made of two triangles
and n/2− 1 spheres made of two triangles each, or one sphere made of four
triangles and n/2− 2 spheres made of two triangles each. Using the same
process of choosing triangles, forming them into the necessary shapes, and
then permuting like shapes, we have that the number of ways to create a
surface with 3n/2− 2 boundary cycles is

12n/2−1 × 3×
(

n
2

)(
n− 2

2

)
× · · · ×

(
n− (n− 2)

2

)
1

(n/2− 1)!

+ 12n/2−2 × 5184×
(

n
4

)(
n− 4

2

)(
n− 6

2

)
× · · · ×

(
n− (n− 2)

2

)
1

(n/2− 2)!

= 12n/2−1 × 3× n!
2(n− 2)!!

+ 12n/2−2 × 5184× n!
4!(n− 4)!!

.

Note that the constants 3, 12, and 5184 were obtained from the second set
of tables, discussed above.

In general, this method could be applied to calculate the value of any
line of the original tables a given distance from the bottom; the calculations
for smaller values of h would simply be more lengthy as there are more
possible surfaces.

5.3 Spherical Numbers

Finally, we turn our attention to a problem introduced by the method of
calculating frequencies. As we have seen, our process for such calcula-
tions involves knowing exactly how many ways there are to turn some
number of triangles into one connected component. Without formulae
for these numbers, however, the method is not much help. How, then,
can we calculate these numbers? To reduce the scope of this new topic,
we will focus solely on the problem of identifying the edges in n trian-
gles to obtain one closed component with Euler characteristic 2–that is,
a sphere. For brevity, let us say that the spherical number sn is the num-
ber of ways of identifying the edges in n triangles to obtain one sphere.
From the previous table, we see that the first few spherical numbers, s2, s4,
and s6, are 12, 5184, and 9797760. The numbers up to s50 can be found
at http://math.hmc.edu/seniorthesis/archive/2008/kfleming/, or by
searching online for “spherical numbers.txt”.

Unfortunately, this problem seems to be quite difficult, and an exact
formula for sn has proven elusive. What follows is a description of some

http://math.hmc.edu/seniorthesis/archive/2008/kfleming/
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of the properties of sn and some attempted methods of obtaining a formula
that may eventually lead to the solution.

From empirical examination of s2 through s50, sn seems to factor into
small primes. Furthermore, it seems to factor into most of the primes up to
a certain limit, with the limit depending on the parity of n/2. Specifically,
for n/2 even, sn factors into primes no larger than n, and for n/2 odd, sn
factors into primes no larger than 3n/2. Additionally, the factorization of sn
for n/2 even contains many more 2s than for n/2 odd. These observations
strongly suggest that a double factorial of 3n/2 may be involved. It is not
clear, however, what such a double factorial might represent, and a double
factorial of an even number (as would be the case for n/2 even) has yet to
be seen in our investigation of random triangulated surfaces. Even if not
(3n/2)!! exactly, the factorization of sn strongly suggests the presence of
one or more factorials, along with some relatively large but undetermined
number of 2s and 3s.

Note that a surface made from n triangles can be drawn as in the fol-
lowing figure (for this example, n = 4), where identified edges are either
drawn over each other or connected with a line. We can view the drawing
as consisting of one n + 2-sided polygon with some number of internal pair-
ings (the pairings represented by drawing two edges on top of each other),
with the sides of the polygon connected with external pairings (the pairings
represented by drawing lines between two edges). The surface represented
by a such a drawing will be a sphere if and only if the external pairing lines
do not cross; any crossings will introduce handles to the surface. For this
example, internal pairings are indicated in blue, and external pairings are
indicated by dashed lines.

Figure 5.1: Representation of a sphere from 4 triangles.
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Therefore, one way to create a sphere from n triangles is to first use all
the triangles to make one n + 2-sided polygon, and then identifying the
sides of the polygon in a valid (non-crossing) way. Note that the number of
ways to do the second step is the Catalan number Cn. This approach is more
complicated than it might appear, however, as the distinction between in-
ternal and external pairings is a rather artificial one. We must make sure
that we avoid overcounting; for example, we might count two surfaces as
distinct when they have the same set of edge identifications, but with some
reclassified from internal to external, and vice-versa. There does not seem
to be a simple way to avoid this problem.

Another approach is to try to find a recurrence for sn, by taking a com-
pleted sphere with n− 2 triangles, adding on two triangles to make a bigger
polygon, and filling in the required external pairings. This is greatly com-
plicated, however, by the fact that adding on triangles in different places on
the polygon, depending on the already-existing identifications, will result
in different numbers of ways to complete the external pairings–sometimes
none at all.

Alternatively, we can represent spheres from n triangles as planar cu-
bic connected graphs on n vertices, with loops and multiple edges allowed.
As discussed in the introduction, vertices represent triangles, and an edge
between two vertices represents an identification of edges between trian-
gles (a loop represents pairing two edges on the same triangle). The five
possible graphs for n = 4 are shown below.

Figure 5.2: All five cubic planar connected graphs on 4 vertices.

After identifying the possible cubic planar connected graphs on n ver-
tices, we can then combinatorically determine how many surfaces are rep-
resented by each graph. For the four-vertex graphs shown above, the graphs
represent 648, 162, 1944, 486, and 1944 surfaces (read left to right), for a total
of 5184 surfaces. Therefore we have broken down all 5184 possible spheres
into five different classes. As an example of how to calculate these num-
bers, take the leftmost graph. Assign a triangle to each vertex; there are 4!
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ways to do this. For each of the triangles with a loop, choose which edge
will be identified with an edge in the center triangle. There are 33 ways to
do this. Finally, for the center triangle, choose which edges will be identi-
fied with which outer triangles. There are 3! ways to do this. Finally, we
must divide by 3! since permuting the three outer triangles can lead to the
same set of edge identifications. Thus there are a total of

4!× 33 × 3!
3!

= 4!× 33 = 648

spheres represented by this graph. Performing similar calculations on the
other four graphs, we arrive at the numbers presented above. There may be
some way to more easily calculate these numbers, perhaps based on graph
invariants.
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