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Abstract

Wavelets are functions that are useful for representing signals and approxi-
mating other functions. Wavelets sets are defined in terms of Fourier trans-
forms of certain wavelet functions. In this paper, we provide an introduc-
tion to wavelets and wavelets sets, examine the preexisting literature on
the subject, and investigate an algorithm for creating wavelet sets. This
algorithm creates single wavelets, which can be used to create bases for
L2(Rn) through dilation and translation. We investigate the convergence
properties of the algorithm, and implement the algorithm in Matlab.
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Chapter 1

Introduction

In many technical pursuits, it is necessary to have methods of approximat-
ing functions. Since the advent of Fourier analysis, such methods have been
used in fields from signal processing to image compression. In accordance
with this need for accurate and efficient approximation methods, mathe-
maticians have continued investigating alternate ways of meeting the ap-
proximation needs of engineers and other applied scientists.

Although Fourier analysis is useful in many cases, it has its disadvan-
tages. Fourier series are most effective at approximating periodic signals,
but unfortunately are often inaccurate when used on non-periodic func-
tions. Wavelet functions, however, often decay rapidly, if not vanish, out-
side a compact set, leading to more accurate approximations for many non-
periodic functions.

There are many different wavelet functions, which can be constructed in
various ways. Among the most famous are the Haar wavelets, named after
Alfred Haar, and the Daubechies wavelets, named after Ingrid Daubechies.
The Daubechies wavelets are designed to have compact support and to
allow for very efficient compression of information (they have sparse co-
efficient matrices for many low-order polynomials). Other wavelets have
been constructed by other methods, and have varied properties and ap-
pearances. Some are fractal-like in nature, while others have simpler geom-
etry like the Shannon wavelet, which is a sinc function. This wide array of
wavelets is helpful because different applications require different wavelet
properties to maximize their efficiency and accuracy.

One recent method of wavelet construction is through the use of wavelet
sets, which were introduced in [4]. These wavelets are characterized by the
fact that they are the inverse Fourier transform of the characteristic function
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of a set, known as a wavelet set. These wavelet sets are often fractal-like in
nature. They also have to tile Rn by both scaling and translation, which
gives them some interesting analytical properties. For this reason, wavelet
sets are often studied for their own sake, not just for their applications in
approximating functions with wavelets.

There are multiple methods for constructing wavelet sets, and in this
paper we focus on the method set forth in [2]. After a background chapter,
we provide an introduction to the algorithm itself, followed by an exami-
nation of the algorithm and its convergence first in one and then in several
dimensions. Finally, we include a chapter which discusses implementation
of the algorithm in Matlab.

For the interested reader who wants more information than is given in
this thesis, there are a number of accessible papers in the literature that pro-
vide more detailed discussions of wavelet sets. The paper entitled “Wavelet
Sets in Rn” by Dai, Larson and Speegle [4] is the first paper on wavelet sets,
in which their discovery and existence were announced and shown. An-
other paper by Benedetto and Leon, [3], is similar to the paper used in this
thesis except in the case of multiple wavelets rather than single wavelets.
The section on wavelet sets in Larson’s chapter on “Unitary Systems and
Wavelet Sets” in [5] provides a good in-depth technical introduction to
wavelet sets. Finally, [9] is another good, relatively accessible, introduction
to the theory of wavelet sets.



Chapter 2

Background

2.1 Classical Mathematics: Set Theory and Analysis

First, we review some basic set theory regarding intersections, unions and
complements. Recall that if A, B and C are all sets and if B ⊆ C, then

A ∩ B ⊆ A ∩ C and A ∪ B ⊆ A ∪ C.

If A denotes the complement of A, De Morgan’s laws state that

A ∩ B = A ∪ B and A ∪ B = A ∩ B.

Using induction, it is clear that these properties extends to countable unions
and intersections of sets. In general in this paper, we will be taking comple-
ments relative to Rn, but these properties apply regardless of the ambient
space. We also know that intersections and unions distribute over each
other. That is, if A, B and C are sets, then

A∩ (B∪C) = (A∩ B)∪ (A∩C) and A∪ (B∩C) = (A∪ B)∩ (A∪C).

These properties of unions, intersections and complements will be im-
portant in the convergence discussion later in this paper. Other important
properties are those concerning infinite unions and intersections of sets.
Recall that a countable union of sets in Rn must be nonempty as long as at
least one of the sets is nonempty.

We will use the notation A \ B to denote set subtraction, that is, A \ B =
A ∩ B. Given an expression of the form

((A \ B0) \ . . . \ Bn) \ . . . ,
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we know that the countable subtraction will be nonempty if

µ(A) >
∞

∑
i=0

µ(Bi),

where µ(X) denotes the measure of the set X.
These set theory ideas are important to the analysis regarding wavelet

sets later in this paper. Before we can discuss wavelet sets themselves, how-
ever, we must review some important ideas from analysis.

The motivating factor behind wavelet analysis is the need to approxi-
mate functions using other functions. That is, we are trying to create bases
for some particular function space. An important space for applications
is the space L2(Ω), for Ω ⊆ Rn, the set of all square integrable functions
f : Ω→ R. Recall that f ∈ L2(Ω) if∫

Ω
f 2 dx < ∞.

It is also useful to recall the L2 inner product, which is defined as the fol-
lowing.

Definition 2.1. The L2 inner product of two functions f , g ∈ L2(Ω) is defined
to be

( f , g) =
∫

Ω
f (x)g(x) dx.

We can use this inner product to find the coefficients of a function with
respect to any orthogonal basis of L2(Ω). Many such bases are possible,
including the wavelet functions we will discuss later in this paper. The
most commonly known, however, is the Fourier basis. The Fourier basis
is a collection of sine and cosine functions of varying frequencies, together
with 1

2 , which form an orthogonal basis for L2(−π, π). These functions are
commonly used in signal analysis, as well as in the study of differential
equations.

Nonetheless, there are downsides to the Fourier basis. Their approxi-
mations of periodic functions are generally very accurate, especially when
those functions do not have any discontinuities. However, when it comes
to approximations of nonperiodic functions, discontinuous functions, and
highly nonlinear functions, Fourier functions are not always very accurate.
In the case of discontinuities, we often encounter Gibbs phenomena, in
which there is a significant overshoot in the approximation on a discontinu-
ous function. Gibbs phenomena also have a large effect on the convergence
of a Fourier series.
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(a) Scaling Function φ (b) Wavelet Function ψ

Figure 2.1: The Haar functions.

2.2 Introduction to Wavelets

To avoid many of these difficulties, we can use wavelet functions as basis
functions instead of sinusoids. There are many different types of wavelet
functions, whose dilates and translates form basis functions. To illustrate
the dilation and translation transformations we will examine the Haar wavelet
functions. There are two Haar functions, a scaling function and a wavelet
function, both shown in Figure 2.1.

These two functions are known as the Haar scaling function, ϕ, and the
Haar wavelet function, ψ. They are defined by

φ(x) =
{

1 x ∈ (0, 1)
0 otherwise,

and

ψ(x) =


1 x ∈ (0, 1

2 )
−1 x ∈ ( 1

2 , 1)
0 otherwise.

To create an orthonormal basis using the functions ϕ and ψ, we use two
transformations, called T and Da. T is a translation operator, which trans-
lates a function to the right by one, that is, (T f )(x) = f (x − 1) for any
function f (x). The dilation operator Da dilates a function by a factor a > 1,
that is, (Da f )(x) = 1√

a f ( x
a ) and (Da)−1( f )(x) =

√
a f (ax) for any function

f (x). We denote multiple compositions of an operator by

Tn = T ◦ T ◦ . . . ◦ T︸ ︷︷ ︸
n times

.
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(a) Unscaled ψ. (b) Scaled D−1
2 ψ

Figure 2.2: The Haar wavelet function ψ, and D−1
2 ψ.

We can combine these operations, T and Da, as in [7].

Dm
a Tn ϕ(x) = ϕm,n(x) =

1
am/2 ϕ

(
x− amn

am

)
.

It can be shown that these functions and transformations lead to an or-
thonormal basis for L2(R). For example, for any given m,

(ϕm,j, ϕm,k) = δj,k =
{

1 j = k
0 j 6= k.

For most single variable wavelet functions, the most commonly used dila-
tion factor is D2, which scales by 2. For an example of this type of scaling,
see Figure 2.2.

Using D2 and T, then, we can define a dyadic orthonormal wavelet
following [5].

Definition 2.2. A dyadic orthonormal wavelet is a function ψ ∈ L2(R) such
that the set {

2
n
2 ψ (2nt− l) : n, l ∈ Z

}
forms an orthonormal basis for L2(R).

Note that the term “dyadic” refers to the fact that these wavelets use the
scaling operator D2, which scales by 2, not some other number.

Some other single dimensional wavelet functions include the Daubechies’
wavelet functions and the Shannon wavelet. An example Daubechies’ scal-
ing and wavelet pair is shown in Figure 2.3, and the Shannon wavelet is
shown in Figure 2.4. The Daubechies wavelets have many desirable prop-
erties, such as compact support (they vanish outside a compact, or finite,
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(a) Scaling Function. (b) Wavelet Function.

Figure 2.3: The Daubechies 4-tap scaling and wavelet functions [8].

Figure 2.4: The Shannon wavelet function.

interval). Also, their inner products with low-order polynomial functions
are zero, making them ideal for data compression applications.

The Haar and Daubechies wavelets are cases in which two functions
are scaled and translated to create orthogonal bases, and these are known
as the scaling and wavelet functions. The Shannon wavelet, however, re-
quires only one function (using, of course, the D and T operators) to create
the orthogonal basis. Thus, it is known as a single wavelet, rather than a
multiple wavelet. All the wavelets we will be examining in this paper will
be single wavelets, like the Shannon wavelet. Furthermore, the Shannon
wavelet has an associated wavelet set, like the wavelets we will discuss in
this paper [6]. The wavelet set for the Shannon wavelet is:[

−1,−1
2

)⋃(
1
2

, 1
]

.
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Before we discuss the relationship between wavelet sets and wavelet
functions, however, we must briefly discuss multidimensional wavelets.
Multidimensional wavelets work in much the same way as single dimen-
sional wavelets. One major difference, however, arises in the dilation oper-
ator. In multiple dimensions, we can use a scalar dilation factor, or we can
use a dilation matrix A. We require A to be expansive, as defined in [5].

Definition 2.3. We call a matrix A expansive if |λ| > 1 for all eigenvalues λ of
A.

In this case, the definition of a wavelet function is as follows [5, 2]:

Definition 2.4. Let 1 ≤ m < ∞, and let A be an expansive n × n matrix.
Consider {(ψA

j )m,n : m ∈ Z , n ∈ Zd} where j = 1, . . . , J for some J ∈ Z and
ψA

m,n is defined to be:(
ψA

j

)
m,n

(x) = |det(A)| m2 ψj(Amx− n) , m ∈ Z , n ∈ Zd.

If {(ψA
j )m,n} form an orthonormal basis for L2(Rd), then the ψ are referred to as

multiple dilation-A orthonormal wavelets.

If we take A = αI, where α is a scalar such that α > 1 and I is the
identity matrix, the scaling works just as it did in the single variable case.

2.3 Wavelet Sets

Now that we have introduced the concepts of wavelet functions, we can
discuss wavelet sets. For this discussion, first recall the Fourier transform
as defined in [5].

Definition 2.5. If f , g ∈ L1(R) ∩ L2(R), then the Fourier transform F of f is
defined to be

(F f )(s) = f̂ (s) :=
1√
2π

∫
R

e−ist f (t) dt,

and the inverse Fourier transform of g is

(F−1g)(t) =
1√
2π

∫
R

eistg(s) ds.
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Note that multiple normalizations exist for the Fourier transform. We
use this one because its complement is its inverse—that is, it is a unitary
transformation [5].

Recall the characteristic function of a set E ⊆ Rd is defined by:

χE(x) =
{

1 x ∈ E,
0 x 6∈ E.

Note that the Haar scaling function is χE for E = [0, 1]. We can now state
the definition of a wavelet set [9]:

Definition 2.6. A wavelet set is a measurable subset E of Rn such that the
inverse Fourier transform of χE is an orthonormal wavelet in L2(Rn).

In other words, a set E is a wavelet set if dilations and translations of
its inverse Fourier transform yield an orthonormal basis for L2(Rn). This
is a very strict condition. It is also important to note that not all wavelets
are associated with a wavelet set. In order for a wavelet to have a wavelet
set, its Fourier transform must be both real and equal to either 1 or 0 at all
points. Now, we will examine a characterization of wavelet sets which will
assist us in understanding the examples later in this paper. First, however,
we need some more terminology. Recall that a partition of a set A is a
collection of disjoint subsets Ai such that their union is A. Then we define
τ-congruence as [2]:

Definition 2.7. If A and B are subsets of Rn, then we say A is τ-congruent

to B (denoted A
τ∼= B) if there are countable partitions {Ap : p ∈ Z} and

{Bp : p ∈ Z} of A and B respectively, and a sequence {np : p ∈ Z} ⊆ Zn

such that for all p ∈ Z, Ap = Bp + np.

As an example of this, consider the set depicted in Figure 2.5. Section
A has been moved to section A′ via the translation f (x, y) = (x + 1, y),
and section B has been moved to B′ via the translation f (x, y) = (x, y +
1). Therefore, by our definition of τ-congruence, the gray shaded set is τ-
congruent to the square [− 1

2 , 1
2 ]2. In general, these partitions need not be

rectangular.
Benedetto and Leon [2] proved the following theorem characterizing all

wavelet sets in Rn:

Theorem 2.1. Let K ⊆ Rn be a measurable set. Then K is a wavelet set if and
only if the following two conditions hold:

1. {K + i : i ∈ Zn} is a partition of Rn.
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Figure 2.5: An example of τ-congruence

2. {2jK : j ∈ Z} is a partition of Rn.

That is, a set K is a wavelet set if and only if K tiles Rn by both tiling
(from condition 1) and scaling (condition 2). Furthermore, it can be shown

that the first condition of Theorem 2.1 holds if and only if K
τ∼= [− 1

2 , 1
2 ]n.

This characterization of wavelet sets will come into play when we examine
our two-dimensional example.

Now that we have discussed wavelets and wavelet sets, we can begin
examining examples. First, we examine a one-dimensional example, and
give several illustrations of wavelet sets and functions derived from that
construction. Then, we look at a general example, examine the construction
in detail, and give examples of wavelet sets in one and two dimensions. We
then examine the convergence properties of the construction procedure in
both one and multiple dimensions.
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2.4 A Short One-Dimensional Example

This example is taken from [1]. It consists of constructing wavelet sets of
the form

Wn =
[
− 2n+1π − αn,− 2n+1π

)
∪ [−π,−αn)

∪[αn,π) ∪
[
2n+1π, 2n+1π + αn

)
,

where αn = 2n+1π
2n+2−1 .

To find the wavelet functions associated with these wavelet sets, we
need to take the inverse Fourier transform of their characteristic functions.
Since the characteristic function of a set is one on the set and zero elsewhere,
we know that

(F−1χWn) =
1√
2π

∫
R

eixtχWn(t) dt

=
1√
2π

∫
Wn

eixt dt.

Therefore, by our definition of Wn,

Fn = (F−1χWn)

=
1√
2π

[∫ −2n+1π

−2n+1π−αn

eixt dt +
∫ −αn

−π
eixt dt

+
∫ π

αn

eixt dt +
∫ 2n+1π+αn

2n+1π
eixt dt

]

=
1

ix
√

2π

[
e−(2n+1π)ix + e(−2n+1π−αn)ix + e−iαnx − e−iπx

+ eiπx − eiαnx + e(2n+1π+αn)ix − e(2n+1π)ix
]

=
√

2
x
√

π

[
sin((2n+1π + αn)x)− sin(2n+1πx)

+ sin(πx)− sin(αnx)
]
.
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Substituting αn = 2n+1π
2n+2−1 ,

Fn =
√

2
x
√

π

[
sin
((

2n+1π +
2n+1π

2n+2 − 1

)
x
)
− sin

(
2n+1x

)
+ sin(πx)− sin

(
2n+1πx
2n+2 − 1

)]
.

Figures 2.6 through 2.11 are the wavelet sets and wavelet functions for
the n = 0, 1, 2 cases of the above example. These are all single wavelets,
which means no other functions are required to create bases for L2(Rn).
Using translation and dilation on these functions alone will create the basis
functions.
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Figure 2.6: Characteristic function of the wavelet set for n = 0:{
2π < |x| ≤ 8π

3
}⋃ { 2π

3 < |x| ≤ π
}

Figure 2.7: Wavelet function for n = 0:
F0(x) =

√
2

x
√

π

[
sin( 8π

3 x)− sin(2πx) + sin(πx)− sin( 2π
3 x)

]
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Figure 2.8: Characteristic function of the wavelet set for n = 1:{
4π < |x| ≤ 32π

7
}⋃{ 4π

7 < |x| ≤ π
}

Figure 2.9: Wavelet function for n = 1:
F0(x) =

√
2

x
√

π

[
sin( 32π

7 x)− sin(4πx) + sin(πx)− sin( 4π
7 x)

]



A Short One-Dimensional Example 15

Figure 2.10: Characteristic function of the wavelet set for n = 2:{
8π < |x| ≤ 128π

15

}⋃ { 8π
15 < |x| ≤ π

}

Figure 2.11: Wavelet function for n = 2:
F0(x) =

√
2

x
√

π

[
sin( 128π

15 x)− sin(8πx) + sin(πx)− sin( 8π
15 x)

]





Chapter 3

A Wavelet Set Algorithm

3.1 Introduction to the Algorithm

In this section, we will explain the process used in [2] to construct wavelet
sets. We will begin by examining the general procedure, and then consider
a specific example of one of this class of wavelet sets and how it is con-
structed.

We begin with an arbitrary set K0 ⊆ [−N, N]d ⊆ Rd. We require this
set to be a neighborhood of the origin (that is, it must contain some open
ball around the origin), and to have measure 1 (i.e., length one in R, area
one in R2, etc.). It must also be τ-congruent to [− 1

2 , 1
2 ]d. Recall from Def-

inition 2.7 that the τ-congruence of two sets A and B requires that there
exist countable partitions Ai and Bi and a piecewise-defined translation
fi(Bi) = Bi + ni = Ai, where ni ∈ Zd for each i.

In all the specific examples we consider in this paper, we will take K0
to be [− 1

2 , 1
2 ]d. However, this is not necessary for the construction to yield

wavelet sets. As shown in [2], other sets can be used for K0 as long as they
meet the conditions set forth in the previous paragraph.

Next, we define a transformation T which is defined on K0 such that
T : K0 −→ [−2N, 2N]d \ [−N, N]d. We further stipulate that, for any given
ξ ∈ K0, T(ξ) = ξ + kξ for some kξ ∈ Zd. Thus, we can think of T as a
piecewise-defined linear transformation. To prove that this process results
in a wavelet set, it is important to note that T must be a measure preserving
mapping.
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Now, to construct our wavelet set through an iterative process, first

A0 = K0
⋂⋃

j≥1

2−jK0

 .

That is, A0 is the intersection of K0 with the union of all half-scalings of it-
self. Now, we know that T can act on A0, since T : [−N, N]d −→ [−2N, 2N]d \
[−N, N]d and A0 ⊆ K0 ⊆ [−N, N]d. Thus, we proceed by defining

K1 = (K0 \ A0)
⋃

TA0 .

This set is the first in our sequence Kn, the limit of which is our wavelet set
K. We continue the process by defining

A1 = K1
⋂⋃

j≥1

2−jK1

 .

Again, we know that A1 ⊆ [−N, N]d, so T can act on A1. Thus we define

K2 = ((K0 \ A0) \ A1)
⋃

TA0
⋃

TA1 .

Continuing this process iteratively leads to the general definition of An as

An = Kn
⋂⋃

j≥1

2−jKn

 ,

and of Kn+1 as

Kn+1 = ((((K0 \ A0) \ A1) . . .) \ An)
⋃ (

TA0
⋃

TA1 . . .
⋃

TAn

)
.

From our construction, it can be shown that the limiting set K must be τ-
congruent to our original set K0. Thus, we know that K is τ-congruent to
[− 1

2 , 1
2 ]d.

As we saw in Theorem 2.1, in order for a set to be a wavelet set, it must
form partitions of Rd both by translation and by scaling. When a set is τ-
congruent to [− 1

2 , 1
2 ]d it must also form a partition of Rd by translation. A

full proof that K is a wavelet set based on Theorem 2.1 is provided in [2].
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3.2 An Example of the Process At Work in R2

To illustrate the construction in R2, consider K0 = [− 1
2 , 1

2 ]2. By setting
A1 = B1 = [− 1

2 , 1
2 ]2 and allowing n1 = 0, we can see that K0 is indeed τ-

congruent to [− 1
2 , 1

2 ]2 (see Figure 3.1). Note that for all these diagrams, the
sets are depicted by the black areas in the diagrams.

Figure 3.1: An example K0.

In this example, we take T to be

T(x1, x2) =


(x1 − 2N, x2 − 2N) x1 ∈ [0, N], x2 ∈ [0, N]
(x1 + 2N, x2 − 2N) x1 ∈ [−N, 0], x2 ∈ [0, N]
(x1 + 2N, x2 + 2N) x1 ∈ [−N, 0], x2 ∈ [−N, 0]
(x1 − 2N, x2 + 2N) x1 ∈ [0, N], x2 ∈ [−N, 0].

Now, we begin our construction for this T by calculating A0. In this case,
note that

∞⋃
i=1

2−iK0 =
∞⋃

i=1

[
− 1

2i+1 ,
1

2i+1

]2

=
[
−1

4
,

1
4

]2

.

Therefore, since A0 = K0 ∪ (
⋂∞

i=1 2−iK0), we can see that in this case A0 =
[− 1

4 , 1
4 ]2, and this set is shown in Figure 3.2(a). Recall

K1 = (K0 \ A0)
⋃

TA0 ,

and based on our calculations of A0 and K0, it follows that K1 is as shown
in Figure 3.2(b).

Now we examine A1 = K1
⋂ (⋃

j≥1 2−jK1

)
. This is more complicated

than A0 was, but in this case, A1 is shown in Figure 3.2(c). Using the T
we examined previously, we can then see that K2 is as shown in Figure
3.2(d). Continuing this process iteratively will generate a wavelet set K
which looks approximately like the sixth iteration of the process, as shown
in Figure 3.3.
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(a) A0 (b) K1 (c) A1 (d) K2

Figure 3.2: Illustrations of the Algorithm.

Figure 3.3: K6.
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Figure 3.4: Illustration of T1.

3.3 More Illustrations in Two Dimensions

In this section, we will illustrate three different T mappings and the se-
quence of K sets (K1, K2, K3 and K6) pertaining to each one. The first T
map is T1, illustrated in Figure 3.4, which we used in our example in the
previous section.

The mapping T2, shown in Figure 3.6, is similar to T1 in that it parti-
tions [−N, N]2 into squares as well. It translates those squares differently,
however, and the resulting wavelet set inherits this dynamic.

Our last example construction is with T3, which is illustrated in Figure
3.8. This T partitions the unit square into triangles which are then trans-
lated. An interesting property of this particular map is that the limiting
wavelet set will be connected, unlike the previous two cases.

In the next section we consider the convergence properties of this al-
gorithm. We will begin by examining the algorithm and its convergence
in one dimension. Then we will offer an examination of the algorithm in
multiple dimensions.
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(a) K1. (b) K2.

(c) K3. (d) K6.

Figure 3.5: Some Kn sets for T1.
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Figure 3.6: Illustration of T2.
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(a) K1. (b) K2.

(c) K3. (d) K6.

Figure 3.7: Some Kn sets for T2.
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Figure 3.8: Illustration of T3.
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(a) K1. (b) K2.

(c) K3. (d) K6.

Figure 3.9: Kn sets for T3.



Chapter 4

Convergence in One
Dimension

4.1 Why Convergence Matters

The convergence of the wavelet set algorithm is important for multiple rea-
sons. From a practical standpoint, convergence helps us determine how
useful this method would be in constructing wavelets for use in signal pro-
cessing applications. To construct a wavelet function by this method, we
must first use the method to approximate the wavelet set, and then ap-
proximate the inverse Fourier transform of that set. As such, the resulting
wavelets will not be a perfect orthonormal basis for L2(Rn). By examin-
ing the convergence of this algorithm, we can get an idea of how close the
resulting function will be to the wavelet function we desire.

From a more theoretical standpoint, examining the convergence of this
algorithm helps us understand the algorithm itself more fully. Especially
when we examine the algorithm in multiple dimensions, we will see some
interesting simplifications in the algorithm which become apparent through
our examination of its convergence. Even in one dimension, by examining
convergence of the algorithm, we acquire a better understanding of how it
works and its significance. We also examine convergence of this algorithm
to become more comfortable with the definitions and terminology used, as
well as out of sheer enjoyment of the mathematics involved.

This chapter extends the work on the algorithm presented in [2] by ex-
amining the convergence of the algorithm in the one-dimensional case.
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4.2 The Algorithm in One Dimension

In one dimension, we consider the case where K0 = [− 1
2 , 1

2 ]. In this case,
our T transformation is

T(x) =
{

x− 1, x > 0
x + 1, x < 0.

We can easily see that T maps K0 to [−1, 1] \ [− 1
2 , 1

2 ], as well as that it con-
forms to the other properties of such transformations mentioned in the pre-
vious chapter.

We can now begin to follow the algorithm. Clearly, A0 = [− 1
4 , 1

4 ] and
TA0 = [−1,− 3

4 ] ∪ [ 3
4 , 1]. Thus, we know that

K1 =
[
−1,−3

4

]
∪
[
−1

2
,−1

4

]
∪
[

1
4

,
1
2

]
∪
[

3
4

, 1
]

.

Continuing this process we find

K2n =

{
1 ≥ |x| ≥ 3

4
−

n−1

∑
j=1

4−(j+1)

}⋃
{

1
2

+
n

∑
j=1

2−(2j+1) ≥ |x| ≥ 1
2

}⋃
{

n

∑
j=1

2−(2j−1) − 1
2
≥ |x| ≥

n

∑
j=1

4−n

}
and

K2n−1 =

{
1 ≥ |x| ≥ 3

4
−

n−1

∑
j=1

4−(j+1)

}⋃
{

1
2

+
n−1

∑
j=1

2−(2j+1) ≥ |x| ≥ 1
2

}⋃
{

n−1

∑
j=1

2−(2j+1) − 1
2
≥ |x| ≥

n

∑
j=1

4−n

}
.
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Using the formula for geometric series, this simplifies to

K2n =

{
1 ≥ |x| ≥ 2 + 4−(n−1)

3

}⋃
{

2− 2−(2n+3)

3
≥ |x| ≥ 1

2

}⋃
{

1 + 2−(2n+3)

3
≥ |x| ≥ 1− 4−(n−1)

3

}
and

K2n−1 =

{
1 ≥ |x| ≥ 2 + 4−(n−1)

3

}⋃
{

2− 2−(2n+5)

3
≥ |x| ≥ 1

2

}⋃
{

1 + 2−(2n+5)

3
≥ |x| ≥ 1− 4−(n−1)

3

}
.

Taking the limits as n approaches infinity of these two expressions, we
have

lim
n→∞

K2n =
{

1 ≥ |x| ≥ 1
2

}
and

lim
n→∞

K2n−1 =
{

1 ≥ |x| ≥ 1
2

}
.

This is good, since the process is designed to converge to one set. Thus, we
know that our limiting wavelet set has the form

K =
[
−1,−1

2

]⋃ [
1
2

, 1
]

.

Note that this is the wavelet set for the Shannon wavelet we used as an
example in Chapter 2.

However, while a convergence analysis on the sets themselves would
be interesting, the most useful information is a convergence analysis on
the intermediary functions, the limit of which will be our wavelet function.
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To do this, we must take the inverse Fourier transforms of the sets above.
Recall that the inverse Fourier transform of a function f is defined to be

(F−1 f )(t) =
1√
2π

∫ ∞

−∞
f (s)eist ds.

In this case, we are examining the inverse Fourier transforms of the char-
acteristic functions of the Kn sets. Thus, our inverse Fourier transforms are
merely

(F−1χKn)(t) =
1√
2π

∫
Kn

eist ds.

Furthermore, all our sets are symmetric with respect to the y-axis. This
means that our functions will all be real, because∫

Kn

eist ds =
∫

Kn

(cos(st) + i sin(st)) ds.

Since sin(ts) is odd in s and Kn is symmetric about the y-axis, we know that
the integral of sin ts over Kn must be zero. Therefore,

(F−1χKn)(t) =
1√
2π

∫
Kn

cos(st) ds.

As an example, we compute in detail, without using the shortcut above,
the inverse Fourier transform of the even sets. A similar examination of the
odd sets would be tedious and redundant given their similarity to the even
sets. Consider the even sets

K2n =

{
1 ≥ |x| ≥ 2 + 4−(n−1)

3

}⋃
{

2− 2−(2n+3)

3
≥ |x| ≥ 1

2

}⋃
{

1 + 2−(2n+3)

3
≥ |x| ≥ 1− 4−(n−1)

3

}
.
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Now, we define the inverse Fourier transforms of the sets to be

F2n = F−1(χK2n(t))

=
∫

K2n

1√
2π

eixt dt

=
1√
2π

[∫ 1

2+4−(n−1)
3

eixt dx +
∫ − 2+4−(n−1)

3

−1
eixt dx

+
∫ 2−2−(2n+3)

3

1
2

eixt dx +
∫ − 1

2

− 2−2−(2n+3)
3

eixt dx

+
∫ 1+2−(2n+3)

3

1−4−(n−1)
3

eixt dx +
∫ − 1−4−(n−1)

3

− 1+2−(2n+3)
3

eixt dx

]

=
1

ix
√

2π

[
eix − eix 2+4−(n−1)

3 + e−ix 2+4−(n−1)
3 − e−ix

+ eix 2−2−(2n+3)
3 − eix 1

2 + e−ix 1
2 − e−ix 2−2−(2n+3)

3

+eix 1+2−(2n+3)
3 − eix 1−4−(n−1)

3 + e−ix 1−4−(n−1)
3 − e−ix 1+2−(2n+3)

3

]
.

However, we know that eit − e−it = 2it sin t. Therefore, we know that

F2n =
√

2
x
√

π

[
sin(x)− sin

(
2 + 4−(n−1)

3
x

)
+ sin

(
2− 2−(2n+3)

3
x

)

− sin
(

1
2

x
)

+ sin

(
1 + 2−(2n+3)

3
x

)
− sin

(
1− 4−(n−1)

3
x

)]
.

A similar analysis of the odd sets shows us that

F2n−1 =
√

2
x
√

π

[
sin(x)− sin

(
2 + 4−(n−1)

3
x

)
+ sin

(
2− 2−(2n+5)

3
x

)

− sin
(

1
2

x
)

+ sin

(
1 + 2−(2n+5)

3
x

)
− sin

(
1− 4−(n−1)

3
x

)]
.

Now we have formulas for all of the functions produced by taking the
inverse Fourier transforms of the intermediary sets in the process for con-
structing wavelet sets. Furthermore, we know that the limit set is

K =
[
−1,−1

2

]⋃ [
1
2

, 1
]
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and therefore that the limiting wavelet function is

F(x) =
1√
2π

∫
Kn

cos(xs) ds

=
1√
2π

[∫ − 1
2

−1
cos(xs) ds +

∫ 1

1
2

cos(xs) ds

]

=
1

x
√

2π

[
sin
(
−x
2

)
− sin(−x) + sin(x)− sin(

x
2
)
]

.

However, sin x is an odd function, so sin(−x) = − sin(x), so

F(x) =
1

x
√

2π

[
2 sin(x)− 2 sin

( x
2

)]
=
√

2
x
√

π

[
sin (x)− sin

( x
2

)]
.

In the next section, we examine the differences between the intermedi-
ary functions and the limit function.

4.3 Convergence Analysis

We used Matlab to compare the intermediary functions with the limiting
wavelet function. To do so, we sampled each of the functions on the in-
terval [−15.00001, 14.99999] with a step size of 0.0001. The reason for the
shifting of the interval was that, as we saw above, the functions all have
a factor of x in their denominators. As such, Matlab cannot evaluate the
functions at 0, so by shifting the interval a small amount, we can use Mat-
lab to examine the functions around zero without having to deal differently
with the discontinuity.

Once we had sampled each of the functions (including the limit func-
tion), we compared the intermediary functions Fn to the limit function F
using a number of different methods. Let XFn denote the vector of sampled
points of Fn, let XF denote the vector of sampled values of F, and let M
denote the length of each vector. Furthermore, if Y is a vector, we use Y(i)
to denote the ith component of the vector, indexed from 0.

The first method of analysis was a variation on error in quadrature. The
formula is

EC(n) =

√√√√ M

∑
i=0

(XFn(i)− XF(i))2.
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The second method was a simple average of absolute errors:

AE(n) = ∑M
i=0 |XFn(i)− XF(i)|

M
.

The third method was a maximum absolute error:

ME(n) = max
0≤i≤M

|XFn(i)− XF(i)|.

The fourth and fifth methods were p-norms for p = 3 and p = 10:

P(n, p) =

(
M

∑
i=0
|XFn(i)− XF(i)|p

) 1
p

.

Table 4.1 states the results of these calculations for all values of n be-
tween 3 and 15, as well as results for F30, F45, F60 and F75. The plot in Figure
4.1 shows these results plotted for n between 3 and 15, and Figure 4.2 shows
a logarithmic plot of the same results. Figures 4.3, 4.4 and 4.5 show plots of
the fifth, seventh, and ninth functions, respectively, against the limit func-
tion F.

Notice, in Table 4.1, the errors for F60 and F75 are equal. We therefore
hypothesize that by F60 or so, we have reached the point at which com-
putation errors have a greater effect on the convergence of the algorithm
than the algorithm itself. Just by examining this table, we can see that the
algorithm is converging quite rapidly.

As a further illustration of this, consider Figures 4.1 and 4.2. The first
of these plots is a normal line plot of the errors from Table 4.1. The second,
however, is the same plot on a logarithmic scale. This plot clearly demon-
strates that the error in the even functions and the error in the odd func-
tions each decays at a logarithmic rate. Now consider Figures 4.3, 4.4 and
4.5. These figures serve as a further illustration of the dramatic decreases
in error, of these functions. We can see that F5 differs from F substantially
in only a few places, and by F9, the functions essentially overlap with F, the
limiting function.

There are a number of interesting features of the errors in these func-
tions to be noted. The increase of the error in even numbered functions
over odd numbered ones is particularly intriguing. This is not a feature we
will see repeated in our examination of multidimensional convergence in
the next section. As such, we hypothesize that this is unique to the one-
dimensional case. In any case, this would be an interesting area for further
investigation.
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Figure 4.1: Plot of convergence data
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Figure 4.2: Logarithmic plot of convergence data
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Figure 4.3: Comparing F5 with F

Figure 4.4: Comparing F7 with F

Figure 4.5: Comparing F9 with F



Chapter 5

The Algorithm: Convergence
in Higher Dimensions

We now move to a discussion of convergence in higher dimensions, further
extending the work on the algorithm from [2]. This discussion illuminates
some interesting features of the algorithm itself. The aim of our discussion
is to examine how quickly this algorithm converges to the limiting wavelet
set. Now, at each step, there are two things that change about the set. Con-
sider the two subsets of Kn defined by:

K−n = ((K0 \ A0) \ . . . \ An−1) (5.1)
and (5.2)

K+
n = TA0

⋃
. . .
⋃

TAn−1. (5.3)

The key insight is that at each step, the two differences lie in the removal
of An−1 from K−n and the addition of TAn−1. Our idea is to show that the
size of An decreases as n increases, and this will give us a general idea of
the speed of convergence of the algorithm.

To find a bound on the size of An we will be using the usual Lebesgue
measure µ. The key property of this measure for our purposes is that, if A
and B are sets with Lebesgue measure, then

µ(A ∩ B) ≤ min{µ(A), µ(B)}. (5.4)

This property follows intuitively from the fact that A ∩ B must be a subset
of both A and B, so it cannot be larger than either one. Therefore, it also
must be (at most) as large as the smaller of the two.

Now that we have established the importance of examining the sizes of
An, we begin our examination of simplifications of the algorithm.
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5.1 General Simplifications

In this section, we discuss the assertion that

An = K−n
⋂(

∞⋃
i=1

2−iTAn−1

)
. (5.5)

For a complete and rigorous proof of this assertion, please refer to the ap-
pendix. In this section, we will discuss this proof from a more intuitive
standpoint, and leave the appendix to the interested reader.

To begin with, we examine the definitions of K−n and K+
n given in equa-

tions (5.1) and (5.3) above. We can use the definitions in the algorithm to
find bounds on these two sets. That is, we know that K−n is a subset of
K0, which in turn is a subset of [−N, N]d. We also know that T maps from
K0 into what we will refer to as a square annulus, [−2N, 2N]d \ [−N, N]d.
From this we can conclude that since K+

n is a union of sets which have all
been acted upon by T, K+

n must be a subset of the square annulus. Merely
by using these two containment properties, then, we can show that

An = K−n ∩
(

∞⋃
i=1

2−iKn

)
, (5.6)

which simplifies An substantially.
Now, by the properties of intersections and unions of sets and using

the fact that Kn = K−n ∪ K+
n by definition, we know that equation (5.6) is

equivalent to

An =

(
K−n ∩

(
∞⋃

i=1

2−iK−n

))⋃(
K−n ∩

(
∞⋃

i=1

2−iK+
n

))
.

By carefully manipulating our definitions of An and Kn, and by using
properties of complements, intersections and unions of sets, we can show
that

K−1 ∩
(

∞⋃
i=1

2−iK−1

)
= ∅.

However, since each K−n is contained in each of the K−m with m less than n,
this in fact shows that

K−n ∩
(

∞⋃
i=1

2−iK−n

)
= ∅, (5.7)
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which further simplifies An to

An = K−n ∩
(

∞⋃
i=1

2−iK+
n

)
. (5.8)

At this point, we are only one step away from the result we desire, albeit
a very long and complicated step. We are trying to show that An simplifies
from the expression in equation (5.8) to

An = K−n ∩
(

∞⋃
i=1

2−iTAn−1

)
. (5.9)

Since K+
n = TA0 ∪ . . .∪ TAn−1, we are actually very close to our final result.

To prove this last step, we use an inductive argument. Clearly the base case
holds, since K+

1 = TA0 and thus

A1 = K−1 ∩
(

∞⋃
i=1

2−iTA0

)
,

which conforms with the expression in equation (5.9). We then proceed
by strong induction, and assume that equation (5.9) holds for all j ≤ n− 1.
After yet again using properties of complements, intersections, unions, and
the definitions of the sets themselves, we find that all terms in K+

n cancel
except the last one, leaving us with

An = K−n ∩
(

∞⋃
i=1

2−iTAn−1

)
. (5.10)

For reasons that will become apparent in the next section, we have rea-
son to believe that An can be simplified yet further. As we will discuss in
the case of K0 = [− 1

2 , 1
2 ]d, in that case we have shown that, in fact,

An = K−n ∩
(

1
2

TAn−1

)
.

In the general case, however, we leave this as a conjecture. This conjecture
is supported not only by its proof in the special case. The algorithm we
use for this procedure depends on its truth. Although the algorithm does
not implement the extensive simplifications we have shown here, it does
depend on the fact that the infinite union in the expression for An simpli-
fies to a single half-scaling, as we have hypothesized. Since the algorithm
works as expected, this serves as a fairly strong indication that this conjec-
ture is correct. Nevertheless, it remains to be proven rigorously.
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5.2 Starting With a Box

The most important special case of this theorem is that in which we start
with K0 = [− 1

2 , 1
2 ]d, or a d-dimensional box. In this case, we can prove the

conjecture in the last section. That is, we have found a sufficient bound on
An. In this case, the previous analysis still holds, so we already know that

An = K−n ∩
(

∞⋃
i=1

2−iTAn−1

)
. (5.11)

However, in the case where K0 = [− 1
2 , 1

2 ]d, we can see that A0 = [− 1
4 , 1

4 ]d.
Therefore,

K−n ⊆ K0 \ A0 =
[
−1

2
,

1
2

]d

\
[
−1

4
,

1
4

]d

.

We also know that

TAn ⊆ [−1, 1]d \
[
−1

2
,

1
2

]d

.

This means that, for i ≥ 2,

2−iTAn ⊆
[
−1

4
,

1
4

]d

and therefore that
2−iTAn−1

⋂
K−n = ∅.

Therefore, we know that, in this case,

An = K−n
⋂ 1

2
TAn−1. (5.12)

Now, we know that K−n ⊆ K0, so µ(K−n ) ≤ 1. We also know that
µ(A0) = ( 1

2 )d. As we discussed earlier, we can conclude from equation
(5.12) that

µ(An) ≤ min(µ(TAn−1), µ(K−n )). (5.13)

Most importantly, we know that T is a measure-preserving mapping, so
µ(TAn−1) = µ(An−1) and therefore,

µ(An) ≤ µ(An−1).
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Therefore, since µ(A0) = ( 1
2 )d, we know that

µ(An) ≤ 2−(d+n). (5.14)

Now that we have a bound on µ(An), we examine the general iteration
process. Recall that Kn = K−n ∪ K+

n . At each step we perform two oper-
ations. We subtract An−1 from K−n−1 and we add TAn−1 to K+

n−1. Since T
must be a measure-preserving mapping, these two operations are the same
size, so to speak. That is,

µ(An−1) = µ(TAn−1).

This gives us a sense of how quickly this process is converging to the limit-
ing wavelet set, since µ(An) is bounded as shown in equation (5.14).

Furthermore, we can calculate the maximum measure of all the An to-
gether. Recall that

K−n = ((K0 \ A0) \ . . . \ An−1),

so if we refer to the limit set as K∞, then in the limit,

K−∞ = K0 \ A0 \ A1 \ . . . ,

where we have left out parentheses but tacitly maintain the order of oper-
ations from the original definition. As long as the size of all the An put to-
gether is less than the size of K0, this set will have finite, nonzero Lebesgue
measure, as desired.

We know from equation (5.14) that
∞

∑
i=0

µ(Ai) ≤
∞

∑
i=0

2−(d+i)

=
2−d

1− 1
2

= 2−(d−1).

Thus the total measure of the An is at most 2−(d−1), and so for d > 1 we
know that the total measure of the An is at most 1

2 . Since K0 = [− 1
2 , 1

2 ]d, as
we saw above,

µ(K0) = 1 > 2−(d−1) =
∞

∑
i=0

µ(Ai). (5.15)

Thus, we also know that K−∞ will have finite, nonzero measure. This proves
that, in this special case, the algorithm will converge, as well as giving us a
sense of how quickly it does so.
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5.3 Conclusions and Remarks

This chapter, in conjunction with the rigorous proofs in the appendix, pro-
vides a fairly good understanding of the convergence of the Kn in the mul-
tidimensional case. In the case where K0 is a box, we have an even more
precise understanding of the process. However, this does not end our in-
quiry into the convergence of the process as a whole. After all, our end re-
sult is to arrive at a wavelet function, which we create by taking the inverse
Fourier transform of the characteristic function of the limiting wavelet set.
So we need to discuss how our examination of convergence in the wavelet
set relates to the convergence properties of the wavelet function.

In the case of the box, this is fairly straightforward. As µ(An) decreases,
so will the amount by which the function changes at any given step. Again,
the characteristic function of Kn is one on the set and zero elsewhere, so

(F−1χKn)(x) =
∫

Kn

eisx ds.

Furthermore, we can easily see that if A and B are subsets of Rn and A ∩
B = ∅, then

χA∪B(t) = χA(t) + χB(t).

By the containment properties we have been using throughout this chapter,
we know that K−n and K+

n are disjoint, so

χKn(t) = χK−n (t) + χK+
n
(t). (5.16)

Now, the difference between K−n−1 and K−n is the set An, which has
measure at most 2−(d+n). Therefore, the difference between their inverse
Fourier transforms will be the integral over that same small set of eisx. The
same logic applies to the difference between K+

n−1 and K+
n . Thus, the differ-

ence between two consecutive Fn, where Fn is the inverse Fourier transform
of χKn , is a pair of integrals over increasingly tiny sets of eisx, a function that
is bounded over any bounded set (such as the Kn). Note that |eisx| ≤ 1, so∥∥∥∥∫A

eisx dx
∥∥∥∥ ≤ µ(A).

Although this does not constitute a rigorous proof or concept of conver-
gence, it gives us an idea that the functions are converging similarly rapidly
to the sets.



Chapter 6

Coding the Algorithm

In this chapter, we discuss the process for implementing the algorithm in
Matlab. To do this, we adapt the pseudocode given in [2] for their algo-
rithm. Matlab is not the only programming tool we could have used, but
we hope this discussion will illuminate the implementation process in gen-
eral, and facilitate the implementation process by providing an extensive
discussion of the code, rather than the pseudocode given in [2]. We begin
by examining the auxiliary functions which are required to run the algo-
rithm, then discuss the algorithm itself, and finally briefly discuss how to
use Matlab to explore the algorithm as we have done.

6.1 Auxiliary Functions

The first auxiliary function we include is the function inK.m, which deter-
mines if a vector is an element of K0 = [− 1

2 , 1
2 ]d.

function [bb] = inK(x)

% Given a vector x, this function outputs a 1 if
% x is in K 0 = [−0.5,0.5]ˆd where d is the length
% of x. Otherwise, the function outputs a 0.

bb = 1;

for i = 1:length(x)
if abs(x(i)) > 0.5

bb = 0;
end;

end;
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The next two functions are inN1.m and inN2.m, and they determine if
a vector is in [− 1

2 , 1
2 ]d and [−1, 1]d, respectively. These are the two sets

[−N, N]d and [−2N, 2N]d from the algorithm. Our first function is inN1.m:

function [cc] = inN1(x)

% Given a vector "x", determines if x is in the smaller
% box [−N,N]ˆd which bounds K 0 from inK.m.

cc = 1;

for i = 1:length(x)
if abs(x(i)) > 0.5

cc = 0;
end;

end;

Our second function is inN2.m:

function [ff] = inN2(x)

% Given a vector "x", determines if x is in the larger
% box [−2N,2N]ˆd where [−N,N]ˆd bounds K 0 from inK.m.

ff = 1;

for i = 1:length(x)
if abs(x(i)) > 1.0

ff = 0;
end;

end;

The next function we include is called inRangeT.m, and this function
determines whether a vector is in the range of T1 as explained earlier in
this paper. It is important to note that, when different T transformations
are used, this function must be rewritten to reflect the different ranges in-
volved. For other sample versions of this function, please see the appendix.

function [dd] = inRangeT(x)

% Given a vector "x", determines if x is in the range
% of the transformation T 1.

dd = 1;
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for i = 1:length(x)
if abs(x(i)) > 1

dd = 0;
elseif abs(x(i)) < 0.5

dd = 0;
end;

end;

6.2 The Algorithm Itself

In this section, we begin by including the code createSet.m. We then pro-
ceed by examining the algorithm more closely and explaining how it con-
forms with the algorithm as we explained it earlier in this paper. The code
is as follows:

function [aa] = createSet(x, n)

% Given a vector "x" and an integer "n", outputs whether or not
% x is in the nth iteration of the wavelet set algorithm performed
% on the set K from the program inK.m

aa = 0;

% Checks if the iteration requested is the zeroth. If so,
% outputs the same value as that of inK, or the set K 0.
if n == 0

aa = inK(x);
return

end;

% Checks if the vector x is (not) in [−N,N]ˆd ...
if inN1(x) == 0

% If x is neither in [−N,N]ˆd nor in the range of T, then
% x cannot be in K n.
if inRangeT(x) == 0

aa = 0;
return
end;

% If x is not in [−N,N]ˆd, but is in the previous set K {n−1},
% then x is in K n.
if createSet(x, n−1) == 1

aa = 1;
return
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end;

% Since x (not in [−N,N]ˆd) is in the range of T, we can now
% redefine it to be its inverse image under T.
x = Tinverse(x);

% If that inverse image is in the previous set K {n−1} ...
if createSet(x, n−1) == 1

% If 2Tˆ{−1}(x) is in [−2N,2N]ˆd and 2Tˆ{−1}(x) is in the
% previous set K {n−1}, then x is in K n.
if inN2(2.*x) == 1 && createSet(2.*x, n−1) == 1

aa = 1;
return

% If the above condition is not met, x is not in K n.
else

aa = 0;
return
end;

end;
end; % Ends examination of x not in [−N,N]ˆd (and resets to

% original x from 2Tˆ{−1}(x)).

% If x is in the previous set K {n−1} ...
if createSet(x, n−1) == 1

% If 2x is in [−2N,2N]ˆd and 2x is in the previous set K {n−1}
% then x is not in K n.
if inN2(2.*x) == 1 && createSet(2.*x, n−1) == 1

aa = 0;
return

% Otherwise, x is in the set if and only if x was in K {n−1}.
else

aa = createSet(x, n−1);
return
end;

end;

Since it is important for our work, we will go over this code more care-
fully and explain how each part corresponds to the algorithm.
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aa = 0;

% Checks if the iteration requested is the zeroth. If so,
% outputs the same value as that of inK, or the set K 0.
if n == 0

aa = inK(x);
return

end;

This section of the code begins by presuming that our vector x is not in
the set we are constructing and then examines the base case when n = 0. In
this case, we wish to output K0, which is defined by the auxiliary function
inK. The function returns the value of inK applied to x, as desired.

This next section of code is long and complicated, so we start by noting
that it begins with the following code.

% Checks if the vector x is (not) in [−N,N]ˆd ...
if inN1(x) == 0

That is, none of the following cases are run for those vectors in the
smaller box [−N, N]d. The first case is as follows:

% If x is neither in [−N,N]ˆd nor in the range of T, then
% x cannot be in K n.
if inRangeT(x) == 0

aa = 0;
return
end;

This case is rather self-explanatory using the comment in the code. Re-
call that K−n = ((K0 \ A0) \ . . . \ An−1 and K+

n = TA0 ∪ . . . ∪ TAn−1. If x is
in neither the smaller box nor the range of our transformation T, then it can
be in neither K−n ⊆ K0 ⊆ [−N, N]d nor K+

n ⊆ range(T). The next case is:

% If x is not in [−N,N]ˆd, but is in the previous set K {n−1},
% then x is in K n.
if createSet(x, n−1) == 1

aa = 1;
return
end;

This case reflects the fact that if x is not in the smaller box [−N, N]d

but is in the previous set Kn−1, then x must be an element of K+
n−1. Since

K+
i ⊆ K+

j for all i < j, we know that if x ∈ K+
n−1 then x ∈ K+

n ⊆ Kn. Now,
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after these cases, we know that all other x 6∈ [−N, N]d must be in the range
of our transformation T, so we redefine x to be its inverse under T:

% Since x (not in [−N,N]ˆd) is in the range of T, we can now
% redefine it to be its inverse image under T.
x = Tinverse(x);

Once we have done this, we examine some possibilities about this new
value for x. For clarity, although it is denoted as a simple x in the code, we
will continue to refer to it as T−1(x) in our explanation.

% If that inverse image is in the previous set K {n−1} ...
if createSet(x, n−1) == 1

This code states that the next conditional statement only applies to those
x such that T−1(x) ∈ Kn−1.

% If 2Tˆ{−1}(x) is in [−2N,2N]ˆd and 2Tˆ{−1}(x) is in the
% previous set K {n−1}, then x is in K n.
if inN2(2.*x) == 1 && createSet(2.*x, n−1) == 1

aa = 1;
return

% If the above condition is not met, x is not in K n
else

aa = 0;
return
end;

This conditional statement considers the vector y = 2T−1(x). If y ∈
[−2N, 2N]d and y ∈ Kn−1, then x ∈ Kn. This deals with the part of the
algorithm in which we calculate An and transform it by T. We can see that,
in this case, y ∈ K+

n−1 and thus x ∈ T( 1
2 K+

n−1). At this point, we also end
all the previous conditional statements, effectively resetting x to its original
value (since in this case it would never have been changed).

The final piece of code is conditional upon the following statement:

% If x is in the previous set K {n−1} ...
if createSet(x, n−1) == 1

Now, recall that at this point, x ∈ [−N, N]d, so this statement that x ∈
Kn−1 is really a stipulation that x ∈ K−n−1. If so, then the following code is
executed:
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% If 2x is in [−2N,2N]ˆd and 2x is in the previous set K {n−1}
% then x is not in K n.
if inN2(2.*x) == 1 && createSet(2.*x, n−1) == 1

aa = 0;
return

% Otherwise, x is in the set if and only if x was in K {n−1}.
else

aa = createSet(x, n−1);
return
end;

This final conditional statement, then, explores the case where x ∈ K−n−1
and 2x ∈ K+

n−1. If this is the case, then clearly x ∈ Kn−1 ∩ 1
2 Kn−1, so x ∈

An−1 and therefore x 6∈ Kn. Finally, if x ∈ K−n−1 and 2x 6∈ K+
n−1, then x ∈ Kn.

This reflects the fact that those elements of K−n−1 which are not in An−1 will
remain and be elements of Kn.

Now that we have explained the functions we use to implement this al-
gorithm, we will explain the command line methods we can use to explore
the algorithm with Matlab.

6.3 Using Matlab to Explore the Algorithm

The functions explained above provide us the tools we need to explore this
algorithm with Matlab. However, we must know the correct commands
to use on the command line to properly use these functions. To do this, we
begin by providing an example series of commands which will create a plot
of K10 using the transformation T1 as in Figure 3.5. To use these commands,
we first must write the program createZ.m.

function [gg] = createZ(x, y, n)

% Given x, y as used to create meshgrid, creates a matrix of Z values
% from createSet

gg = zeros(length(x), length(y));

for i = 1:length(x)
for j = 1:length(y)

gg(i, j) = createSet( [x(i), y(j)], n);
end;

end;
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This function takes as input a pair of vectors x and y. These vectors
will later be used on the command line with the function meshgrid, which
creates a matrix of all possible pairings of components of these matrices.
This matrix is then used to create the contour plots we need. The program
createZ takes these same x and y as input and outputs a vector which can
be used as the Z, or height values for our contour plots, from the function
createSet.

>> x = −1.5:0.0005:1.5;
>> y = −1.5:0.0005:1.5;
>> [X, Y] = meshgrid(x, y);
>> Z = createZ(x, y, 10);

The commands up until this point have created X, Y and Z, which we
will now use to create a contour plot as in Figure 3.5.

>> contourf(X, Y, Z)
>> colormap bone
>> colormapeditor

The last two commands here are completely optional. The first changes
the plot to one which is black and white, where the white areas denote
points in the set K10. The last command, colormapeditor, allows us to
change the colors so that black areas denote points in the set.

There are a couple of Matlab tips to note before we move on. First of
all, using semicolons after the lines in the first section of code may seem
blatantly obvious, but is worth mentioning. Forgetting to do this will fill
your screen with vectors and matrices, not to mention taking up extra time.
There are many colormaps which can be used, but especially for character-
istic functions of sets, it is easiest to see the set when the contour map is in
black and white. We chose the bone colormap to do this, but this is only
one of a few options.

Now we briefly discuss the process by which we can visualize the in-
verse Fourier transforms of these characteristic sets. The key point here is
to remember to use the ifftshift function to ensure that the Fourier trans-
formed function is oriented properly. The correct code is below, and will
produce two plots, one of the absolute values of the function, and one of
the real values.

>> S = ifftshift(ifft2(Z));
>> contourf(X, Y, abs(S))
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(a) |F (F10)|. (b) <(F (F10)).

Figure 6.1: Unzoomed plots.

(a) |F (F10)|. (b) <(F (F10)).

Figure 6.2: Zoomed plots.

>> figure
>> contourf(X, Y, real(S))

The resulting plots will not look like wavelet functions, as seen in Figure
6.1. However, once we zoom in on the origin a few times, we get the plots
in Figure 6.2.

The other important error to note is that of not shifting the inverse
Fourier transform using the ifftshift function. In this case, the situa-
tion in Figure 6.3 will result. If we zoom in on a corner, we get the results
in Figure 6.4.

Note that in these zoomed figures, we have zoomed in on the upper left
hand corner, or the corner in the second quadrant. The other corners are
similar, with appropriate symmetries taken into account.
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(a) |F (F10)|. (b) <(F (F10)).

Figure 6.3: Unzoomed, unshifted plots.

(a) |F (F10)|. (b) <(F (F10)).

Figure 6.4: Zoomed, unshifted plots.
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The last bit of code we include in this section is the code used to com-
pare sets of functions as in the chapter on convergence in one dimension.
This code is well commented and fairly self-explanatory. For definitions of
the error methods used, see Section 4.3.
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function [] = compYs(x,y1,y2)

% Computes different comparisons between two different "functions"
% sampled at the same points x and plots y1 against y2 on the
% same set of axes.
% Inputs:
% x = a vector of x−values
% y1 = a vector of samples of the first function (at x)
% y2 = a vector of samples of the second function (at x)
%
% Computes the following comparisons:
%
% Error in Quadrature of Real Values:
% SQRT( SUM( ABS( y1(i)−y2(i) )ˆ2 ) )
%
% Average Absolute Error (N is the number of points in x):
% SUM( ABS( y1(i) − y2(i) ) ) / N
%
% Maximum Error in Real Values:
% MAX( ABS( y1(i) − y2(i) ) )
%
% p−Norm for p = 3:
% NORM( y1 − y2 , 3)
%
% p−Norm for p = 10:
% NORM( y1 − y2 , 10)

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Check to make sure sizes of vectors all match
if length(x) 6= length(y1)

disp('Error: These vectors have unequal lengths')
return;

elseif length(x) 6= length(y2)
disp('Error: These vectors have unequal lengths')
return;

end;

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Compute Re, which is a vector of absolute values of errors in real
% values of y1 and y2, respectively (if y1 and y2 are real, simply
% computes the absolute values of the differences between components
% of y1 and y2):

Re = zeros(length(x),1);

for i = 1:length(x)
Re(i) = real(y1(i)) − real(y2(i));
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end;

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Compute error in quadrature for real values:

ECA = 0;

for i = 1:length(x)
ECA = ECA + Re(i)ˆ2;

end;

ECA = sqrt(ECA);

% Display error in quadrature for real values:
disp('The error in quadrature of the real values is:')
disp(ECA)

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Compute average error in real values:

AEA = 0;

for i = 1:length(x)
AEA = AEA + abs(Re(i));

end;

AEA = AEA/length(x);

% Display average error in real values:
disp('The average error in real values is:')
disp(AEA)

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Compute maximum error in absolute values:

MEA = max( abs(Re) );

% Display maximum error in real values:
disp('The maximum absolute real error is:')
disp(MEA)

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Compute the 3−Norm of absolute values:
N3 = norm(abs(Re), 3);
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% Display the 3−Norm:
disp('The 3−Norm of the real error vector is:')
disp(N3)

% Compute the 10−Norm:
N10 = norm(abs(Re), 10);

% Display the 10−Norm:
disp('The 10−Norm of the real error vector is:')
disp(N10)

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Creates a set of three subplots displaying the following:
% 1. The real parts of y1 and y2
% 2. The imaginary parts of y1 and y2
% 3. The absolute values of y1 and y2

subplot(2,1,1);
plot(x,real(y1),x,real(y2))
axis([−15 15 −0.4 0.4])
title('Real Parts')
h = legend('Actual','Approximate',2);
set(h,'Interpreter','none')
subplot(2,1,2);
plot(x,abs(y1),x,abs(y2))
axis([−15 15 0 0.4])
title('Absolute Values')
h = legend('Actual','Approximate',2);
set(h,'Interpreter','none')
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Future Work

There are many aspects of this topic in which opportunities for future work
abound. The most obvious is that of proving the final hypothesis regard-
ing convergence of the process in general multi-dimensional cases. We can
see from the coded algorithm that this hypothesis must be true for the al-
gorithm to work properly. All that remains is to find a rigorous mathe-
matical proof of this step. There is also the question of the convergence in
the one-dimensional case, where the even functions F2n were consistently
farther away from the limit than the odd functions F2n−1 of smaller index.
It would be interesting to see if this sort of behavior was unique to the
one-dimensional case, and if so, if it occurs in all one-dimensional imple-
mentations of the algorithm.

Another interesting theoretical direction to take this topic would in-
volve some recent work by Kathy Merrill on wavelet sets that are finite
unions of convex sets. Professor Merrill presented a preliminary report on
this work at the special session on wavelet sets and tilings of Rn at the Joint
Mathematics Meetings of 2008 in San Diego. These sets are constructed us-
ing a similar procedure, and it would be interesting to examine such sets
in the context of the algorithm examined in this paper. It would also be
interesting to investigate the convergence properties of those cases, and
to evaluate any differences between those properties and the convergence
patterns observed in this paper.

On a less theoretical note, there are a number of computational prob-
lems which could be interesting and accessible on this topic. The first
would be to examine implementation of this algorithm in other programs,
such as Python or Mathematica. The algorithm can clearly be adapted to
other programming languages, but it would be interesting to examine the
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benefits and challenges of those languages compared with Matlab. This
would also be helpful in determining the applicability of the results of this
analysis. Perhaps in another language, there is a more effective, efficient
or accurate method of acquiring the wavelet function associated with the
limiting set. This would be not only interesting but also useful in terms of
finding applications for this work.

Similarly, it is possible that this algorithm can be streamlined to make it
more efficient. As it stands, the auxiliary functions appear to be the main
source of slow run-times, especially as the T transformations become more
complicated (see Appendix B for examples). These functions are called
multiple times, which increases the effect their inefficiency can have on the
algorithm as a whole. Using the simplest T transformation and running the
sixth iteration of the algorithm takes over seven minutes. The most com-
plicated T transformation, T2, takes around fourteen minutes to run the
sixth iteration. Even if the algorithm itself cannot be improved, it would
be useful to find a better method of implementing the necessary auxiliary
functions to run the code.

Finally, we have not yet investigated implementation of this algorithm
on starting sets K0 which are not the box [− 1

2 , 1
2 ]d. Clearly, such an imple-

mentation is possible and would be a valuable aspect of the algorithm to
implement in code. Again, a significant source of increased run-time can
be caused by increased complication of K0. Nonetheless, this type of set,
with non-box versions of K0, seem to be less commonly examined in the
literature, so it would be useful to develop a number of examples of their
usage and implementation.

Beyond these specific examples, the topic of wavelet sets is a relatively
recent development in mathematics, and there are many avenues available
for study. We hope that this thesis has provided an introduction to the in-
teresting properties of wavelet sets, as well as a glimpse into the difficulties
and rewards associated with their study. We would encourage the inter-
ested reader to consult the papers cited in the bibliography.



Appendix A

General Convergence Proofs

In this appendix, we show the results from Chapter 3 in a more rigorous
format. We begin with a lemma.

Lemma A.1. In the construction set forth by Benedetto and Leon,

K−n ∩
(

∞⋃
i=1

2−iK−n

)
= ∅.

Proof: To prove this lemma, we first examine the case where n = 1. In
this case, we are examining the quantity

Q = K−1 ∩
(

∞⋃
i=1

2−iK−1

)
.

Now we use the properties of set intersections, unions and comple-
ments, to find:

Q = K−1 ∩
(

∞⋃
i=1

2−iK−1

)

= (K0 \ A0) ∩
(

∞⋃
i=1

2−i(K0 \ A0)

)

= (K0 ∩ A0) ∩
(

∞⋃
i=1

2−i(K0 ∩ A0)

)
. (A.1)

However, we know that, by definition,

A0 = K0 ∩
(

∞⋃
i=1

2−iK0

)
.
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Therefore,

A0 = K0 ∩
(

∞⋃
i=1

2−iK0

)

= K0 ∪
(

∞⋃
i=1

2−iK0

)
.

Thus, note that

K0 \ A0 = K0 ∩ A0

= K0 ∩

K0 ∪
(

∞⋃
i=1

2−iK0

)
= (K0 ∩ K0) ∪

K0 ∩
(

∞⋃
i=1

2−iK0

)
= K0 ∩

(
∞⋃

i=1

2−iK0

)

= K0 ∩
(

∞⋂
i=1

2−iK0

)
. (A.2)

Returning to our original quantity, we see that

Q =

K0 ∩

 ∞⋂
j=1

2−jK0

 ∩( ∞⋃
i=1

2−i

(
K0 ∩

(
∞⋂

k=1

2−kK0

)))

=
∞⋃

i=1

K0 ∩

 ∞⋂
j=1

2−jK0

⋂(
2−i

(
K0 ∩

(
∞⋂

k=1

2−kK0

)))
=

∞⋃
i=1

(K0 ∩ 2−iK0

)⋂ ∞⋂
j=1

∞⋂
k=1

(
2−jK0 ∩ 2−(k+i)K0

) . (A.3)

However, every set operation other than the complement in the ex-
pression above is an intersection, and intersections commute and associate
freely with each other. Therefore, this entire expression is equivalent to

Q =
∞⋃

i=1

2−iK0 ∩

 ∞⋂
j=1

2−jK0

⋂(
K0 ∩

(
∞⋂

k=1

2−(k+i)K0

)) . (A.4)
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Now, we note that for any set A, A ∩ A = A. Applying this property to
2−iK0, we can see that

Q =
∞⋃

i=1

[(2−iK0 ∩ 2−iK0) ∩

 ∞⋂
j=1

2−jK0


⋂(

K0 ∩
(

∞⋂
k=1

2−(k+i)K0

))]

=
∞⋃

i=1

∅ ∩

 ∞⋂
j=1

2−jK0

⋂(
K0 ∩

(
∞⋂

k=1

2−(k+i)K0

))
= ∅.

Therefore, we have shown that

K−1 ∩
(

∞⋃
i=1

2−iK−1

)
= ∅. (A.5)

However, recall that K−n = ((K0 \ A0) \ . . . \ An−1 and therefore Kn ⊆
Km for all m < n. Thus, for all n > 1, we know that K−n ⊆ K−1 . This implies
that

K−n ∩
(

∞⋃
i=1

K−n

)
⊆ K−1 ∩

(
∞⋃

i=1

K−1

)
= ∅.

Thus, for all n ≥ 1,

K−n ∩
(

∞⋃
i=1

2−iK−n

)
= ∅. (A.6)

�
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Now that we have proved our lemma, we can state and prove our
broader theorem.

Theorem A.1. In the construction set forth by Benedetto and Leon,

An =
∞⋃

i=1

(
K−n ∩

1
2

TAn−1

)
.

Proof: First, we recall that An is defined to be

An = Kn ∩
(

∞⋃
i=1

2−iKn

)
. (A.7)

Now define Kn = K+
n ∪ K−n where

K−n = ((K0 \ A0) \ . . . \ An−1)
K+

n = TA0 ∪ . . . ∪ TAn−1.

From the definition of An, we know that An ⊆ Kn for all n. Also, from
the definitions above, we know that K−n ⊆ K0 for all n. As a matter of fact,
K−m ⊆ K−n for all m ≤ n. Thus, for n ≥ 1, we know that

K−n ⊆ [−N, N]d. (A.8)

We know that T maps K0 to [−2N, 2N]d \ [−N, N]d, so by the definition
of K+

n , clearly
K+

n ⊆ [−2N, 2N]d \ [−N, N]d. (A.9)

Now we begin to consider An from its definition. Using the fact that
Kn = K−n ∪ K+

n , we know that

An = Kn ∩
(

∞⋃
i=1

2−iKn

)

= (K−n ∪ K+
n ) ∩

(
∞⋃

i=1

2−iKn

)

=

(
K−n ∩

(
∞⋃

i=1

2−iKn

))
∪
(

K+
n ∩

(
∞⋃

i=1

2−iKn

))
.

However, by containment properties A.8 and A.9, we know that, for all
i ≥ 1, 2−iKn ⊆ [−N, N]d and thus by containment property A.9,

K+
n ∩

(
∞⋃

i=1

2−iKn

)
= ∅. (A.10)
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Thus, we can now simplify An:

An =

(
K−n ∩

(
∞⋃

i=1

2−iKn

))

=

(
K−n ∩

(
∞⋃

i=1

2−iK−n

))
∪
(

K−n ∩
(

∞⋃
i=1

2−iK+
n

))
.

By the lemma proved above, we know that

K−n ∩
(

∞⋃
i=1

2−iK−n

)
= ∅.

Therefore, we have shown that

An = K−n ∩
(

∞⋃
i=1

2−iK+
n

)
. (A.11)

Now, we claim that

An = K−n ∩
(

∞⋃
i=1

2−iK+
n

)

= K−n ∩
(

∞⋃
i=1

2−iTAn−1

)
.

To prove this, we proceed inductively. For the base case, we use n = 1.
When n = 1, we have

A1 = K−1 ∩
(

∞⋃
i=1

2−iK+
1

)

= K−1 ∩
(

∞⋃
i=1

2−iTA0

)
. (A.12)

Therefore, clearly the base case conforms to the proposition. Now, we
assume the proposition holds for all 1 ≤ j ≤ n− 1, and proceed by strong
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induction. We examine the nth case:

An = K−n ∩
(

∞⋃
i=1

2−iK+
n

)

= K−n ∩
(

∞⋃
i=1

(
2−i

n−1⋃
s=0

TAs

))

=
n−1⋃
s=0

[
K−n ∩

(
∞⋃

i=1

2−iTAs

)]
. (A.13)

Before we continue, we note that K−m ⊆ K−n for all m < n, since

K−m = K0 ∩ A0 ∩ . . . ∩ Am−1

⊆ K0 ∩ A0 ∩ . . . ∩ Am−1 ∩ . . . An−1

= K−n .

Next, we consider the sth term in A.13, for 0 ≤ s ≤ n− 2. We call this
term Ps.

Ps = K−n ∩
(

∞⋃
i=1

2−iTAs

)

⊆
(

K−s+1 ∩
(

∞⋃
i=1

2−iTAs

)⋂
As+1

)
. (A.14)

However, by our inductive hypothesis,

As+1 = K−s+1

⋂(
∞⋃

i=1

2−iTAs

)
. (A.15)

Therefore, combining this with the expression in A.14, we see that

Ps ⊆
(

K−s+1 ∩
(

∞⋃
i=1

2−iTAs

))⋂ (
As+1

)
=

(
K−s+1 ∩

(
∞⋃

i=1

2−iTAs

))⋂(
K−s+1

⋂(
∞⋃
i=

2−iTAs

))
= ∅.
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All terms 0 ≤ s ≤ n− 2 are equal to ∅, so the only remaining term is

Pn−1 = K−n ∩
(

∞⋃
i=1

2−iTAn−1

)
.

Thus

An = K−n ∩
(

∞⋃
i=1

2−iTAn−1

)
. (A.16)

�





Appendix B

Extra Code

In this appendix, we include four auxiliary functions to the algorithm which
were not included in the coding chapter. These are those written specifi-
cally for T2 and T3, for both the inRange and the Tinverse functions.

The following two functions are inRangeTb and inRangec, which test if
a given point is contained in the range of T2 and T3, respectively, as defined
in Chapter 3.

function [dd] = inRangeTb(x)

dd = 0;

if 0 ≤ abs(x(1)) && 0.5 ≥ abs(x(1)) && 0.5 ≤ abs(x(2)) && 1 ≥ abs(x(2))
dd = 1;

elseif 0 ≤ abs(x(2)) && 0.5 ≥ abs(x(2)) && 0.5 ≤ abs(x(1)) && 1 ≥ abs(x(1))
dd = 1;

end;

function [dd] = inRangeTc(x)

dd = 0;

if x(1) ≥0 && x(2) ≥ 0.5 && (x(1)+x(2)) ≤ 1
dd = 1;

elseif x(1) ≥ 0.5 && x(2) ≥ 0 && (x(1)+x(2)) ≤ 1
dd = 1;

elseif x(1) ≥ 0.5 && x(2) ≤ 0 && (x(1)−x(2)) ≤ 1
dd = 1;

elseif x(1) ≥ 0 && x(2) ≤ −0.5 && (x(1)−x(2)) ≤ 1
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dd = 1;

elseif x(1) ≤ 0 && x(2) ≥ 0.5 && (x(2)−x(1)) ≤ 1
dd = 1;

elseif x(1) ≤ −0.5 && x(2) ≥ 0 && (x(2)−x(1)) ≤ 1
dd = 1;

elseif x(1) ≤ −0.5 && x(2) ≤ 0 && (x(1)+x(2)) ≥ −1
dd = 1;

elseif x(1) ≤ 0 && x(2) ≤ −0.5 && (x(1)+x(2)) ≥ −1
dd = 1;

end;

Finally, the next two functions are Tinverseb.m and Tinversec.m, which
are the inverse maps of T2 and T3, respectively.

function [ee] = Tinverseb(x)

ee = x;

if 0 ≤ abs(x(1)) && 0.5 ≥ abs(x(1)) && 0.5 ≤ abs(x(2)) && 1 ≥ abs(x(2))
ee(2) = ee(2) − sign(ee(2));

elseif 0 ≤ abs(x(2)) && 0.5 ≥ abs(x(2)) && 0.5 ≤ abs(x(1)) && 1 ≥ abs(x(1))
ee(1) = ee(1) − sign(ee(1));

end;

function [ee] = Tinversec(x)

ee = zeros(length(x));

if 0.5 ≤ x(1) && 1 ≥ x(1)
ee(1) = x(1)−1;
ee(2) = x(2);

elseif −0.5 ≥ x(1) && −1 ≤ x(1)
ee(1) = x(1)+1;
ee(2) = x(2);

elseif 0.5 ≤ x(2) && 1 ≥ x(2)
ee(2) = x(2)−1;
ee(1) = x(1);

elseif −0.5 ≥ x(2) && −1 ≤ x(2)
ee(2) = x(2)+1;
ee(1) = x(1);

end;

We include these functions as an appendix for two reasons. First, we
hope that the interested reader will be able to reproduce the sets created by
this algorithm with very little difficulty. This code will assist the reader in
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this implementation, although the code itself is far from efficient.
The second reason is to note the increasing complexity of the code as

the T transformation increases in complexity. As this complexity increases,
so does the run time of the algorithm as a whole. We were unable to write
more efficient versions of these functions, and as a result did not pursue
more complicated T transformations or more complicated starting sets K0.
With some streamlining, however, it should be possible to implement such
things by adapting the code we have provided here.
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