
Claremont Colleges
Scholarship @ Claremont

CMC Faculty Publications and Research CMC Faculty Scholarship

1-1-2013

Near-optimal compressed sensing guarantees for
anisotropic and isotropic total variation
minimization
Deanna Needell
Claremont McKenna College

Rachel Ward
University of Texas at Austin

This Technical Report is brought to you for free and open access by the CMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for
inclusion in CMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please
contact scholarship@cuc.claremont.edu.

Recommended Citation
Needell, Deanna and Ward, Rachel, "Near-optimal compressed sensing guarantees for anisotropic and isotropic total variation
minimization" (2013). CMC Faculty Publications and Research. Paper 318.
http://scholarship.claremont.edu/cmc_fac_pub/318

http://scholarship.claremont.edu
http://scholarship.claremont.edu/cmc_fac_pub
http://scholarship.claremont.edu/cmc_faculty
mailto:scholarship@cuc.claremont.edu


1Near-optimal compressed sensing guarantees

for anisotropic and isotropic total variation

minimization
Deanna Needell and Rachel Ward

Abstract

Consider the problem of reconstructing a multidimensional signal from partial information, as in the

setting of compressed sensing. Without any additional assumptions, this problem is ill-posed. However,

for signals such as natural images or movies, the minimal total variation estimate consistent with the

measurements often produces a good approximation to the underlying signal, even if the number of

measurements is far smaller than the ambient dimensionality. Recently, guarantees for two-dimensional

images x ∈ CN2

were established. This paper extends these theoretical results to signals x ∈ CNd

of arbitrary dimension d ≥ 2 and to both the anisotropic and isotropic total variation problems. To be

precise, we show that a multidimensional signal x ∈ CNd

can be reconstructed from O(sd log(Nd))

linear measurements y = Ax using total variation minimization to within a factor of the best s-term

approximation of its gradient. The reconstruction guarantees we provide are necessarily optimal up to

polynomial factors in the spatial dimension d and a logarithmic factor in the signal dimension Nd. The

proof relies on bounds in approximation theory concerning the compressibility of wavelet expansions of

bounded-variation functions.

I. INTRODUCTION

Compressed sensing (CS) is a new signal processing methodology where signals are acquired in

compressed form as undersampled linear measurements. The applications of CS are abundant, ranging

Claremont McKenna College, 850 Columbia Ave, Claremont CA, 91711, email: dneedell@cmc.edu.

University of Texas at Austin, 2515 Speedway, Austin, Texas, 77842, email: rward@math.utexas.edu. R. Ward has been

supported in part by a Donald D. Harrington Faculty Fellowship, Alfred P. Sloan Research Fellowship, and DOD-Navy grant

N00014-12-1-0743.

June 7, 2013 DRAFT



from radar and error correction to many areas of image processing [18]. The underlying assumption that

makes such acquisition and reconstruction possible is that most natural signals are sparse or compressible.

We say that a signal x ∈ Cp is s-sparse when

‖x‖0
def
= | supp(x)| ≤ s� p. (1)

Compressible signals are those which are well-approximated by sparse signals. More generally, a signal

x ∈ Cp is said to be s-sparse with respect to a basis B when x can be represented as a linear combination

of s atoms from B. In the CS framework, we acquire m � p nonadaptive linear measurements of the

form

y =M(x) + ξ,

where M : Cp → Cm is an appropriate linear operator and ξ is vector modeling additive noise. The

theory of CS [21], [9], [22] ensures that under suitable assumptions on the measurement operator M,

a sufficiently compressible signal can be accurately approximated by the signal of minimal `1-norm

consistent with the measurements,

x̂ ∈ argmin
w

‖w‖1 such that ‖M(w)− y‖2 ≤ ε, (L1)

where ‖w‖1 =
∑

i |wi| and ‖w‖2 =
(∑

i |wi|2
)1/2 denote the standard `1 and Euclidean norms, ε bounds

the noise level ‖ξ‖2 ≤ ε, and argmin denotes the set of minimizers (if a unique minimizer exists this

set will contain one element). The program (L1) may be cast as a second order cone program (SOCP)

and can be solved efficiently using standard convex programming methods (see e.g. [3], [17]).

To guarantee robust recovery of compressible signals via (L1), Candès and Tao introduced in [9] the

restricted isometry property (RIP) for a measurement operator M.

Definition 1. A linear operator M : Cp → Cm is said to have the restricted isometry property (RIP) of

order s ∈ N and level δ ∈ (0, 1) if

(1− δ)‖x‖22 ≤ ‖M(x)‖22 ≤ (1 + δ)‖x‖22 for all s-sparse x ∈ Cp. (2)

Many distributions of random matrices of dimension m × p are known to generate RIP matrices of

order s and level δ ≤ c < 1 for m ≈ δ−2s(log p)4. Note that here and throughout we have used the

notation u ≈ v (analogously u . v) to indicate that there exists some absolute constant C > 0 such

that u = Cv (u ≤ Cv). Representative families of random matrices include randomly subsampled rows

2



from the discrete Fourier transform [46] or from a bounded orthonormal system more generally [46],

[44], [42], [43], [5], and randomly-generated circulant matrices [28]. Moreover, a matrix whose entries

are independent and identical (i.i.d.) realizations of a properly-normalized subgaussian random variable

will have the RIP with probability exceeding 1− e−cm once m ≈ δ−2s log(p/s) [10], [36], [46], [1].

Candès, Romberg, and Tao [8] showed that when the measurement operator M has the RIP of order

O(s) and sufficiently small constant δ, the program (L1) recovers an estimation x̂ to x that satisfies the

error bound

‖x̂− x‖2 ≤ C
(
‖x− xs‖1√

s
+ ε

)
, (3)

where xs denotes the best s-sparse approximation to the signal x. Using properties about Gel’fand widths

of the `1 ball due to Kashin [26] and Garnaev–Gluskin [23], this is the optimal minimax reconstruction

rate for `1-minimization using m ≈ s log(p/s) nonadaptive linear measurements. Due to the rotational-

invariance of an RIP matrix with randomized column signs [29], a completely analogous theory holds for

signals that are compressible with respect to a known orthonormal basis or tight frame D by replacing

w with D∗w inside the `1-norm of the minimization problem (L1) [6], [32].

A. Imaging with CS

Natural images are highly compressible with respect to their gradient representation. For an image

x ∈ CN2

one defines its discrete directional derivatives by

xu : CN×N → C(N−1)×N , (xu)j,k = xj+1,k − xj,k (4)

xv : CN×N → CN×(N−1), (xv)j,k = xj,k+1 − xj,k. (5)

The discrete gradient transform ∇ : CN2 → CN×N×2 is defined in terms of the directional derivatives,

(
∇x

)
j,k

def
=



(
(xu)j,k, (xv)j,k

)
, 1 ≤ j ≤ N − 1, 1 ≤ k ≤ N − 1(

0, (xv)j,k
)
, j = N, 1 ≤ k ≤ N − 1(

(xu)j,k, 0
)
, k = N, 1 ≤ j ≤ N − 1(

0, 0
)
, j = k = N

The `1-norm of the discrete gradient defines a seminorm for the space CN2

, often referred to as the

anisotropic total variation seminorm and denoted by

‖x‖TV
def
= ‖∇x‖1. (6)
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The isotropic total variation norm results from the choice of (xu)j,k+i(xv)j,k instead of
(
(xu)j,k, (xv)j,k

)
in the definition of the discrete gradient. In the isotropic case, ‖x‖TV becomes the sum of terms∣∣(xu)j,k + i(xv)j,k

∣∣ =
(
(xu)2

j,k + (xv)
2
j,k

)1/2
.

Due to the gradient sparsity of natural images, it should not be surprising that the total variation

minimization program

x̂ ∈ argmin
z
‖z‖TV such that ‖M(z)− y‖2 ≤ ε (TV)

is often used for image and other signal reconstruction, and the literature now provides much theoretical

understanding in the general setting. Properties of TV minimizers in inverse problems have been studied

in the discrete and continuous settings [2], [39], [20], [47], [45], [40], [12], [13], and convergence rates

of stability measures for TV have also been established (see e.g. [4], [24]). In the setting of compressed

sensing and more broadly in other imaging applications, it has been used for denoising, deblurring, and

inpainting (see e.g. [8], [11], [7], [41], [14], [33], [34], [31], [38], [35], [25], [27], [49], [37] and the

references therein). We consider here the TV problem in the compressed sensing setting.

While (TV) is similar to the `1-minimization program (L1), the RIP-based theoretical guarantees for

(L1) do not directly translate to recovery guarantees for (TV) because the gradient map z →∇z is not

well-conditioned on the orthogonal complement of ker(∇). In fact, viewed as an invertible operator over

mean-zero images, the condition number of the gradient map is proportional to the image side length N .1

Recovery guarantees for anisotropic (TV ) in the compressed sensing setting were nevertheless obtained

in [37] for two-dimensional images x ∈ CN2

by showing that the gradient map is well-conditioned

when restricted to signals lying in the null space of a matrix with the restricted isometry property. The

following theorem holds for any image x ∈ CN2

.

Theorem A (from [37]). There are choices of linear operators M : CN2 → Cm with m ≈ s log(N2/s)

for which the following holds for any image x ∈ CN2

: Given noisy measurements y =M(x) + ξ with

noise level ‖ξ‖2 ≤ ε, the total-variation minimizing signal

x̂ ∈ argmin
z
‖z‖TV such that ‖M(z)− y‖2 ≤ ε (7)

1One sees that the norm of ∇ is a constant whereas the norm of its inverse is proportional to N (one can observe this scaling,

for example, by noting it is obtained by the image whose entries are constant).
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satisfies the error bound

‖x− x̂‖2 ≤ C log(N2/s)
(‖∇x− (∇x)s‖1√

s
+ ε
)
, (8)

where here and throughout, zs denotes the best s-term approximation to the array z.

In words, the total-variation minimizer estimates x to within a factor of the noise level and best s-term

approximation of its gradient. The bound in (8) is optimal up to the logarithmic factor log(N2/s).

The contribution of this paper is to extend Theorem A to multidimensional signals x ∈ CNd

of

arbitrary dimension d ≥ 2. We show that the signal x̂ ∈ CNd

of minimal (d-dimensional) total variation

seminorm consistent with m ≈ sd log(Nd) appropriately-chosen linear measurements y = M(x) + ξ

will approximate x to within a factor of the noise level and the best s-term approximation to the (d-

dimensional) discrete gradient of x, modulo a single logarithmic factor in the signal dimension Nd. In

addition, we generalize the theory to other types of total variation norms, which include both the isotropic

and anisotropic versions.

Our proof rests on extending the Sobolev inequalities for random subspaces from [37] to higher-

dimensional signal structures, using bounds of Cohen, Dahmen, Daubechies, and DeVore in [15] on

the compressibility of wavelet representations for functions of bounded variation. Unfortunately these

bounds, and hence our results for total variation, do not hold in dimension d = 1. See [48] for results

for one-dimensional total variation under assumptions other than the RIP.

B. Organization

The article is organized as follows. In Section II we recall relevant background material on the mul-

tidimensional total variation seminorm and multidimensional orthonormal wavelet transform. Section III

states our main result: total variation minimization provides stable signal recovery for signals of arbitrary

dimension d ≥ 2. The proof of this result will occupy the remainder of the paper; in Section IV we prove

that the signal gradient is recovered stably, while in Section V we pass from stable gradient recovery to

stable signal recovery using the strengthened Sobolev inequalities for random subspaces. The proofs of

propositions and theorems used along the way are contained in the appendix.

II. PRELIMINARIES FOR MULTIDIMENSIONAL SIGNAL ANALYSIS

The setting for this article is the space CNd

of multidimensional arrays of complex numbers, consisting

of elements

x = (xα)α∈[N ]d ∈ CNd

, α ≡ (α1, α2, . . . , αd) ∈ [N ]d,
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where [N ]d = {1, 2, . . . , N}d. Note that here and throughout we use the convention that vectors such as

x are boldface and their scalar counterparts such as xα are normal typeface. The space CNd

is a Hilbert

space using the standard inner product

〈x,y〉 =
∑
α∈[N ]d

xα · ȳα, (9)

where ȳ denotes the conjugate of y. It is isometric to the subspace ΣN of L2([0, 1)d)2 consisting of

functions which are constant over cubes of side length N−1,

ΣN =

{
f ∈ L2([0, 1)d), f(u) = fα,

αi − 1

N
≤ ui <

αi
N

}
. (10)

For x = (xα) ∈ CNd

, the isometry is provided by identifying fα = fxα = Nd/2xα. More generally, we

denote by ‖x‖p =
(∑

α∈[N ]d |xα|p
)1/p

the entrywise `p-norm of the signal x.

For ` = 1, 2, . . . d, the discrete derivative of x in the direction of r` is the array xr` ∈ CN`−1×(N−1)×Nd−`

defined component-wise by

(xr`)α
def
= x(α1,α2,...,α`+1,...,αd) − x(α1,α2,...,α`,...αd), (11)

and we define the d-dimensional discrete gradient transform ∇ : CNd → Cd×Nd

through its components

(
∇x

)
`,α

def
=

 (xr`)α, α` ≤ N − 1,

0, else
(12)

Now let B1, B2, . . . , BK be a partition of {1, . . . , d} into blocks of equal size b = d/K = |Bi|. The

generalized d-dimensional total-variation seminorm is the mixed `1-`2 norm of the d-dimensional discrete

gradient,

‖x‖TV
def
=

∑
α∈[N ]d

k∑
i=1

(∑
`∈Bi

(xr`)
2
α

)1/2

. (13)

Note then that the anisotropic total variation seminorm results from the choice of Bi = {i} with b = 1,

and the isotropic version from the choice of B1 = {1, . . . , d} with b = d. To treat these versions

simultaneously, throughout the remainder of the article we write ‖ · ‖TV to denote the generalized total

variation norm and distinguish between types through the choice of b.

2Recall that f ∈ L2(Q) if
∫
Q
|f(u)|2du < ∞, and L2(Q) is a Hilbert space equipped with the inner product 〈f, g〉 =∫

Q
f(u) · ḡ(u)du
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A linear operator A : CNd → Cp can be represented as a sequence of multidimensional arrays

A = (ak). The linear operation y = A(x) has component-wise action

yk = [A(x)]k = 〈ak,x〉 (14)

where the inner product between multidimensional arrays is defined in (9). A linear operator A : CNd →

CNd

can be expressed similarly through its components yα = [A(x)]α = 〈aα,x〉.

Finally, we introduce the row direct sum operation for concatenating linear operators: if A : CNd → Cr1

and B : CNd → Cr2 thenM = A⊕r B is the linear operator from CNd

to Cr1+r2 with component arrays

M = (mk)
r1+r2
k=1 given by

mk =

 ak, 1 ≤ k ≤ r1,

bk−r1 , 1 + r1 ≤ k ≤ r1 + r2

Alternatively, the column direct sum operation for concatenating linear operators A : CNd → Cp and

B : CNd → Cp yields the linear operator M = A ⊕c B : C2×Nd → Cp with component arrays

M = (mk)
p
k=1 given by

(mk)`,α =

 (ak)α, ` = 1,

(bk)α, ` = 2

A. The multidimensional Haar wavelet transform

The Haar wavelet transform provides a sparsifying basis for natural signals such as images and

movies, and is closely related to the discrete gradient. The Haar transform plays an important role in our

analysis for passing from the `1-theory of compressed sensing to theory for total variation minimization.

For a comprehensive introduction to wavelets, we refer the reader to [19].

The (continuous) multidimensional Haar wavelet basis is derived from a tensor-product representation

of the univariate Haar basis, which forms an orthonormal system for square-integrable functions on the

unit interval and consists of the constant function

h0(t) =

 1 0 ≤ t < 1,

0, otherwise,

the step function

h1(t) =

 1 0 ≤ t < 1/2,

−1 1/2 ≤ t < 1,

and dyadic dilations and translations of the step function,

hj,k(t) = 2j/2h1(2jt− k); j ∈ N, 0 ≤ k < 2j . (15)
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The Haar basis for the higher dimensional space L2(Q) of square-integrable functions on the unit cube

Q = [0, 1)d consists of tensor-products of the univariate Haar wavelets. Concretely, for V = {0, 1}d−{0}d

and e = (e1, e2, . . . , ed) ∈ V , we define the multivariate functions

he(u) =
∏
ei

hei(ui).

The orthonormal Haar system on L2(Q) is then comprised of the constant function along with all functions

of the form

hej,k(u) = 2jd/2he(2ju− k), e ∈ V, j ≥ 1, k ∈ Zd ∩ 2jQ. (16)

The discrete multidimensional Haar transform is derived from the continuous construction via the

isometric identification (10) between CNd

and ΣN ⊂ L2(Q): defining

hj,k,e(α) = N−d/2hej,k(α/N), α ∈ [N ]d, (17)

the matrix product computing the discrete Haar transform can be expressed as Hx = (〈hj,k,e,x〉)j,k,e.

Note that with this normalization, the transform is orthonormal.

B. Gradient versus wavelet sparsity

Since the multivariate Haar transform H : CNd → CNd

is orthonormal, standard results in compressed

sensing (e.g. [11]) guarantee that by minimizing the `1-norm of the conjugate transpose or inverse Haar

transform (note that H∗ = H−1),

x̃ ∈ argmin
z
‖H∗(z)‖1 such that ‖M(z)− y‖2 ≤ ε (`1-Wav)

a multidimensional signal can be reconstructed from m ≥ Cs log(Nd/s) measurements to within a

factor of its best s-term approximation in the Haar basis. A straightforward calculation verifies that a

signal which is s-sparse with respect to the discrete gradient is s log(N)-sparse with respect to the Haar

transform. Moreover, this relationship between gradient and wavelet sparsity is stable, as can be seen

from the following corollary of results from [15] on the decay of wavelet representations associated to

functions of bounded variation:

Proposition 2 (Corollary of Theorem 1.1 from [15]). There is a universal constant C > 0 such that the

following holds for any x ∈ CNd

in dimension d ≥ 2: if the Haar transform coefficients c = H(x) are
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partitioned by their support into blocks cj,k = (〈hj,k,e,x〉)e∈V of cardinality |cj,k| = 2d − 1, then the

coefficient block of kth largest `2-norm, denoted by c(k), has `2-norm bounded by

‖c(k)‖2 ≤ C
√
b‖x‖TV

k · 2d/2−1
.

Proposition 2, whose derivation from Theorem 1.1 of [15] is outlined in the appendix, will provide

us the link necessary to prove robust recovery via total variation using orthonormality properties of the

wavelet transform. This proof will occupy the remainder of the present article.

III. THE MAIN RESULT

Our main result concerns near-optimal recovery guarantees for multidimensional total variation min-

imization from compressed measurements. Recall that a linear operator A : CNd → Cp is said to have

the restricted isometry property (RIP) of order s and level δ ∈ (0, 1) when

(1− δ)‖x‖22 ≤ ‖A(x)‖22 ≤ (1 + δ)‖x‖22 for all s-sparse x ∈ CNd

. (18)

A linear operator A = (ak) : CNd → Cp satisfies the RIP if and only if the p × Nd matrix A whose

kth row consists of the unraveled entries of the kth multidimensional array ak satisfies the classical RIP,

(1), and so without loss of generality we treat both definitions of the RIP as equivalent.

For our main result it will be convenient to define for a multidimensional array a ∈ CN`−1×(N−1)×Nd−`

the associated arrays a0`
∈ CNd

and a0` ∈ CNd

obtained by concatenating a block of zeros to the

beginning and end of a oriented in the `th direction:

(a0`)α =

 0, α` = 1

aα1,...,α`−1,...,αd
, 2 ≤ α` ≤ N

(19)

and

(a0`
)α =

 0, α` = N

aα1,...,α`,...,αd
, 1 ≤ α` ≤ N − 1

(20)

The following lemma relating gradient measurements with a to signal measurements with a0` and a0`

can be verified by direct algebraic manipulation and thus the proof is omitted.

Lemma 3. Given x ∈ CNd

and a ∈ CN`−1×(N−1)×Nd−`

,

〈a,xr`〉 =
〈
a0` ,x

〉
− 〈a0`

,x〉 ,

where the directional derivative xr` is defined in (11).
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For a linear operator A = (ak) : CN`−1×(N−1)×Nd−` → Cm we define the operators A0` : CNd → Cm

and A0`
: CNd → Cm as the sequences of arrays (a0k

k )mk=1 and (a0kk)
m
k=1, respectively. From Lemma

21, A(xr`) = A0`(x)−A0`
(x).

We are now prepared to state our main result which shows that total variation minimization yields

stable recovery of Nd-dimensional signals from RIP measurements.

Main Theorem. Let N = 2n. Fix integers p and q, and let H : CNd → CNd

be the orthonormal Haar

wavelet transform, and let A : CNd → Cp be such that the composite operator AH∗ : CNd → Cp has the

restricted isometry property of order 2s and level δ < 1. Let B1,B2, . . . ,Bd with Bj : CNd−1(N−1) → Cq

be such that B = B1 ⊕c B2 ⊕c · · · ⊕c Bd : CNd−1(N−1) → Cdq has the restricted isometry property of

order 5sb and level δ < 1/3. Set m = 2dq+ p, and consider the linear operator M : CNd → Cm given

by

M = A⊕r
[
B1

]01 ⊕r
[
B1

]
01
⊕r · · · ⊕r

[
B`
]0` ⊕r

[
B`
]
0`
⊕r · · · ⊕r

[
Bd
]0d ⊕r

[
Bd
]
0d
. (21)

The following holds for all x ∈ CNd

: From noisy measurements y = M(x) + ξ with noise level

‖ξ‖2 ≤ ε, the solution to (TV) (total variation with parameter b) satisfies:

i) ‖∇(x− x̂)‖2 . ‖∇x−(∇x)s‖1b√
s

+
√
dε,

ii) ‖x− x̂‖TV . ‖∇x− (∇x)s‖1b +
√
sdε,

iii) ‖x− x̂‖2 . log(Nd)
(√

b‖∇x−(∇x)s‖1b√
s

+
√
bdε
)

,

where ‖z‖1b :=
∑

α∈[N ]d
∑k

i=1

(∑
`∈Bi

(z)2
`,α

)1/2
denotes the mixed `1-`2 norm.

Applying the main result to the isotropic (b = d) and anisotropic cases (b = 1) yield the following

corollaries.

Corollary 4 (Isotropic total variation). Under the notation and assumptions of the Main Theorem, the

minimizer of isotropic total variation (TV) satisfies:

i) ‖∇(x− x̂)‖2 . ‖∇x−(∇x)s‖1,2√
s

+
√
dε,

ii) ‖x− x̂‖TV . ‖∇x− (∇x)s‖1,2 +
√
sdε,

iii) ‖x− x̂‖2 . log(Nd)
(√

b‖∇x−(∇x)s‖1,2√
s

+ dε
)

,

where ‖z‖1,2 :=
∑

α∈[N ]d

(∑d
`=1(z)2

`,α

)1/2
denotes the standard mixed `1-`2 norm.
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Corollary 5 (Anisotropic total variation). Under the notation and assumptions of the Main Theorem, the

minimizer of anisotropic total variation (TV) satisfies:

i) ‖∇(x− x̂)‖2 . ‖∇x−(∇x)s‖1√
s

+
√
dε,

ii) ‖x− x̂‖TV . ‖∇x− (∇x)s‖1 +
√
sdε,

iii) ‖x− x̂‖2 . log(Nd)
(
‖∇x−(∇x)s‖1√

s
+
√
dε
)

.

Remarks.

1. A number of m ≈ sd log(Nd) i.i.d. and properly normalized Gaussian measurements can be used to

construct the measurement operatorM which, with high probability, satisfies the required RIP conditions

of the theorem [1], [46]. From this number m of measurements, the error guarantees i and ii are optimal

up to the factor of
√
d on the noise level, and the error guarantee iii is optimal up to logarithmic factors in

the signal dimension Nd. We emphasize here that the specific construction of the measurement ensemble

is likely only an artifact of the proof, and that more general RIP measurements are likely possible. See

also [30] for results using Fourier measurements (for d = 2).

2. When d = 2, the main theorem recovers the total variation stability guarantee of [37] up to a log(1/s)

term. Note that this term is lost only because in higher dimensions the proof requires a blocking of the

wavelet coefficients, and is thus likely only an artifact of the proof. It may be improved by a more

efficient blocking strategy and by writing in terms of p in (29) of the proof. We write the bound as-is

for simplicity.

3. The requirement of sidelength N = 2n is not an actual restriction, as signals with arbitrary side-

length N can be extended via reflections across each dimension to a signal of side-length N = 2n without

increasing the total variation by more than a factor of 2d. This requirement again seems to be only an

artifact of the proof and one need not perform such changes in practice.

4. Note that we actually prove something stronger than Corollary 4. Indeed, the term ‖∇x−(∇x)s‖1,2
in the bounds can be replaced with ‖(∇x)Rc‖1,2 for a set R with |R| = sd. See the proof of the Main

Theorem below for details.

We now turn to the proof of the main theorem. We follow the method of proof introduced in [37],

proving stable gradient recovery and then translating these guarantees to stable signal recovery via Sobolev

inequalities for incoherent subspaces.
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IV. STABLE GRADIENT RECOVERY

In this section we prove statements (i) and (ii) of the main theorem concerning stable gradient recovery,

using standard results in the `1 theory of compressed sensing combined with a summation by parts “trick”

provided by Lemma 3.

Recall that when a signal obeys a tube and cone constraint we can bound the norm of the entire signal,

as in [11]. We refer the reader to Section A.1 of [37] for a complete proof.

Proposition 6. Suppose that B is a linear operator satisfying the restricted isometry property of order

5sb and level δ < 1/3, and suppose that the signal h satisfies a tube constraint

‖B(h)‖2 ≤
√

2dε.

Suppose further that using the notation of the Main Theorem, for a subset R of cardinality |R| ≤ sb

(with complement Rc), h satisfies a cone-constraint

‖hRc‖1b ≤ ‖hR‖1b + σ. (22)

Then

‖h‖2 .
σ√
s

+
√
dε (23)

and

‖h‖1b . σ +
√
sdε. (24)

The proof of Proposition 6 is a generalization of results in [8] and included in the appendix for

completeness. Using Proposition 6 and the RIP assumptions on the operator B, stable gradient recovery

(i) and (ii) reduce to proving that the discrete gradient of the residual signal error satisfies the tube and

cone constraints.

Proof: (Main Theorem, statements (i) and (ii).) Let v = x−x̂ be the residual error, and set h = ∇v.

Let B = (Bk). Then we have

Cone Constraint. Let R = {(`,α) :
(∑

`∈Bi
(xr`)

2
α

)1/2 is one of the s largest over all choices

of Bi and α} denote the set of pairs (`,α) corresponding to the largest magnitudes in ∇x so

that if (`1,α) ∈ R, for some `1 ∈ Bi then (`,α) ∈ R for all other ` ∈ Bi. In particular, observe

that |R| = sb. Since x̂ = x− v is a minimizer of (TV) and x satisfies the feasibility constraint

12



in (TV), ‖∇x̂‖1b ≤ ‖∇x‖1b and by the reverse triangle inequality,

‖(∇x)R‖1b − ‖hR‖1b − ‖(∇x)Rc‖1b + ‖hRc‖1b

≤ ‖(∇x)R − hR‖1b + ‖(∇x)Rc − hRc‖1b

= ‖∇x̂‖1b

≤ ‖∇x‖1b

= ‖(∇x)R‖1b + ‖(∇x)Rc‖1b.

This yields the cone constraint

‖hRc‖1b ≤ ‖hR‖1b + 2‖(∇x)Rc‖1b ≤ ‖hR‖1b + 2‖∇x− (∇x)s‖1b.

Tube constraint. Recall that v = x − x̂. Since both x and x̂ are feasible solutions to (TV),

Jensen’s inequality gives

‖M(v)‖22 ≤ 2‖M(x)− y‖22 + 2‖M(x̂)− y‖22

≤ 4ε2

By Lemma 3, we have for each component operator Bj ,

Bj(vrj ) = [Bj ]0j (v)− [Bj ]0j
(v) (25)

Then B(∇v) =
∑d

j=1 Bj(vrj ), (where we assume that ∇v is ordered appropriately) and

‖B(∇v)‖22 = ‖
d∑
j=1

Bj(vrj )‖22

≤ d

d∑
j=1

‖Bj(vrj )‖22

≤ 2d

d∑
j=1

(
‖Bj ]0j (v)‖22 + ‖Bj ]0j

(v)‖22
)

≤ 2d‖M(v)‖22

≤ 8dε2. (26)

In light of Proposition 6 this completes the proof.

13



Remark 7. The component operator A from the main theorem was not used at all in deriving properties

(i) and (ii); on the other hand, only the measurements in A will be used to derive property (iii) from

(i) and (ii).

V. A SOBOLEV INEQUALITY FOR INCOHERENT SUBSPACES

The purpose of this section is to derive the following bound for signals lying near the null space of

an incoherent matrix.

Theorem 8 (Sobolev inequality for incoherent subspaces). Let d ≥ 2 and let N = 2n. Let H : CNd →

CNd

be the multivariate Haar wavelet transform. Let B : CNd → Cm be a linear map with the property

that BH∗ : CNd → Cm satisfies the restricted isometry property of order 2s and level δ < 1. Then

there is a universal constant C > 0 such that for any signal v ∈ CNd

satisfying the tube constraint

‖B(v)‖2 ≤ ε,

‖v‖2 ≤ C
(√b‖v‖TV√

s

)
log(Nd) + ε. (27)

Note that Theorem 8 admits various corollaries for various families of random matrices with restricted

isometries. For Gaussian random matrices, the theorem implies the following.

Corollary 9. Let B : CNd → Cm be a linear map realizable as an Nd ×m matrix whose entries are

mean-zero i.i.d. Gaussian random variables. Then with probability exceeding 1 − e−cm, the following

bound holds for any x ∈ CNd

lying in the null-space of B:

‖x‖2 .
(√b‖x‖TV√

m

)
[log(Nd)]2. (28)

Proof: From results on Gaussian matrices and the restricted isometry property (see e.g. [9], [36],

[1], [46]), B satisfies the RIP of order 2s and level δ < 1 with probability exceeding 1− e−cm when s

is proportional to m/ log(Nd). Substituting this value for s into (27) yields the claim.

The proof of Theorem 8 goes as follows: as revealed through the proof of Proposition 6, any signal in

the null space of an RIP matrix must be relatively flat, in that the norm of its best s-term approximation

is bounded by the norm of the remaining terms. At the same time, Proposition 2 implies that the sequence

of wavelet block-coefficient norms ‖c(k)‖2 in the null space of BH∗ must be sufficiently compressible

and bounded by the total-variation of x. Combining these properties — flatness and tail-compressibility

— produces the Sobolev-type inequality (27).

Proof of Theorem 8:

14



Let c = H(v) ∈ CNd

represent the Haar transform of the signal error v = x − x̂. Suppose without

loss of generality that the desired sparsity level s is either smaller than 2d − 1 or a positive multiple of

2d− 1, and write s = p(2d− 1) where either p ∈ N or p ∈ (0, 1) (for arbitrary s ∈ N, we could consider

s′ = ds/(2d − 1)e which satisfies s′ ≤ 2s).

Let S = S0 ⊂ [N ]d be the set of s largest-magnitude entries of c, let S1 be the set of s largest-

magnitude entries of c in [N ]d \ S0, and so on. Note that cS and similar expressions below can have

both the meaning of restricting c to the indices in S as well as being the array whose entries are set to

zero outside S.

By definition, ‖cS0
‖1 is at least as large as ‖cΩ‖1 for any other Ω ⊂ [N ]d of cardinality s. Consequently,

‖cSc
0
‖1 is smaller than ‖cΩc‖1 for any other Ω ⊂ [N ]d of cardinality s. Now, recall the alternative

decomposition of c from Proposition 2 into blocks c(k) of cardinality 2d − 1, grouped according to the

support of the corresponding wavelets. Because s = p(2d − 1) for either p ∈ N or p ∈ (0, 1),

‖cSc
0
‖1 =

∑
k≥1

‖cSk
‖1

≤
∑
j≥p+1

‖c(j)‖1

≤ (2d − 1)1/2
∑
j≥p+1

‖c(j)‖2

.
√
b‖v‖TV

Nd∑
`=p+1

1

`

.
√
b‖v‖TV log(Nd), (29)

where the second to last inequality follows from Proposition 2 and the last inequality from properties of

the geometric summation.

We use a similar procedure to bound the `2-norm of the residual,

‖cSc
0
‖22 .

∑
j≥p+1

‖c(j)‖22

.
b‖v‖2TV

2d

Nd∑
`=p+1

1

`2

.
(
√
b‖v‖TV )2

2d max (1, p)

.
(
√
b‖v‖TV )2

s
. (30)
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Then, ‖cSc
0
‖2 . ‖v‖TV /

√
s.

By assumption, v satisfies the tube constraint ‖B(v)‖2 ≤ ε and BH∗ satisfies the restricted isometry

property. We conclude that

ε ≥ ‖B(v)‖2 = ‖BH∗(c)‖2

≥ ‖BH∗(cS0
+ cS1

)‖2 −
r∑

k=2

‖BH∗(cSk
)‖2

≥ (1− δ)‖cS0
+ cS1

‖2 − (1 + δ)

r∑
k=2

‖cSk
‖2

≥ (1− δ)‖cS0
‖2 − (1 + δ)

1√
s
‖cSc

0
‖1, (31)

the last inequality holding because the magnitude of each entry in the array cSk
is smaller than the average

magnitude of the entries in the array cSk−1
. Along with the tail bound (29), we can then conclude that,

up to a constant in the restricted isometry level δ,

‖cS0
‖2 . ε+ log(Nd)

(√b‖v‖TV√
s

)
. (32)

Combining this bound with the `2-tail bound (30) and recalling that the Haar transform H : Nd → Nd

is an isometry,

‖v‖2 = ‖H∗c‖2 = ‖c‖2 ≤ ‖cS0
‖2 + ‖cSc

0
‖2 . ε+ log(Nd)

(√b‖v‖TV√
s

)
, (33)

which completes the proof.

A. Proof of the Main Theorem

Because we proved the bounds (i) and (ii) from the main theorem concerning stable gradient recovery

in Section IV, it remains only to prove the signal recovery error bound (iii).

By feasibility of both x and x̂ for the constraint in the total variation minimization program, the signal

error v = x − x̂ obeys the tube-constraint ‖A(v)‖2 ≤ 2ε. Applying Theorem 8 and the total variation
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bound (ii) yields

‖x− x̂‖2 = ‖v‖2

. ε+ log(Nd)
(√b‖v‖TV√

s

)
. ε+

log(Nd)
√
b√

s

(
‖∇x− (∇x)s‖1b +

√
sdε
)

= log(Nd)

(
√
bdε+

√
b‖∇x− (∇x)s‖1b√

s

)
.

The proof completes.

APPENDIX

A. Derivation of Proposition 2

Recall that the space Lp(Ω) (1 ≤ p <∞) for Ω ⊂ Rd consists of all functions f satisfying

‖f‖Lp(Ω) =
(∫

Ω
|f(u)|pdu

)1/p
<∞.

The space BV(Ω) of functions of bounded variation over the unit cube Q = [0, 1)d is often used as a

continuous model for natural images. Recall that a function f ∈ L1(Q) has finite bounded variation if

and only if its distributional gradient is a bounded Radon measure, and this measure generates the BV

seminorm |f |BV (Ω). More precisely,

Definition 10. For a vector v ∈ Rd, we define the difference operator ∆v in the direction of v by

∆v(f,x) := f(x+ v)− f(x).

We say that a function f ∈ L1(Q) is in BV (Q) if and only if

VQ(f)
def
= sup

h>0
h−1

d∑
j=1

‖∆hej (f, ·)‖L1(Q(hej)) = lim
h→0

h−1
d∑
j=1

‖∆hej (f, ·)‖L1(Q(hej)) <∞

where ej denotes the jth coordinate vector. The function VQ(f) provides a seminorm for BV (Q):

|f |BV (Q)
def
= VQ(f).

In particular, piecewise constant functions are in the space BV (Q). For N = 2n a power of two,

recall the following relationship between the total-variation of a multidimensional signal x ∈ CNd

and

the bounded variation of its isometric piecewise-constant representation f ∈ ΣN ⊂ L2(Q) as defined in

(10):
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Lemma 11. Let N = 2n for some integral n. Let x ∈ CNd

and let f ∈ ΣN be its isometric embedding

as in (10). Then |f |BV ≤ N−d/2+1
√
b‖x‖TV .

Proof: For h < 1
N ,

∆hek

(
f,u

)
=

 Nd/2(x`(k) − x`) `i
N − h ≤ ui ≤

`i
N ,

0, else,

where

`
(k)
i =

 `i i 6= k,

`i + 1, i = k.

Thus

|f |BV = lim
h→0

1

h

d∑
k=1

[∫ 1

0

∫ 1

0
. . .

∫ 1

0
|f(u+ hek)− f(u)| du

]

=

d∑
k=1

Nd/2

[∑
`

1

Nd−1
|x`(k) − x`|

]
≤ N−d/2+1‖∇x‖1

≤ N−d/2+1
√
b‖x‖TV .

Cohen, Dahmen, Daubechies, and DeVore showed in [15] that the properly normalized sequence of

rearranged wavelet coefficients associated to a function f ∈ L2(Ω) of bounded variation is in weak-`1, and

its weak-`1 seminorm is bounded by the function BV seminorm. Using different normalizations to those

used in [15] — we use the L2-normalization for the Haar wavelets as opposed to the L1-normalization

— we consider the Haar wavelet coefficients feI = 〈f, heI〉 and consider the wavelet coefficient block

fI = (feI )e∈E ∈ C2d−1 associated to those Haar wavelets supported on the dyadic cube I . With this

notation, Theorem 1.1 of [15] applied to the Haar wavelet system over L2(Q) reads:

Proposition 12. Let d ≥ 2. Then there exists a constant C > 0 such that the following holds for all

f ∈ BV (Q). Let the wavelet coefficient block with kth largest `2-norm be denoted by f(k), and suppose

that this block is associated to the dyadic cube Ij,k with side-length 2−j . Then

‖f(k)‖2 ≤ C
2j(d−2)/2|f |BV

k
.

18



Proposition 2 results by translating Proposition 12 to the discrete setting of CNd

using the isometry (10)

and Lemma 11. We note that a stronger version of this result was provided for the 2-dimensional Haar

wavelet basis in [16] and used in the proof of stable image recovery from total-variation minimization

in [37].

B. Proof of Proposition 6

We prove Proposition 6 here for the isotropic case, b = d. The complete proof of the anisotropic case

b = 1 can be found in [37], and all other cases can be proven similarly.

Assume that the cone and tube constraints are in force. As in the proof of the cone constraint, let

R1 ⊂ Rc contain the next 4s largest blocks of h on Rc, R2 the next 4s largest, and so on. We write

hRj
to mean the array h restricted to its elements indexed by Rj , and write hα to denote the array

(h(`,α))
d
`=1. Thus each set satisfies |Ri| = 4sb (except possibly the last set), and (hα,`)(α,`)∈Rj+1

has

`2-norm smaller than the average of all blocks of hRj
:

‖hα‖2 ≤
1

4s

∑
β∈Rj

‖hβ‖2 =
1

4s
‖hRj

‖1,2 for all α ∈ Rj+1.

Therefore we have,

‖hRj+1
‖22 =

∑
α∈Rj+1

‖hα‖22

≤
∑

α∈Rj+1

1

(4s)2
‖hRj

‖21,2

=
1

4s
‖hRj

‖21,2.

Combining this with the cone constraint yields
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∑
j≥2

‖hRj
‖2 ≤

1√
4s

∑
j≥1

‖hRj
‖1,2

=
1√
4s

∑
α∈Rc

‖hα‖2

=
1√
4s
‖hRc‖1,2

≤ 1√
4s
‖hR‖1,2 +

1√
4s
σ

≤ 1

2
‖hR‖2 +

1√
4s
σ,

where in the last line we have utilized the fact that ‖hR‖1,2 ≤
√
s‖hR‖2. Next by the tube constraint

we have

√
2dε ≥ ‖Bh‖2

≥
√

1− δ‖hR + hR1
‖2 −

√
1 + δ

∑
j≥2

‖hRj
‖2

≥
√

1− δ‖hR + hR1
‖2 −

√
1 + δ

(
1

2
‖hR‖2 +

1√
4s
σ

)
≥
(√

1− δ − 1

2

√
1 + δ

)
‖hR + hR1

‖2 −
√

1 + δ(
1√
4s
σ).

Using the fact that δ < 1/3, this implies that

‖hR + hR1
‖2 ≤ 10

√
dε+

3√
s
σ.

The bound (23) then follows since

‖h‖2 ≤ ‖hR + hR1
‖2 +

∑
j≥2

‖hRj
‖2

≤ ‖hR + hR1
‖2 +

1

2
‖hR‖2 +

1√
4s
σ

.
√
dε+

1√
s
σ.
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Similarly, the bound (24) follows from the cone constraint,

‖h‖1,2 ≤ 2‖hR‖1,2 + σ

≤ 2
√
s‖hR‖2 + σ

.
√
s(
√
dε+

1√
s
σ) + σ

=
√
sdε+ σ,

which completes the proof.
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M. Lysaker, and K.-A. Lie, editors, Lect. Notes Comput. SC, volume 5567 of LNCS, pages 552–564. Springer, 2009.

23


	Claremont Colleges
	Scholarship @ Claremont
	1-1-2013

	Near-optimal compressed sensing guarantees for anisotropic and isotropic total variation minimization
	Deanna Needell
	Rachel Ward
	Recommended Citation



