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Abstract

We explore the behavior of an integrodifferential equation used to model
one-dimensional biological swarms. In this model, we assume the motion
of the swarm is determined by pairwise interactions, which in a continuous
setting corresponds to a convolution of the swarm density with a pairwise
interaction kernel. For a large class of interaction kernels, we derive condi-
tions that lead to solutions which spread, blow up, or reach a steady state.
For a smaller class of interaction kernels, we are able to make more quanti-
tative predictions. In the spreading case, we predict the approximate shape
and scaling of a similarity profile, as well as the approximate behavior at
the endpoints of the swarm (via solutions to a traveling-wave problem). In
the blow-up case, we derive an upper bound for the time to blow-up. In the
steady-state case, we use previous results to predict the equilibrium swarm
density. We support our predictions with numerical simulations.

We also consider an extension of the original model which incorporates
external forces. By analyzing and simulating particular cases, we deter-
mine that the addition of an external force can qualitatively change the be-
havior of the system.
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Chapter 1

Introduction

Many biological organisms, including fish, birds, insects, and herd ani-
mals, form socially cohesive aggregates and exhibit swarming behavior.
There exist many previously-published mathematical models for biologi-
cal swarming; for example, see [1, 4, 6, 7, 8, 9, 12].

As outlined in the work of Mogilner et al. [9], such models can be cate-
gorized according to several of their key mathematical properties. A model
can describe swarming systems that reside in domains of one, two, or three
dimensions. Models may also differ in their treatment of the individu-
als’ interactions with each other and with their environment. Generally
speaking, aggregation is governed by endogenous and exogenous forces.
Endogenous forces may include pairwise social-interaction forces such as
attraction and repulsion, and exogenous forces may include gravity, wind,
and chemotaxis. Different models may incorporate different types of forces
and may neglect others. Even when considering a particular type of force,
models may differ in how they describe that particular force mathemati-
cally. For example, as we will see below, in models that describe social
interactions by assigning an interaction strength to every possible distance
of separation, there is an infinite space of functions to choose from. More-
over, models may be either kinematic or dynamic. Dynamic models utilize
Newton’s third law and incorporate the effects of inertia upon acceleration,
whereas kinematic models neglect inertial forces and assume that a parti-
cle’s velocity is always proportional and parallel to the net force it experi-
ences. Finally, a model may be discrete or continuous. Continuous models
describe a swarm in terms of a continuous density function, and discrete
models track the positions of a finite number of localized individuals.

In this thesis, we characterize and quantify the behavior of a class of
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swarming models that incorporate pairwise social interactions and allow
for the possibility of external forces. We consider a one-dimensional, con-
tinuous, kinematic swarming model governed by the following integrodif-
ferential equation:

ρt + (ρv)x = 0, (1.1)

v(x, t) =
∫ ∞

−∞
ρ(z, t)Fs(x− z) dz + Fc(x). (1.2)

Here, ρ(x, t) denotes the swarm density at position x and time t. The func-
tion Fs describes a pairwise social-interaction force, and Fc describes an ex-
ternal force, such as gravity or chemotaxis. We note that (1.1) is formulated
as a local conservation law. Equation (1.2) describes the swarm’s velocity
as a continuous superposition of pairwise interactions.

The function Fs specifies a strength of interaction between two clumps
of density for any given distance of separation. We assume that Fs is an-
tisymmetric to ensure that distinct clumps of density exert equal and op-
posite forces on one another. Also, we assume that Fs(r) → 0 as r → ±∞
in order to model the limited range of interaction exhibited by biological
organisms. Finally, to simplify our analysis, we will assume that Fs is con-
tinuous and differentiable everywhere, except possibly at the origin, where
we allow a jump discontinuity. One reasonable choice of Fs is the Morse
interaction force, given by

Fs(r) = sgn(r)
[
−Fe−|r|/L + e−|r|

]
, (1.3)

where F and L are constant parameters specifying the relative strength and
length-scale, respectively, of the attractive term relative to the repulsive.
While many of our derivations below apply to arbitrary Fs, using this par-
ticular interaction force often simplifies the calculations greatly.

The function Fc specifies the strength of the external force experienced
by the swarm at a given position. We will consider only functions Fc that
are antisymmetric about the origin. Our analysis begins by assuming that
there is no external force (i.e., Fc ≡ 0). After characterizing the behavior
of the simplified system, we introduce non-trivial external forces, such as
Fc(x) = e−x2

or Fc(x) = x2.

1.1 Literature Review

Others have studied similar models. For example, Bodnar and Velazquez
in [3] and [4] study a continuous, 1-dimensional swarming model using a
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rigorous functional analysis framework. In the first paper, they derive the
continuous governing equation from a discrete, individual-based model.
In the second, they predict that the long-wave components of the density
behave according to the porous medium equation, and that the short-wave
components behave according to Burgers’ equation. From this, they derive
conditions on blow-up and spreading.

Bernoff and Topaz, in [1], use a calculus-of-variations argument to find
the equilibrium states, when they exist, for a continuous, 1-d model simi-
lar to ours. Additionally, they allow for both exogenous and endogenous
forces.

Bertozzi and Laurent, in [2], consider a higher-dimensional analogue of
the model considered in this paper, and derive conditions that ensure the
density will blow up.

Topaz, Bertozzi, and Lewis, in [14], study a higher-dimensional general-
ization of our model and study its transient “clumping” and “coarsening”
behavior.

Mogilner and Edelstein-Keshet, in [8], study a 1-D continuous model
similar to ours (where the velocity is a convolution of the density and an
interaction force) and look for cohesive “traveling-band” solutions. They
find that a non-local model (in which the velocity term v(x, t) depends on
the density at locations other than x) is better able to encapsulate cohesive
swarm motion than local models.

Topaz and Bertozzi, in [13], study a continuous, 2-dimensional, non-
local swarming model and derive predictions about the evolution of the
shape of a swarm, including whether swarms will contract or expand and
whether they will form spiral-like structures.

1.2 A Brief Overview

In what follows, we initially assume Fc ≡ 0 and predict the asymptotic
behavior of the system for various interaction forces Fs, making quanti-
tative predictions about the evolution of the swarm density for each ob-
served class of behavior. Then, we extend the model by incorporating a
non-trivial external force Fc and study the effect this has on the system’s
qualitative behavior. Chapters 2 through 6 discuss the simplified model in
which Fc ≡ 0, and Chapters 7 through 9 discuss the addition of a non-trivial
external force.





Chapter 2

Basic Properties of the Model

In this chapter, we prove some basic properties about the simplified model
in which Fc ≡ 0. Hence, the relevant governing equations are

ρt + (ρv)x = 0, (2.1)

v(x, t) =
∫ ∞

−∞
ρ(z, t)Fs(x− z) dz. (2.2)

2.1 Conservation of Mass

In general, the continuous system conserves mass, which follows from the
fact that the governing equation (2.1) is formulated as a conservation law.
If we define the mass of the system at time t to be

M(t) =
∫ ∞

−∞
ρ(x, t) dx, (2.3)

we see that

dM
dt

=
∫ ∞

−∞
ρt dx = −

∫ ∞

−∞
(ρv)x dx = −

[
ρv
]x=+∞

x=−∞ = 0, (2.4)

assuming the density decays to zero as x → ±∞. Hence, it makes sense to
define M ≡ M(0) = M(t), representing the mass of the system at any time.

2.2 Conservation of Center of Mass

Physically, the antisymmetry of the social interaction force Fs corresponds
to interactions occurring in pairs of equal magnitude and opposite direc-
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tion. This suggests intuitively that the center of the mass of the system
should remain fixed.

To verify this, we consider the center of mass at time t:

x̄(t) =
1
M

∫ ∞

−∞
xρ(x, t) dx. (2.5)

Then,

dx̄
dt

=
1
M

∫ ∞

−∞
xρt dx (2.6)

= − 1
M

∫ ∞

−∞
x(ρv)x dx

= − 1
M
[
xρv

]x=+∞
x=−∞ +

1
M

∫ ∞

−∞
ρv dx.

Assuming the density vanishes at ±∞,

dx̄
dt

=
1
M

∫ ∞

−∞
ρv dx (2.7)

=
1
M

∫ ∞

−∞
ρ(x, t)

∫ ∞

−∞
ρ(y, t)Fs(x− y) dy dx

=
1
M

∫ ∞

−∞

∫ ∞

−∞
ρ(x, t)ρ(y, t)Fs(x− y) dy dx

Relabeling the variables of integration and invoking the antisymmetry of
the social interaction force,

dx̄
dt

=
1
M

∫ ∞

−∞

∫ ∞

−∞
ρ(y, t)ρ(x, t)Fs(y− x) dx dy

= − 1
M

∫ ∞

−∞

∫ ∞

−∞
ρ(x, t)ρ(y, t)Fs(x− y) dy dx

Hence, dx̄/dt = −dx̄/dt, and thus dx̄/dt = 0. That is, the center of mass is
stationary.



Chapter 3

Asymptotic Behavior of
Solutions

In this chapter, we discuss observed classes of asymptotic behavior for the
simplified system in which Fc ≡ 0 and propose conditions on the social
force Fs leading to each class of behavior. The relevant governing equations
are

ρt + (ρv)x = 0, (3.1)

v(x, t) =
∫ ∞

−∞
ρ(z, t)Fs(x− z) dz. (3.2)

To simulate this system, we used a particle-based numerical method,
which is described in the appendix. Furthermore, we assumed a Morse-
type social interaction force of the form (1.3). Simulations revealed three
asymptotic behaviors, namely spreading, steady-state, and blow-up. These
behaviors are shown in Figure 3.1. Figure 3.1(a) shows a spreading solu-
tion, corresponding to a population that disperses to infinity. The popula-
tion density profiles appear to be self-similar; we discuss this issue further
in Chapter 4. Figure 3.1(b) shows a steady-state solution, corresponding to
an localized aggregation of the population. The population density drops
discontinuously to 0 at the edge of the support. Figures 3.1(c,d) show two
cases of solutions blow-up, corresponding to over-crowded populations.
In the first case, the solution forms a single clump. In the second case,
multiple, mutually-repelling clumps form. These clumps are, in fact, delta
functions, as we discuss later.

In what follows, we derive conditions on the social force Fs that should
produce each of the above behaviors. To do this, we examine long-wave
and short-wave behavior separately.
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Figure 3.1: Snapshots of the population density profile governed by (3.1)
with the social interactions described by the Morse interaction force (1.3).
The asymptotic behavior of the model depends crucially on the choice of
F, the relative strength of social attraction to social repulsion, and L, their
relative characteristic length scales. (a) F = 0.1, L = 2. The population
eventually spreads to infinity. (b) F = 0.5, L = 3. The population reaches
a compactly-supported steady state. (c) F = 2, L = 2. The density profile
blows up into a single clump. (d) F = 2, L = 0.5. The density profile blows
up by forming mutually-repulsive clumps.



Long-Wave Behavior 9

3.1 Long-Wave Behavior

In this section, we predict what happens to wide and slowly-varying (i.e.,
“long-wave”) initial conditions, finding that they behave, for small time,
according to a porous-medium equation.

We first note that the Fourier transform of the velocity v(x, t) is given
by a product of Fourier transforms, since v is in the form of a convolution:

v̂(k) = F{ρ ∗ Fs} = ρ̂(k)F̂s(k). (3.3)

If we assume that ρ is initially long-wave, meaning ρ̂ is localized near
k = 0, we can eventually ignore the behavior of F̂s for large k. We begin by
writing F̂s(k) as a Taylor series:

v̂(k) = ρ̂(k)
∞

∑
n=0

kn

n!
F̂(n)

s (0). (3.4)

Furthermore, we can express the nth derivative of F̂s at k = 0 in terms
of the moments of Fs. We define the nth moment of Fs by

Mn[Fs] =
∫ ∞

−∞
zn Fs(z) dz (3.5)

Then,

F̂(n)
s (0) =

[
dn

dkn

∫ ∞

−∞
Fs(x)e−ikx dx

]
k=0

(3.6)

=
[∫ ∞

−∞
Fs(x)

dn

dkn e−ikx dx
]

k=0

= (−i)n
[∫ ∞

−∞
xnFs(x)e−ikx dx

]
k=0

= (−i)n
∫ ∞

−∞
xnFs(x) dx

= (−i)n Mn[Fs].

From this,

v̂(k) =
∞

∑
n=0

(−1)n

n!
(ik)nρ̂(k)Mn[Fs] (3.7)

=
∞

∑
n=0

(−1)n

n!
F
{

∂nρ

∂xn

}
Mn[Fs].
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Since Fs is antisymmetric, the even moments of Fs vanish and we can write

v̂(k) = −
∞

∑
n=0

1
(2n + 1)!

F
{

∂2n+1ρ

∂x2n+1

}
M2n+1[Fs]. (3.8)

Under the assumption that ρ is initially long-wave, we can neglect the be-
havior of F̂s(k) for large k and truncate this Taylor series:

v̂(k) ≈ −M1[Fs]F{ρx}. (3.9)

Then,
v(x) ≈ −M1[Fs]ρx. (3.10)

With the velocity in this form, the governing equation approaches

ρt = κ(ρ2)xx, where κ =
1
2

M1[Fs]. (3.11)

This is the well-known porous-medium equation. For certain initial
conditions, a class of similarity solutions known as Barenblatt solutions are
given by

ρ(x, t) =
1

12(t + t0)1/3

[
a2

0 −
(

x− x0

(t + t0)1/3

)2
]

+

, (3.12)

where we use the notation [u]+ = max{0, u}, and where x0, t0, and a0 are
parameters depending on the initial condition [15]. Additionally, all initial
conditions will approach this particular class of solutions asymptotically as
t→ ∞.

For κ > 0, solutions to this equation spread and grow wider without
bound. For κ < 0, the porous-medium equation models backwards dif-
fusion, which means that solutions will contract and blow up rather than
spread.

Thus, when κ > 0, long-wave initial conditions will lead to solutions
of (3.1) that spread and grow wider without bound. This is asymptotically
consistent; that is, long-wave solutions will spread and therefore remain
long-wave when κ > 0. However, when κ < 0, long-wave initial conditions
will contract until they can no longer be considered long-wave, at which
point the approximations used above will fail to hold.

Finally, we note that if κ = 0 (that is, if the first moment of Fs vanishes),
the above analysis does not hold, and we must retain higher-order terms in
(3.8) in order to predict asymptotic behavior.
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3.2 Short-Wave Behavior

In this section, we predict what happens to narrow and sharply-varying
(i.e., “short-wave”) initial conditions, finding that they behave according
to Burgers’ equation, at least for a short time.

We assume ρ is initially short-wave. This will eventually allow us to
neglect the behavior of F̂s(k) near k = 0.

We begin by writing the governing equation in terms of the following
cumulative mass function:

ψ(x, t) =
∫ x

x̄
ρ(z, t) dz. (3.13)

Here, x̄ is the center of mass of the system. We recall that this is constant
with respect to time provided Fs is antisymmetric, as discussed above.

We can write the governing equation as:

ψt(x, t) =
∫ x

x̄
ρt(z, t) dz (3.14)

= −
∫ x

x̄
(ρ(z, t)v(z, t))x dz

= −ρ(x, t)v(x, t)
= −ψx(x, t)v(x, t).

That is, the cumulative mass function behaves according to

ψt + vψx = 0. (3.15)

If Fs is smooth everywhere except for a jump discontinuity in its mth
derivative at the origin—that is, if F(m+1)

s (x) = 2βδ(x) + S(x) for β 6= 0
and S continuous and piecewise differentiable—we can use repeated inte-
gration by parts to obtain

F̂s(k) =
∫ ∞

−∞
Fs(x)e−ikx dx (3.16)

=
1

(ik)m+1

∫ ∞

−∞
F(m+1)

s (x)e−ikx dx

=
1

(ik)m+1 [2β + Ŝ(k)].

Since S is smooth, the Riemann-Lebesgue lemma states that its Fourier
transform goes to zero as k → ∞. If ρ is initially short-wave, then we can
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focus solely on the behavior of F̂s(k) as k→ ∞:

F̂s(k) ∼ 2β

(ik)m+1 as k→ ∞. (3.17)

We commonly deal with interaction forces where the jump discontinu-
ity occurs at the origin in the function Fs itself, in which case m = 0 and

F̂s(k) ∼ 2β

ik
as k→ ∞. (3.18)

Therefore, in this limit, the velocity becomes

v̂(k) ∼ 2β

ik
ρ̂(k) as k→ ∞. (3.19)

Since ψx = ρ, we have ρ̂(k) = ikψ̂(k) and thus

v ≈ 2βψ in the limit of short wavelengths. (3.20)

Hence, the governing equation for the cumulative mass function ψ re-
duces to Burgers’ equation:

ψt + 2βψψx = 0. (3.21)

Since ψ is always monotonically increasing, we know that it will con-
tract and form a shock when β < 0 and spread when β > 0. Moreover,
because ψx = ρ, we predict that ρ will blow up when β < 0 and spread
when β > 0.

The above approximations are asymptotically consistent for β < 0 (since
narrow initial conditions will become narrower), but asymptotically incon-
sistent for β > 0. In the latter case, narrow initial conditions will spread
until they can no longer be considered narrow.

When β = 0, we know that Fs itself is continuous, and therefore m ≥ 1
in (3.17). Hence, our approximation for the governing equation may in-
volve antiderivatives of the cumulative mass function ψ.

3.3 Predicting Qualitative Behavior

From the above results, we expect short waves to blow up when β < 0
and spread when β > 0. Similarly, we expect long waves to contract when
κ < 0 and spread when κ > 0. When short waves blow up, we expect the
short-wave instability to override the long-wave behavior. Thus, there are
three possible cases:
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• Solutions contract when β < 0, regardless of the value of κ, leading
to blow-up.

• When β > 0 and κ > 0, both long and short waves spread.

• When β > 0 and κ < 0, short waves spread while long waves con-
tract, tending toward an equilibrium solution.

To test these predictions, we have performed numerical simulations of
(3.1) with social interactions given by the Morse potential (1.3). For this
choice of potential, κ = 1− FL2 and β = 1− F. Thus, we expect to see blow
up when F > 1, spreading when F < 1/L2 and F < 1, and steady-state
solutions when 1 > F > 1/L2. The results of the numerical simulations are
summarized in Figure 3.2, which shows that the boundaries between the
three regimes agree with our theoretical predictions.

When F > 1, the numerical solution consistently blows up, but we ob-
serve two distinct types of blow-up. When L < 1, the interaction force
Fs models long-range repulsion, and the solution may form multiple δ-
functions which travel away from each other, whereas when L > 1, the
entire mass of the system eventually collapses into a single δ-function due
to long-range attraction.
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Figure 3.2: Results of numerical simulations of (3.1) with the Morse-type so-
cial interaction (1.3). The horizontal line at F = 1 corresponds to β = 0 and
marks the boundary above which solutions blow up. The curve F = 1/L2

corresponds to κ = 0 and marks the boundary between spreading and
steady state solutions for F < 1. The (partial) line L = 1 indicates the crit-
ical case separating whether attraction operates at short or long ranges.
When in the blow-up (strong attraction) regime, this boundary marks
where a transition between different types of blow-up occur. When the
attraction is short range, multiple repelling delta-functions form. When the
attraction is long range, a singe delta function forms.



Chapter 4

Spreading Solutions

Still in the context of the simplified model (where Fc ≡ 0), we now consider
particular cases where the predictions of the preceding chapter lead us to
expect swarms to spread indefinitely.

When κ > 0 and β > 0, we expect solutions to spread. As the density
profile grows wider, the long-wave approximation derived above will be-
come increasingly accurate, and so we expect solutions to approach Baren-
blatt’s solution to the porous-medium equation, which is given in (3.12).

As shown in Figures 4.1 and 4.2, numerical results using a Morse inter-
action force (with F < 1 and F < 1/L2) produced spreading solutions that
agree with the Barenblatt solution.

Apart from the shape of the solution, we are also interested in studying
the jump discontinuities at the edges of the swarm.

When we assume a Morse-type social interaction force, we can gain a
more quantitative understanding of this endpoint behavior by finding an
exact traveling-wave solution to (3.1). At the left endpoint of the swarm,
for example, we might expect a spreading solution to behave locally (and
for small t) like a fixed wave profile traveling to the left. Hence, we look for
a traveling-wave solution of the form ρ(x, t) = g(x + ct), where g(z) = 0
for all z < 0.

Under these assumptions, the PDE reduces to

0 = cg′ +
∂

∂z
(vg) =

∂

∂z
[(c + v)g]. (4.1)

Integrating both sides of this equation,

(c + v)g = 0. (4.2)
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Figure 4.1: In the spreading regime, we see that the density profile, if prop-
erly rescaled, approaches the Barenblatt similarity solution to the porous-
medium equation. To visualize this convergence, we have normalized the
numerical results by maximum height. A representative snapshot of the
Barenblatt similarity solution is shown for comparison. For this simula-
tion, we used a Morse interaction force with parameters F = 0.2 and L = 2.
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Figure 4.2: In the spreading regime, this plot shows that the RMS width
of the density profile grows approximately according to a power law with
exponent 1/3, matching the behavior of the Barenblatt similarity solution
to the porous-medium equation. As in Figure 4.1, this simulation used a
Morse interaction force with parameters F = 0.2 and L = 2.
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We know that the constant of integration must be zero because the left-
hand side vanishes for negative z. Hence, wherever g is nonzero, c = −v.
That is,

− c =
∫ ∞

0
g(z̃)Fs(z− z̃) dz̃ for z ≥ 0 (4.3)

After writing out Fs explicitly and taking derivatives with respect to z
on both sides, we obtain

0 = 2(1− F)g(z)−
∫ z

0
g(z̃)ez̃−z dz̃−

∫ ∞

z
g(z̃)ez−z̃ dz̃ (4.4)

+
F
L

∫ z

0
g(z̃)e(z̃−z)/L dz̃ +

F
L

∫ ∞

z
g(z̃)e(z−z̃)/L dz̃.

That is,

(F− 1)g(z) =
1
2

∫ ∞

0
g(z̃)

[
F
L

e−|z−z̃|/L − e−|z−z̃|
]

dz̃. (4.5)

To ensure that the exponential terms are linearly independent, we as-
sume F 6= 0 and L 6= 1. Then, to solve this integral equation, we apply the
differential operators L1 = ∂zz − 1 and L2 = L2∂zz − 1 to both sides.

The left-hand side becomes

L1L2[(F− 1)g(z)] (4.6)
= (F− 1)L2g′′′′(z) + (1− F + L2 − FL2)g′′(z) + (F− 1)g(z),

and the right-hand side becomes

1
2

∫ ∞

0
g(z̃)L1L2

[
F
L

e−|z−z̃|/L − e−|z−z̃|
]

dz̃ (4.7)

=
1
2

∫ ∞

0
g(z̃) · (−2) ·

[
(F− L2)δ′′(z− z̃) + (1− F)δ(z− z̃)

]
dz̃

= (L2 − F)g′′(z) + (F− 1)g(z).

Hence, the integral equation reduces to the following ODE:

g′′′′(z)− 1− FL2

L2(1− F)
g′′(z) = 0. (4.8)

Assuming the solution is spreading, we know 1− FL2 = κ > 0 and 1− F =
β > 0. This tells us that the coefficient on g′′(z) is strictly negative.
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Then, letting α = 1
L

√
1−FL2

1−F , and integrating the ODE twice, we have

g′′(z)− α2g(z) = Az + B. (4.9)

Since A and B are undetermined constants of integration, we can rescale
them and rewrite this ODE as

g′′(z)− α2[g(z)− Az− B] = 0. (4.10)

We note that g(z) = Az + B is a particular solution to this equation and
that gh(z) = Ce−αz + Deαz is the general solution to the corresponding ho-
mogeneous equation. Therefore, the general solution to the inhomogenous
equation is

g(z) = Az + B + Ce−αz + Deαz. (4.11)

The traveling wave cannot grow exponentially as z → ∞, because that
implies non-constant mass flux as the wave translates to the left, so we
must set D = 0.

Next, we can find A, B, and C by plugging this solution into (4.3):

− c =
∫ ∞

0
(Az̃ + B + Ce−αz̃)sgn(z− z̃)

(
−Fe−|z−z̃|/L + e−|z−z̃|

)
dz̃. (4.12)

This simplifies to

− c = A ·
[
2(FL2 − 1)− FL2e−z/L + e−z

]
(4.13)

+B ·
[

FLe−z/L − e−z
]

+C ·
[

FL
1− αL

e−z/L − 1
1− α

e−z
]

.

Since 1, e−z/L, and e−z are linearly independent, we get the following
system of equations by matching like terms:

A =
c

2(1− FL2)
, (4.14)

A = B +
C

1− α
, (4.15)

AL = B +
C

1− αL
. (4.16)
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Solving for the coefficients:

A = cA0, A0 =
1

2(1− FL2)
, (4.17)

B = cB0, B0 =
1

2(1− FL2)

(
L + 1− 1

α

)
, (4.18)

C = cC0, C0 =
1

2(1− FL2)
(αL− 1)

(
1− 1

α

)
. (4.19)

Note that this gives us a traveling-wave solution for each wave speed c.
From this, we can predict the relationship between the instantaneous

speed of a traveling front, the size of the jump at the edge, and the slope of
the density at the edge.

In particular, the size of the jump is given by

g(0) = (B0 + C0)c, (4.20)

and the slope at the edge is given by

g′(0) = A0c− αC0ce−αz∣∣
z=0 = (A0 − αC0)c, (4.21)

where the wave speed c is the instantaneous speed of the traveling discon-
tinuity.

Note, however, that we can only expect these relations to hold in the
limit as t → ∞, since the solution must be sufficiently wide and slowly
varying near the endpoints for it to locally approximate a traveling wave.

For several values of F and L, we tested these predictions by tracking
the speed, jump in density, and slope at the endpoints over time. Figure 4.3
shows that the jump in density and slope, if properly rescaled, approach
the instantaneous speed as expected.
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Figure 4.3: The endpoint behavior of a spreading solution matches our
traveling-wave predictions. Here, the density at the endpoint is normal-
ized by B0 + C0, and the slope in density at the endpoint is normalized by
A0− αC0. We see that these rescaled quantities approach the instantaneous
speed of the endpoint, as expected. In this simulation, we used a Morse
interaction force with parameters F = 0.1 and L = 3.





Chapter 5

Contracting Solutions

Now we consider the case where the predictions of Chapter 3 lead us to
expect swarms to contract until the swarm density blows up.

When β < 0 and the initial condition is sufficiently narrow, we can
approximately predict when the solution will form a δ-function. We will let
a(t) and b(t) denote the position at time t of the left and right endpoints,
respectively. Then, for a(t) < z < b(t) and b(t) − a(t) sufficiently small,
note that

Fs(a(t)− z) ≤ min
a(t)−b(t)<r<0

Fs(r) (5.1)

= max
0<r<b(t)−a(t)

Fs(r)

= min
0<r<b(t)−a(t)

|Fs(r)|.

Hence, if we let
q(t) = min

0<r<b(t)−a(t)
|Fs(r)|, (5.2)

we can find a bound for the velocity at the left endpoint:

a′(t) = v(a(t), t) (5.3)

=
∫ b(t)

a(t)
ρ(z, t) Fs(a(t)− z) dz

≥ q(t)
∫ b(t)

a(t)
ρ(z, t) dz

= Mq(t)
> 0.
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A similar argument shows that the velocity at the right endpoint satisfies

b′(t) ≤ −Mq(t) < 0. (5.4)

This demonstrates that the endpoints are approaching each other. Hence,
the interval (0, b(t)− a(t)) is shrinking. Then, from the definition of q(t),
we see that q(t) must be non-decreasing, and consequently the endpoints
must be accelerating towards each other, or at least moving towards each
other at a constant velocity.

If we let t∗ denote the time at which all the mass of the system has
entered a single δ-function, we can find an upper bound for t∗ using

b′(t) ≤ b′(0) ≤ −Mq(0), (5.5)
a′(t) ≥ a′(0) ≥ Mq(0). (5.6)

Since the endpoints are initially separated by a distance b(0)− a(0) and
are moving towards each other at a minimum speed Mq(0), this gives us
the following bound:

t∗ ≤ b(0)− a(0)
2Mq(0)

. (5.7)

Here we note that Gronwall’s inequality might yield a slightly more accu-
rate bound on t∗, but (5.7) should be sufficient for our purposes.

Furthermore, just before the solution forms a δ-function, we can predict
that the velocities of the endpoints will be M|β| at the left endpoint, and
−M|β| at the right endpoint. This suggests that when β = 0 we may have
blow-up in infinite time.

Numerical tests of these predictions used narrow initial conditions of
widths 0.1 units and 0.2 units, as well as a Morse interaction force satisfying
L > 1, F > 1. For one fixed value of L, Figure 5.1 shows that the upper
bound on t∗ derived above holds for all tested values of F.
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Figure 5.1: Within the blow-up regime, the time to blow-up, t∗, in numer-
ical simulation results compare well with an analytic upper bound for t∗.
In these simulations, we tested initial conditions of widths 0.1 units and 0.2
units. We used a Morse interaction force with L = 2 and various values for
F > 1.





Chapter 6

Steady-State Solutions

Next, we consider the case where the results of Chapter 3 predict steady-
state solutions.

Assuming a Morse interaction force, the regime in which steady-state
solutions are expected corresponds to parameters F and L satisfying 1 >
F > 1/L2. Looking for steady-state solutions, we assume ρt ≡ 0. Then,
the governing equation (3.1) becomes (ρv)x = 0. Integrating with respect
to x yields ρv = 0. Here, the constant of integration must be zero because
swarms of finite support have zero density outside of a sufficiently large
radius, and hence ρv is zero for some values of x. Then, wherever ρ 6= 0, we
have v = 0. Using (3.2), this corresponds to the following integral equation:

0 =
∫ ∞

−∞
ρ(z) Fs(x− z) dz. (6.1)

In the case of a Morse interaction force, the results of [1] allow us to
solve this integral equation and thereby predict the equilibrium solution
exactly.

Assuming κ = 1− FL2 < 0 and β = 1− F > 0, we define the following
constants:

µ =

√
|κ|
L2β

, (6.2)

W =
2
µ

tan−1

(√
|κ|β

FL− 1

)
, (6.3)

λ =
M

W + 2(L + 1)
, (6.4)
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Figure 6.1: In the steady-state regime, the long-term behavior of a numeri-
cal simulation agrees well with the predicted equilibrium solution. In this
simulation, we used a Morse interaction force with parameters F = 0.5 and
L = 2.

A =
λ(L2 − 1)

√
F

Lβ
. (6.5)

As presented in [1], the equilibrium solution is then

ρ(x) =
{

A cos(µx) + λ, |x| ≤W/2,
0, |x| > W/2.

(6.6)

Figure 6.1 shows that our numerical results line up well with these pre-
dictions.



Chapter 7

Introducing an External Force

Since swarming behavior is often influenced by environmental factors, we
now incorporate an exogenous force Fc(x).1 With this new force, the gov-
erning equations become

ρt + (ρv)x = 0, (7.1)

v(x, t) =
∫ ∞

−∞
ρ(z, t) Fs(x− z) dz + Fc(x). (7.2)

In 1-D, we can associate any force Fc(x) with a corresponding potential
Q(x) such that

Fc(x) = −Q′(x). (7.3)

Hence, we can generally write the velocity v(x, t) as

v(x, t) =
∫ ∞

−∞
ρ(z, t) Fs(x− z) dz−Q′(x). (7.4)

We assume the potential Q(x) is symmetric (meaning the force Fc(x)
must be antisymmetric), continuous, and piecewise smooth. For simplicity,
we will consider only forces for which the origin is purely repulsive or
purely attractive. Pure repulsion occurs when Q(x) is strictly decreasing
for x > 0, and pure attraction occurs when Q(x) is strictly increasing for
x > 0.

Given a social force Fs and an external force Fc, we wish to predict the
asymptotic behavior of the system. In particular, we wish to determine
when it is possible for the addition of an external force to qualitatively alter
the system’s asymptotic behavior. In what follows, we do not prove fully

1Here, the subscript “c” is intended to suggest chemotaxis, although this force could also
correspond to gravity, wind advection, or other types of external factors.
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general results for arbitrary Fc and Fs; instead, we consider several partic-
ular cases in which it is possible to predict how the addition of an external
force will alter the system’s behavior.

A brief note on terminology: Throughout this section, we are interested
in comparing the behavior of an arbitrary system (with non-trivial Fc) to
the corresponding system where Fc ≡ 0. We say that an external force Fc
(or the associated potential Q) “prevents blow-up” for a given social force
Fs if we observe blow-up when the velocity is given by

v(x, t) =
∫ ∞

−∞
ρ(z, t) Fs(x− z) dz, (7.5)

but not when the velocity is given by

v(x, t) =
∫ ∞

−∞
ρ(z, t) Fs(x− z) dz + Fc(x). (7.6)

Similarly, we say that Fc “prevents spreading” for a given social force Fs if
we observe spreading when the velocity is given by (7.5), but not when the
velocity is given by (7.6).



Chapter 8

Attractive Swarms in Repulsive
Potentials

We first consider purely attractive social forces Fs, which in the absence of
external forces lead to blow-up (as discussed in Chapter 5). In numerical
tests, we have observed that the addition of a sufficiently strong repulsive
external force can prevent blow-up, leading either to spreading or to an un-
stable equilibrium. The following analysis determines sufficient conditions
for an external force to prevent blow-up.

8.1 A Simple Example

In the simplest case, suppose the social force is Fs(r) = −sgn(r), and sup-
pose the external potential is Q(x) = −x2, so that Q′(x) = −2x.

Assuming the initial density is a constant ρ̄0 for |x| < b0 and zero else-
where, the initial velocity is given by

v(x, 0) = −
∫ b0

−b0

ρ̄0sgn(x− z) dz + 2x

= ρ̄(b0 − x)− ρ̄0(x + b0) + 2x
= 2(1− ρ̄0)x (8.1)

In this particular case, we can use the method of characteristics to find
the dynamics of the system at t = 0. We find that the characteristics are
initially given by

x(t) = x0e2(1−ρ̄0)t, (8.2)
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with the density initially decaying along these curves according to

ρ(x(t), t) = ρ̄0e−2(1−ρ̄0)t. (8.3)

Since the expression for ρ does not depend on x, we conclude that piece-
wise constant initial conditions must remain piecewise constant for all time.

Assuming the initial condition is constant on some interval and zero
elsewhere, we let ρ̄(t) denote the nonzero density of the swarm at time t.
Using the same argument we used to derive (8.1), we find

v(x, t) = 2(1− ρ̄(t))x. (8.4)

Therefore,
∂

∂x
v(x, t) = 2(1− ρ̄(t)). (8.5)

The sign of ∂v/∂x determines the local behavior of the system. Specif-
ically, the method of characteristics tells us that the density increases (at
least locally and for a short time) due to net inward mass flux when ∂v/∂
is negative; likewise, the density decreases when ∂v/∂x is positive.

When ρ̄0 > 1, we know ∂
∂x v(x, 0) < 0, and hence the density will ini-

tially increase (while remaining spatially uniform). Hence, ρ̄(t) ≥ ρ̄0 > 1,
and thus ∂

∂x v(x, t) < 0 for all t.
This shows that solutions will contract and blow up if the initial density

ρ̄ is sufficiently large; specifically, if ρ̄0 > 1. On the other hand, solutions
will spread indefinitely if ρ̄0 < 1. At the critical density ρ̄0 = 1, we have
an unstable steady state where social attraction precisely cancels external
attraction.

Figure 8.1 shows numerical simulations that agree with these predic-
tions.

While this example may seem somewhat contrived and perhaps phys-
ically implausible, it is significant in that it demonstrates the possibility of
preventing blow-up via the addition of an external force. Next, we consider
other ways of achieving the same result.

8.2 General Repulsive Potentials

More generally, we wish to determine sufficient conditions for preventing
blow-up when Fs is a purely attractive social force and Q is an arbitrary
attractive external potential. As in Chapter 5, we consider Fs with a jump
discontinuity at the origin; i.e., where β = limε↓0 Fs(ε) < 0. Moreover, it is
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Figure 8.1: A simple system, in which Fs = −sgn(r) and Q(x) = −x2,
illustrates that the asymptotic behavior of attractive swarms in repulsive
potentials is dependent on initial conditions. For initial densities ρ̄0 < 1,
solutions spread indefinitely, as shown in (a). For initial densities ρ̄0 > 1,
solutions blow up, as shown in (b).

both mathematically convenient and physically reasonable to assume that
the magnitude of the social force decays monotonically as the distance of
separation increases. Then, we can express Fs as

Fs(r) = −|β|sgn(r) + g(r), (8.6)

where g is continuously differentiable at the origin, and g′ is everywhere
non-negative.

Under our assumptions,

∂

∂x
v(x, t) =

∫ ∞

−∞
ρ(z, t) F′s(x− z) dz−Q′′(x)

=
∫ ∞

−∞
ρ(z, t)

[
−2|β|δ(x− z) + g′(x− z)

]
dz−Q′′(x)

= −2|β|ρ(x, t) +
∫ ∞

−∞
ρ(z, t) g′(x− z) dz−Q′′(x)

≥ −2|β|ρ(x, t)−Q′′(x). (8.7)

In neglecting the integral term, we have made use of our assumptions
that ρ and g′ are non-negative. Then, if we define

P(t) = max
z∈R

ρ(z, t) (8.8)
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and
ζ = max

x∈R
Q′′(x), (8.9)

we have the following bound on ∂v/∂x:

∂

∂x
v(x, t) ≥ −2|β|P(t)− ζ. (8.10)

Claim: If the maximum density P(0) of the initial condition satisfies

P(0) <
−ζ

2|β| , (8.11)

then the solution ρ(x, t) cannot blow up.
Proof: If the above condition holds, then we can find ε > 0 such that

− 2|β|P(0)− ζ > ε > 0. (8.12)

Applying (8.10) at t = 0, vx is initially bounded by

vx(x, 0) ≥ −2|β|P(0)− ζ > ε > 0. (8.13)

By continuity, we can find some T > 0 such that vx(x, t) > ε for all t ∈ [0, T)
and all x in the support of ρ(x, t). We choose T to be as large as possible
and suppose, for the sake of contradiction, that T is finite. Then, at time T,
vx(x, T) = ε.

However, along characteristic curves x(t) where dx/dt = v, the total
derivative of the density is given by

d
dt

ρ(x(t), t) = ρt + vρx = −vxρ. (8.14)

For 0 < t < T, we know vx > ε > 0. Since the characteristics are given by
dx/dt = v, this means that the characteristic curves are initially rarefying,
and therefore no shocks can form between t = 0 and t = T. Thus, the
density varies continuously along characteristics.

Since the density is non-negative everywhere and vx > 0,

d
dt

ρ(x(t), t) < 0. (0 < t < T) (8.15)

Hence, the density strictly decreases along characteristics for 0 < t <
T. This implies that the maximum density is also strictly decreasing (i.e.,
P(T) < P(0)). Using (8.10) at t = T,

vx(x, T) ≥ −2|β|P(T)− ζ

> −2|β|P(0)− ζ (8.16)
> ε.
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Figure 8.2: In this system, Fs(r) = −sgn(r)e−|r| and Q(x) = −x2. In (a), the
maximum initial density is small enough to avoid blow-up. In (b), how-
ever, we see that higher initial densities can still lead to blow-up.

However, this contradicts vx(x, T) = ε. We conclude that vx(x, t) > ε > 0
for all t > 0. From (8.14), we see that the density is strictly decreasing along
characteristics for all time. This shows that the solution can never blow up,
concluding our proof.

Numerical tests were run using

Q(x) = −1
2

x2 and Fs(r) = −sgn(r)e−|r|, (8.17)

so that
ζ = max Q′′(x) = −1 and β = lim

r↓0
Fs(r) = −1. (8.18)

In this case, condition (8.11) implies that thinning is guaranteed when

max ρ(x, 0) < 1/2. (8.19)

Figure 8.2 shows simulation results that agree with this prediction.

8.3 Physically Relevant Scenarios

The above conditions imply that for an external potential to prevent blow-
up, Q′′ must be sufficiently negative over its entire domain. However, this
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Figure 8.3: In this system, the social force is Fs(r) = −sgn(r)e−|r| and the
external potential is an inverted gaussian, given by Q(x) = −e−x2

. Since
the external potential becomes negligible as |x| → ±∞, we cannot guaran-
tee the prevention of blow-up. In (a), the initial density is small, leading to
a thinning region between two growing peaks. In (b), the initial density is
large, leading to collapse into a single δ-function.

would mean that the magnitude of the external repulsive force grows arbi-
trarily large as we move away from the origin.

To consider physically plausible systems, we should require |Fc(x)| → 0
as |x| → ±∞. Hence, Q′′(x)→ 0 as |x| → ±∞, and therefore we can never
use condition (8.11) to guarantee the prevention of blow-up.

In numerical tests using physically plausible potentials, the density was
always observed to blow-up; if the initial density is high, the swarm col-
lapses to a single point (as it would without any external potential), whereas
low initial density causes blow-up to occur at two separate peaks separated
by a thinning section. An example of this behavior is shown in Figure 8.3.



Chapter 9

Repulsive Swarms in Attractive
Potentials

Next, we study swarms with pure social repulsion placed inside an attrac-
tive potential. Our main goal here is to determine when it is possible for
the attractive potential to turn spreading into steady states. For simplicity,
we assume in this section that the social force is given by

Fs(r) = sgn(r) e−|r|. (9.1)

We expect that an analysis similar to the following should be possible for
other choices of Fs, but the results are particularly elegant for this social
force.

9.1 Necessary Conditions for Steady-State Solutions

The following analysis provides us with necessary conditions for the ex-
istence of steady-state solutions. Suppose we have a steady-state solution
ρ(x) with compact support on the interval [−b, b]. Then ρt = 0 and the
governing equations imply (ρv)x = 0. Integrating with respect to x, we
have ρv = 0. Note that the constant of integration must be zero because
ρ = 0 for x /∈ [−b, b]. Now, wherever ρ 6= 0 (i.e., inside [−b, b]), we must
have v = 0. Hence,∫ ∞

−∞
ρ(z) Fs(x− z) dz = Q′(x) (−b ≤ x ≤ b). (9.2)

For our particular choice of Fs, we have∫ ∞

−∞
ρ(z) sgn(x− z) e−|x−z| dz = Q′(x) (−b ≤ x ≤ b). (9.3)
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Following the argument used by Bernoff and Topaz in [1], we can ap-
ply the linear operator L = ∂xx − 1 to both sides to annihilate the integral
expression, obtaining

2ρx = Q′′′(x)−Q′(x) (−b ≤ x ≤ b). (9.4)

After integrating both sides with respect to x, we have

ρ(x) =

{
1
2 (Q′′(x)−Q(x) + λ), |x| ≤ b,
0, |x| > b.

(9.5)

To compute the constant of integration λ, we substitute this solution
(9.5) into the integral equation (9.3), obtaining

Q′(x) = Q′(x) + e−x
[

eb

2
(
Q(−b)−Q′(−b)− λ

)]
−ex

[
e−b

2
(
Q(b) + Q′(b)− λ

)]
. (9.6)

For this to hold, we require

Q(b) + Q′(b)− λ = 0 and Q(−b)−Q′(−b) = 0, (9.7)

since ex and e−x are linearly independent. However, since Q is assumed to
be symmetric (and therefore Q′ is antisymmetric), these two conditions are
equivalent, and therefore the integral equation (9.3) is solved provided

λ = Q(b) + Q′(b). (9.8)

Hence,

ρ(x) =

{
1
2 (Q′′(x)−Q(x) + Q(b) + Q′(b)), |x| ≤ b,
0, |x| > b.

(9.9)

If we specify the mass M of the system, then we obtain the following,
via integration by parts and a good deal of algebraic manipulation:

M =
∫ ∞

−∞
ρ(z) dz (9.10)

=
∫ b

−b

Q′′(z)−Q(z) + Q(b) + Q′(b)
2

dz (9.11)

=
∫ b

0
(z + 1) (Q′′(z) + Q′(z)) dz (9.12)
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Now we define

µQ(x) =
∫ x

0
(z + 1) (Q′′(z) + Q′(z)) dz, (9.13)

so that a necessary condition for the existence of a steady-state solution is
simply

µQ(b) = M. (9.14)

This implies that solutions of mass M on the interval [−b, b] can only
exist when (b, M) lies on the curve M = µQ(b).

9.2 Finite-Capacity and Infinite-Capacity Potentials

The function µQ determines which combinations of swarm width and swarm
mass are allowable in steady-state solutions. Moreover, we conjecture that
µQ can be used to identify which potentials can accommodate steady-state
solutions of arbitrarily large mass.

We say a potential has infinite capacity if, for all M > 0, we can find a
non-negative steady-state solution with mass M. We say a potential has
finite capacity if there exists some M∗ > 0 such that no non-negative steady-
state solution exists with mass M > M∗.

We conjecture that if µQ grows without bound, then Q has infinite ca-
pacity. On the other hand, if µQ has an upper bound, then we conjecture
that Q has finite capacity given by sup µQ(x).

9.3 Example I: An Infinite-Capacity Potential

Consider the external attractive potential

Q(x) = x2. (9.15)

From (9.13),

µQ(x) =
∫ x

0
(z + 1) (2 + 2z) dz (9.16)

=
2
3
(
(x + 1)3 − 1

)
. (9.17)

Note that µQ increases monotonically and without bound, which means it
fits our conjectured criteria for potentials with infinite capacity.
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For a steady-state solution of mass M to exist on the interval [−b, b], we
require µQ(b) = M. That is,

2
3
(
(b + 1)3 − 1

)
= M. (9.18)

For each positive value of M, we see that there is exactly one positive solu-
tion b:

b =
(

1 +
3M

2

)1/3

− 1. (9.19)

Now, from (9.9), we have

ρ(x) =

{
− 1

2 x2 + 1
2 b2 + 1 + b, |x| ≤ b,

0, otherwise.
(9.20)

Note that, for |x| ≤ b, this solution is a downward-facing parabola; this
means that its minimum nonzero value occurs at x = ±b, and we can easily
verify that this value is positive:

min ρ(x) = ρ(b) = 1 + b =
(

1 +
3M

2

)1/3

> 1. (9.21)

This demonstrates that we can find a non-negative steady-state solution
with finite width for any mass M > 0. Thus, Q(x) = x2 is indeed an
infinite-capacity potential.

Figure 9.1 shows a numerical solution approaching the steady-state so-
lution associated with b = 1 and M = µQ(1) = 14/3. Figure 9.2 shows the
steady-state solutions predicted for M = 1, 2, 3, 4.

9.4 Example II: A Finite-Capacity Potential

Now consider the external attractive potential

Q(x) = −e−x2
. (9.22)

From (9.13), we compute

µQ(x) = −2
∫ x

0
(z + 1) (z− 1) (2z + 1) e−z2

dz (9.23)

= (x + 2x2)e−x2
+
√

π

2
erf(x). (9.24)
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Figure 9.1: Simulation results approach the predicted equilibrium solution
for a repulsive social force Fs(r) = sgn(r)e−|r| inside an attractive external
potential Q(x) = x2. The initial condition has mass M = 14/3, and the
exact equilibrium solution was predicted by setting b = µ−1

Q (M) = 1 in
(9.20).
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Figure 9.2: A family of equilibrium solutions for Fs(r) = sgn(r)e−|r| inside
the attractive potential Q(x) = x2. These solutions were computed by set-
ting b = µ−1

Q (M) in (9.20).
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Figure 9.3: A plot of µQ(x) = (x + 2x2)e−x2 +
√

π
2 erf(x), which is associated

with the attractive inverted gaussian potential Q(x) = −e−x2
and social

force Fs = sgn(r)e−|r|. Since µQ never exceeds M∗ ≈ 1.85, we conclude that
Q is a finite-capacity potential.
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Figure 9.4: Steady-state solutions associated with Q(x) = −e−x2
and Fs =

sgn(r)e−|r|. Panels (a) and (c) show two distinct steady-state solutions of
mass M = 1. Since the solution in (c) achieves negative values, we can
reasonably expect that initial conditions of mass M = 1 will approach the
solution shown in (a) rather than the solution shown in (c). Panel (b) shows
a solution of intermediate width and maximum possible mass M = M∗ ≈
1.85. These solutions were computed by setting b = 0.403, b = 1, and
b = 2.14, respectively, in (9.28).

Figure 9.3 shows a plot of µQ. We can see that the maximum value of
µQ occurs at x = 1, since

µ′Q(x) = (x + 1)(Q′′(x) + Q′(x)) (9.25)

= −2(x + 1)(x− 1)(2x + 1)e−x2
. (9.26)

In particular,

max µQ(x) = µQ(1) = 3e−1 +
√

π erf(1)
2

≈ 1.85. (9.27)

Since µQ(b) = M is a necessary condition for the existence of a steady-
state solution of mass M on the interval [−b, b], there can be no steady-state
solutions with mass M > max µQ. In other words, this potential has finite
capacity M∗ ≈ 1.85.
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Now, for any swarm width b > 0, we can compute the steady-state
solution on the interval [−b, b] with mass M = µQ(b) using (9.9):

ρ(x) =

{( 3
2 − 2x2) e−x2 + (b− 1

2 )e−b2
, |x| ≤ b,

0, |x| > b.
(9.28)

As Figure 9.4 illustrates, these solutions may achieve negative values. There-
fore, we wish to determine conditions that guarantee the non-negativity
of ρ(x). Using (9.9), we compute the slope of the density on the interval
[−b, b]:

ρ′(x) =
1
2
(
Q′′′(x)−Q′(x)

)
(9.29)

= x(4x2 − 7)e−x2
. (9.30)

From this, we see that if the swarm width b <
√

7/2, then the minimum
nonzero value of ρ(x) must occur at x = ±b, the endpoints of the swarm.
Hence, for the case b <

√
7/2, we need only check the non-negativity of

ρ(b). Referring once again to (9.9), the endpoint density is given by

ρ(b) =
1
2
(
Q′′(b) + Q′(b)

)
(9.31)

= −(2b + 1)(b− 1)e−b2
. (9.32)

This shows that the endpoint density is positive when b < 1 and negative
when b > 1. Since 1 <

√
7/2, we know that b < 1 guarantees that the

minimum nonzero value of ρ(x) occurs at the endpoints. Hence, ρ(x) stays
non-negative if and only if b < 1. This corresponds exactly to the interval
on which µQ is increasing. Hence, if we restrict the domain of µQ to 0 < x <
1, this makes it one-to-one, and we can solve uniquely for the equilibrium
swarm width b = µ−1

Q (M), provided M < M∗.
As an aside, we note briefly that there is a simple relationship between

µ′Q and the endpoint density ρ(b). From (9.25) and (9.31),

2(b + 1)ρ(b) = µ′Q(b). (9.33)

Considering only b > 0, we see that µ′Q(b) < 0 implies that a steady-state
swarm of width b has negative density at its endpoints. On the other hand,
µ′Q(b) > 0 implies that a steady-state swarm of width b has positive den-
sity at its endpoints. In general, however, µ′Q(b) < 0 is not sufficient to
guarantee non-negativity of ρ(x) on the whole interval [−b, b]. To do so
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Figure 9.5: For Fs = sgn(r)e−|r| and Q(x) = −e−x2
, an initial condition

with mass M > M∗ spreads indefinitely. The stable peak that appears in
the center of the solution is approximately equal to the critical steady-state
solution of mass M∗ ≈ 1.85, shown in Figure 9.4.b.

requires additional checks on the location of local maxima and minima of
ρ(x), which we performed in (9.30).

Figure 9.5 shows the result of a simulation in which M > M∗. Since the
mass of the swarm exceeds the potential’s capacity, the solution spreads
indefinitely. Curiously, however, a stable peak persists at the center of this
spreading solution. This stable central peak appears very similar to the
critical steady-state solution of mass M∗ ≈ 1.85. Moreover, a thinning strip
of mass connects the central peak to the exterior spreading portions. As
shown in Figure 9.6, the spreading portions closely match half-parabolas,
which we conjecture may be related to spreading Barenblatt solutions of
the porous-medium equation.
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Figure 9.6: The spreading portions of the solution of Figure 9.5 closely
match half-parabolas. Since the potential Q becomes negligible for large
|x|, we conjecture that the spreading portions are related to Barenblatt’s
spreading solutions to the porous-medium equation, as we found to be the
case in the absence of any external potential (Section 3.1).
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Figure 9.7: For Fs = sgn(r)e−|r| and Q(x) = −e−x2
, initial conditions of

mass M = 1 < M∗ may behave differently depending on their initial
width. In (a), a narrow initial condition approaches the steady-state so-
lution shown in Figure 9.4.a. Panel (b) shows that some mass can escape
the attractive potential and spread indefinitely if the initial condition is suf-
ficiently wide.
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On the other hand, Figure 9.7 shows the results of two different simu-
lations in which M < M∗. Although we have predicted the existence of
a steady-state solution in this case, it is not globally attracting, and certain
initial conditions fail to approach it. A narrow initial condition approaches
our predicted steady-state solution; however, a wide initial condition leads
to spreading (much like the the case where M > M∗). Presumably, this
spreading is due to the weakness of the external attractive force far from
the origin.

9.5 Example III: Looking for an Unusual Potential

In Example I, we saw an infinite-capacity potential for which µQ grows
without bound. In Example II, we saw a finite-capacity potential for which
µQ is sometimes decreasing. It is therefore interesting to consider what
might happen if µQ grows without bound but is sometimes decreasing.
Specifically, would such a potential have finite or infinite capacity? In what
follows, we construct such a potential and determine, via numerical tests,
that it appears to have infinite capacity; at the same time, the results suggest
that there exist some positive reals b such that no non-negative steady-state
solutions exist on the interval [−b, b].

9.5.1 Constructing a Potential Q from µQ

Instead of specifying a potential Q (or, equivalently, a social force Fc) and
then computing µQ, it is possible to specify µQ and then find the corre-
sponding potential. For example, suppose we specify

µQ(x) = h(x), (9.34)

where h(x) ≥ 0 for x > 0, and h(0) = 0. Then for x > 0,

h(x) =
∫ x

0
(z + 1) (Q′′(z) + Q′(z)) dx. (9.35)

Next, we differentiate both sides and obtain

h′(x) = (x + 1)(Q′′(x) + Q′(x)). (9.36)

Using an integrating factor,

h′(x)ex

x + 1
= exQ′′(x) + exQ′(x) =

d
dx
[
exQ′(x)

]
. (9.37)
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Taking a definite integral on both sides,∫ x

0

h′(z)ez

z + 1
dz = exQ′(x)− e0Q′(0). (9.38)

Now, we solve for Q′(x) when x > 0:

Q′(x) = e−x
[∫ x

0

h′(z)ez

z + 1
dz + Q′(0)

]
. (9.39)

If we assume Q is differentiable at the origin, then Q′(0) = 0 by symmetry,
and when x > 0,

Q′(x) = e−x
∫ x

0

h′(z)ez

z + 1
dz. (9.40)

Knowing Q′(x) for x > 0, we can construct Fc(x) for all x using symmetry:

Fc(x) = −Q′(x) (9.41)
= −sgn(x)Q′(|x|) (9.42)

= −sgn(x)e−|x|
∫ |x|

0

h′(z)ez

z + 1
dz. (9.43)

This construction allows us to find potentials Q for which the associated
functions µQ exhibit a particular desired behavior. We will now apply
this construction to obtain a potential for which µQ decreases over a finite
range, but ultimately increases without bound.

9.5.2 Applying the Construction

Consider the function

h(x) =
x3

3
− 3x2

2
+ 2x, (9.44)

which decreases over the interval 1 < x < 2 and increases without bound
as x → ∞. If we specify µQ = h(x), then (9.43) yields

Fc(x) = −sgn(x)e−|x|
∫ |x|

0

ezh′(z)
z + 1

dz (9.45)

= −sgn(x)e−|x|
∫ |x|

0

ez(z2 − 3z + 2)
z + 1

dz. (9.46)

For the purposes of simulation, we can evaluate Fc numerically over a finite
interval. Since h(x) is not bounded from above, we conjecture that this
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Figure 9.8: (a) The external force Fs obtained by setting µQ(x) = x3

3 −
3x2

2 + 2x. (b) The associated external potential Q. (c) The function h(x) =
µQ(x) = x3

3 −
3x2

2 + 2x.

potential has infinite capacity. Figure 9.8.a shows the shape of Fc; Figure
9.8.b shows the shape of the associated potential Q; and Figure 9.8.c shows
the function h(x) = µQ(x).

Note that the only local maximum of h(x) occurs at (1, 5/6), and the
only local minimum occurs at (2, 2/3). For 0 < x < 1, h(x) is single-
valued, but for 1 < x < 5/2, the function repeats previously-achieved
values. When x > 5/2, h(x) once again becomes single-valued. Hence,
when M < 2/3 or M > 5/6, we can find a unique solution to M = µQ(b) =
h(b). When 2/3 < M < 5/6, however, there are three such solutions. If
we specify a mass M within this range, we conjecture that the equilibrium
solution corresponds to smallest positive value of b solving M = h(b).

The results of a simulation where M < 5/6 are shown in Figure 9.9.a.
Qualitatively, the equilibrium solution approached in this simulation is not
drastically different from other equilibria we’ve previously seen. The sharp
peak is new, however; it arises from the fact that Q′′ is not smooth at the
origin.

Figure 9.9.b shows the results of a simulation where M > 5/6. In this
case, we observe a steady-state solution whose support is not a single inter-
val, but rather the union of three disjoint intervals. Note that the analysis
we used above to find steady-state solutions does not allow for the pos-
sibility of the density reaching zero on the interval [−b, b], and so in this
case we should not expect our analytical results to accurately predict the
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Figure 9.9: Steady states for the external force (9.46), obtained via numer-
ical simulation. An initial condition of mass M = 1/2 approached the
solution shown in (a), and an initial condition of mass M = 1 approached
the solution shown in (b). Interestingly, the density of the latter steady
state appears to reach zero, which may render (9.9), our formula for exact
steady-state solutions, inapplicable to this particular case.

observed steady-state solution.
This potential is difficult to analyze due to the complexity of our for-

mula for Fc, but its unusual steady-state behavior warrants further study.



Chapter 10

Conclusions and Future Work

These results provide us with an understanding of the different types of
asymptotic behavior of this system, especially in the case where we use the
Morse interaction force.

For a general interaction force, we predicted the asymptotic behavior of
the system for long-wave and short-wave initial conditions. Short waves
behave for at least a short time according to Burgers’ equation, and, simi-
larly, long waves behave for at least a short time according to the porous-
medium equation. Combining these results, and using the fact that the
effect of short-wave instability naturally dominates long-wave stability, we
found conditions on the social interaction force Fs leading to the following
three asymptotic behaviors:

• Blow-up (whenever short waves contract)

• Spreading (when both short waves and long waves expand)

• Steady-state (when short waves expand and long waves contract)

Subsequently, we arrived at more quantitative predictions for each cat-
egory of behavior. In the blow-up regime, we found an upper bound for
the time to blow-up, which applies for arbitrary interaction forces. In the
spreading regime, we found a traveling-wave solution that approximates
the edge behavior for spreading solutions in the case where Fs is a Morse
interaction force. In the steady-state regime, we used previous results to
find equilibrium solutions, once again assuming a Morse interaction force.

Finally, we studied the effect of incorporating external forces via sev-
eral specific examples. We discovered that it is possible to qualitatively
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change the asymptotic behavior of the system (for example, from spread-
ing to steady-state, or from blow-up to spreading) simply by adding an
external potential.

Some natural extensions to this work might include translating these
results into higher dimensions or predicting the qualitative behavior of the
system for fully arbitrary combinations of social forces and external poten-
tials.



Appendix A

Numerical Methods

A.1 Discrete Swarming Model

The continuous swarming model studied above can be thought of as the
limit of a discrete swarming model as the number of individuals goes to
infinity. For a finite swarm of size N in one spatial dimension, we let xi(t)
denote the position of the ith individual at time t and let mi denote the
mass of the ith individual. Then, the motion of the swarm is governed by
the following set of N ordinary differential equations:

dxi

dt
= ∑

j 6=i
mjFs(xi − xj). (A.1)

A.2 The Numerical Algorithm

To simulate the original continuous PDE, we translate the continuous IC
into a discrete IC having approximately the same mass distribution, and
we simply solve the above system of ODEs numerically. In post-processing,
we find the cumulative mass function

ψ(x, t) = ∑
{i:xi(t)<x}

mi, (A.2)

which we can numerically differentiate via interpolation to find the cor-
responding density. The following arguments support the validity of this
method, assuming we don’t deal with pathological cases.
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A.3 Convergence

If we allow the number of individuals N to grow without bound and as-
sign each individual a mass mi = M/N, so that the total mass does not in-
crease, the behavior of the swarm essentially approaches that of the contin-
uous system. To see this, note that the cumulative mass function ψ(x, t) =∫ x
−∞ ρ(z, t) dz is well-defined in both the continuous case and the discrete

case. (Note: In the discrete case, the density is essentially a superposition of
point masses which can be modeled as δ-functions, and the above integral
becomes a sum.) Hence, when we say that the discrete model converges
to the continuous model, we mean that the discrete cumulative mass func-
tion ψN(x, t) converges to the continuous cumulative mass function ψ(x, t),
provided that the sequence of initial conditions ψN(x, 0) converge to the
continuous initial condition ψ(x, 0).

If we define ζµ(t) for µ ∈ (0, 1) such that

ψ(ζµ(t), t) =
∫ ζµ(t)

−∞
ρ(z, t) dz = µM, (A.3)

we can show that dζµ/dt = v(ζµ(t), t) using Leibniz’s rule. Hence, if we
can find an expression for the motion of ζµ(t) for a large number of values
of µ, we obtain an approximation for the cumulative mass function ψ(x, t)
corresponding to a solution of the original continuous PDE.

The following is a proof of the above claim.
Differentiating both sides with respect to t using Leibniz’s rule,

ρ(ζµ(t), t) · ζ ′µ(t) +
∫ ζµ(t)

−∞

∂

∂t
ρ(z, t) dz = 0. (A.4)

If we assume ρ solves the continuous equation, we can substitute ρt =
−(vρ)x, yielding

ρ(ζµ(t), t) · ζ ′µ(t)−
∫ ζµ(t)

−∞

∂

∂z
(ρ(z, t) · v(z, t)) dz = 0. (A.5)

Using the fundamental theorem of calculus and assuming ρ approaches
zero as x → ±∞, this becomes

ρ(ζµ(t), t) · ζ ′µ(t) = ρ(ζµ(t), t) · v(ζµ(t), t). (A.6)

Then, assuming the support of the swarm is a simply connected interval,
ρ(ζµ(t), t) > 0, and thus ζ ′µ(t) = v(ζµ(t), t). That is, at time t, ζµ moves
with speed v(ζµ(t), t).
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Furthermore, we can approximate the velocity at each point in a solu-
tion to the continuous PDE by using a midpoint rule to evaluate the rel-
evant integral expression, and we ultimately find that the velocity under
this approximation has the same form as the discrete velocity.

To be precise, we wish to compute the error in using the discrete ap-
proximation

v(xi, t) ≈ Fc(xi) + ∑
j 6=i

mjFs(xi − xj). (A.7)

In the continuous case, the expression for the velocity is

v(x, t) =
∫ ∞

−∞
ρ(x̃, t)Fs(x− x̃) dx̃, (A.8)

If we define Pt(x) =
∫ x
−∞ ρ(x̃, t) dx̃, then ρ(x̃, t) = P′t (x̃). Therefore, v sim-

plifies to

v(x, t) =
∫ M

0
Fs(x− P−1

t (p)) dp, (A.9)

where M =
∫ ∞
−∞ ρ(x, 0) dx is the total mass of the system.

Next, we will apply the midpoint rule to approximate this integral. De-
fine

bj =

{
0 j = 0,
∑

j
k=1 mk j > 0,

(A.10)

and
pj =

mj

2
+ bj−1 (j = 1, 2, 3, . . .). (A.11)

Then, if we define intervals Ωj = (bj−1, bj), the points pj represent the
midpoints of these intervals.

We can rewrite the above integral as

∫ M

0
Fs(x− P−1

t (p)) dp =
N

∑
j=1

∫
Ωj

Fs(x− P−1
t (p)) dp (A.12)

For convenience, let f (p) = Fs(x − P−1
t (p)). Then, expanding f about

pj yields

f (p) = f (pj) + (p− pj) f ′(pj) +
1
2
(p− pj)2 f ′′(ξ j) (A.13)

for some ξ j satisfying |ξ j − pj| < |p− pj|.
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Then, considering the jth term on the right-hand side of equation (A.12),∫
Ωj

f (p) dp =
∫

Ωj

(
f (pj) + (p− pj) f ′(pj) +

1
2
(p− pj)2 f ′′(ξ j)

)
dp

=
∫ mj/2

−mj/2

(
f (pj) + z f ′(pj) +

1
2

z2 f ′′(ξ j)
)

dz

= mj f (pj) +
m3

j

24
f ′′(ξ j)

= mjFs(x− P−1
t (pj)) +

m3
j

24
f ′′(ξ j). (A.14)

If we assume the ratio of the maximum of the mi’s to the average of the
mi’s is bounded as the number of individuals increases, we see that this
error is of the order O(N−2).

Next, we note that the interpolation used in finding the density has a
maximum error that depends on how many points are used. Similarly, the
derivative of the interpolating polynomial, used as an approximation for
the density ρ(x, t), has some related (and easy-to-compute) error.

Note that the error here being small depends on the spacing being ap-
proximately even. To guarantee that this is the case, we can periodically re-
distribute the mass of the system over uniformly-spaced set of points (i.e.,
“re-grid”) whenever the spacing becomes too uneven.
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