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Abstract

We introduce the concept of dot product representations of graphs, giving
some motivations as well as surveying the previously known results. We
extend these representations to more general fields, looking at the complex
numbers, rational numbers, and finite fields. Finally, we study the behavior
of dot product representations in field extensions.
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Chapter 1

Introduction

1.1 Graph Representations

While the definition of a graph is a collection of vertices together with a set
of edges among them, it is often more convenient to describe a particular
graph some other way. For example, the vertex and edge sets

V = {v1, v2, v3} and E = {v1 ∼ v2, v1 ∼ v3, v2 ∼ v3}
define a particular graph G = (V, E). However, if our goal is to describe
G in a way that humans can quickly understand, a picture would probably
be preferable:

G   =
1

23

.

If our goal is simply to define G in as little space as possible, then G = K3
(notation which is understood to mean the complete graph on 3 vertices)
would be our preferred representation.

In computer science, often the goal is to store a graph in such a way that
finding all of the neighbors of a given vertex is computationally fast. This
suggests the adjacency list representation, where a graph is stored as a set
of lists (one for each vertex) of adjacent vertices. In our running example,

G =

Vertex Adjacent Vertices

v1 v2, v3
v2 v1, v3
v3 v1, v2

.
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Another representation encountered in computer science is the adjacency
matrix: we store an array with a row and column for each vertex, where the
value in the ith row and jth column is 1 if the ith and jth vertices are adjacent,
and 0 otherwise.

G =

 0 1 1
1 0 1
1 1 0

 .

This representation is well suited if we want to quickly answer questions
of whether two given vertices are adjacent.

Clearly, the way we choose to represent a particular graph depends
heavily on what our goal is. A representation for a graph must completely
specify the entire graph, and generically we would like to use a representa-
tion which (1) allows us to quickly recover the information we want about
the graph, and (2) is as small as possible. A dot product representation of a
graph is one particular method for representing a graph which is motivated
by social modeling.

1.2 Modeling Friendships

As a toy example, imagine that three people are polled for their feelings
on pets, sports, and ice cream. We use a scale where 0 denotes apathy
and larger numbers signify a stronger (positive) feeling on the subject. The
responses for our three people, denoted persons A, B, and C, are indicated
in the following table.

A B C

pets? 1 -1 0
sports? 1 1 0.5

ice cream? 0 1 0.5

If we assume that these three topics fully describe a person’s prefer-
ences, and that friends tend to have similar preferences, then this table
should be enough to predict the likelihood of friendships between A, B,
and C. In fact, if we treat a person’s preferences as a vector in R3, then
one way of mathematically encoding the statement “person P’s preferences
agree with person Q’s preferences” is “person P’s preference vector has a
large projection onto person Q’s preference vector.” With this association
in mind, we postulate the following method for predicting friendships:
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If persons P and Q have preference vectors vP and vQ, then the probability
that they will be friends is given by vP · vQ.

In our example above, this specifies that A and B will not be friends,
B and C will be friends, and there is a 50% chance that A and C will be
friends. This loosely agrees with our intuition. A and B will fight over
pets as much as they bond over sports, so (one could think) have no net
basis for a friendship. B and C have similar tastes in sports and ice cream,
which supports their predicted friendship. Finally, the only topic on which
neither A nor C is apathetic is sports. C does not feel very strongly about
the issue, so this may or may not lead to a friendship.

Work presented in Nickel (2007) shows that, given randomly generated
preference vectors1, the resulting social network of friendships follows the
clustering and power law behavior expected of a social network. This result
supports the intuitive basic plausibility of our model, and justifies research
into preference vectors as a way of modeling social networks.

1.3 The Inverse Problem

Since preference vectors predict a certain social network, from a graph rep-
resentation point of view it is natural to consider the inverse problem:

Given a certain social network (generically, a graph), what preference
vectors would produce that network?

It is worth emphasizing that our prescription for using preference vec-
tors to build a graph is non-deterministic (we actually define a probability
for each edge), but to use preference vectors as a representation we must be
able to reconstruct the same graph every time. Thus, in the inverse prob-
lem we are looking for preference vectors such that a pair of vectors has
dot product 1 between adjacent vertices, and dot product 0 between non-
adjacent vertices. This will be precisely the definition of a dot product rep-
resentation of a graph, when we formally define it in the following chapter.

Having discovered a type of graph representation which is well suited
for social networks, we recall that one of the goals of a representation is to
be as small as possible. The size of a graph representation in preference
vectors is determined by the number of preferences we have to list (i.e. the

1The vectors are generated from a particular distribution which guarantees inner prod-
ucts are always between 0 and 1.
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dimension of the vectors). Thus, the fundamental quantity which drives
our study of dot product representations is the minimum dimension. This
quantity may also be interpreted as a measure of the “social complexity”,
as it is the smallest number of distinct preferences that we would need to
poll from a population to determine all friendships. It is natural to think
of a social network which could be described entirely by preferences on
one issue as simpler than one which requires knowing preferences on ten
issues.

Dot product representations are studied in Tucker and Scheinerman
(2006a) and Tucker and Scheinerman (2006b), and their theory is developed
in depth in Tucker (2007). All of these looked at representations where the
representation vectors come from a vector space over the real numbers, as
this is the natural field to consider when discussing preferences — while it
makes sense to say that my preference for sports is 0.31, it does not make
sense to say that my preference for sports is 1 + 2i. However, we always
look to generalize mathematical concepts, and thus this thesis is concerned
with looking at dot product representations over different fields.

Chapter 2 states the major definitions and gives a survey of the results
known for representations over R. In Chapter 3, we consider representa-
tions over C and Q. Chapter 4 studies finite fields, where the bulk of our
new results are found. In Chapter 5 we investigate behavior under field ex-
tensions. Finally, in Chapter 6 we give conclusions and avenues for future
research.

Before closing the introduction, we note that dot product representa-
tions are not the only representations involving vectors. Lovász and Veszter-
gombi (1999) gives a general survey of so-called geometric representations.
The geometric representations which are closest to dot product represen-
tations are orthogonal representations, which are studied in Lovász et al.
(1989). Somewhat analogous to this work, orthogonal representations over
finite fields are studied in Peeters (1996).



Chapter 2

Background

In this chapter we present the basic definitions in the study of dot prod-
uct representations. We also state the major results over R, as well as the
known results which trivially extend to arbitrary fields.

2.1 Definitions

We first note for the record the formal definition of a graph. We always
consider simple (undirected, with no self-loops) graphs.

Definition 2.1. A graph G is a finite set of vertices V and a set of edges E, where
each edge in E is an unordered pair of distinct vertices in V.

For a graph G = (V, E) and two vertices v1, v2 ∈ V, we say that v1
and v2 are adjacent (and write v1 ∼ v2) if the pair {v1, v2} is in E. We will
often refer to the adjacency matrix for a graph G, which was mentioned in
Section 1.1. To introduce notation, the adjacency matrix A for a graph G
on vertices {v1, . . . , vn} is the n× n matrix with entry in the ith row and jth

column

Ai,j =
{

1 if vi ∼ vj
0 otherwise.

As we outlined in Section 1.3, the definition of a dot product represen-
tation is as follows.

Definition 2.2. Given a graph G on vertices V = {v1, . . . , vn} and a field F, a(n)
(exact) dot product representation X of G, of dimension d over F, is a mapping X :
V → Fd such that for i 6= j, X(vi) · X(vj) = 1 if vi ∼ vj, and X(vi) · X(vj) = 0
otherwise.
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A few remarks are in order. The real-valued case, as studied in the
previous literature, corresponds to F = R; such a representation will be
called a real dot product representation. (Similarly, a representation over
any field F is an F-valued dot product representation.) Whenever not spec-
ified, “representation” always refers to a dot product representation.

Our definition uses a dot product on the vector space Fd. In the real
or rational case, the standard dot product is used. When working over the
complex numbers, we will often want to use the Hermitian inner product

(z1, . . . , zd) · (w1, . . . , wd) =
d

∑
i=1

z∗i wi.

Representations over C using this inner product are called Hermitian rep-
resentations. In finite fields, we define the dot product to be the same sum
as in the real case; however, this is not an inner product on the vector space.
For example, nonzero vectors can have zero dot product with themselves.

While a representation is defined as a map from the set of vertices to
a vector space Fd, we may (and often do) instead view it as a matrix in
Md,n(F) whose columns are given by the representation vectors1. We use
X for both constructs, and which object we are discussing should always
be clear from context. For example, the following are two ways of writing
the same representation for K3:

X : {v1, v2, v3} → R2, X(v1) = X(v2) =
(

3/5
4/5

)
, X(v3) =

(
5/3

0

)
and

X =
(

3/5 3/5 5/3
4/5 4/5 0

)
.

As the above definition is called an exact representation, the terminol-
ogy anticipates another sort of representation. Indeed, while an exact rep-
resentation requires that the dot products be exactly one or zero, in certain
fields we can define the concept of a representation in which dot products
get arbitrarily close to their desired value.

Definition 2.3. Given a graph G on vertices V = {v1, . . . , vn} and a field F, an
asymptotic dot product representation of G, of dimension d over F, is a sequence
of mappings {Xk} where each Xk : V → Fd such that for i 6= j,

lim
k→∞

(Xk(vi) · Xk(vj))

1As with the adjacency matrix, this association requires fixing an order on the set of
vertices. Such an order is usually implied from the vertex labels.
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equals 1 if vi ∼ vj, and equals 0 otherwise.

Again, a few remarks are necessary for this definition. While a natural
metric exists on real, rational, and complex valued vector spaces (and thus
asymptotic representations are well-defined objects), it is less clear what a
limit means in finite fields. Regardless of the metric we choose, since a finite
field has finitely many elements, a sequence has a limit iff it becomes con-
stant. Thus, asymptotic dot product representations are not an interesting
concept over finite fields. We will study them over R, Q, and C only; over
the complex numbers, we will always use the Hermitian inner product.

Since there are finitely many pairs of vertices, convergence “pointwise”
of each dot product implies convergence “uniformly” of all the dot prod-
ucts; thus if {Xk} is an asymptotic dot product representation, then given
ε > 0 there exists a positive integer N such that∣∣∣∣Xn(vi) · Xn(vj)− lim

k→∞
(Xk(vi) · Xk(vj))

∣∣∣∣ < ε

for all n ≥ N and all pairs of distinct vertices vi, vj.
As mentioned in the introduction, the primary quantity of interest is the

minimum dimension of a dot product representation.

Definition 2.4. For a field F and a graph G, dpF(G) [dp∗F(G)] is the minimum
dimension d such that Fd admits an exact [asymptotic] dot product representation
of G.

The quantity dpF(G) is pronounced “the dot product dimension of G
over F.”

We close this section with some terminology used repeatedly in this
thesis. Throughout,

• G is a graph,

• A is the adjacency matrix for the graph G,

• n is the number of vertices in G,

• D is a diagonal matrix,

• F is a field, and Fpe is the finite field of order pe.

Recall that there exists a unique finite field for each order pe, where p is
prime and e ≥ 0. For a summary of the theory of finite fields, see Dummit
and Foote (1999).
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2.2 Representations over Arbitrary Fields

Most of the results of this section may be found in Tucker (2007) with the
same proof. However, in that work the field was limited to R, so we restate
the proofs in our present, more general, context.

First, the parallel definition of a representation as a matrix gives us a
simple alternate characterization.

Proposition 2.5. The matrix X is an exact dot product representation of G iff
XTX = A + D, where A is the adjacency matrix of G and D is some diagonal
matrix.

Proof. Let the columns of X be c1, . . . , cn. From basic properties of matrix
multiplication, XTX is the matrix whose i, j entry is ci · cj. Thus, X is a
representation iff the i, j entry (i 6= j) of XTX is 1 if the ith and jth vertices
are adjacent, and 0 otherwise; this is precisely the same as saying XTX
equals A, except possibly on the diagonal.

If X† denotes the conjugate transpose of the complex-valued matrix X,
then by the same argument X is a Hermitian representation of G iff X†X =
A + D.

Recall that an orthogonal transformation on a vector space is defined
as a linear transformation U for which (Uv) · (Uw) = v · w for all vectors
v, w. (When using the Hermitian inner product on C, our use of the term
orthogonal is equivalent to unitary.) As a matrix, an equivalent definition
is that U is orthogonal if UTU is the identity. Orthogonal transformations
do not affect representations, as the following two lemmas show.

Lemma 2.6. If X is an exact dot product representation into Fd for a graph G and
U is an orthogonal transformation on Fd, then UX is also an exact dot product
representation of G.

Proof. Since X is a representation, by Proposition 2.5, XTX = A + D for
some diagonal matrix D. Now

(UX)T(UX) = XTUTUX = XT(UTU)X = XTX = A + D,

so appealing again to Proposition 2.5, UX is also a representation.

Lemma 2.7. Given an asymptotic representation {X1, X2, . . . } of a graph G, any
infinite subsequence is also an asymptotic representation of G. Further, for any
sequence {U1, U2, . . . } of orthogonal transformations, {U1X1, U2X2, . . . } is also
an asymptotic representation of G.
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Proof. The first statement is a standard property of limits of sequences; the
second follows by the same argument as Lemma 2.6 since orthogonal trans-
formations do not affect dot products.

We now present results about the dot product dimension which hold in
general over all fields. For the class of paths, where the path Pn on n vertices
is the graph on vertices {v1, . . . , vn} with vi ∼ vi+1, i = 1, 2, . . . , n− 1, the
dot product dimension is independent of the field we work over.

Proposition 2.8. Let Pn be the path on n vertices. For any field F, dpF(Pn) =
n− 1.

Proof. We first demonstrate an (n− 1)-dimensional representation explic-
itly. Associate with each vertex a vector

X(vj) =


e1 if j = 1

ej−1 + ej if 1 < j < n
en−1 if j = n

,

where {ei} is the standard basis on Fn−1. Dot products may be checked
easily, confirming that this is a representation for Pn. This shows dpF(Pn) ≤
n− 1.

Now consider any representation for Pn. We inductively prove that
{X(v1), . . . , X(vk)} is a linearly independent set for k = 1, 2, . . . , n− 1. The
base case of k = 1 is immediate since v1 has neighbors, and thus cannot
have a zero vector. For the inductive step, assume {X(v1), . . . , X(vk−1)} is
linearly independent for 1 < k ≤ n− 1. Notice that none of v1, . . . , vk−1 are
adjacent to vk+1. Thus, for any coefficients α1, . . . , αk,(

k

∑
j=1

αjX(vj)

)
· X(vk+1) =

k

∑
j=1

αj(X(vj) · X(vk+1)) = αk,

since X(vj) · X(vk+1) = 0 unless j = k, when it equals 1. Thus, if the linear
combination of X(vj) is going to be zero, we must have αk = 0; however,
by assumption the only linear combination of {X(v1), . . . , X(vk−1)} which
gives zero is trivial, so the combined set {X(v1), . . . , X(vk)} is linearly in-
dependent, as desired.

This inductive argument shows that {X(v1), . . . , X(vn−1)} is a set of n−
1 linearly independent vectors; therefore the dimension must be at least
n− 1. We have dpF(Pn) ≥ n− 1, completing the proof.
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While we can give the exact dot product dimension for the path, for ar-
bitrary graphs we can only give bounds on the dimension. The next several
results present known bounds.

Proposition 2.9. For any field F, dpF(G) ≤ m, where m is the number of edges
in G.

Proof. Let the vertices in G be V = {v1, . . . , vn}. Associate each coordi-
nate in the vector space Fm with one of the edges in G. Define a mapping
X : V → Fm where X(vi) has a 1 in the coordinate for each edge incident
upon vi, and 0 in each other. Then checking dot products, X is indeed a
representation for G (of dimension m), so the minimum dimension dpF(G)
of any representation is at most m.

Lemma 2.10. For a given field F and positive integer n ≥ 1, let {pi,j}1≤i<j≤n
be an arbitrary set of elements of F. There exists a set {X1, . . . , Xn} of vectors in
Fn−1 such that Xi · Xj = pi,j for all i < j.

Proof. We construct the set of vectors iteratively. Let the standard basis on
Fn−1 be {e1, . . . , en−1}. We begin by defining X1 = e1; we now define Xj for
j > 1 in terms of the previous Xi, such that Xi · Xj is correct for each i < j.
Further, for any j < n we will construct Xj with zero entries after position j
and a 1 in position j; this will be an important property to maintain for our
proof.

Denote by X̂ the truncation of vector X to the first j − 1 positions. By
our invariant property, all positions after j − 1 are zero for each vector
X1, . . . , Xj−1; thus Xr · Xs = X̂r · X̂s for each r < s < j. Construct a
j − 1 × j − 1 matrix M with ith row given by X̂i and let b be the (j − 1)-
dimensional vector b = (p1,j, p2,j, . . . , pj−1,j). Again applying the invari-
ant property, M will be a (lower) triangular matrix where the diagonal en-
tries are all 1; thus M is invertible (with determinant 1), so there exists a
(unique) vector x such that Mx = b. Let X be the extension of x to a (n− 1)-
dimensional vector by padding the extra coordinates with zero, and define
Xj = X + ej (or Xj = X if j = n).

For this definition of Xj, notice for any i < j

Xi · Xj = X̂i · X̂j = X̂i · x = row i of Mx = row i of b = pi,j

as desired.
We may always construct the next Xj, so there does exists a set {X1, . . . , Xn}

with the desired dot products.
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As an immediate corollary of this construction, we get the following
general bound (the best possible in full generality, as Proposition 2.8 shows)
on the dot product dimension.

Corollary 2.11. For any field F and graph G on n vertices, dpF(G) ≤ n− 1.

Proof. Let V = {v1, . . . , vn} be the vertex set of graph G. Using Lemma 2.10,
let {X1, . . . , Xn} be a set of (n− 1)-dimensional vectors with dot products
Xi · Xj equal to 1 if vi ∼ vj and zero otherwise. Then X : V → Fn−1 with
X(vi) = Xi defines an (n − 1)-dimensional dot product representation of
G, showing dpF(G) ≤ n− 1.

The path is an example of a graph where all n vertices are “different”,
and in this case the best bound we can place on the dot product dimension
is n− 1. However, if some of the vertices are “the same”, we may expect to
be able to do better. The following proposition demonstrates this.

Definition 2.12. Given a graph G, two vertices are strong twins if (1) they are
adjacent, and (2) they have the same set of adjacent vertices.

Proposition 2.13. Let G be a graph which is not complete, and assume S is a set
of strong twins. Then for any field F, dpF(G) ≤ n− |S|.

Proof. For a vertex v 6∈ S, we use the notation v ∼ S if v ∼ s for some vertex
s ∈ S (and thus, by the definition of strong twins, for all s ∈ S). Note that
the assumption that G is not complete guarantees that G− S is not empty.
Applying Lemma 2.10, find an (n − |S| − 1)-dimensional mapping X on
the n− |S| vertices in G− S such that

X(v) · X(w) =
{

1 if v ∼ w
0 otherwise

}
−
{

1 if v ∼ S and w ∼ S
0 otherwise

}
for all vertices v 6= w in G− S.

Now extend the dimension of each X(v) by one; more explicitly, let
X̂(v) be an (n − |S|)-dimensional vector, the lower n − |S| − 1 entries of
which are X(v). Make the first entry of X̂(v) equal to 1 if v ∼ S, and 0
otherwise; finally, define the mapping X̂(s) = (1, 0, 0, . . . ) for each s ∈ S.

We claim that X̂ is an (n− |S|)-dimensional representation of G; show-
ing this just amounts to checking dot products, which is straightforward.
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2.3 Real Representations

While the previous section recorded results in the literature which extend
(effectively for free) to arbitrary fields, there are also many results whose
proofs hold only over the real numbers. Proofs for these may be found in
Tucker (2007), so here we simply give the statements without results.

These results are repeated here to allow later comparison with the cor-
responding results over different fields.

Proposition 2.14. The cycle Cn on n vertices (i.e. the path Pn with the added edge
v1 ∼ vn) has dpR(Cn) = n− 1 if n is even and dpR(Cn) = n− 2 otherwise.

In fact, the n even case of this proposition is subsumed by the following
theorem, which is (loosely speaking) the most general class of graphs for
which the dot product dimension is known exactly.

Theorem 2.15. If G is a connected, bipartite graph, then dpR(G) = n− 1.

The same bound holds for trees, as the following lemma and theorem
(an immediate corollary) show.

Lemma 2.16. If G is a graph containing a leaf `, and Ĝ is formed from G by
removing `, then dpR(Ĝ) = dpR(G)− 1.

Theorem 2.17. If G is a tree on n vertices, then dpR(G) = n− 1.

If we interpret the dot product dimension as a measure of complexity,
then it makes sense that the union of two graphs should have the sum of
the dimensions of the two subgraphs. Over R, this is true.

Theorem 2.18. If G is composed of disjoint subgraphs H1 and H2, then dpR(G) =
dpR(H1) + dpR(H2).

As motivation for our next result in this section, consider the repre-
sentation X(v1) = (1, 1), X(v2) = (0.5, 0.5) for the single edge P2. These
two representation vectors are not linearly independent; they both lie on
the same line. If we rotate this line to the coordinate axis (applying an or-
thogonal transformation), then we get the representation X̃(v1) = (

√
2, 0),

X̃(v2) = (0.5
√

2, 0). Clearly, we can remove the last coordinate, finding a
representation of smaller dimension.

In fact, since there is a rotation in R taking any vector to a (multiple of
a) coordinate basis vector, this technique always allows us to find a repre-
sentation of smaller dimension whenever the representation vectors do not
span the full space. The following theorem states the consequence of this.
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Theorem 2.19. If X is a real representation of G of dimension dpR(G), then X
has rank dpR(G) (i.e. the representation vectors span the full space RdpR(G)).

As a final result in this section, we give an alternate characterization for
the dot product dimension of a graph over the real numbers. This charac-
terization provides a template for which we will find similar results in the
case of finite fields.

Definition 2.20. A real, square matrix M is positive semidefinite if vT Mv ≥ 0
for all vectors v.

Recall that for real symmetric matrices, positive semidefiniteness is equiv-
alent to all of the eigenvalues being nonnegative.

Theorem 2.21. For a graph G with adjacency matrix A, dpR(G) is the mini-
mum rank of A + D over all diagonal matrices D such that A + D is positive
semidefinite.

Theorem 2.21 is a consequence of the spectral theorem for real, sym-
metric matrices (every real symmetric matrix may be orthogonally diago-
nalized over the reals). For an overview of positive semidefinite matrices
and the real spectral theorem, see Horn and Johnson (1990).





Chapter 3

Representations over Q and C

In this chapter we look at exact and asymptotic representations over the
complex numbers C and the rational numbers Q, which are two of the most
natural fields (besides the real numbers) to consider.

3.1 Exact Representations

The first relationship we observe is an obvious bound on the dot product
dimension in a field extension.

Lemma 3.1. If the field E contains the field F, then for any graph G, dpE(G) ≤
dpF(G).

Proof. If X is any F-valued representation of G, then X is also an E-valued
representation. Thus the minimum dimension of any representation over
E is at most the minimum dimension over F.

From Lemma 3.1, we immediately get the relationship dpQ(G) ≥ dpR(G) ≥
dpC(G) for any graph G. However, as we noted earlier, over C we are in-
terested primarily in Hermitian representations instead of dot product rep-
resentations. This leads us to the following definition.

Definition 3.2. For a graph G, dp†(G) is the minimum dimension d such that
Cd admits an exact Hermitian representation of G.

Since a real-valued representation is also a Hermitian representation,
we get the inequality dpR(G) ≥ dp†(G) for all graphs G. Surprisingly, we
actually get equality!
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Theorem 3.3. For any graph G, dp†(G) = dpR(G).

Proof. Since we already have the opposite inequality, we just need to show
dpR(G) ≤ dp†(G).

Let X be a complex representation of dimension dp†(G). Recall that
M† denotes the conjugate transpose of a matrix M. Now X†X = A + D
for some diagonal matrix D. If the vertex set of G is {v1, . . . , vn}, then the
diagonal matrix D has jth entry X(vj) ·X(vj) = ||X(vj)||2 ≥ 0; in particular,
each entry of D is real, so A + D is real.

For any real valued vector v,

vT(A + D)v = vTX†Xv = (Xv)†(Xv) = ||Xv||2 ≥ 0,

so the matrix A + D is positive semidefinite. Then applying Theorem 2.21,

dpR(G) ≤ rank(A + D) = rank(XTX) ≤ rank X ≤ dp†(G),

as desired.

Unfortunately, the relationship between rational representations and
complex representations is not as simple, as the following result of Tucker
(2007) indicates.

Proposition 3.4. The wheel graph W6 has dpR(W6) = 3 but dpQ(W6) > 3.

Proposition 3.4 shows that the dot product dimension over the rationals
may be strictly larger than the dimension over the reals. At the moment, not
much more is known about this relationship; in fact, it is not even known
whether dpQ(W6) = 4.

3.2 Asymptotic Representations

Several of the following results are developed (with roughly equivalent lan-
guage and methods) in Tucker and Scheinerman (2006a) as a characteriza-
tion of asymptotic representations. However, it can be leveraged to allow
us to also characterize asymptotic representations over C, ending up with
a result paralleling Theorem 3.3.

We shall always use the Hermitian inner product for complex asymp-
totic representations. Thus, for notational convenience in comparing asymp-
totic and exact dimensions, in this section alone dpC actually denotes dp†.
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Lemma 3.5. Assume F is a complete field and let {X1, . . . } be an asymptotic
representation of G with dimension d over F. Either there exists a vertex v such
that {Xk(v)}∞

k=1 is unbounded, or G admits an exact representation of dimension
d over F.

Proof. Assume the first option is not true; we must prove G admits an exact
representation of dimension d. View each Xk as an element in the com-
plete space Fdn. Since each vector Xk(v) comprising a column of Xk is
bounded, the total matrix is bounded; we thus have a bounded sequence
in a complete metric space, so the sequence has a convergent subsequence.
By Lemma 2.7, this subsequence {Xk j} is also an asymptotic representation
of G. Applying this and the continuity of the dot product, for each pair of
distinct vertices v1, v2,[

lim
j→∞

Xk j(v1)
]
·
[

lim
j→∞

Xk j(v2)
]

= lim
j→∞

Xk j(v1) ·Xk j(v2) =
{

1 if v1 ∼ v2
0 otherwise

,

so X = limj→∞ Xnj is an exact representation of G with dimension d.

Lemma 3.6. Let F be a field of characteristic zero. If G is a graph containing vertex
v, and G− v denotes the graph formed by removing v from G, then dp∗F(G− v) ≤
dp∗F(G) ≤ dp∗F(G− v) + 1.

Proof. The left inequality is immediate, since any representation of G is
also a representation of G − v. For the right inequality, let {X1, . . . } be
an asymptotic representation of G− v of dimension d. For vertices v1, v2 in
G, define χv1,v2 to be 1 if v1 ∼ v2 and 0 otherwise. We extend each Xk to a
(d + 1)-dimensional representation X̃k of G by extending Xk(w) to

X̃k(w) =
(

Xk(w)
χw,v/k

)
and letting

X̃k(v) =
(

~0
k

)
.

For any two distinct vertices w1, w2 6= v we have X̃k(w1) · X̃k(w2) = Xk(w1) ·
Xk(w2) + O(k−2). The last term vanishes as k → ∞, and the first term has
the appropriate limit of χw1,w2 . For any vertex w 6= v, X̃k(w) · X̃k(v) = χw,v.
Since all of the dot products are asymptotically correct, {X̃k} is indeed an
asymptotic representation of G; this proves the right inequality.
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The next result uses the notation V(G) for the set of vertices in G, and
G− S (where S ⊂ V(G)) for G with all the vertices in S removed.

Proposition 3.7. Let F be R or C. Then

dp∗F(G) = min
S⊂V(G)

(|S|+ dpF(G− S)) .

Proof. For any S ⊂ V(G), repeated application of Lemma 3.6 says

dp∗F(G) ≤ dp∗F(G− S) + |S| ≤ dpF(G− S) + |S|,

which proves that dp∗F(G) is at most the stated minimum value.
Now consider an asymptotic representation {Xk} of G of dimension

dp∗F(G). Apply the following procedure:

(1) If {Xk} is bounded, quit.

(2) Locate a vertex v such that {Xk(v)} is unbounded.

(3) Pass to a subsequence of {Xk} such that {||Xk(v)||} is an increasing
(to infinity) sequence.

(4) Apply an orthogonal transformation Uk to each Xk so that Xk(v) is a
positive multiple of the basis vector e1.

(5) Remove the first row from each (transformed) matrix Xk, and remove
the vertex v from consideration.

We claim that at each step of the above procedure, {Xk} is an asymptotic
representation of the (diminishing) graph under consideration. Step (2) is
immediate from the condition of step (1); steps (3) and (4) are justified by
Lemma 2.7. We only need to justify step (5). Pick k and let Xk(v) = Nke1. If
this k is such that the representation is within ε of being exact, then (defin-
ing the χ indicator as in the previous proof) the first entry of Xk(w) for any
w 6= v must be within ε/Nk of χw,v/Nk. In particular, the contribution of the
first entry to any dot product of two vertices other than v is O(N−2

k ). Since
Nk = ||Xk(v)|| increases without bound, this vanishes as k → ∞. Thus,
we can remove this coordinate without affecting the limiting dot products,
which proves that the representation after step (5) is still valid.

Let S be the set of vertices removed during the above procedure. Since
we remove a dimension each time we remove a vertex, the procedure ter-
minates with a (dp∗F(G)− |S|)-dimensional representation of G − S. Our
termination condition is that the representation be bounded; by Lemma 3.5,
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G− S must therefore admit an exact representation of dimension dp∗F(G)−
|S|. Thus,

dp∗F(G)− |S| ≥ dpF(G− S) =⇒ dp∗F(G) ≥ |S|+ dpF(G− S),

which completes the proof of the proposition.

This proposition has as a corollary a characterization theorem for asymp-
totic representations over the real or complex numbers. For any graph G,
there exists an asymptotic representation where the restriction to a sub-
set of the coordinates is an exact representation of some induced subgraph
G− S, and the remaining coordinates may be matched up one-to-one with
the vertices in S. In the coordinate associated with some vertex v, Xk(v) has
entry k and each vector Xk(w) for w 6= v has entry χv,w/k. For simplicity,
we simply state this fact instead of writing it formally.

We do, however, explicitly state a different corollary.

Theorem 3.8. For any graph G, dp∗C(G) = dp∗R(G).

Proof. From Proposition 3.7 and Theorem 3.3,

dp∗C(G) = min
S⊂V(G)

(
|S|+ dpC(G− S)

)
= min

S⊂V(G)
(|S|+ dpR(G− S)) = dp∗R(G).

We now turn to the study of rational asymptotic representations. Since
the reals are the closure of the rational numbers, intuitively we expect asymp-
totic properties of rationals and reals to be identical. This intuition does
indeed hold in the case of asymptotic dot product representations.

Theorem 3.9. For any graph G, dp∗Q(G) = dp∗R(G).

Proof. Since Q ⊂ R, clearly dp∗R(G) ≤ dp∗Q(G). To prove the opposite
direction, let {Xk} be any asymptotic representation over R, with some
dimension d. For a given k > 0, define

εk = min
{

1
k ·maxv ||Xk(v)|| ,

1
k

}
.

Now define a matrix X̃k by approximating each real number in Xk by a
rational with an error of at most εk; this is possible since Q is dense in R.
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Consider a given dot product X̃k(v) · X̃k(w). It is composed of a summation
of d terms, each of which is of the form

(a + δa)(b + δb) = ab + b(δa) + a(δb) + (δa)(δb),

where a and b were the corresponding entries in Xk(v) and Xk(w), and the
error terms δa and δb are at most εk in magnitude. Because ||Xk(v)|| is an
upper bound on each entry in the vector Xk(v), the two middle terms are
each bounded above by 1

k . Further, the final term is bounded above by 1
k2 .

Thus,

|X̃k(v) · X̃k(w)− Xk(v) · Xk(w)| ≤ d
(

2
k

+
1
k2

)
→ 0,

so {X̃k} forms a rational asymptotic representation of G, with the same
dimension d. This shows dp∗Q(G) ≤ dp∗R(G), and completes the proof.

Thus, over the complex, real, and rational numbers (the three fields for
which we study asymptotic representations in this thesis), the asymptotic
dimension is identical. Further, it is completely determined by the exact
dot product dimensions of induced subgraphs.



Chapter 4

Finite Fields

In this chapter we look at dot product representations over finite fields.
We find that there are two different cases to consider: finite fields with
characteristic two, and finite fields with characteristic larger than two. In
particular, we give a matrix characterization of the dot product dimension
in both cases. We then discuss some behavior exhibited by dot product
representations over finite fields which was not seen in the real case, and
close with an in-depth study of the simplest field, F2.

4.1 Matrix Characterizations

We first seek a characterization, similar to Theorem 2.21, for the dot prod-
uct dimension of a graph over a finite field. Recall that the characterization
in the real case is that dpR(G) is the minimum rank of A + D over all diag-
onal D such that A + D is positive semidefinite. We thus want to identify
some analogue to a matrix being positive semidefinite over a finite field,
and expect to find a characterization for the dot product dimension which
involves this analogue.

While there are many properties of positive semidefinite, symmetric
real matrices, the one which is really used in the proof of the real charac-
terization (see Tucker (2007)) is that positive semidefinite matrices M may
be factored as M = LT L for some matrix L. The literature on matrices over
finite fields also discusses such factorizations. The following two theorems
are from MacWilliams (1969).

Theorem 4.1. If M is a symmetric, invertible matrix over a finite field of charac-
teristic two, then M may be factored as M = LT L for a square matrix L iff M has
at least one nonzero term on the main diagonal.



22 Finite Fields

Theorem 4.2. If M is a symmetric, invertible matrix over a finite field of charac-
teristic larger than two, then M may be factored as M = LT L for a square matrix
L iff det A is a square in the field.

Examining these theorems gives us some intuition about matrix charac-
terizations for finite fields: (1) the cases of characteristic two and character-
istic larger than two are likely to be different, and (2) the characteristic two
case is probably simpler. Both of these hypotheses are, in fact, true.

To use Theorems 4.1 and 4.2 to study representations, we need to be
able to handle non-invertible matrices. The following proposition will be a
workhorse in our study.

Proposition 4.3. Let F be a field and let M be a symmetric n × n matrix over
F. If M has rank k > 0, then there exists an n × k matrix T and a symmetric,
invertible k× k matrix U such that M = TUTT.

Proof. Let the row vectors of M be {ri}n
i=1. Since M is symmetric, these are

also the column vectors; thus img A, which is the span of the columns, is
span{ri}. Let {bj}k

j=1 be a basis for span{ri}, and observe in particular that
k is the correct size for {bj}.

Construct the n× k matrix T by using the bj as column vectors; i.e. T =(
b1 . . . bk

)
. Let v ∈ Fn be some vector; then

v in null space of TT ⇐⇒ TTv = 0
⇐⇒ bj · v = 0 for each j
⇐⇒ ri · v = 0 for each i
⇐⇒ Mv = 0
⇐⇒ v in null space of M.

Note that the step between bj · v and ri · v is true because span{bj} =
span{ri}.

By the rank/nullity theorem, ker M has dimension n− k, and thus since
M and TT have the same kernel, dim img TT = n− (n− k) = k.

Now we let { f j}k
j=1 be a linearly independent set of vectors in Fn which

is also linearly independent with ker M; thus a basis for ker M together
with { f j} gives a full basis on Fn. TT is an onto map, so evaluating TT

on a basis for Fn must give a spanning set for Fk. However, evaluat-
ing on the basis just discussed ({ f j} together with a basis on ker M) gives
{TT f1, TT f2, . . . , TT fk, 0, 0, . . . , 0}, since ker TT = ker M. Thus, {TT f j}k

j=1 is
a spanning set for Fk; by checking the size, it must be a basis.
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Now the image of T is the span of its columns, which is (as discussed
above) the image of M. Further, by the rank/nullity theorem, dim ker T +
dim img T = k, and since the image has dimension k, T must have a trivial
kernel. Thus T has a (unique, linear) left inverse T−1 : img M→ Fk.

We finally have all the pieces we need. Define U as the matrix associated
with the following linear transformation on Fk:

TT f j 7→ T−1(M f j) for j = 1, 2, . . . , k.

We have specified the image of a basis for Fk, so we do have a well-defined
linear map with a unique associated matrix. Now for each f j,

(TUTT) f j = TU(TT f j) = T(T−1(M f j)) = M f j,

and for any vector v ∈ ker M, (TUTT)v = TU(TTv) = TU(0) = 0 = Mv.
Thus, TUTT and A agree on a basis for Fn, so are equal maps.

The only remaining claims of the proposition are that U is both invert-
ible and symmetric. Since U is k× k, if it is not invertible then it has rank
< k; however, then M = TUTT must have rank < k, which contradicts the
definition of k. For symmetry, since we know M is symmetric we immedi-
ately find

TUTT = M = MT = TUTTT.

Recall T has a left inverse T−1, the transpose of which immediately gives a
right inverse for TT. Multiplying the above equation on either side by these
inverses, we find U = UT, as desired.

We now consider the two cases separately.

4.1.1 Characteristic Two

We will need a few preliminary results in addition to Theorem 4.1 to give
our characterization of the dot product dimension. First is a result which is
given in MacWilliams (1969) as a lemma for proving Theorem 4.1; we will
need it here as it helps make sense of the nonzero diagonal condition. Since
the proof is simple, we reproduce it as well.

Proposition 4.4. Let M be a symmetric matrix over the finite field F of order 2m,
m ≥ 1. There exists a vector v such that vT Mv 6= 0 iff M has a nonzero entry on
its diagonal.
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Proof. We first prove (⇐). Let the entries in M be ai,j and the columns
c1, . . . , cn, and assume ak,k 6= 0. Then choosing v = ek,

vT Mv = vTck = ak,k 6= 0.

We now prove (⇒) by contrapositive. Choose an arbitrary (column) vector
v = (v1, . . . , vn) and assume M has all zeros on the diagonal. Then

vT Mv = (v1, . . . , vn)


...

· · · ai,j · · ·
...


 v1

...
vn


=

n

∑
i=1

n

∑
j=1

ai,jvivj

= 2 ∑
i<j

ai,jvivj +
n

∑
i=1

ai,iv2
i

= 0,

where we used symmetry of A, the assumption ai,i = 0 for all i, and the fact
that F has characteristic 2. This completes the proof.

As another preparatory lemma, we give a result which states that the
condition of a nonzero diagonal can always be satisfied for a small penalty
in rank.

Lemma 4.5. Let A be an n× n matrix with rank k over some field. There exists a
nonzero diagonal matrix D such that A + D has rank at most k + 1.

Proof. Notice that the statement is trivial if k = n− 1 or k = n, so assume
k < n− 1.

Let N be the null space of A; then

N = {n s.t. An = 0}

is a vector space of dimension n − k by the rank/nullity theorem. Let
{n1, . . . , nn−k} be a basis for N. Further, we assume without loss of gen-
erality that for any j < n − k, nj has zero entry in the nth position; i.e.
nj · en = 0. To justify this, select any vector with nonzero entry and reindex
it to be nn−k; then subtract off the appropriate multiple of this vector from
each other to get a new basis that satisfies the property.
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Now let D be the diagonal matrix that is all zeros except for a 1 in the
bottom-right position. Then for each j < n− k,

(A + D)nj = Anj + Dnj = 0 + (nj · en)en = 0,

so A + D has at least n− k − 1 linearly independent vectors in its kernel,
and thus has rank at most k + 1.

We are now in a position to state and prove a characterization of the dot
product dimension over finite fields of characteristic two. As expected, it
follows the rough structure of Theorem 2.21, using the minimum rank of
A + D over all diagonal D such that A + D is “positive semidefinite.”

Theorem 4.6. Let F be a finite field of characteristic two, and G any graph which
has at least one edge. Then, if A is the adjacency matrix of G, dpF(G) is the
minimum rank of A + D over all nonzero diagonal matrices D.

Proof. Note that the assumption of G having an edge means A + D will
never have rank zero for any diagonal matrix D, which is important in the
details below.

We first prove dpF(G) is≤ the minimum rank. Let D be a nonzero diag-
onal matrix such that A + D has rank k; then by Proposition 4.3, there exists
an n× k matrix T and a symmetric, invertible U such that A + D = TUTT.
Since the diagonal of A + D is given by D, which is nonzero, there exists
a vector v with vT(A + D)v 6= 0 by Proposition 4.4. Then w = TTv must
satisfy wTUw = (vTT)U(TTv) = vT(A + D)v 6= 0, so again by Proposition
4.4, U must not have all zeros on the diagonal. This implies that U may
be factored as U = MMT for some k× k matrix M. The rows of TM give
a k-dimensional representation of G, so dpF(G) is indeed ≤ the minimum
rank of A + D over all nonzero D.

Conversely, let X be a representation of G of the minimum dimension
d = dpF(G), viewed as an n× d matrix with the representation vectors in
the rows. Since G has an edge, note that d > 0. Then XXT = A + D for
some diagonal matrix D. Let the rank of A + D be k and notice k ≤ d since
X has rank at most d. If D is always nonzero, then the minimum rank of
A + D over nonzero D is ≤ k ≤ dpF(G), as desired.

Thus we only have the case remaining that D = 0. Applying Proposi-
tion 4.3, since A is symmetric, there exists an n× k matrix T and a symmet-
ric, invertible k× k matrix U such that XXT = A = TUTT.

Further, since (by the construction in Proposition 4.3) T has linearly in-
dependent columns, there is a k× n left inverse T−1 such that T−1T = id.
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Notice that (T−1)T is a right inverse for TT. Multiplying both sides of the
above equation by these matrices,

T−1XXT(T−1)T = (T−1X)(T−1X)T = U.

We have factored U into the product of a k × d matrix and its transpose.
However, in the same vein as previous arguments, since A has no zeros on
its diagonal, vT Av = 0 for all vectors v by Proposition 4.4. Now

T−1A(T−1)T = U,

so for any k-dimensional vector w,

wTUw = wTT−1A(T−1)Tw = ((T−1)Tw)T A((T−1)Tw) = 0.

Thus, U has all zeros on its diagonal by Proposition 4.4, so may not be
factored as the product of a k× k matrix with its transpose. Since we have a
factorization as a k× d with its transpose, we must have k 6= d =⇒ k < d.

Since A has rank k, by the previous lemma there exists a nonzero di-
agonal D such that A + D has rank ≤ k + 1 ≤ d. Thus d = dpF(G) is
≥ the smallest rank of any A + D with nonzero diagonal, completing the
proof.

Theorem 4.6 gives us an algorithm for computing the dot product di-
mension over a finite field of characteristic two: we simply loop through
all of the (nonzero) diagonal matrices D, and take the minimum rank of
A + D. The rank of a matrix can be computed quickly, but there are expo-
nentially many diagonal matrices to try. Thus this algorithm takes running
time exponential in the number of vertices. However, for relatively small
graphs the running time is still manageable; for example, a graph on 7 ver-
tices over F2 only requires finding the rank of 127 matrices. While tedious
for a human, this can be done by a computer very quickly.

4.1.2 Characteristic Larger than Two

In contrast with the characteristic two case, where the analogue to positive
semidefiniteness is just having nonzero diagonal, the remaining case is not
as simple.

Knowing that we will use Proposition 4.3 and Theorem 4.2 in our char-
acterization, we are led to the following definition.
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Definition 4.7. Let F be a finite field with characteristic larger than 2. For an
n× n symmetric matrix M over F with rank r, let T be an n× r matrix and U
an r× r symmetric, invertible matrix such that M = TUTT. Define the character
of M, denoted χF(M), to be 1 if det U is a square and zero otherwise. We let
χF(0) = 1. When the field F is understood, we write χ(M) = χF(M).

This definition is a priori dependent on the choice of factorization TUTT;
thus, we must first show that the character is well-defined.

Proposition 4.8. For any symmetric matrix M, χ(M) is well-defined.

Proof. Assume M is not zero, and let M = T1U1TT
1 = T2U2TT

2 be any two
factorizations with the Ti matrices of dimension n× r and the Ui symmet-
ric, invertible matrices of dimension r × r. Recall that each Ti must have
columns providing a basis for the column space of M; thus the columns
of T1 are spanned by the columns of T2, so there exists some r × r matrix
K1 such that T1 = T2K1. Similarly, the columns of T2 are spanned by the
columns of T1, so there exists an r × r matrix K2 such that T2 = T1K2. Fi-
nally, recall that T1 and T2 have left inverses, which we denote E1 and E2,
respectively. Thus

T1U1TT
1 = T2U2TT

2

T2K1U1KT
1 TT

2 = T2U2TT
2

E2(T2K1U1KT
1 TT

2 )ET
2 = E2(T2U2TT

2 )ET
2

K1U1KT
1 = U2

so det U2 = (det K1)2 det U1. Thus det U1 is a square if and only if det U2 is
a square, so χ(M) is indeed well-defined.

If we take the matrices with χ = 1 as the “positive semidefinite” matri-
ces in this situation, then the following characterization theorem suggests
itself.

Theorem 4.9. Let F be a finite field with characteristic p > 2. Then for any
graph G with adjacency matrix A, dpF(G) is the minimum rank of A + D over
all diagonal matrices D such that χ(A + D) = 1.

Proof. For simplicity, define d to be the minimum rank of A + D over all
diagonal D such that χ(A + D) = 1.

For any diagonal D, we may write A + D = TUTT, where the columns
of T form a basis for the column space of A + D and U is a symmetric,
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invertible matrix. Recall that symmetric, invertible matrices U may be de-
composed as U = MMT for an invertible square matrix M if and only if
det U is a square. Thus, if χ(A + D) = 1 (i.e. det U is a square), then we
may write A + D = TUTT = (TM)(TM)T, so the rows of TM give a rep-
resentation of dimension rank(A + D). Thus, dpF(G) ≤ d.

To prove the theorem we need to show dpF(G) ≥ d. Any representation
with dimension less than d must also have rank less than d; thus let X be
any representation of G with rank X < d. Since X is composed of n vectors
and has rank < n, there must be some some vertex v whose vector X(v) is
a linear combination of the other representation vectors:

X(v) = ∑
w 6=v

αwX(w).

To be a representation, we must have XTX = Â where Â is the sum of
some diagonal matrix and the adjacency matrix A. If XT was onto, then
we could write Â = (XT)id(XT)T where the columns of XT are linearly
independent and the identity is invertible with a square determinant, so
d ≤ rank Â ≤ rank X. We assumed this was not the case, so XT is not onto
and thus rank X is strictly less than the dimension of the representation.

For a vertex w, let r(w) be the corresponding row of Â. Then r(v) is
linearly dependent on the other rows, since

r(v) = (X(v))T(X(v1), . . . , X(vn))

=
(
∑ αwX(w)

)T (X(v1), . . . , X(vn))

= ∑ αwr(w).

Further, if ev ∈ Fn is the unit basis vector in the coordinate corresponding to
vertex v, then {r(w)} cannot span ev: if it did, then the corresponding linear
combination of the representation vectors would give a vector orthogonal
to all X(w) for w 6= v but not to X(v), and this is a contradiction as X(v) is
linearly dependent on the X(w).

Let D = diag ev. Then for nonzero x, Â + xD is formed from Â by (1)
removing the row corresponding to v, which does not change the rank since
this row was linearly dependent on the others; (2) inserting a row with the
vector xev, which adds one to the rank since ev is not in the row span; and
(3) adding back the original row corresponding to v to this newly inserted
row, which again does not change the rank since the original row was and
is spanned by the other rows. Thus rank(Â + xD) = rank Â + 1.

Let r = rank Â and let {b1, · · · , br+1} be a basis for the column space
(equivalently, row space) of the matrix Â + xD, where br+1 = ev (possible
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since ev is in the column space). Then {b1, · · · , br} is a basis for the column
space of Â, so we may write

Â =
(

b1 · · · br
)

Û

 bT
1
...

bT
r


for some symmetric, invertible matrix Û.

Let x = det Û 6= 0. Then

(
b1 · · · br br+1

) ( Û ~0
~0T x

)
bT

1
...

bT
r

bT
r+1

 = Â + xD.

Thus, we have constructed a factorization Â + xD = TUTT where T has
linearly independent columns and U is a symmetric, invertible matrix with
determinant (det Û)2, a square, so d ≤ rank(Â + xD) = rank Â + 1 ≤
rank X + 1, which in turn is ≤ the dimension of the representation X, and
so d ≤ dpF(G).

This completes the proof.

Theorem 4.9 again gives us an exponential time algorithm for comput-
ing the dot product dimension. An applet which actually uses these algo-
rithms to compute the dot product dimension over a general finite field can
be found at1

http://www.math.hmc.edu/~gminton/thesis/DPApplet.html

and Figure 4.1 gives a screenshot of this applet.

4.2 Singularity and Subadditivity

In this section we explore the differences between Theorems 2.17, 2.18, and
2.19 (which were results over the real numbers) and the corresponding re-
sults over finite fields. In each case, we find that finite fields exhibit behav-
ior more complicated than their real counterpart.

1URL valid as of writing.
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Figure 4.1: Screenshot of the dot product dimension applet

4.2.1 Singularity

From Theorem 2.19, we know that representations of minimum dimension
over the real numbers must span the entire vector space. This property fails
to hold over finite fields, and is at the heart of most of the odd behavior
studied in this section. Intuitively, this failure is because nonzero vectors
can be orthogonal to themselves. We study the concept in depth for fields
of characteristic two (with a few results specific to F2), and then close with
a general theorem.

To formalize the subject of discussion, we make the following defini-
tions.

Definition 4.10. A representation X : {v1, . . . , vn} → Fd is deficient if

dim span{X(vj)} < d.

Definition 4.11. The graph G is singular over a field F if it contains an edge and
admits a deficient representation of dimension dpF(G).

Now consider singularity over finite fields of characteristic two. Di-
rectly from the characterization of the dot product dimension, we get the
following results.

Proposition 4.12. Let F be a finite field with characteristic two. If G is singular
over F, then rank A = dpF(G)− 1.

Proof. Recall our characterization: dpF(G) is the minimum rank of A + D
over all nonzero diagonal matrices D. Further, in the proof of this result we
noted that for any matrix B, there exists a nonzero diagonal matrix E such
that rank(B + E) ≤ rank B + 1. Thus

dpF(G) = min
D 6=0

rank(A + D) ≤ rank A + 1,
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so rank A ≥ dpF(G)− 1.
Now let X be a deficient representation of dimension dpF(G). Then

viewed as a matrix, XTX = A + D for some diagonal D. Further, rank(A +
D) ≤ rank X < dpF(G). To avoid a contradiction with the definition
of dpF(G) as the minimum rank, we must have D = 0; then rank A <
dpF(G).

Since rank A is an integer, it must equal dpF(G)− 1.

Corollary 4.13. Suppose F is finite with characteristic two. If X is a deficient
representation of dimension dpF(G), then X has rank dpF(G) − 1 and A =
XTX.

Proof. View X as a matrix; then XTX = A + D for some diagonal matrix
D. Then rank(A + D) ≤ rank X < dpF(G), where dpF(G) is the min-
imum rank of A + D for any nonzero diagonal matrix D. Thus D = 0,
so rank X ≥ rank A = dpF(G) − 1 by the previous proposition. Then
rank X = dpF(G)− 1, as desired.

These conditions allow us to write down several more properties of sin-
gular graphs, which greatly restrict where we may look for examples of
singularity.

Lemma 4.14. Suppose F is a finite field of characteristic two, and v is a vector
over F. Let e = (1, 1, . . . , 1). We have v · v = 0 iff v · e = 0.

Proof. Let v = (v1, . . . , vn). Since F has characteristic two, the map a 7→ a2

splits over addition; thus

(v · e)2 = (v1 + · · ·+ vn)
2 = v2

1 + · · ·+ v2
n = v · v,

which immediately proves the statement.

Lemma 4.15. Suppose G is singular over a finite field F of characteristic two. The
dimension dpF(G) is odd.

Proof. Let d = dpF(G) and let X be a deficient representation of dimension
d. Label the columns of X by v1, . . . , vn. Then by Corollary 4.13, X has rank
d − 1. Further, XTX = A. Since A has zero entries on the diagonal, each
column of X must be self-orthogonal. Thus, defining e = (1, 1, . . . , 1) and
using Lemma 4.14,

0 = vj · vj =⇒ 0 = vj · e.



32 Finite Fields

Now recall that the orthogonal complement of any given nonzero vector is
a vector space of one less dimension. Thus,

O = {v : v · e = 0}

is a vector space of dimension d− 1 which contains each column vj. How-
ever, the columns span a space of dimension d− 1, so the column space of
X is O.

Now notice that A = XTX, and all of these matrices have rank d− 1 (by
Proposition 4.12 and Corollary 4.13). Thus, the image of X must intersect
trivially with the kernel of XT. The kernel of XT is the space of vectors
orthogonal to each vj, which includes e as seen above; the image of X is O.
If d is even, then e is self-orthogonal, so e ∈ O, which provides a nontrivial
intersection. Thus d must be odd, as desired.

Proposition 4.16. Over a finite field of characteristic two, any representation of
minimum dimension spans either the full vector space or the orthogonal comple-
ment of (1, 1, . . . , 1).

Proof. From Corollary 4.13, a representation X of minimum dimension d
may be deficient only if rank X = d− 1 and XTX = A; i.e. XTX has zeros
on the diagonal. Thus, each vector X(vj) is self-orthogonal, so by Lemma
4.14

0 = X(vj) · (1, 1, . . . , 1)

for each vertex vj. Thus the image of X is contained in the orthogonal com-
plement of (1, 1, . . . , 1). However, this orthogonal complement has the di-
mension d− 1 = rank X, so the columns of X do indeed span the orthogo-
nal complement of (1, 1, . . . , 1).

The following result deserves some explanation; since rank A = dpF(G)−
1, it actually states that each row of the adjacency matrix may be written as
a linear combination of the other rows. Since weak twins (nonadjacent ver-
tices with the same neighbors) have the same rows in the adjacency matrix,
this heuristically suggests that sets of weak twins are likely to appear in
singular graphs.

Lemma 4.17. Let F be a finite field of characteristic two. Suppose G is sin-
gular and let R = {r1, . . . , rn} be the rows of A. For any j = 1, 2, . . . , n,
dim spanR\{rj} = dpF(G)− 1.
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Proof. From Proposition 4.12, rank A = dim spanR = dpF(G)− 1. Since
adding a vector to a collection can only increase the dimension of its span
by 0 or 1, if we assume the contradiction of the problem statement then
there exists a j such that dim spanR\{rj} = dpF(G) − 2. Let d be the
vector which is zero except for a one in position j, and let D = diag d. Then

dim span(R\{rj}) ∪ {rj + d} ≤ dim span(R\{rj}) + 1 = dpF(G)− 1.

However, dim span(R\{rj}) ∪ {rj + d} = rank(A + D), and D is nonzero
so rank(A + D) ≥ dpF(G). This provides the desired contradiction.

Our final result of this sort is a combinatorial lemma restricting the size
of singular graphs.

Lemma 4.18. There are no singular graphs over F2 with 4 or fewer vertices.

Proof. Assume G is a singular graph with n ≤ 4 vertices. Then dpF2
(G) ≤

n− 1 ≤ 3, and by Lemma 4.15 we know dpF2
(G) is odd; thus dpF2

(G) = 1
or dpF2

(G) = 3.
If dpF2

(G) = 1, then a deficient representation of dimension dpF2
(G)

must be composed of all zero vectors. Singular graphs are required to have
edges, so this cannot be a valid representation; thus dpF2

(G) > 1.
The only remaining case is dpF(G) = 3 and n = 4. Thus by Proposition

4.12, rank A = 2. If A is a 4× 4 matrix with rank 2, then it has a null space
of dimension 2; let n1 and n2 span this null space.

Assume for contradiction that there is some coordinate j in which both
n1 and n2 are zero. Then letting D be the diagonal matrix which is zero
except for a one in position j, we see

(A + D)ni = Ani = 0, i = 1, 2.

Thus A + D has a null space including n1 and n2; if nullity(A + D) ≥ 2,
then rank(A + D) ≤ 4− 2 = 2. However, since D is nonzero, rank(A +
D) ≥ dpF2

(G) = 3, which gives our contradiction.
Thus in each coordinate, there are three possibilities: (1) n1 is one but

n2 is zero, (2) n1 is zero but n2 is one, or (3) both n1 and n2 are one. Since
there are four positions, there must be two positions which fall into the
same category. Let D be the diagonal matrix which only has ones in these
two positions; then (A + D)ni = Ani = 0 for i = 1, 2, so we again find a
contradiction.

We have contradicted each possible case, so the original assumption of
a singular graph on ≤ 4 vertices must be invalid.
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1

2

34

5

Figure 4.2: A singular graph over F2

Lemma 4.18 is in fact the strongest such statement possible, as a brute
force search through all graphs on five vertices reveals that the graph in
Figure 4.2 is actually singular over F2. The rank of its adjacency matrix is
2, but it has dot product dimension 3. While there are nondeficient rep-
resentations of minimum dimension, the following example of a deficient
representation (of minimum dimension) shows that this graph is singular:

X(v1) =

 0
1
1

 , X(v2) =

 1
1
0

 , X(v3) =

 1
1
0

 ,

X(v4) =

 1
0
1

 , X(v5) =

 1
0
1

 .

In particular, these representation vectors do not span (1, 1, 1) (note that
Proposition 4.16 predicted this).

Over finite fields of characteristic two, Corollary 4.13 has as a general-
ization the following theorem.

Theorem 4.19. G is singular over a finite field of characteristic two iff rank A <
rank(A + D) for any nonzero diagonal matrix D.

Proof. Let F be a finite field of characteristic two. Suppose G is singular and
let X be a deficient representation of minimum dimension. Then XTX = A,
so rank A ≤ rank X = dpF(G)− 1 = minD 6=0 rank(A + D)− 1 < rank(A +
D) for any nonzero D.

Consider the converse. Following the proof of our characterization
for dpF, for any symmetric n × n matrix M with rank r, we can find a
decomposition M = TTUT for a symmetric, invertible r × r matrix U.
Now r = rank A < rank(A + D) for any nonzero diagonal matrix D, so
rank A < dpF(G). Write A = TTUT, where U is symmetric and invertible.
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The (r + 1)× (r + 1) matrix

Û =
(

U 0
0 1

)
will be symmetric, invertible, and does not have all zeros on the diag-
onal, so there exists an (r + 1)-dimensional square matrix V with Û =
VTV. Form V by removing the last column of V; then VTV = U, so
A = (VT)T(VT) and thus the columns of VT give a representation of G
with dimension r + 1 ≤ dpF(G). However, the rank of this representation
is ≤ rank V = r, so as desired we have constructed a deficient representa-
tion of minimum dimension.

The corresponding result is, in fact, true for general finite fields. We
present a sequence of results which concludes with a key theorem.

Proposition 4.20. Let G be a graph with adjacency matrix A, and F a finite field
of characteristic larger than 2. If D is a diagonal matrix and rank(A + D) = r,
then dpF(G) ≤ r + 1. Further, if dpF(G) = r + 1, then G is singular.

Proof. Let T be an n × r matrix whose columns provide a basis for the
column space of A + D. Then for some symmetric, invertible matrix U,
A + D = TUTT. Let x = det U, and form the (r + 1)× (r + 1) matrix

Û =

(
U ~0
~0T x

)
.

Then det Û = x(det U) = (det U)2 is a square, so Û may be factored as
Û = M̂M̂T for an invertible (r + 1)-dimensional matrix M̂. Now if M is the
r × (r + 1) matrix whose rows are the first r rows of M̂, then MMT = U.
Thus A + D = TUTT = TMMTTT = (TM)(TM)T, so the rows of TM give
an (r + 1)-dimensional representation of G, and thus dpF(G) ≤ r + 1.

Further, since the rows of M̂ were all linearly independent, rank M =
rank M̂− 1 = (r + 1)− 1 = r. Thus, since T has trivial kernel, rank TM =
rank M = r < r + 1, so the representation TM is deficient. If dpF(G) =
r + 1, then TM is a representation with minimum dimension; thus G is
singular.

The following corollary is now immediately obtained with no further
proof, as we already knew the result for finite fields of characteristic two.
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Corollary 4.21. Over any finite field F and any graph G with adjacency matrix
A,

min
D is diagonal

rank(A + D) ∈ {dpF(G), dpF(G)− 1}.

The main result of singularity is the following theorem.

Theorem 4.22. A graph G is singular over a finite field F iff there exists a diagonal
matrix D with rank(A + D) = dpF(G)− 1.

Proof. Theorem 4.19 implies this result for finite fields of characteristic two;
thus, we only consider F with characteristic larger than two.

Suppose G is singular, and let X be a deficient representation of dimen-
sion dpF(G). Then by definition of deficiency, rank X < dpF(G). Now
since X is a representation, XTX = A + D for some D, and rank(A + D) ≤
rank X ≤ dpF(G)− 1. Now by Proposition 4.20, rank(A + D) ≥ dpF(G)−
1, so rank(A + D) = dpF(G)− 1; this proves the (⇒) direction.

If D has rank(A + D) = dpF(G) − 1, then Proposition 4.20 directly
implies that G is singular. We have shown both directions.

Corollary 4.21 and Theorem 4.22 provide a wealth of connections. Algo-
rithmically, if we ignore the concern that A + D must be “positive semidef-
inite” in the characterization of the dot product dimension, and take the
minimum rank over all diagonal D, then we will have an error in our es-
timate of the dot product dimension of at most one. Further, a graph is
nonsingular iff the minimum rank over all diagonal matrices equals the
dot product dimension.

Thus singularity is the difference between our problem of computing
the dot product dimension of a graph, and the more generic problem of
minimizing the rank of a matrix where the diagonal is left undetermined.
This is an example of a matrix completion problem: we are finding the val-
ues for undetermined matrix elements which extremize some property of
the matrix. An overview of such problems is given in Laurent (2001). In
Barrett et al. (2006), the authors consider the minimum rank problem over
F2 where the diagonal is left undetermined; except for singularity issues,
this is exactly our problem. Their work mostly looks at characterizing ma-
trices with a given minimum rank.

4.2.2 Subadditivity

Theorem 2.18 states that the dot product dimension over R is additive on
disjoint graphs. We do not get as strong of a result over finite fields, leading
to the following definition.
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Definition 4.23. A graph G composed of components Hj is subadditive (on {Hj},
over F) if dpF(G) < ∑ dpF(Hj).

While subadditivity is generic to finite fields, so far the theory has only
been developed to any extent over F2. Thus, the remainder of this section
gives the results known in this case; generalizations of them are extremely
likely.

The following proposition gives a class of subadditive graphs.

Proposition 4.24. If G is a singular graph, then for any n, the graph G′ with
components G and the complete graph Kn has dpF2

(G′) = dpF2
(G).

Proof. Let X be a deficient representation of G of dimension dpF2
(G); then

X has rank dpF2
(G)− 1 and by Proposition 4.16 the image of X must be the

orthogonal complement of (1, 1, . . . , 1). Further, from Lemma 4.15, dpF2
(G)

is odd, so (1, 1, . . . , 1) is not self-orthogonal. X(v) is orthogonal to o =
(1, 1, . . . , 1) and o · o = 1, so defining X(k j) = o for each vertex k j ∈ Kn gives
a representation for G′; thus dpF2

(G′) ≤ dpF2
(G). Finally, G′ contains G,

so we get the opposite inequality and thus equality.

In particular, this proposition together with our example from the last
section give the example in Figure 4.3 of a subadditive graph, as the left
component has dimension 3, the right component (a single edge) has di-
mension 1, and the joint graph has dimension 3 < 3 + 1.

Figure 4.3: A subadditive graph

We lose additivity of the dot product dimension precisely because of
the phenomenon of singularity: minimum dimension representations do
not have to be spanning. The correct analogue of additivity is the following
additivity of dimensions result.

Lemma 4.25. Let G be a graph with components {vi} and {wj} and no isolated
vertices. Then in a representation X of G,

dim span{X(vi)}+ dim span{X(wj)} = dim span({X(vi)} ∪ {X(wj)}).
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Proof. Clearly,

dim span({X(vi)} ∪ {X(wj)}) ≤ dim span{X(vi)}+ dim span{X(wj)}.

Let s1 = dim span{X(vi)} and s2 = dim span{X(wj)}; pick a subset {bp}s1
1

of {vi} such that {X(bp)} is linearly independent, and a similar subset
{cq}s2

1 of {wj}.
Let ∑ βpX(bp)+ ∑ γqX(cq) = 0 be an arbitrary linear combination yield-

ing zero. For each p, pick a vertex vi which is adjacent to bp and dot the
above expression with vi; this gives

∑
z:bz∼vi

βzX(bz) = 0

and since the X(bz) are linearly independent, each βz = 0. In particular,
βp = 0 since bp ∼ vi. Similarly, each γq = 0, so the trivial linear combina-
tion is all that works; this shows dim span({X(vi)} ∪ {X(wj)}) ≥ s1 + s2
and completes the proof.

We can now leverage Lemma 4.25 to give connections between subad-
ditivity and singularity.

Proposition 4.26. Suppose G is subadditive with components H1, H2. At least
one of H1, H2 is singular.

Proof. Assume that neither H1, H2 are singular; but then the rank of any
representation of Hi is ≥ dpF2

(Hi). Let X be a representation of G with
minimum dimension; then X induces representations Xi on Hi and Lemma
4.25 gives

rank X = rank X1 + rank X2 ≥ dpF2
(H1) + dpF2

(H2).

However, since X is a minimum representation, rank X ≤ dpF2
(G). We

have shown dpF2
(G) ≥ dpF2

(H1) + dpF2
(H2), which is a contradiction

since G is subadditive.

Proposition 4.27. Suppose G is subadditive with components H1, H2. If only one
of H1, H2 is singular, then G is not singular.

Proof. Suppose without loss of generality that H1 is singular, but H2 is not.
Then the rank of any representation of H2 is at least dpF2

(H2), and the rank
of any representation of H1 is at least dpF2

(H1) − 1. Applying this, for a
representation X of minimum dimension,

rank X = rank X1 + rank X2 ≥ dpF2
(H1) + dpF2

(H2)− 1.
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However, rank X ≤ dpF2
(G) < dpF2

(H1)+ dpF2
(H2), so rank X = dpF2

(G) =
dpF2

(H1) + dpF2
(H2)− 1; thus X cannot be deficient.

Proposition 4.28. Suppose G has components H1, H2. If both H1, H2 are singu-
lar, then G is singular.

Proof. Let Aj be the adjacency matrix for Hj. Then since both Hj are singu-
lar, rank Aj < rank Aj + Dj for any nonzero diagonal matrix Dj. If we order
the vertices of H1 before the vertices of H2, then the adjacency matrix A of
G is block diagonal:

A =
(

A1 0
0 A2

)
.

Thus, for any diagonal D with block components D1 and D2, rank(A +
D) = rank(A1 + D1) + rank(A2 + D2). With our opening observation,
rank(A + D) is thus strictly minimized by D = 0, which proves by The-
orem 4.19 that G is singular.

Proposition 4.29. Suppose G has components H1, H2. Then dpF2
(G) is either

dpF2
(H1) + dpF2

(H2) or dpF2
(H1) + dpF2

(H2)− 1.

Proof. First, observe that concatenating a representation for H1 with a rep-
resentation for H2 gives a representation for G with the sum of the dimen-
sions; thus dpF2

(G) ≤ dpF2
(H1) + dpF2

(H2) always holds. Assume G is
subadditive; i.e. dpF2

(G) < dpF2
(H1) + dpF2

(H2).
Let X be a representation of G with dimension dpF2

(G), which induces
representations Xj for Hj, j = 1, 2. Now rank Xj ≥ dpF2

(Hj) unless Hj
is singular, when rank Xj ≥ dpF2

(Hj)− 1; thus, in either case, by Lemma
4.25,

dpF2
(G) ≥ rank X = rank X1 + rank X2 ≥ dpF2

(H1) + dpF2
(H2)− 2.

Consider the case rank X = dpF2
(H1) + dpF2

(H2) − 2; however, this re-
quires that both H1 and H2 are singular, so by Proposition 4.28 G will also
be singular, implying dpF2

(G) = rank X + 1 = dpF2
(H1) + dpF2

(H2)− 1.
In every case, either dpF2

(G) = dpF2
(H1) + dpF2

(H2) or dpF2
(G) =

dpF2
(H1) + dpF2

(H2)− 1, as desired.

The preceding set of propositions may be summarized into the follow-
ing theorem, whose proof is given immediately by Propositions 4.26, 4.27,
4.28, and 4.29.
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Theorem 4.30. If G is subadditive with components H1, H2, then at least one
is singular and G is singular iff both are. Further, dpF2

(G) = dpF2
(H1) +

dpF2
(H2)− 1. If G is not subadditive, then dpF2

(G) = dpF2
(H1) + dpF2

(H2).

This theorem gives a rather full characterization of subadditivity over
F2.

4.2.3 Leaves

We now consider the related, but distinct, question of what happens when
a leaf is added to or removed from a graph. One generally uses the term
leaf in the context of trees; however, we generally do not assume the graph
is connected or acyclic. Again, while generalizations are likely in arbitrary
finite fields, in this section we mostly study representations over F2.

Recall from Lemma 2.16 that adding a leaf always increases the dot
product dimension over R by 1. The same is not true in finite fields. For ex-
ample, the star graph on n ≥ 3 vertices has dot product dimension 2 over
F2, independent of n (assign the center node (1, 0), and each leaf (1, 1)).
Thus, removing a leaf from the star on 5 vertices (for a specific example)
does not change the dimension.

We have found a few interesting results related to leaf removal; the first
is a “it is almost like the real case” result, which holds in general fields.

Proposition 4.31. Let F be any field. If G′ is formed from G by removing a leaf,
then dpF(G′) is either dpF(G) or dpF(G)− 1.

Proof. Since G contains G′, dpF(G) ≥ dpF(G′). However, given any rep-
resentation of G′ we may add a coordinate and give each vertex of G′ a
value of 0 in this coordinate except for the vertex adjacent to the leaf, which
gets a 1; then giving the leaf the unit basis vector in the new coordinate
gives a representation for G. Thus dpF(G) ≤ dpF(G′) + 1, completing the
proof.

Another interesting leaf-related result belongs in spirit with the lemmas
from Section 4.2.1, where we restricted which graphs could be singular.

Proposition 4.32. Any graph containing a leaf is nonsingular over F2.

Proof. Let G be a graph with a leaf. Let the leaf be in jth position and let its
(only) neighbor be in kth position. Thus the jth row of A is all zeros, except
for a single one in position k. Let D be the diagonal matrix with a single
one in the kth position; then A + D is the matrix formed from A by the row



Singularity and Subadditivity 41

operation (row k) 7→ (row k) + (row j) and thus rank(A + D) = rank A.
By the condition of Theorem 4.19, this implies G cannot be singular.

In particular, this shows that trees cannot be singular. This has as a
corollary the following intriguing theorem, which exploits results from an
existing theory of the “minimum rank of a graph” to connect dot product
representations across different fields.

Theorem 4.33. Let T be a tree. Then dpF(T) ≥ dpF2
(T) for any field F.

Proof. Define the minimum rank of a graph G with n vertices over a field
F to be the minimum rank of any symmetric n× n matrix over F whose i, j
entry (i 6= j) is nonzero exactly when vertices i and j are adjacent. Let X
be a dot product representation of G with minimum dimension. Then XTX
is a matrix satisfying the above conditions, and rank(XTX) ≤ rank X =
dpF(G), so the minimum rank of a graph can be at most the dot product
dimension.

Consider the minimum rank of any nonsingular graph G over F2. Since
the only nonzero element of F2 is 1, the collection of symmetric matrices
with i, j entry nonzero iff i and j are adjacent is precisely the collection
{A + D}, where D ranges over all diagonal matrices. Since we assume
G is nonsingular, by Theorem 4.19, rank A ≥ min{rank(A + D) : D 6= 0}.
Thus the minimum rank of G is min{rank(A + D)} = min{rank(A + D) :
D 6= 0} = dpF2

(G).
As shown in Chenette et al. (2007), the minimum rank of a tree is field

independent. Since trees are nonsingular by Proposition 4.32, for any field
F,

dpF2
(T) = min. rank of T over F2 = min. rank of T over F ≤ dpF(T).

The interplay between singularity and leaf removal yields another re-
sult; taking a singular graph and adding a leaf anywhere does not change
the dot product dimension! The following proposition proves this.

Proposition 4.34. Let G be a graph with a leaf `, and let Ĝ be the graph formed
by removing ` from G. If Ĝ is singular, then dpF2

(G) = dpF2
(Ĝ).

Proof. As is standard, let G have n vertices; then Ĝ has n− 1. Since G con-
tains Ĝ, dpF2

(G) ≥ dpF2
(Ĝ). Let Â be the adjacency matrix for Ĝ. Then

rank Â = dpF2
(Ĝ)− 1 since Ĝ is singular. Assume without loss of general-

ity that the leaf ` is in the last position of the adjacency matrix A of G, and
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that it is adjacent to the vertex which is next-to-last (so in last position in Â).
Let D be the n× n diagonal matrix D = diag(0, 0, . . . , 0, 1, 1); then A + D
may be formed from Â by adding an extra row and column of zeros (which
does not change the rank) and then adding the vector (0, 0, . . . , 0, 1, 1) to
each of the last two rows. Since we add the same vector to both, this oper-
ation can increase the rank by at most one; thus

rank(A + D) ≤ rank Â + 1 = dpF2
(Ĝ).

However, since D is nonzero, dpF2
(G) ≤ rank(A + D). We have shown

dpF2
(Ĝ) ≤ dpF2

(G) and dpF2
(G) ≤ dpF2

(Ĝ), so the two are equal.

Note that, since removing a leaf does not always change the dot prod-
uct dimension, we no longer have as simple a characterization of the dot
product dimension of a tree as in the real case. For example, while the path
P6 is a tree with 6 vertices and dpF2

(P6) = 5, the graph in Figure 4.4 is a
tree with 6 vertices and dot product dimension 4. Also, as noted, the star
graph with n ≥ 3 vertices (which is a tree) has dot product dimension 2
independent of n. Clearly, the behavior of trees is no longer as simple!

Figure 4.4: A tree with dot product dimension 4

4.3 The Field of Order Two

In this section, we focus our attention exclusively on the smallest field, F2,
where an alternative and more “physical” interpretation of the dot product
dimension is possible. This new interpretation allows us to prove a theo-
rem, applicable for all finite fields of characteristic two, on which graphs
have the maximum possible dot product dimension n− 1.

We rely on the following graph operation, which is sometimes alterna-
tively called “toggling.”

Definition 4.35. Given a graph G and a subset U ⊆ V of the vertices of G, the
subgraph complement (of G, with respect to U), denoted GU , is the graph on vertex
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set V where v1 ∼ v2 in GU iff either v1 ∼ v2 in G and {v1, v2} 6⊂ U or v1 6∼ v2
in G and {v1, v2} ⊂ U.

Put differently, a subgraph complement is exactly what it sounds like:
we take the complement of an induced subgraph, and do not affect any
edges outside of that subgraph. For example, Figure 4.5 shows a graph and
its subgraph complement.

U

(a) G

U

(b) GU

Figure 4.5: A graph and its subgraph complement

Notice that subgraph complementing twice with respect to the same
subset restores the original graph. Further, subgraph complements are
commutative. In particular, composition of complements gives an abelian
group structure to〈

(G 7→ GU) : U ⊆ V, σ = ρ iff σ(G) = ρ(G)
〉 2.

Some of the graph operations we are familiar with can be represented
by subgraph complements; a few are summarized in the following propo-
sition. In the language below, we are intentionally vague about the vertex
set of a graph; in particular, induced subgraphs are referred to as still con-
taining all of the vertices in the original graph (just with no edges incident
upon them).

Proposition 4.36. Let G and H be graphs.

2For two graphs G and H and two sequences of subgraph complements σ and ρ, σ(G) =
ρ(G) iff σ(H) = ρ(H), so equality in the group is well-defined. Since every generator has
order 2 and the group is abelian, every non-identity element of the group has order 2. The
group elements are in one-to-one correspondence with graphs on n vertices, so this group
is actually isomorphic to (Z/2Z)n(n−1)/2.
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1. If H differs from G on exactly m edges (i.e. |E(H)4 E(G)| = m), then H may
be obtained from G by m subgraph complement operations.

2. If H is an induced subgraph of G with k vertices removed, then H may be
obtained from G by 2k subgraph complement operations.

3. If H is an induced subgraph of G obtained by removing a set of strong twins,
then H may be obtained from G by 2 subgraph complement operations.

Proof. The subgraph complement with respect to a pair of vertices simply
toggles the edge between them, proving (1).

For (2), suppose that a vertex v ∈ V(G) has neighbors {v1, . . . , vd}. Con-
sider first the subgraph complement with respect to {v, v1, . . . , vd} and then
the subgraph complement with respect to {v1, . . . , vd}; this does not affect
any edges except those through v (and it removes all of those), so this pair
of operations indeed gives the induced subgraph where v is removed. This
proves (2).

For (3), notice that the operations in (2) still work with a set of strong
twins.

Subgraph complements are interesting for our purposes because of the
following theorem.

Theorem 4.37. Let G be a graph. dpF2
(G) is the smallest number of subgraph

complement operations necessary to transform the edgeless graph into G.

Proof. Let G have n vertices, and number them 1 through n. Let X be a
d× n matrix over F2; we associate X with the sequence of d subgraph com-
plement operations, where the subset associated with the ith complement
is the subset of columns j for which Xi,j = 1. For example, 1 0 1

0 1 1
1 0 1

→


1. complement w.r.t. {1, 3}
2. complement w.r.t. {2, 3}
3. complement w.r.t. {1, 3}

 .

This establishes a bijection between d× n matrices over F2 and sequences
of d subgraph complements; to complete the proof we show that X is a
dot production representation of G (i.e. XTX off the diagonal equals the
adjacency matrix) iff the sequence of complements associated with X takes
the edgeless graph to G.

Pick a pair i 6= j of vertices. Expanding the definition,

(XTX)i,j = (column i of X) · (column j of X) = ∑
k

Xk,iXk,j

= (number of rows in which Xk,i = Xk,j = 1) mod 2.
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Now let (C1, . . . , Cd) be the sequence of subgraph complements associated
with X, and consider these operations applied to the edgeless graph. There
will be an edge between i and j iff the edge was toggled an odd number of
times, which in turn happens iff {i, j} is contained in the subsets of an odd
number of the complement operations. But {i, j} is contained in the subset
of complement Ck iff Xk,i = Xk,j = 1. Thus edge {i, j} will be present iff
(XTX)i,j = 1, completing the proof.

Corollary 4.38. If H can be obtained from G by k subgraph complement opera-
tions, then

∣∣∣dpF2
(H)− dpF2

(G)
∣∣∣ ≤ k.

In particular, Corollary 4.38 combined with Proposition 4.36 immedi-
ately gives us that

1. If H differs from G on exactly m edges (i.e. |E(H)4 E(G)| = m), then
dpF2

(G)−m ≤ dpF2
(H) ≤ dpF2

(G) + m.

2. If H is an induced subgraph of G with k vertices removed, then dpF2
(G)−

2k ≤ dpF2
(H) ≤ dpF2

(G) + 2k.

3. If H is an induced subgraph of G obtained by removing a set of strong
twins, then dpF2

(G)− 2 ≤ dpF2
(H) ≤ dpF2

(G) + 2.

We also immediately find dpF2
(G)− 1 ≤ dpF2

(G) ≤ dpF2
(G) + 1: the

dot product dimension of a graph differs by at most one from the dimen-
sion of its complement. Such an association does not hold over all fields.
For example, the complete bipartite graph Kn,n has dimension 2n− 1 over
the reals and its complement (two copies of Kn) has dimension only 2.

We can extend this result slightly when G is singular.

Proposition 4.39. If G is singular over F2, then dpF2
(G) − 1 ≤ dpF2

(G) ≤
dpF2

(G).

Proof. Let d = dpF2
(G) and let X be a deficient representation of dimension

d for G. Define the vector e = (1, 1, . . . , 1) ∈ Fd
2. From Proposition 4.16,

each representation vector is orthogonal to e. Further, from Lemma 4.15, d
is odd, so e · e = d = 1.

Define a representation X by X(v) = X(v) + e for each vertex v. Then,
for any pair vi, vj of vertices,

X(vi) ·X(vj) = X(vi) ·X(vj)+ e ·X(vj)+ X(vi) · e + e · e = X(vi) ·X(vj)+ 1.
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Since X(vi) · X(vj) = 1 iff vi ∼ vj in G, we have X(vi) · X(vj) = 1 iff vi ∼ vj

in G. Thus X gives a d-dimensional representation of G.
This proves the inequality on the right; the inequality on the left holds

for all graphs by our arguments above.

It is worth noting that the subgraph complement characterization does
not really give us any new mathematical tools for attacking the dot product
dimension. It cannot; as we see from the proof of Theorem 4.37, it is really
just a rephrasing of the same concept. However, it does provide a more
intuitive language for some ideas (like the bounds above).

It also provides a more graphical interpretation of the dot product di-
mension. For a fixed number of vertices n, consider forming a graph whose
vertex set is the collection of all graphs. Edges are drawn between graphs
which are related by a single subgraph complement. The resulting struc-
ture is a (2n − n− 1)-regular graph where the distance from a graph to the
edgeless graph gives its dot product dimension. For example, Figure 4.6 is
the diagram for n = 3.

Figure 4.6: The toggling diagram for n = 3

There are 64 graphs on n = 4 vertices, so the corresponding diagram
is quite large. Isomorphic graphs, though, all have the same dot product
dimension. Thus we can take minors, collapsing every set of isomorphic
graphs into a single representative, while still keeping most of the interest-
ing information. The reduced diagram for n = 4 is in Figure 4.7

Notice that in Figures 4.6 and 4.7, only the path has the maximum dot
product dimension dpF2

= n− 1. This holds for all n, and is an example
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Figure 4.7: The toggling diagram for n = 4

of a result which is proven most cleanly with the language of subgraph
complementing.

Theorem 4.40. A graph G on n vertices has dpF2
(G) = n− 1 iff it is the path.

Proof. The theorem can be computationally verified for all graphs on 3 or
fewer vertices. Further, the (⇐) direction has already been proven (Propo-
sition 2.8), so it is just the (⇒) direction which remains. We induct on n.
Suppose inductively that it is true for graphs on n− 1 (with n− 1 ≥ 3) ver-
tices and suppose for contradiction that G is a graph on n vertices which is
not the path but has dpF2

(G) = n− 1.
Define the operation of “vertex excision” to be the subgraph comple-

ment with respect to the subset consisting of a given vertex and all of its
neighbors. For any vertex v, let Gv denote the excision of v from G. Since
each Gv is a graph on n − 1 vertices, if it is not the path Pn−1 then it has
dpF2

(Gv) ≤ n− 3 by the inductive hypothesis. Thus, appealing to Corol-
lary 4.38, dpF2

(G) ≤ dpF2
(Gv) + 1 ≤ n− 2. Since dpF2

(G) = n− 1, each
Gv must in fact be the path.

If G is not connected, then it has components H1 and H2 with n1 and n2
vertices, respectively, and

dpF2
(G) ≤ dpF2

(H1) + dpF2
(H2) ≤ (n1 − 1) + (n2 − 1) = n− 2.

Thus G must be connected. The path and cycle are the only connected
graphs in which every vertex has degree ≤ 2; since G is not the path by
assumption and the cycle has dpF2

(Cn) = n− 2, G must have a vertex of
degree ≥ 3.
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Now fix such a vertex v in G and label the remaining vertices such that
Gv is the path v1 ↔ v2 ↔ · · · ↔ vn−1. Let N ⊆ {v1, . . . , vn−1} be the
collection of neighbors of v in G.

Assume |N| < n− 1, and let w be a vertex not adjacent to v in G. Then
the excision Gw does not affect the degree of v; since Gw contains a vertex
of degree ≥ 3, it cannot be the path.

The only remaining case is |N| = n − 1, so Gv = Pn−1 is actually the
complement of G. Thus G has(

n
2

)
− (n− 2) =

n2

2
− 3n

2
+ 2

edges. Since n− 1 ≥ 3, there is a vertex z that had degree 2 in Gv (in par-
ticular, v2), which will have degree n − 3 in G. Excising this vertex takes
the complement of a subgraph on n− 2 vertices. Further, this subgraph is
the complement of the subgraph induced from Pn−1 by removing an inte-
rior vertex, which has n− 4 edges. Since complementing a graph on n− 2
vertices with n− 4 edges adds(

n− 2
2

)
− 2(n− 4) =

n2

2
− 9n

2
+ 11

edges, excision by z (taking this complement again) reduces the number
of edges by the same amount. Subtracting, Gw has 3n − 9 edges. Since
3n− 9 6= n− 2, Gw cannot be Pn−1, providing our final contradiction and
proving the theorem.

Now by Proposition 2.8, dpF(Pn) = n− 1 holds for any field F. Further,
dpE(G) ≤ dpF2

(G) for any field E ⊇ F2 by Lemma 3.1. Thus the above
theorem actually holds over any field of characteristic two. However, it
does not hold in full generality over all finite fields; for example, the star
graph on four vertices has dot product dimension 3 over F3, but is certainly
not the path.

As an interesting special case, the results of this section (in particular,
Theorem 4.40 and Corollary 4.38) immediately imply that the complement
of the path, Pn, has dot product dimension dpF2

(Pn) = n− 2.



Chapter 5

Field Extensions

For most of this thesis, we have been implicitly considering the field to be
fixed; i.e. looking at dpF(G) as a function of the graph G. In this chapter
we change the focus and instead examine dpF(G) as a function of the field
F.

The first result in such a study is Lemma 3.1; the dot product dimen-
sion is (weakly) decreasing under field extensions. Since the dimension is
always a nonnegative integer, there must be some minimum dimension.
This motivates the following definition.

Definition 5.1. Let p be 0 or a prime. For a graph G, the limiting dimension of G
over characteristic p is

d̂pp(G) = min {dpF(G) : F is a field with characteristic p} .

One bound on the limiting dimension is immediately possible, exploit-
ing the field independence result for the path.

Proposition 5.2. If G has diameter d, then d̂pp(G) ≥ d for all characteristics p.

Proof. Recall Proposition 2.8, that the path Pn has dot product dimension
n− 1 over any field. Now any graph with diameter d contains Pd+1 as an
induced subgraph, so for any field F, dpF(G) ≥ dpF(Pd+1) = d. This gives
the desired bound.

We can get another bound from results already known, but it only holds
for trees.

Proposition 5.3. If T is a tree, then d̂pp(T) ≥ dpF2
(T) for all characteristics p.
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Proof. Let F be any field with characteristic p; then by Theorem 4.33, dpF(T) ≥
dpF2

(T). Thus d̂pp(T) = min{dpF(T) : F has char. p} ≥ dpF2
(T).

In particular, it follows that d̂p2 = dpF2
for all trees.

5.1 Algebraic Extensions

The limiting dimension must be achieved by some field, which raises the
question of “how large” of a field is needed. For a motivating example,
consider the wheel graph W6. As we saw in Section 3.1, it has a smaller
representation over the real numbers than over the rational numbers. Us-
ing the entire field R, though, is excessive; in the case of W6, the degree-four
extension Q[φ1/2] (φ denotes the golden ratio (1 +

√
5)/2) suffices to get a

representation of dimension 3. Indeed, we expect in general that some alge-
braic extension of the characteristic field should always achieve the limiting
dimension.

After developing a few preparatory results, we give a theorem proving
this result.

Proposition 5.4. Let E be a field extension of F with finite degree. A set of vectors
{vj}n

1 over F is linearly independent iff {vj} is linearly independent as a set of
vectors over E.

Proof. If there exist no nontrivial coefficients {aj} in E such that ∑ ajvj = 0,
then clearly there exist no nontrivial coefficients over F; thus (⇐) is imme-
diate.

We now prove (⇒) by contrapositive. Let ∑ αjvj = 0 be a nontrivial
linear combination with coefficients αj ∈ E. View E as a vector space over
F of dimension d; for each j, write αj = (a1

j , a2
j , . . . , ad

j ) with each aq
j ∈ F.

Then since each vector vj has coefficients in F, multiplication is pointwise;
i.e.

0 = ∑ αjvj = ∑(a1
j , . . . , ad

j ) · vj =
(
∑ a1

j vj, . . . , ∑ ad
j vj

)
.

There must exist j and q such that aq
j 6= 0 (otherwise each αj = 0). Choosing

this q, ∑ aq
j vj gives a nontrivial linear combination of {vj} over F yielding

zero.

This has as a corollary the following result:
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Corollary 5.5. Let E be a field extension of F with finite degree. Consider a
set of vectors {v, v1, . . . , vn} over F. The condition v ∈ span{v1, . . . , vn} is
independent of the field of scalars being F or E.

Proof. Without loss of generality, for an appropriate choice of k, {vj}k
1 gives

a basis for {v1, . . . , vn}. By the proposition, this is still linearly independent
over E, so this gives a basis over either field. Thus, over either E or F, v ∈
span{v1, . . . , vn} iff {v} ∪ {vj}k

1 is linearly dependent. The latter condition
is field-independent by the proposition, so the desired condition is as well.

We now need a result from algebraic geometry. Recall that the affine
variety V(I) defined by an ideal I in the polynomial ring K[x1, . . . , xn] is

V(I) = {x = (x1, . . . , xn) ∈ Kn : f (x) = 0 for all f ∈ I} .

Theorem 5.6 (Hilbert’s (Weak) Nullstellensatz). Let K be an algebraically
closed field and consider the multivariate polynomial ring K[x1, . . . , xn]. An ideal
J of this ring is proper iff V(J) is not empty.

See, for example, Dummit and Foote (1999) for a proof of this theorem.
Consider the ideal I generated by a finite set {p1, . . . , pk} of polynomials

in K[x1, . . . , xn]. It can be quickly verified that f (x) = 0 for all f ∈ I iff
p1(x) = · · · = pk(x) = 0. Further, an ideal is proper iff it does not contain 1;
thus I is proper iff 1 is not a K[x1, . . . , xn]-linear combination of {p1, . . . , pk}
(i.e. a sum f1 p1 + · · ·+ fk pk, where each coefficient f j is itself a polynomial).

Stated in a more convenient form, the weak form of Hilbert’s Nullstel-
lensatz thus says the following: a set of polynomials has a common zero
(over an algebraically closed field) iff 1 is not a (polynomial-coefficient) lin-
ear combination of them.

We are interested in the following consequence of this.

Proposition 5.7. Let E be any field and let F be its characteristic field. SupposeA
is a finite set of algebraic equations with coefficients in F. If there exists a solution
to A over E, then there exists a finite-degree extension of F containing a solution
to A.

Proof. We can manipulate the equations in A so the right-hand sides are
all zero, and thus the problem is one of finding common roots for a set of
(potentially multivariate) polynomials {pj}n

1 .
We prove the statement by contrapositive; suppose there is no finite-

degree extension of F which has a common root for {pj}. Let A be the field
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extension of F formed by adjoining all algebraic numbers over F. Then,
by contradiction, A cannot contain a common root for {pj}; if it did, then
adjoining the algebraic numbers used in the common root would give a
finite-degree extension of F.

Now A is algebraically closed since a polynomial whose coefficients are
algebraic has algebraic roots. By Theorem 5.6, since {pj} has no common
root over the algebraically closed field A, the function 1 may be written
as a polynomial-linear combination 1 = ∑ f j pj, where each f j is a polyno-
mial over A. Let {Mi}m

1 be the collection of monomials (setting the coef-
ficients to 1) present in { f j}, and let B be the collection of all monomials
present in {Mi pj}i,j. Consider the vector space over A with basis B. This
is a finite-dimensional space; further, since each pj has coefficients in F, the
representation of each polynomial Mi pj has coefficients in F.

There are a finite number of algebraic coefficients in { f j}; thus the state-
ment 1 = ∑ f j pj means 1 ∈ span{Mi pj}i,j, where the span is taken over
a finite-degree extension of F. However, by Corollary 5.5, this implies
1 ∈ span{Mi pj}i,j where the span is taken over F. Thus we may write
1 = ∑ gj pj, where each gj is a polynomial with coefficients in F.

Let K be an algebraically closed field containing E; then K also contains
F, so 1 is a polynomial-linear combination of {pj} over K. Again appealing
to Theorem 5.6, there can be no common root of {pj} over K; in particular,
there can be no common root over E. This completes the proof.

We are now ready for the main theorem.

Theorem 5.8. Let p equal 0 or a prime and let F be the associated character-
istic field. For any graph G, there exists a finite-degree extension K of F with
dpK(G) = d̂pp(G).

Proof. Let E be a field with characteristic p such that dpE(G) = d̂pp(G).
Suppose G has n vertices and recall the indicator χi,j, which is 1 if vertices
i and j are adjacent and 0 otherwise.

Let d = d̂pp(G) and define the vectors (whose entries are variables)

vj = (xj
1, . . . , xj

d) for each j = 1, 2, . . . , n. Then{
vi · vj = χi,j

}
1≤i<j≤n

is a system of algebraic equations in the finite variable set {xj
i} which has a

solution over E.
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Further, the coefficients of these equations are all 1 or 0, so lie in F.
Applying Proposition 5.7, there exists a finite-degree extension K of F con-
taining a solution to this system; such a solution gives a d-dimensional rep-
resentation, so dpK(G) ≤ d = d̂pp(G). K has characteristic p, so dpK(G) ≥
d̂pp(G), completing the proof.

For a prime p, d̂pp(G) is thus achieved by some finite field Fpe ; d̂p0(G)
is achieved by some finite-degree extension of Q. Every such extension is
contained in C, so d̂p0(G) = dpC(G) for every graph G. Recall, though,
that dpC refers to dot product representations over C, not Hermitian repre-
sentations; it is not true that d̂p0(G) = dp†(G) (the right side, recall, equals
dpR(G)) for every graph. For one example, the star graph Sn on n vertices
is a tree, so has dpR(Sn) = n− 1, but d̂p0(Sn) = dpC(Sn) = 2 (assign the
root the vector (1, 0) and all the leaves (1, i)).

Notice that the proof of Theorem 5.8 allows us to reduce the problem
of finding the limiting dimension to checking whether a set of polynomials
generates a proper ideal over the characteristic field. More specifically, we
can check if d̂pp(G) ≤ d for some d by writing the (n

2) equations vi · vj = χi,j

(on dn variables), and asking whether or not 1 is in the ideal they generate.
By generating a Groebner basis, this can be checked by a computer in finite
time; thus we actually have an algorithm (albeit a slow one) for computing
d̂pp(G).

Now suppose Q[α1, . . . , αm] is a finite-degree extension over which a
graph G achieves its limiting dimension. A given dot product represen-
tation of this limiting dimension can thus be written using a finite num-
ber of rationals. If we choose a prime p which is not in the denominator
of any of these rationals, then this representation passes to a representa-
tion of G over some finite field of characteristic p. Thus for any graph G,
d̂pp(G) ≤ d̂p0(G) for all but finitely many primes p.

Another property of limiting dimensions relates to singularity. Singu-
larity implies, in a sense, that there “should” be a representation of smaller
dimension, but the field just lacks the elements to express it. We thus might
expect for singularity to disappear when the fields become “big enough.”
After a preparatory lemma, we give a theorem expressing this.

Lemma 5.9. Let E be a finite-degree extension of F. If A is a matrix over F with
rank r, then its rank is also r when viewed as a matrix over E.

Proof. Pick a basis for the column space of A (as a matrix over F); it is
still linearly independent over E by Proposition 5.4. Since it still spans the
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column space, it forms a basis, so the rank is still r.

Theorem 5.10. Let p > 2 be prime, G a graph, and F a finite field of characteristic
p such that dpF(G) = d̂pp(G). G is not singular over F.

Proof. Suppose G is singular over F. From Theorem 4.22, there exists a di-
agonal matrix D with rank(A + D) = dpF(G)− 1. Let this rank be r; by
Proposition 4.3, there exists an n× r matrix T and a symmetric, invertible
r × r matrix U such that A + D = TUTT. Since U is an invertible matrix
over F, its determinant is some nonzero element α of F. Now E = F[

√
α]

is a finite field in which det U = α is a square. By Lemma 5.9, U is still
invertible over E; thus the factorization A + D = TUTT is valid to define
χ, so χE(A + D) = 1. By Theorem 4.9, dpE(G) ≤ rank(A + D) = r <

dpF(G). Thus dpF(G) cannot be d̂pp(G), completing the proof by contra-
positive.

This result gives us a family of graphs for which d̂pp(G) < dpFp
(G)

(for p > 2): namely, any singular graph. In the characteristic two case,
singularity is associated with the zero-diagonal adjacency matrix having
minimum rank. The condition of having all zeros on the diagonal is not
changed by moving to a field extension, so we cannot expect a proof like
the one just given to work. In fact, as shown by an example in the following
section, the result does not hold.

5.2 Example Graphs

The star graphs Sn = K1,n−1 provide examples of singular graphs over
fields which do not contain

√
−1 (like Fp for primes p ≡ 3 mod 4). Further,

as guaranteed by Theorem 5.10, they are no longer singular in an appropri-
ate field extension. In the following few results we prove the value of the
dot product dimension for the star graph over finite fields with characteris-
tic larger than two. (Notice at the outset that the star graph on more than 2
vertices cannot have dot product dimension 1 over any field, since it is not
a single clique.)

Lemma 5.11. Let p > 2 be prime. There exist nonzero x, y with x2 + y2 ≡ 0
(mod p) iff p ≡ 1 (mod 4). If p ≡ 3 (mod 4) then there exist nonzero x, y, z with
x2 + y2 + z2 ≡ 0 (mod p).

Proof. It is well-known that−1 is a quadratic residue mod p iff p ≡ 1 mod 4.
If p ≡ 1 and i2 ≡ −1, then (x, y) = (i, 1) suffices. Conversely, if x2 + y2 ≡ 0
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with y 6= 0, then (xy−1)2 ≡ −1 so p ≡ 1 mod 4. This proves the first
statement.

For the second, recall that there are (p− 1)/2 nonzero quadratic residues
modulo p. Since there do not exist nonzero x, y with x2 ≡ −y2, the set
{x2 : x 6= 0} of (p− 1)/2 squares is disjoint from the set {−y2 : y 6= 0},
which also has (p− 1)/2 values. Since there are only p− 1 total nonzero
elements, each must be either a square or the negative of a square.

Now suppose for contradiction that all sums of two squares are squares;
that is, for all x, y 6= 0, there exists z such that x2 + y2 ≡ z2. There are
(p− 1)/2 values for the left-hand side for a given x, which implies that the
equation ranges over all nonzero quadratic residues for each given x. Thus,
there exists y 6= 0 such that x2 + y2 ≡ x2; this is a contradiction, so there
indeed exists some sum of two squares x2 + y2 which is not a square. Then
by the argument of the previous paragraph, x2 + y2 ≡ −z2 for some z, so
x2 + y2 + z2 ≡ 0, as desired.

Lemma 5.12. Let p > 2 be prime and pick some n ≥ 4. dpFp
(Sn) equals 2 if

p ≡ 1(mod 4) and equals 3 otherwise. In either case, dpFp2
(Sn) = 2.

Proof. Suppose p ≡ 1. Then −1 is a square in Fp, so there exists i with i2 =
−1 =⇒ i2 + 12 = 0. Now consider the two-dimensional representation
where we assign to the root the basis vector (1, 0) and to each other vertex
the vector (1, i). Dot products are easily verified to see that this is indeed
a representation. Thus dpFp

(Sn) ≤ 2; since the dot product dimension is
larger than one, dpFp

(Sn) = 2.
Now suppose p ≡ 3. Then by Lemma 5.11 there do not exist x, y 6= 0

with x2 + y2 = 0 in Fp. Thus, in particular, there are no nonzero two-
dimensional vectors (x, y) which are self-orthogonal. Let v1, v2, v3 be ver-
tices other than the root r, and suppose for contradiction there exists a rep-
resentation X of dimension two. Then X(v1) cannot be self-orthogonal and
X(v1) · X(v2) = 0, so X(v1) and X(v2) are linearly independent. Further,
X(r) must be linearly independent from both of them, as X(r) · X(v3) = 1
but X(v1,2) · X(v3) = 0. We cannot have a linearly independent set of size
3 in a space of dimension 2, providing the contradiction. Thus there do not
exist representations of dimension 2, so dpFp

(Sn) ≥ 3. Again appealing

to Lemma 5.11, there exist nonzero x, y, z with x2 + y2 + z2 = 0 in Fp; as-
signing (x−1, 0, 0) to the root and (x, y, z) to all other vertices gives a three-
dimensional representation. Together with the above inequality, this shows
dpFp

(Sn) = 3.



56 Field Extensions

Finally, in the case where −1 is not a quadratic residue, Fp[
√
−1] is a

two-dimensional extension, so by uniqueness must be Fp2 . In this field
there do exist nonzero x, y with x2 + y2 = 0, so (x−1, 0) for the root and
(x, y) for all others defines a two-dimensional representation.

It is interesting to observe that the star graph behaves very differently
over finite fields and the reals; since it is a tree, dpR(Sn) = n − 1. (Thus
dpQ(Sn) = n− 1 as well.) This stands in stark contrast with the result just
proved, that dpF(Sn) ≤ 3 for any finite field F.

Collecting the results above, we have shown the following proposition.

Proposition 5.13. Pick n ≥ 4. Let p be a prime congruent to 3 mod 4. Then Sn
is singular over Fp with dot product dimension 3. For any prime p, the limiting
dimension is d̂pp(Sn) = 2.

As we claimed above, it is not true that a graph achieving its limiting
dimension for characteristic two must be nonsingular. Consider the graph
on five vertices 2K2, shown in Figure 5.1, which is our running example of
a singular graph over F2.

1

2

34

5

Figure 5.1: A singular graph over F2

For convenience, name this graph S∗; a computational proposition shows
that S∗ is always singular.

Proposition 5.14. S∗ is singular over every finite field of characteristic two.

Proof. Let F be a finite field of characteristic two. Then F contains F2, so in
particular it contains the deficient representation of dimension 3 which we
used to prove S∗ is singular over F2. This representation is still deficient
over F as ranks are unchanged by Lemma 5.9. Thus, if we assume for
contradiction that S∗ is not singular over F, then we must have dpF(S∗) < 3
so that this deficient representation does not have minimum dimension.
Let A be the adjacency matrix of S∗.

If dpF(S∗) < 3, then there exists a nonzero diagonal matrix D such that
rank(A + D) = dpF(S∗) < 3, so rank(A + D) ≤ 2. Let D = diag(x1, . . . , x5).
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Then

A + D =


x1 1 1 1 1
1 x2 0 1 1
1 0 x3 1 1
1 1 1 x4 0
1 1 1 0 x5

 .

We can transform this matrix by elementary row operations (which do not
change the rank) to 

x1 x2 0 x4 0
0 x2 x3 0 0
0 0 0 x4 x5
1 0 x3 1 1
1 1 1 x4 0

 ,

where we used several times that 1 + 1 = 0, but did not require any other
properties of the field. Notice that the bottom two rows are always linearly
independent, as their restrictions to the second and fifth columns are lin-
early independent. Thus rank(A + D) ≥ 2, so we must have rank(A +
D) = 2. However, this means that each of the top three rows may be writ-
ten as a linear combination of the bottom two. The only combination which
could give the second row is

(0, x2, x3, 0, 0) = x2(1, 0, x3, 1, 1) + x2(1, 1, 1, x4, 0)

by looking at the first and second columns. Looking at the last coordinate,
x2 = 0 so the right-hand side is zero; thus x3 = 0 as well. Now the only
linear combination which could give the third row is

(0, 0, 0, x4, x5) = x5(1, 0, x3, 1, 1)

by looking at the second and last columns. Thus x5 = 0, so the right-
hand side is zero and thus x4 = 0. Substituting these values, the first
row (x1, 0, 0, 0, 0) must be a linear combination of the bottom two rows
(1, 0, 0, 1, 1) and (1, 1, 1, 0, 0); this is only possible if x1 = 0.

We have shown D = diag(x1, . . . , x5) = 0, but D was assumed nonzero.
This contradicts our opening assumption, and proves that S∗ is indeed sin-
gular.

Singularity provided us with examples of graphs for which d̂pp(G) <

dpFp
(G) for p > 2, but it does not (in general) for p = 2. Indeed, an

exhaustive computer search looking for examples found that dpF2
(G) =
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dpF4
(G) = dpF8

(G) for all graphs on 5 or fewer vertices. However, the
same computer search found that the graph in Figure 5.2 has dpF2

equal to
4 but dpF4

equal to 3. (This graph has diameter 3, so d̂p2 in fact equals 3.)

Figure 5.2: A graph G with dpF4
(G) 6= dpF2

(G)

In summary of this discussion, for all prime characteristics p, there are
graphs which achieve their limiting dimension over Fp (the path, for ex-
ample), and there are also graphs which do not. However, the case p = 2
is substantively different in that its limiting dimension can be achieved by
a deficient representation; singularity over a field achieving the limiting
dimension is not possible in any other prime characteristic.



Chapter 6

Conclusions

In this thesis we studied dot product representations over fields other than
R; in particular, over the complex numbers, rational numbers, and finite
fields. We looked at these with the broad mandate of understanding their
similarities and differences with the real case. To that end, we proved that
the complex case is identical to the real case (if we consider Hermitian rep-
resentations), and that the rational numbers may differ in exact dimension
but always have the same asymptotic dimension as the real numbers. We
also gave a matrix characterization, in clear analogue with a preexisting re-
sult over R, of the dot product dimension over finite fields, and studied a
few properties of the dot product dimension over finite fields which do not
arise in the real case. We gave a characterization of the dot product dimen-
sion in the special case F2 using the idea of graph toggling, and studied
some basic behavior under field extensions.

However, there are a variety of different directions to pursue for future
research. We close this report by surveying some of the possibilities.

For one, there is embarrassingly little known about the (exact) dot prod-
uct dimension over the rational numbers; future research should look fur-
ther at this case. In particular, we do not even know the dot product dimen-
sion for the wheel graph W6. In Chapter 3 we mentioned that it is larger
than 3, but whether the actual dimension is 4 or 5 is unknown.

Another direction suggested obviously by this work is to look at sub-
additivity and leaf removal over arbitrary finite fields. Further, even in the
most-studied case of F2 we do not have a satisfying characterization of the
dot product dimension of trees.

In the finite field cases, we gave exponential-time algorithms for com-
puting the dot product dimension. This leaves open the question of whether
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a better (faster) algorithm is possible; it would be interesting to study these
problems from a complexity point of view. In particular, perhaps finding
the dot product dimension over a finite field is an NP-complete problem.

Our study of limiting dimensions in Chapter 5 was rather brief, and
several questions remain in that avenue of research. The only known gen-
eral bound on the limiting dimension is the diameter of the graph; rela-
tionships with other quantities have not been investigated. Also, we made
brief mention of the relationship between the limiting dimension of char-
acteristic zero and of prime characteristic. A formal study of this may yield
interesting results.

In a broader sense, we have only been considering representations over
fields with the standard dot product (or, in the complex case, the Hermitian
inner product). This limitation has good reason; fields with the dot product
are intimately connected to matrix theory, which allows us to bring many
powerful tools to bear on the problem. However, it would be interesting to
see which properties of the dot product dimension survive a change to (1)
arbitrary bilinear forms or (2) rings (like Z/nZ) instead of fields.

Overall, the theory of dot product dimensions is a young field which
has many possibilities for new research. Hopefully this thesis has helped
convince the reader of the motivation for and interest in such work.
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