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Abstract

Congestion and over-saturated roads pose significant problems and create
delays in every major city in the world. Before this problem can be ad-
dressed, we must know how much traffic is flowing over the links in the
network. We transform a road network into a directed graph with a network
flow function, and ask the question, “What subset of vertices (intersections)
should be monitored such that knowledge of the flow passing through
these vertices is sufficient to calculate the flow everywhere in the graph?”
To minimize the cost of placing sensors, we seek the smallest number of
monitored vertices. This is known as the Sensor Location Problem (SLP).
We explore conditions under which a set of monitored vertices produces a
unique solution to the problem and disprove a previous result published on
the problem. Finally, we explore a matrix formulation of the problem and
present cases when the flow can or cannot be calculated on the graph.
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Chapter 1

Introduction

The issue of traffic congestion is a significant problem in today’s society.
Almost every city in the world has to deal with clogged roads and rush-hour
traffic, and chances are good that even if you don’t own a car, you’ve been
in a car during a complete stand-still on a major thoroughfare. The issue is
more than just an annoyance; delays caused by heavy traffic conditions play
a major role in the loss of time and money on the part of both individuals
and corporations. According to the Urban Mobility Report, published by the
Texas Transportation Institute, the average American spent 38 hours waiting
in congested traffic in 2005. Furthermore, the average person wasted 26
gallons of fuel in 2005 due to poor traffic conditions. All of this adds up
to $710 per person per year wasted sitting in traffic, or $78.2 billion wasted
nationwide (Schrank and Lomax, 2007). Thus, it is not in the least surprising
that understanding why poor traffic conditions occur is one of the most
prominent issues faced by urban scientists and engineers today.

However, in order to fully understand these and related issues, we must
first be able to answer the question of which roads are congested. This
could give rise to improved data for online utilities such as SigAlert, which
provides real-time traffic data for the freeway system in southern California.
In addition, many portable GPS systems now have the capability to display
up-to-date information about traffic conditions in a road network. As these
systems are only useful when the data that drives them is accurate, we turn
our attention to the problem of determining the distribution of cars in a
given road network.

As it turns out, this question is non-trivial. We can gain information
(locally) about this distribution by placing sensors on roads or intersections.
These sensors fall into two categories. Passive sensors provide information
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only about the number of cars travelling over a section of road, whereas
active sensors can record vehicle type, speed, or other determining char-
acteristics. In either case, these sensors only provide counts at a given
position or in some cases, limited information on the vehicle’s origin and
destination (for example, automated payment sensors on toll roads (Gentili
and Mirchandani, 2005)). We seek a procedure for transforming this local
information about traffic counts into a global traffic distribution. Clearly, we
can gain complete information about traffic conditions by placing sensors on
every link in the network; however, because even passive traffic sensors are
costly and require maintenance, this solution quickly becomes prohibitively
expensive.

Fortunately, we note that many of the sensors in the above case would be
completely redundant: if some of the sensors were removed, the traffic flow
over those roads could still be calculated from the remaining information.
In order to minimize expenses, we want to minimize the number of such
sensors placed, while still being able to determine the distribution of cars
in the network. We ask the question, “In a particular road network, where
should the minimum number of sensors be located in order to determine
traffic conditions everywhere?”

We transform this problem into a problem in graph theory, and apply
results from the field to aid in obtaining a solution. The road network is
turned into a directed graph, with vertices representing intersections, and
directed edges between the vertices representing roads. The traffic flow
over the roads is described by a network flow function on the edges of the
graph. The question then becomes, “What is the smallest subset of edges
such that knowledge of the flow along them uniquely determines the flow
everywhere on the graph?”

A final piece of information that aids in solving this problem comes
from the knowledge of turning ratios at all intersections in the network. The
turning ratio for a given intersection is simply the percent of incoming traffic
flow that leaves in a particular direction. Most city planning committees or
other administrative offices keep records of these turning ratios, and they
can be easily determined by counting cars on a street corner for a few days.
As it turns out, this assumption will be instrumental in finding a solution to
the problem.

With these assumptions, we can define the Sensor Location Problem
and attempt to determine a solution to the posed questions. In Chapter 2,
we discuss earlier results and work done on this problem. Chapter 3 for-
mally defines the Sensor Location Problem and analyzes some methods of
determining if a given set of edges solves the problem. In this chapter, we
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present a counterexample to some work done previously on the problem.
We conclude in Chapter 4 by discussing open problems and plans for future
work.





Chapter 2

Prior Work

Before attacking the problem of determining sensor location in a road net-
work, we first explore some of the work done by other people on the problem.
One of the first papers to discuss this subject is (Yang and Zhou, 1998). The
paper focuses on a related problem, that of estimating origin/destination
(O/D) matrices. O/D matrices are matrices with potential travel starting
locations along the rows and possible destinations along the columns. The
(i, j)th entry in the matrix is the total number of trips from origin i to desti-
nation j taken by all commuters in the network. Many cities keep track of
these matrices to help direct traffic, but they are often poorly calculated, as
they are based on incomplete knowledge of the network’s traffic patterns.
Naturally, determining these matrices is a very similar problem to calculat-
ing traffic flow. In fact, O/D matrices can be estimated well if the traffic flow
is known everywhere, and traffic flow can be calculated more easily if an
accurate O/D matrix is known.

As these problems are very closely related, we first state the sensor loca-
tion problem in terms of origin/destination matrices: what is the minimum
number of sensors needed (and where should they be located), to determine
the value for each O/D pair (i, j) in the above matrix? Four general guide-
lines for locating sensors on a given road network are described in Yang and
Zhou (1998):

1. The O/D Covering rule: some fraction of the trip for each O/D pair
must be covered by at least one sensor.

2. The Maximal Flow Fraction rule: for a given O/D pair, the sensors
should be located on the links with the largest fraction of flow for that
O/D pair.
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3. The Maximal Flow Intercept rule: given a set of links to (potentially)
monitor, choose the ones that have the greatest number of O/D pairs
traversing them.

4. The Link Independence Rule: monitor links whose flows are not
dependent on each other.

These rules are based on common sense rather than mathematical prin-
ciples. It is clear that in any distribution of sensors the first and fourth
rules should always be satisfied. That is, if no sensor monitors any portion
of some O/D trip, any amount of traffic could be flowing over it with no
method of determining it. Likewise, if the information provided by one
sensor is entirely dependent on the data provided by another, there is no
reason to monitor both links (Yang and Zhou, 1998).

The other two rules are much more difficult to satisfy, however. In fact,
they often come into conflict with each other, since the links with the largest
fraction of flow for a given O/D pair very often will not be the same as
the links that intercept many different O/D pairs. In other words, roads
with high volumes of traffic will generally have most of the traffic going
to the same place or lots of traffic going to many different places, but not
both. Thus, rules two and three cannot always both be completely satisfied.
Yang and Zhou (1998) use them as tunable parameters for a heuristic search
function to find the best locations for sensors.

While we do not specifically incorporate these rules into our formulation
of the problem, they are an excellent description of the properties that we
would like any solution to the problem to have. As it turns out, these rules
will be best satisfied as a side effect of our search for a solution to the Sensor
Location Problem; rule four will play a particularly important role.

A more mathematical approach to the sensor placement problem is
described in Gu and Jia (2005). This paper defines the concept of an “edge
control set.” This is a set of edges S in a graph such that if two network
flow functions f1 and f2 are given, and f1(S) = f2(S), then the functions are
equal everywhere. That is to say, if the flow on every edge in S is known,
the flow everywhere in the graph can be determined by simply finding a
flow function on the graph that matches the values determined on S. An
algorithm is described that can find a solution set S given two conditions on
the graph:

i) All arcs of the graph lie on some directed cycle

ii) There are no sources or sinks in the graph
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However, these conditions are fairly limited, since they do not model
physical conditions very accurately.

These issues are addressed in a series of three papers on which most
of our work is based. The first formal definition of the Sensor Location
Problem (hereafter referred to as SLP) is presented in Bianco et al. (2001). In
a follow-up paper, (Bianco et al., 2006), SLP is proven to be NP-complete by
a reduction to a similar problem called the Dominating Paths Problem (DPP).
Additionally, the paper describes a polynomial-time algorithm for finding a
solution on paths, cycles, and combs. Finally, DPP is given a more in-depth
analysis in Confessore et al. (2005), where an approximation algorithm is
developed for the general case.

There are several things that should be noted about this series of papers.
First, the papers assume that vertices are monitored instead of edges; a
monitored vertex yields information about flow going into and out of it
along all links incident to it, and thus is equivalent to monitoring all of the
edges incident to it. There are certain cases when all of these edges do not
need to be monitored, and the number of sensors can be reduced. However,
unless otherwise mentioned, we proceed with the convention of monitoring
vertices for the remainder of this paper.

Secondly, some of the authors’ early results are incorrect, and thus much
of the work described in the papers is based on faulty reasoning. We present
some counterexamples to their work in Section 3.2. However, we believe
that many of their results are accurate in spite of this; for example, the
polynomial-time algorithm for paths and cycles described seems to be a
correct algorithm, though the derivation is not correct. For this reason,
we base much of our work off of these papers, and adopt many of their
conventions and notation.

A number of other papers approach slightly different aspects of this
problem. As already mentioned, Gentili and Mirchandani (2005) discuss
the more challenging problem of locating active sensors on a network. In
addition, Berman et al. (1995) discuss the problem of locating discretionary
services (that is, gas stations, grocery stores, or similar services) on a road
network to intercept the maximum number of potential customers. How-
ever, both of these problems require a significant amount of underlying
knowledge about where to place passive sensors, and so we primarily focus
on SLP instead of addressing these issues.

In the next chapter, we formally define SLP, and describe some ap-
proaches to determining when a given set of sensors can uniquely determine
the flow on the network.





Chapter 3

The Sensor Location Problem

3.1 Definitions

In an effort to model traffic patterns over a road network, we transform
the network into a directed graph D = (V, E) by replacing intersections
with vertices and roads with directed edges between them. It is natural
to consider “two-way” road networks—that is, networks in which all the
streets have traffic flowing in both directions. This will simplify some results.
However, this is not a restrictive assumption, and we believe that all results
should be extensible to the general case.

To model this assumption, we assume that the edge relation on our
directed graph is symmetric: that is, if u, v ∈ V and uv ∈ E, then vu ∈ E as
well. However, it is important to note that the graph is not undirected; this
is because the flow on edge uv in general will not be the same as the flow on
edge vu. To highlight this distinction, we refer to the graph D as a two-way
directed graph.

We represent the traffic flowing over the roads by a network flow func-
tion f : E→ R that satisfies the flow conservation law at each vertex v ∈ V:

∑
e∈v−

fe − ∑
e∈v+

fe + Sv = 0, (3.1)

where v− is the set of arcs with head at v, and v+ is the set of arcs with tail at
v. Sv is the balancing flow at vertex v. These satisfy the balancing flow law:

∑
v∈V

Sv = 0 (3.2)

The vertices with non-zero balancing flows are the places where mo-
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torists are coming from and going to. If the balancing flow at a vertex is
positive, the vertex is a source; if it is negative, it is a sink. These vertices
are so important that we give them a special name:

Definition 3.1.1 (Bianco et al. (2006)). If the balancing flow of a vertex v is
non-zero, we call v a bound vertex; the set of all bound vertices is denoted B.

The remainder of the vertices in the graph, for which Sv = 0 are called trans-
port vertices.

For example, in Figure 3.1, B = {b, d, e, f }, and the set of transport vertices
is {a, c}.

In order to gain information about the network flow function f , sensors
are placed at various locations in the road network. We assume that sensors
are placed at intersections (vertices), and that if an intersection is monitored,
we know the number of cars entering and leaving the intersection along each
road connected to the intersection. We refer to the vertices corresponding
to intersections with sensors as monitored vertices, and denote the set of
monitored vertices M. It will also be useful to consider the neighbor set of

f

b c

d e

a Monitored Vertex

Bound Vertex

Adjacent Vertex

Figure 3.1: In this two-way directed graph, vertices b, d, e, and f are bound; vertices a and
c are transport vertices. We put a sensor at vertex e, which gives the adjacent vertices to M
as c, d, and f .
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the monitored vertices:

Definition 3.1.2. The neighbor set of M, denoted A(M) is the set of vertices
that are adjacent to vertices in M in D. That is,

A(M) = {v ∈ V | vm ∈ E for some m ∈ M}

In Figure 3.1, if we let M = {e}, then A(M) = {c, d, f }.
We finally assume knowledge of the turning ratios at every intersection

in the network. For every vertex v, we associate with each outgoing arc vu
a real number cvu ∈ [0, 1], which is the fraction of the total outgoing flow
from v that leaves on arc vu. That is,

fvu = cvu ∑
e∈v−

fe. (3.3)

Then, we can write the flow of all outgoing arcs from v in terms of a single
known outgoing arc:

fvu =
cvu

cvw
fvw (3.4)

for any vu ∈ v+, and fvw known.
The ratio of the c’s in equation (3.4) will be used often, so we introduce

the following definition:

Definition 3.1.3. The turning factor of edge vu with respect to some edge vw,
denoted αvu, is the ratio of the turning ratio of edge vu to edge vw (in general it
will be clear from the context what edge the ratio is taken with respect to):

αvu =
cvu

cvw

Then equation (3.4) becomes

fvu = αvu fvw (3.5)

for some known flow fvw. The turning factors, therefore, are simply the
amount by which we have to multiply a known outgoing arc to determine
the flow on an unknown outgoing arc.

We note that, by definition, if we know the flow over some set of mon-
itored vertices M, we can then apply knowledge of the turning factors to
determine the flow over all outgoing edges of A(M).

The Sensor Location Problem (SLP) can then be defined in terms of the
above notation:
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Definition 3.1.4 (The Sensor Location Problem, Bianco et al. (2006)). Given a
two-way directed graph D = (V, E) together with a network flow function f and a
set of bound vertices B, what is the smallest set M of monitored vertices such that
knowledge of all turning ratios and the values of f on M uniquely determines f
everywhere on D?

In particular, note that the problem does not just seek the size of M; it
also asks which vertices of the graph belong in M. Since this question is
highly dependent on the structure of the graph, it is desirable to find an easy
condition by which we can check to see if M uniquely determines f . This is
the issue to which we will direct the majority of our attention.

3.2 Determining Uniqueness on Small Examples

The natural question to which we now turn our attention is, “When does
a set M yield a unique solution to the flow on a graph?” We note that if
two vertices in A(M) are adjacent, then we know all of the flow on the
edges between them. This is due to the fact that we know the flow over
one outgoing edge from each of them, and thus by the turning ratios can
determine the outgoing flow on the edges between them. These edges
provide no further information, so we give them a name and then proceed
to throw them away:

Definition 3.2.1 (Bianco et al. (2001)). The combined cutset of M, CM, is the
set of edges in the subgraph of D induced by M ∪ A(M).

That is to say, the combined cutset of M is the set of edges between all
vertices in M, between M and A(M), and between all vertices in A(M). For
example, Figure 3.2 shows the graph in Figure 3.1 with the combined cutset
and M removed.

Given any set of monitored vertices M, we would like to know if we
can determine the flow on the graph from the knowledge gained at these
vertices. The combined cutset of M seems to be a natural place to start; since
we know the flow over all edges in CM, as well as at every vertex in M,
they provide no additional information. Thus, removing CM and M from
the graph should remove no necessary information from the problem. We
can then use the remaining flow coming out of A(M) to determine the flow
everywhere else in the graph.

Removing the edges in CM and the vertices in M from the graph pro-
duces a subgraph D′ that is often, but not always, disconnected. Let the
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f

b

a

c

d

Adjacent Vertex

Bound Vertex

Monitored Vertex

Figure 3.2: The graph from Figure 3.1 shown with the combined cutset CM and monitored
vertex set removed.

ith component of the subgraph be labeled D′i , the set of bound vertices in
the component be labeled B′i , and the set of (originally) adjacent vertices in
the component be labeled A′i(M). Bianco et al. (2001) present a proof of the
following theorem, which stems from the removal of CM. We will show that
this theorem is incorrect.

Theorem 3.2.2 (Bianco et al. (2001)). Given a set of monitored vertices M, the
flow on a digraph D can be uniquely determined everywhere if and only if for every
connected component of D′ = (V −M, E− CM),

|Bi| ≤ |Ai(M)|.

We present two examples, one in which we can calculate the flow ev-
erywhere in the graph, and one in which the conditions of the theorem are
satisfied, but the flow cannot be calculated. For both examples, we assume
that the turning ratios of unknown vertices are evenly distributed among
the outgoing edges. That is, if δ+(i) is the outgoing degree of vertex i, the
turning ratio cij = 1/δ+(i).
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S  = ?
d

S  = ?f

S  = ?
b

f

b

a

c

d

S  = −5e

out = 4

in = 9

e

1

3

2

4

1

2

Adjacent Vertex

Bound Vertex

Monitored Vertex

Figure 3.3: The graph from Figure 3.1, analyzed in Example 1. One can check that removal
of the combined cutset CM (shown in Figure 3.2) satisfies the conditions in Theorem 3.2.2,
and we can calculate the flow everywhere in the graph (see Figure 3.4).

Example 1

Consider again the network shown in Figure 3.1. Suppose that by mon-
itoring vertex e, we determine the flow values over edges incident to e
to be those shown in Figure 3.3. We now wish to calculate the flow on
the remainder of the graph. We note first that A′(M) = {c, d, f } and that
B′ −M = {b, d, f }. Examining the only connected component of D′ shows
that |A′(M)| = |B′ −M| = 3, so by Theorem 3.2.2, there should be a unique
solution to the flow f .

To gain some intuition about the problem, we propagate flow along
edges until we get stuck, and examine the remaining system of equations.
First, consider the flow at vertex c. Since we are assuming even distribution
of turning ratios, we get that fca = 3 and fce = 3 = 1

2 (1 + fac). Solving yields
fac = 5. Because the turning ratios are evenly split at vertex a, this shows
that fab = 5, as well. We then calculate fba = 7 to satisfy equation (3.1) at
vertex a.

Next, we apply equation (3.4) at vertices d, f , and b. Since the turning
ratios are evenly distributed and fde = 2, this implies that fd f and fdb are 2 as



Determining Uniqueness on Small Examples 15

S  = −5e

fS  = 1

1

2

2

3

1

Monitored Vertex

Bound Vertex

Adjacent Vertex

1

2

4

2

3

1

3

5

5

7

4

7

2

7

in = 11

out = 21

out = 6 out = 4

in = 9

out = 4

S  = 10

S  = −6

b

d

4

2

in = 12

out = 12

in = 11

f

b

a

d

c

e

Figure 3.4: The final flow calculated on the graph for Example 1.

well. Similarly, we find that f f d = f f b = 4, and fbd = fb f = 7. This produces
the final graph shown in Figure 3.4. It is easy to check that equation (3.1) is
satisfied at every vertex, and the balancing flows satisfy equation (3.2).

Alternatively, we could write down the system of equations by applying
equation (3.1) at every vertex, and substituting in for the known flow values
at e. By choosing a “canonical” outgoing edge from each vertex, we can use
the turning factors with respect to this canonical edge (as in equation (3.5)) to
reduce the number of unknown variables. As it turns out, for this example,
the system of equations is linearly independent. (The idea of choosing a
canonical edge for each vertex is important, and will reappear in Section 3.3).

Example 2

In the next example that we consider (shown in Figure 3.5), the set of
monitored vertices M satisfies the conditions presented in Theorem 3.2.2, but
does not produce a linearly independent system of equations. By monitoring
vertex a, we note that in the only connected component of D′, |A′(M)| =
|B′ − M| = 2; thus, by Theorem 3.2.2, we should be able to determine f
uniquely on all edges.
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If we observe 4 units of flow along edges ab, ba, ad, and da, however, by
following the above procedure, we cannot calculate the flow on edges ed and
f d. In particular, notice that if fed = x ∈ [0, 8], then setting f f d = 8− x yields
a solution that satisfies equations (3.1) and (3.2), and thus the solution to the
network flow function is not unique. In fact, if one writes out the system of
equations given by monitoring vertex a, it quickly becomes apparent that
the system is not linearly independent; therefore, the graph in Figure 3.5 is a
counterexample to Theorem 3.2.2.

Monitored Vertex

Bound Vertex

Adjacent Vertex

S  = ?e

S  = ?
f

4

44

4

4

4

4

4

4

4

?

?

a

c db

e

f

Figure 3.5: The graph analyzed in Example 2. We monitor vertex a in the above graph;
then CM = {ab, ba, ad, da}, and it is easy to check that the graph with CM and M removed
satisfies the conditions in Theorem 3.2.2. However, we cannot calculate fed or f f d from the
known information.

In fact, there are many such counterexamples. As it turns out, the
theorem is incorrect even when the graph is a tree, or when the inequality
in the theorem is strict (these examples are not hard to find). The proof of
Theorem 3.2.2 relies on the fact that there exists a system of equations with
fewer unknown variables than equations. However, it neglects to take into
account the possibility that these equations may not be linearly independent.
In terms of the conditions presented at the beginning of Chapter 2, the
proposed solution does not satisfy condition four.
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In an attempt to better understand the circumstances under which Theo-
rem 3.2.2 fails, we next examine the problem as matrix equation problem,
where the entries in the matrix represent the adjacencies within the graph.

3.3 SLP and Invertible Matrices

There are two common ways of representing a graph concisely as a matrix.
The first is with the adjacency matrix, A. This matrix encodes all of the
adjacencies in a graph as follows:

Definition 3.3.1. The adjacency matrix of a directed graph D is a |V| × |V|
matrix where the (i, j)th entry is 1 if there is an edge from vertex i to vertex j, and 0
otherwise.

The other very common matrix representation is the incidence matrix,
denoted M:

Definition 3.3.2. The incidence matrix of a directed graph D is a |V| × |E|
matrix where the (i, j)th entry is −1 if the tail of edge j is at vertex i, 1 if j’s head is
at vertex i, and 0 if j is not incident to i.

It is clear by inspection that the incidence matrix is nothing more than
the coefficient matrix of the system of flow conservation laws:

M f + s = 0, (3.6)

where f is the |E|-length flow vector and s is the |V|-length vector of balanc-
ing flows.

However, in its current form, equation (3.6) is not overly useful. For
one thing, there are unknown variables in both the f and s vectors. Addi-
tionally, we note that this equation does not account for our assumption
that we know the turning ratios in the graph, and thus contains many more
unknown variables than are necessary. Therefore, we construct a modified
incidence matrix taking into account this additional (known and unknown)
information. We denote this matrix E, and create it in the following manner
(for the remainder of section, we focus on the graph shown in Figure 3.3 as
a running example):

1. We index the vertices of a two-way directed graph arbitrarily, and
associate with each vertex i ∈ V an arbitrary outgoing edge ei; this
edge will be the “canonical” edge representative for vertex i discussed
at the end of Example 1 in Section 3.2. Since we know the turning
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ratios of the graph, the flow over all other outgoing edges from i can
be written in terms of fei . Note that, using the turning factors with
respect to ei, we can write the flow over edge ij as fij = αij fei . If ij = ei,
then αij = 1.

For the example graph in Figure 3.3, we choose the following edges to
be our canonical representatives for each vertex: ab, ba, ca, db, ed, and
f b. We also assume that all turning ratios are equal except at vertex
e, since monitoring has revealed the turning ratios here are different.
That is to say that αij = 1 for all i, j ∈ V except when i = e. Since
the flow from e to f is twice that of the flow over e’s canonical edge
(ed), we have that αe f = 2; however, since the flow over ec equals fed,
αec = 1.

2. We first take into account our knowledge of the turning ratios to
reduce the number of columns in the incidence matrix from |E| to |V|.
To do this, let E∗ be a |V| × |V|matrix. We label the rows of the matrix
with the vertex labels, and label the columns with the canonical edge
representatives for each vertex. Then, we have that the (i, jk)th entry
of E is given by

E∗i,jk =


αji if ej = jk and ji ∈ E
−∑ αi` if ei = jk (note that this implies that i = j).

0 if i and j are not connected

The first condition accounts for the flow over incoming edges to the
vertices in the graph; the second condition says that the total outgoing
flow relative to the vertex’s canonical edge is the negative sum of all
the α’s at that vertex.

To further illustrate the reasoning behind this matrix, we fill in two
rows of E∗ for the graph of our example, and then present the com-
pleted matrix:

i) First, consider the row corresponding to vertex a. The canonical
edge for vertex a is ab, and αab = αac = 1. Therefore, E∗a,ab = −2.
Additionally, since there are incoming edges to a from b and c,
we have that E∗a,ba = αba = 1, and E∗a,ca = αca = 1. There are no
other connections from or to vertex a, so all other entries in the
row are 0.

ii) Next, consider the row corresponding to vertex d. The canonical
edge for vertex d is db, and αdb = αde = αd f = 1 (that is to say,
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the flows over all outgoing edges from vertex d are equal). Thus,
E∗d,db = −3. Also, to account for the incoming edges to vertex
d, we see that there is an edge from vertex b to d, and that the
flow over bd is the same as the flow over b’s canonical edge; that
is, αbd = 1 (similarly for ed and f d). Since no other vertices are
connected to d, all other entries in the matrix are 0.

Here is the completed matrix for our example:

E∗ =

ab ba ca db ed f b
a


−2 1 1 0 0 0


b 1 −3 0 1 0 1
c 1 0 −2 0 1 0
d 0 1 0 −3 1 1
e 0 0 1 1 −4 1
f 0 1 0 1 2 −3

At this point, notice that we have simply “collapsed” the incidence ma-
trix M into a square matrix by taking advantage of the turning ratios.
Additionally, we note that if the turning ratios are split evenly (that is,
cij = cik for all vertices i, j, and k), the matrix is nothing more than the
adjacency matrix A with the negative outdegree of the vertices along
the matrix diagonal.

It is important to note that E∗ has linearly dependent rows; the sum of
all the rows is 0 (this can be seen by examining any given column uv,
and noting that the sum of all positive entries is simply ∑ αuk). How-
ever, we note that any |V| − 1 of the rows are linearly independent.
This will be proved in Theorem 3.3.4.

3. Finally, we absorb the unknown balancing flows in the vector s into
this matrix; Add |B| columns to E∗, such that each column corresponds
to the balancing flow at a single bound vertex i, and the column has a 1
in the ith row and 0’s everywhere else. Note that the dimensions of the
matrix are now |V| × (|B|+ |V|). We update the vector f to contain
the additional unknown Si variables. Now note that the ith row of this
matrix corresponds to equation (3.2) at vertex i. We denote this matrix
E.

Below we have constructed the E-matrix for the graph presented in
Figure 3.3.
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E =

ab ba ca db ed f b Sb Sd Se S f
a


−2 1 1 0 0 0 0 0 0 0


b 1 −3 0 1 0 1 1 0 0 0
c 1 0 −2 0 1 0 0 0 0 0
d 0 1 0 −3 1 1 0 1 0 0
e 0 0 1 1 −4 1 0 0 1 0
f 0 1 0 1 2 −3 0 0 0 1

We can now update equation (3.6) to be (slightly) more useful:

E g = x, (3.7)

where g is a vector containing all of the unknown variables (both the flow
over edge representatives and balancing flows), and x is a vector containing
all of the known information about the system (determined by the monitored
vertices).

For our example, we have that gT = ( fab, fba, fca, fdb, fed, f f b, Sb, Sd, Se, S f ).
At this point, since we are monitoring no vertices, x = 0, but that will change
momentarily. However, the values contained in x are not important for our
purposes, since they do not affect the solvability of the system.

In any case, the system as it stands in equation (3.7) is clearly unsolvable,
since the matrix E contains fewer rows than columns. Once we are given a
set M of monitored vertices, we can then adjust the matrix and check to see
if a solution exists (i.e., if the rank of the new matrix is at least the number
of columns—this will imply that all of the unknown variables can be solved
for). We therefore rewrite equation (3.7) once more to take into account
the knowledge provided by the monitored vertices. We construct the flow
calculation matrix EM as follows:

4. Since we know the flow over all incoming edges to any vertex m ∈ M,
as well as the total outgoing flow from vertex m, we can remove row
m from the matrix. Additionally, for each vertex i such that m and i
are adjacent, we know the flow along the edge from m to i; therefore,
we can also remove column em from E.

In order to maintain the system of equations in equation (3.7), we
must also remove fem from g, remove the mth entry from x, and for
each vertex i adjacent to m, add −αij fmv to the ith entry of x. Thus, the
vector x is updated with the known flow values determined by M.
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Finally, we remove any columns corresponding to balancing flows that
are known due to monitoring. At this point, we have done nothing
more than substitute known outgoing flow values into the system
of flow balance equations, and removed trivial equations (that is,
equations that have no unknowns in them).

5. We now must take into account the knowledge of the incoming flow
to vertices in M. For each vertex in A(M), we note that we know the
flow over its canonical edge, since the flow value is just a (known)
multiple of the flow value from A(M) to M.

Thus, for each vertex a ∈ A(M), we add a row to the matrix that
contains a 1 in column ea and a 0 in every other column. We also
update the ath entry of x to contain the flow value over a’s canonical
edge ( fea ). This represents an equation of the form fea = 1

αam
fam = x.

6. We call this completed matrix the flow calculation matrix, and denote
it EM.

We can now write equation (3.7) in terms of the additional knowledge
afforded by the monitored vertices:

EMg′ = x′, (3.8)

where g′ and x′ have been updated to reflect the known flows. If we can
solve equation (3.8), then we can uniquely determine the flow everywhere
on the graph. For example, here is the flow calculation matrix and corre-
sponding equation for the graph in Figure 3.3, with M = {e}:



−2 1 1 0 0 0 0 0
1 −3 0 1 1 1 0 0
1 0 −2 0 0 0 0 0
0 1 0 −3 1 0 1 0
0 1 0 1 −3 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0





fab
fba
fca
fdb
f f e
Sb
Sd
S f


=



0
0
−1
−1
−2

3
2
4



It is easy to check that rank(EM) = 8 for the above matrix, and thus the
columns are linearly independent; this implies that equation (3.8) is solvable
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for the graph in Figure 3.3. Indeed, plugging the system into a computer
algebra system easily gives the same results as presented in Section 3.2.

Notice that EM has a local block structure that will be useful when refer-
ring to various parts of the matrix (EM also has a global block structure based
on the partitions of the graph. This will be discussed in more detail later;
at that time we will define exactly what we mean by “local” and “global”
block structures. For now, it suffices to know that this block structure exists
over the whole matrix):



Flow balance law
coefficients

Balancing flow
coefficients

(either 0 or 1)

Coefficients for known
flow on A(M) (either

0 or 1)
0


Figure 3.6: The local block structure present in the matrix EM.

Notice that the columns of balancing flow coefficients on the right half
of the matrix were added in step 3 of the formation of the matrix. The rows
of known flow coefficients for A(M) on the bottom half of the matrix were
added in step 5.

Because we are concerned about the linear dependencies (or lack thereof)
in EM, it will be useful to prove some results about when rows are linearly
independent, and which rows are linearly independent. The first result
dictates when rows from the top half of EM are linearly independent. We
first show that removing one row from the matrix E∗ produces a set of rows
that are linearly independent (recall that all of the rows in E∗ combine to 0,
and thus are not linearly independent). This is proved using a result found
in Bertsimas and Tsitsiklis (1997) about the incidence matrix of a graph:

Theorem 3.3.3. Let M be the incidence matrix of a connected digraph D. The
truncated incidence matrix M̃ formed by removing the last row of M has linearly
independent rows.

The result follows from arranging the rows in M̃ to form an upper-
triangular matrix, and then observing that the determinant of the matrix is
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non-zero. The same result holds for E∗:

Theorem 3.3.4. Let Ẽ∗ be the matrix formed by removing the last row from the
matrix E∗. Then Ẽ∗ has linearly independent rows.

Proof. Let |V| = n, and label the vertices of the graph from 1, ..., n. Now,
suppose that Ẽ∗ did not have linearly independent rows. Let E∗1 , ..., E∗n be the
rows of E∗. Then there exists some set of (not all zero) coefficients b1, ..., bn−1
such that b1E∗1 + ... + bn−1E∗n−1 = 0.

Multiplying both sides of this equation by the flow variable vector f∗

(containing only the variables corresponding to the flow over canonical
edges) produces b1E∗1f∗ + ... + bn−1E∗n−1f∗ = 0, and multiplying out yields
the following equation:

b1E∗1,e1
fe1 + ... + b1E∗1,en

fen +

b2E∗2,e1
fe1 + ... + b2E∗2,en

fen +

...

bn−1E∗n−1,e1
fe1 + ... + bn−1E∗n−1,en

fen = 0

We note that each term E∗i,ej
fej where i 6= j, by definition becomes αji fej =

f ji. Similarly, each term of the form E∗i,ei
fei becomes −(∑ αik) fei , where the

sum is over all vertices adjacent to i. The sum simplifies further to ∑− fik
by applying the turning factor definition. Now, we can collect terms in the
above expansion to get

(±b1 ± b2) f1,2 + (±b1 ± b3) f1,3 + ... + (±b1 ± bn−1) f1,n−1 +

(±b2 ± b1) f2,1 + (±b2 ± b3) f2,3 + ... + (±b2 ± bn−1) f2,n−1 +

...

(±bn−1 ± b1) fn−1,1 + (±bn−1 ± b2) fn−1,2 + ... + (±bn−1 ± bn−2) fn−1,n−2 +

(±b1 f1,n ± bn fn,1) + (±b2 f2,n ± bn fn,2) + ... + (±b2 fn−1,n ± bn fn,n−1) = 0,

where the sign of the first element in each pair of coefficients is opposite
that of the second, but arbitrary based on the choice of canonical edges, and
where fi,j is 0 if i and j are not connected. Since this equation must be true for
all non-zero values of the flow function, we see that each of the coefficients
of the above equation must be 0. By inspection, however, we see that each
coefficient of the non-zero flow values is a linear combination of the entries
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in that arc’s column of the truncated incidence matrix M̃. This implies that
each column of M̃ sums to 0 when multiplied with (b1, ..., bn−1). Conversely,
if multiplying each column of M̃ with (b1, ..., bn−1) produces 0, the above
equation will be true. Thus, these statement are equivalent, and we have
produced a set of coefficients for which the first n− 1 rows of the graph’s
incidence matrix sum to 0. By Theorem 3.3.3, however, this is impossible;
thus, the first n− 1 rows of E∗ must be linearly independent. �

The addition of the |B| extra columns in step 3 clearly does not affect
any linear dependencies in the matrix, since each column contains exactly
one non-zero entry. In other words, if there is a 1 in the ith row of an added
column, and there exists some set of coefficients for which the first n− 1
rows of E combine to 0, all such coefficients bi must be 0 (since there are no
other non-zero entries in those columns to cancel out the 1 in row i), and the
remaining coefficients must also be 0, since otherwise the rows of E∗ would
be linearly dependent. Therefore, removing a row from E creates a matrix
with linearly independent rows.

It is clear, then, that the top half of the matrix in Figure 3.6 has linearly
independent rows, since this matrix is nothing more than E∗ with a few rows
and columns removed. We now need to know under what circumstances the
remaining rows of EM can be added while retaining linear independence:

Theorem 3.3.5. Let W = {~v1, ...,~vn} be a set of vectors whose span has dimension
m, with m < n. Also, suppose that ~v1, ...,~vk are linearly independent vectors in W
with k < m; then there exists a linearly independent subset of W, denoted S, such
that ~v1, ...,~vk ∈ S and |S| = m.

Proof. We wish to show that without loss of generality, if we are forced to
exclude ~v1 from S, the assumptions of the theorem are false. Therefore,
Suppose that for every linearly independent set of m− 1 vectors excluding
~v1, there exists some linear combination of these vectors that combines to
form ~v1. Since the dimension of span(W) is m, and n is strictly greater than
m, there exists at least one linearly independent set of vectors of size m that
excludes ~v1. That is, there exist coefficients c1, ..., cm−1 and d2, ..., dm (not all
zero), as well as a set of vectors ~u1, ...,~um such that ~ui 6= ~v1 and

~v1 = c1~u1 + ... + cm−1~um−1 = d2~u2 + ... + dm~um (3.9)

Without loss of generality, assume that c1 is the first non-zero coefficient
for the ~u’s. Then equation (3.9) implies that

c1~u1 = (d2 − c2)~u2 + ...(dm−1 − cm−1)~um−1 + dm~um (3.10)
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Since not all coefficients can be the same or zero, this shows that ~u1 is
a linear combination of the other vectors, contradicting our assumption
that {~u} is linearly independent. Therefore, there must exist some linearly
independent set of m− 1 vectors that does not combine to form ~v1, which
implies that adding ~v1 to this set retains the independence. As this logic can
be applied for all k vectors, we therefore have shown that some set S exists
such that ~v1, ...,~vk ∈ S and |S| = m. �

This theorem has an important corollary that will be quite useful in the
proof of Theorem 3.4.3:

Corollary 3.3.6. If rank(EM) = #{columns of EM}, then there exists a set of
rows forming a square matrix such that the first |V| − |M| rows corresponding to
the flow balance laws in Figure 3.6 are contained in this set.

Proof. Either EM itself is square (in which case this statement is trivial), or EM
has more rows than columns. However, the rows of the matrix correspond
to the set W and the dimension of their span is the number of columns of
EM, since rank(EM) = #{columns of EM}. By Theorem 3.3.5, there exists a
set of linearly independent rows that contain the first |V| − |M| rows and
form a square matrix. �

Thus, we see that if the matrix EM has linearly independent columns
(equivalently, if rank(EM) equals the number of columns), we can calculate
all of the unknown variables, and M determines the flow on the graph
uniquely. On the other hand, if EM does not have linearly independent
columns, the flow cannot be uniquely determined. We note that EM has
|V| − |M|+ |B−M| columns, and |V| − |M|+ |A(M)| rows. This implies
that a necessary condition for calculating flow is that |A(M)| ≥ |B−M|;
however, this is not a sufficient condition, as can be seen in Example 2 from
Section 3.2. This is the flow calculation matrix for the graph in Figure 3.5:

ba cb dc ed f d Se S f
b



−2 1 0 0 0 0 0


c 1 −2 1 0 0 0 0
d 0 1 −4 1 1 0 0
e 0 0 1 −1 0 1 0
f 0 0 1 0 −1 0 1

fba 1 0 0 0 0 0 0
fdc 0 0 1 0 0 0 0
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It is easy to check that the rank of this matrix is 6; note that with coeffi-
cients 2, 1, 3, and −1 respectively, the first two rows and the last two rows
combine to zero.

The above matrix framework suggests that we only need to figure out
the balancing flows at every vertex in the graph in order to solve the above
system. We note that, by knowing a priori which vertices are bound and
which are transport vertices, we have determined Sv at some fraction of the
vertices in the graph. That is, we have reduced the number of unknown
variables from 2|V| to |V|+ |B|, since Sv = 0 at all v 6∈ B.

This hints at an important related problem, that of determining which
vertices in a network are bound. Almost any intersection could conceiv-
ably be a destination for a few motorists; unfortunately, in order to take
advantage of the above observations, the number of bound vertices needs
to be significantly less than the total number of vertices. Furthermore, if
the number of bound vertices is large, the number of required sensors will
in general also be large. A final complication is that some vertices may be
sources during one portion of the day, and sinks during another (e.g., an
office building would be a destination in the morning, and an origin in the
afternoon).

As we shall see, though, determining the flow on a graph at a fixed point
in time is dependent only on the location of the bound vertices, not on the
sign of their balancing flows. That is, whether or not a particular vertex is a
source or sink at a given time does not matter when calculating the flow at
that time. Thus, we do not consider the issue of time-dependence of bound
vertices. Likewise, we do not further address the issue of determining the
location of bound vertices in a network in this paper, except to observe that
any vertex that is only a destination for a few motorists can probably be
treated as a transport vertex for the purposes of a simplifying model.

3.4 Characterization of Valid Solutions

Now that we have successfully turned SLP into a matrix problem, we can
use this formulation to attempt to answer the question “When does a given
set M produce a matrix EM such that the rank of EM equals the number
of columns?” In order to (partially) answer this question we introduce the
following definition:

Definition 3.4.1. A B-path is a path starting at some bound vertex and ending
at a vertex in A(M).
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Based on some initial observations on small examples, it seemed that the
following conjecture would prove to be correct:

Conjecture 3.4.2. The flow associated with a digraph D and a set of bound vertices
B can be uniquely determined everywhere from a set of monitored vertices M if and
only if there exists a set P of |B−M| disjoint B-paths.

For instance, note that in Example 1 from Section 3.2, a set of 3 disjoint
B-paths exists (shown in Figure 3.7), and as we have already shown, we can
calculate the flow in this case. However, for Example 2 from Section 3.2, any
set of 2 B-paths will be forced to intersect at vertex d, as in Figure 3.8. Thus,
the number of disjoint B-paths is smaller than |B−M| and we are unable to
calculate the flow.

Unfortunately, it turns out that Conjecture 3.4.2 is only half-correct. If the
number of disjoint B-paths is too low, then we will show that the flow cannot
be calculated on the graph. However, there are a number of circumstances
in which a set of at least |B − M| vertex-disjoint B-paths does exist, but
the flow on the graph still cannot be calculated. It appears that this occurs

a

d

f

e

b c

Monitored Vertex

Bound Vertex

Adjacent Vertex

B−path

Figure 3.7: The graph for Example 1 in Section 3.2, shown with a set of disjoint B-paths
(cf. Figure 3.4).
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Monitored Vertex

Bound Vertex

Adjacent Vertex

B−path

b c d

f

e

a

b c d

f

e

Figure 3.8: The graph for Example 2, Section 3.2, together with a set of B-paths. However,
any 2 B-paths must pass through vertex d, so there is no set of |B − M| disjoint B-paths
associated with M (cf. Figure 3.5).

when there is some degree of symmetry of vertices in the graph around
the monitored vertex set, but thus far we have not been able to figure out a
condition on either the graph or the set M for when this occurs. Below we
present two examples of when this occurs, and then spend the remainder of
this section proving the reverse direction of Conjecture 3.4.2.

The first case that we consider is shown in Figure 3.9. Notice that there
exist a number of automorphisms of the graph that leave the overall system
alone (for example, vertices a and b could be switched, as could c and d).
However, by adding an additional vertex ( f ) in Figure 3.10, we remove these
automorphisms. We suspect that this may be a key to solving the problem,
but initial efforts in this direction have yielded no results.

To see why these automorphisms may play some role in preventing
determination of the flow, this is the flow calculation matrix for the graph
shown in Figure 3.9:
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Monitored Vertex

Bound Vertex

Adjacent Vertex

B−path

be

c

a

d

Figure 3.9: In this graph, we note that monitoring vertex e creates 2 disjoint B-paths; yet,
the EM matrix does not have linearly independent columns, and thus we cannot calculate
the flow on the graph.

a

Monitored Vertex

Bound Vertex

Adjacent Vertex

B−path

be

c

d

f

Figure 3.10: This graph is the same graph shown in Figure 3.9 with an additional vertex
spliced into edge ac. The addition of this vertex allows the problem to be solved with the
same monitored vertex set as before.
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ad bc cb da Sa Sb
a


−2 0 1 1 1 0


b 0 −2 1 1 0 1
c 1 1 −3 0 0 0
d 1 1 0 −3 0 0

fcb 0 0 1 0 0 0
fda 0 0 0 1 0 0

Notice that because there are connections between vertex c and both a
and b, as well as vertex d and both a and b, we can take a linear combination
of the last four rows of the above matrix to produce the 0 vector. Also note
that any other vertex in the graph could be chosen as a monitored vertex set
of size 1 that would allow the flow on the graph to be calculated everywhere.
However, as shown in Figure 3.10, if we add a single vertex to the graph,
we destroy the symmetry in the matrix, allowing the flow to be calculated
by monitoring vertex e. This is the flow calculation matrix for the graph in
Figure 3.10. Note that it has full rank:

ad bc cb da f a Sa Sb
a



−2 0 0 1 1 1 0


b 0 −2 1 1 0 0 1
c 0 1 −3 0 1 0 0
d 1 1 0 −3 0 0 0
f 1 0 1 0 −2 0 0

fcb 0 0 1 0 0 0 0
fda 0 0 0 1 0 0 0

It is unclear at this time what about the structure of the graph causes this, or
how to modify Conjecture 3.4.2 to correct for this problem. However, we
can show that (at a minimum) the reverse direction of Conjecture 3.4.2 is
true, and it is to this task that we devote the remainder of this section. As it
seems to be more applicable, we state the contrapositive:

Theorem 3.4.3 (Statement A). Let D = (V, E) be a two-way directed graph with
bound vertex set B, and let M be a set of monitored vertices. If the flow can be
calculated on the graph, then there must exist a set of disjoint B-paths with size at
least |B−M|.

Our first task in proving this will be to translate the proof into the
language of matrices. We have already established that ability to calculate
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flow is equivalent to the flow calculation matrix having full rank. Since it
is difficult to see and trace paths through EM, however, we also wish to
translate the condition of Theorem 3.4.3 into a statement about disconnecting
cuts. Specifically, we note that the number of vertex-disjoint B-paths cannot
be larger than the size of a minimum disconnecting set C between B and
A(M). If we add a vertex s and add edges from s to all vertices in A(M),
and add a vertex t with edges from all vertices in B−M to t, we can apply
Menger’s theorem to discover that the number of vertex-disjoint B-paths is
exactly equal to the size of the minimum disconnecting set C. Therefore, we
have the following restatement of Theorem 3.4.3:

Theorem 3.4.3 (Statement B). Let D = (V, E) be a two-way directed graph with
bound vertex set B, and let M be a set of monitored vertices. Finally, let C be a
minimum disconnecting set between A(M) and B− M. If the rank of the flow
calculation matrix is equal to the number of columns (that is, the flow on the graph
can be uniquely calculated), then the size of C is at least |B−M|.

A final useful observation comes in noticing that the graph D can be
partitioned into various subgraphs based on the positions of vertices in
M: For each bound vertex b in B− M, consider every vertex that can be
reached from b without passing through any vertex in M. Let this set of
vertices (which may include other bound vertices) be one such partition
in the graph. Let [Bb] be the equivalence class denoting this partition. By
taking all such equivalence classes, together with the set M, and the set of
all vertices unreachable from any bound vertex without passing through M,
we have accounted for all vertices in the graph.

It is a simple matter to note that the flow calculation matrix can be
rearranged into block form by collecting rows and columns corresponding
to vertices in the partitions. These blocks are completely separate from
each other, since (by construction) there are no paths from one to another
except through M, and all rows and columns corresponding to vertices
in M have been removed from the matrix (this is what we refer to as the
“global” matrix block structure in Section 3.4. Each of these blocks can be
further broken down into the block structure shown in Figure (3.6)). Thus,
we can prove Theorem 3.4.3 for each of these partitions independently of
the others simply by considering the block corresponding to each partition
as a separate matrix:

Theorem 3.4.3 (Statement C). Let D = (V, E) be a two-way directed graph
with bound vertex set B, and let M be a set of monitored vertices. Partition D as
described above; then, for each partition [Bb] containing at least one bound vertex b,
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if the rank of the matrix corresponding to [Bb]’s block in EM equals the number of
columns in this block, then the size of the minimum disconnecting set C between
A(M) and B−M in that partition is at least |B−M|.

Therefore, it is sufficient to prove the theorem for each partition of the
graph:

Theorem 3.4.3 (Statement D). Let D, B, and M be as in Theorem 3.4.3, with
the flow calculation matrix partitioned into blocks as described. For each block i,
let Ci be the minimum vertex cut between (B−M)i and A(M)i. If rank(Ei

M) =
#{columns of Ei

M}, then |Ci| ≥ |(B−M)i|.

Proof. For ease of notation, we drop the subscript notation for the partitions
of block i.

Let VM be the set of vertices in V that are not in M or A(M) that are
connected to M by some path that does not pass through C; similarly, let
VB be the set of vertices not in B − M that are connected to B − M by
some path that does not pass through C. Note that C, A(M), and B− M
could all overlap, as in Figure 3.11; we label these intersections as shown,
where XA(M),C corresponds to all vertices in both A(M) and C, but XA(M)
contains vertices only in A(M). Note that since C is by definition a vertex cut
between B−M and A(M), the set XA(M),B−M is empty, and so we disregard
it henceforth.

We note that since rank(EM) equals the number of columns of EM, Corol-
lary 3.3.6 says that there exists a square invertible matrix ÊM containing all
rows corresponding to the balancing flow laws (the upper half of Figure 3.6)
and |B−M| rows corresponding to known flows in A(M) (the lower half
of Figure 3.6). Note that any submatrix of this square invertible matrix must
have full rank (that is, must have rank equal to the number of rows, since
the submatrix has fewer rows than columns).

So, consider the submatrix F that contains only the rows corresponding
to vertices in XA(M) and V(M) (the shaded portions of Figure 3.11), as well
as the |B − M| rows corresponding to known flows on A(M). Next, we
compare the number of rows and non-zero columns of F. In particular, for F
to have full rank, we must have that

R ≤ K− Z, (3.11)

where R is the number of rows of F, K is the total number of columns, and
Z is the number of zero columns. By construction, we have that

R = |XA(M)|+ |VM|+ |B−M|
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XB−M

XC,B−M

XA(M),C,B−M

XC

M

V
M

XA(M)

B − M

C

A(M)

Figure 3.11: The partition of the vertex set for Theorem 3.4.3. VM is the set of unaccounted-
for vertices on the M side of the cut, and VB is the set of unaccounted-for vertices on the
B− M side of the cut. Bold arrows indicate possible connections between sets. Some of
these sets may be empty—in particular, note that by definition, there can be no vertices
in ((B−M) ∩ A(M)) \ C, since C must separate B−M and A(M). The shaded-in regions
correspond to the vertex rows included in the submatrix F.

and
K = |XA(M)|+ |XA(M),C|+ |XC|+ |VB|+ |VM|+

2(|XA(M),C,B−M|+ |XC,B−M|+ |XB−M|),

Now we need to determine Z. We note that since no vertices in the
|B − M| columns corresponding to balancing flows (the columns on the
right in Figure 3.6) appear in XA(M) or VM, all of these columns must be 0.
Additionally, there are no edges from XB−M or VB to XA(M) or VM, since all
edges from B− M or VB must pass through the cut (by definition). This
means that the columns corresponding to those vertices are also 0 in the
submatrix F, since there are non-zero entries only if the vertices are adjacent.
Therefore, we have that Z ≥ |XA(M),C,B−M|+ |XC,B−M|+ |XB−M|+ |VB|+
|XB−M|. Applying equation (3.11) and canceling common terms, we see that
|XA(M),C,B−M|+ |XA(M),C|+ |XC|+ |XC,B−M| = |C| ≥ |B−M|. �

As an example, we walk through the construction of the F-matrix for the
graph shown in Figure 3.5, and note that the number of zero columns in this
matrix is too large. We have already calculated the flow calculation matrix
for this graph in Section (3.3); we have as our minimum cut C = {d}, and
we note that VM = {c}. Therefore, we have XA(M) = {b}, and following the
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procedure outlined in the proof of Theorem 3.4.3, we get the following for
the F-submatrix:

F =

ba cb dc ed f d Se S f
b


−2 1 0 0 0 0 0

c 1 −2 1 0 0 0 0
fba 1 0 0 0 0 0 0
fdc 0 0 1 0 0 0 0

Notice that the last four columns of the matrix are 0, which means that
the rank of this submatrix can’t be any higher than 3. This implies that the
rank of EM cannot equal the number of columns, and thus the flow on the
graph cannot be calculated.

Now that we have characterized as much as possible when solutions are
invalid, we finally turn our attention to finding an optimal solution to SLP.
It turns out that even though we were unable to find a sufficient condition
for calculating flow based on the structure of the graph, we can still say
interesting things about finding such a solution; this is the topic of the next
section.

3.5 SLP and NP-Completeness

The final result that we have determined about SLP is its complexity. We
were unable to discover a condition on the structure of the graph and on M
that allowed us to determine the flow uniquely. However, we are able to
prove directly from the matrix formulation that SLP is NP-complete. First,
however, it is necessary to state the decision problem version of SLP.

Definition 3.5.1 (SLP Decision Problem). Given a two-way directed graph
D = (V, E) together with a network flow function f and a set of bound vertices
B, does there exists a set M of size k such that knowledge of f on M uniquely
determines f everywhere on D?

We prove the NP-completeness of SLP by a reduction from the Dominat-
ing Set (DS) problem, stated below:

Definition 3.5.2 (Dominating Set Problem). Given an undirected graph G =
(V, E), does there exist a set of vertices M such that for all v ∈ V, either v ∈ M or
v is adjacent to a vertex in M? (such a set is called a dominating set.)

Now we have everything we need to prove that SLP is NP-complete:
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Theorem 3.5.3. SLP is NP-complete.

Proof. We first note that SLP is indeed in NP. That is to say, if we are given a
set M of monitored vertices by an oracle, we can construct the matrix EM in
polynomial time. Additionally, we can calculate its rank in polynomial time,
and compare it to the number of columns in constant time. Thus, SLP is in
NP.

Now, suppose we are given an undirected graph G and asked to find a
dominating set of size k. We show that if we can solve SLP in polynomial
time, we can also solve the dominating set problem in polynomial time. We
transform the graph G = (V, E) into an instance of SLP by replacing every
undirected edge with two directed edges (one in each direction), taking
B = V, and assigning turning ratios arbitrarily. We now seek a monitored
vertex set of size k. Clearly, this transformation can be done in polynomial
time.

Next, we show that if we can find a monitored vertex set M with |M| = k,
that set is precisely the set of dominating vertices for DS. Note that the matrix
EM has |V −M|+ |(B−M)| columns; additionally, there are |V −M| rows
in the matrix corresponding to the flow balance equations; in order for the
rank of the matrix to equal the number of columns, we need at least |B−M|
vertices to be in A(M). However, since V = B and A(M) does not contain
any vertices in M, A(M) = B−M, and M is a valid dominating set.

Finally, we show that if we have a dominating set M of size k, this set of
vertices is also a valid monitored vertex set. We note that every vertex in
the graph is either in M or in A(M). Because we know the flow on every
outgoing edge of every vertex in the graph (by the turning ratios) we know
the flow on every edge in the graph. Therefore, M is a valid monitored vertex
set.

We have shown that DS ≤p SLP, and since DS is NP-complete, SLP
must be as well. �

This important result shows that even once a condition on M is found
that describes the form of solutions, actually finding such solutions is quite
difficult. Therefore, future work should focus on finding an approximation
algorithm that works well for the general case. This is discussed briefly in
the next chapter.





Chapter 4

Conclusion

We have seen a number of small examples of SLP, and cases in which it fails
to be solvable. The next section discusses some open problems and areas for
future research.

4.1 Future Work

The most immediate open question regarding SLP is to find a sufficient
condition on M that will enable calculation of the flow everywhere on the
graph. In nearly every example that we considered, having enough disjoint
B-paths is all that is needed to successfully calculate the flow, except in cases
when the graph is extremely symmetric about the monitored vertex set M.
Thus, a natural first step would be to explore when this symmetry occurs
and how it manifests itself in the flow calculation matrix. Another possible
line of approach would be to determine conditions on M for calculability on
various classes of graphs, such as trees or cycles.

Secondly, Bianco et al. (2006) list a number of cases in which a polynomial-
time algorithm for solving SLP on a graph can be found. In particular,
polynomial-time algorithms are described for paths, cycles, and combs (a
type of tree that has a central “spine” and at most one leaf adjacent to each
vertex in the spine). We believe that their algorithm for paths and cycles
(at least) is still correct, even though its proof relies on Theorem 3.2.2. This
algorithm monitors every third bound vertex along the path or cycle, and it
is fairly intuitive to see that this will indeed be optimal, as this will allow
you to determine the balancing flows at both the monitored vertex, and the
balancing flow at the vertices to the left and right of the monitored vertex.
However, proving this (and some of their other results) will be another
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important step.
Additionally, we hypothesize that even though SLP is NP-hard in gen-

eral, finding a solution on trees will be quite easy, since they are acyclic.
Indeed, a number of related problems such as Vertex Cover, Dominating Set,
and Independent Set all have polynomial-time algorithms on trees, leading
us to believe that it is highly likely for a polynomial-time algorithm for SLP
on trees to exist as well (Garey and Johnson, 1979; Valiente, 2002). Further-
more, we think that (if such an algorithm exists), we can use it to develop a
good approximation algorithm for the general case of SLP, by simply finding
a spanning tree of the graph (which is easy to do), determining a solution
on that tree, and using that as an approximation to the optimal solution for
the original graph.

If we are able to choose our spanning tree in a clever-enough way, we
might be able to guarantee that we don’t have to adjust the solution on the
tree too much to create a valid solution on the graph. This will allow us to
(hopefully) create a very tight upper bound for the worst-case analysis of
the approximation algorithm.

Another important open question relates to the solvability of the matrix
system in equation (3.8). We stated in Section 3.3 that the values contained
in the vector x′ do not matter for determining the solvability of the system.
However, an important question that we did not consider was whether the
solution to the system of equations always makes sense. That is to say, if
we fill in values in x′ based on observed values at M, will the solutions that
we get always be consistent, and have non-negative flow? Both of these
questions are important ones to consider.

A final open problem relating to SLP, alluded to briefly in Section 3.3, is
that of determining the location of the bound vertices in the network. As
stated before, this will have a significant impact on the efficiency of any
algorithm developed to find solutions to SLP, and is an important thing to
consider when applying our work to an actual road network.

A final observation should be made. Except in the case where a mon-
itored vertex is a bound vertex, sensors do not need to be placed on all
edges incident to some m ∈ M. In fact, if m 6∈ B, we note that we only
need to place a sensor on one outgoing edge of each vertex a ∈ A(m) . The
knowledge of the turning ratios gives us all other outgoing flows from these
vertices, and the calculation of the flow depends only on these values. In
the case where m ∈ B, we need only place enough sensors around m to
determine Sm.
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4.2 Final Thoughts

Solving the Sensor Location Problem is a critical next step in understanding
and reducing the large number of congested streets and highways in the
world today. We have seen a number of examples in which SLP is not
solvable, as well as cases in which it is. However, many of the examples we
have presented here are small and bear little or no resemblance to actual
street patterns. Many cities have fairly regular arrangements of streets, and
in some cases this regularity may, in fact, aid in finding a good solution
to the problem. In other cases, however, cities have very irregular street
layouts; thus, we desire a solution that will work well regardless of the
arrangement of the streets.

In order to find this solution, we have explored conditions upon the loca-
tion of sensors that will enable us to determine the traffic flow everywhere.
We have presented a counterexample to some work done previously on the
problem, as well as described a new matrix formulation of the problem that
will aid in determining a solution. We were unable to find a condition on
the sensor location that guarantees a solution to the traffic flow; however,
we were able to find a condition that ensures that a unique solution does
not exist. Finally, we have shown that the problem is, in fact, NP-complete,
meaning that it is unlikely that a fast algorithm will ever be found.

Thus, we hope to be able to develop a fast approximation algorithm
based on the principles described herein, and test the algorithm on a number
of actual city street networks to see how well it performs. Some actual
data have been collected in Eisenman et al. (2006) for the highway system
between Baltimore and Washington, D.C. Simulations were run for both
random sensor location, as well as sensor location based on the advice of
traffic engineers. This data could then be compared against the results
achieved with the algorithm that we develop.

It is our hope that understanding how to monitor traffic flow can, in the
future, lead to a better understanding of how to design road networks to
avoid congestion and heavy traffic. With the world’s population moving
towards an increasingly fast-paced and mobile society, this question should
be one that is at the forefront of our minds and study. Such an understanding
will not only save time and money on the part of individuals, corporations,
and countries, but it will produce a more efficient means of travel that will
waste less of our natural resources, and provide a drastic reduction on our
impact to the natural world around us.
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