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Proceedings of Symposia in Applied Mathematics
Volume 67.2, 2009

Stability of traveling waves in thin liquid films driven by
gravity and surfactant

Ellen Peterson, Michael Shearer*, Thomas P. Witelski, and Rachel Levy

ABSTRACT. A thin layer of fluid flowing down a solid planar surface has a free
surface height described by a nonlinear PDE derived via the lubrication ap-
proximation from the Navier Stokes equations. For thin films, surface tension
plays an important role both in providing a significant driving force and in
smoothing the free surface. Surfactant molecules on the free surface tend to
reduce surface tension, setting up gradients that modify the shape of the free
surface. In earlier work [12,13] a traveling wave was found in which the free
surface undergoes three sharp transitions, or internal layers, and the surfactant
is distributed over a bounded region. This triple-step traveling wave satisfies
a system of PDE, a hyperbolic conservation law for the free surface height,
and a degenerate parabolic equation describing the surfactant distribution.
As such, the traveling wave is overcompressive. An examination of the lin-
earized equations indicates the direction and growth rates of one-dimensional
waves generated by small perturbations in various parts of the wave. Numeri-
cal simulations of the nonlinear equations offer further evidence of stability to
one-dimensional perturbations.

1. Introduction

The flow of thin liquid films with a free surface of height h(z,y,t) above a flat
solid substrate is governed by the thin film equation, which takes the general form

(1.1) he + f(h)z = uV - (b(R)Vh) — &V - (k(R)VAR),

in which f,b,k are non-negative smooth functions vanishing at A = 0, and u,
are dimensionless parameters related to gravity and surface tension, respectively.
The flux f(h) includes the effect of driving forces, both body force due to gravity
or centrifugal force (important in spin coating [16]), and Marangoni forces, which
act on the fluid through surface stress. Marangoni forces can be created in various
ways, including the flow of a second fluid above the film [17], or variations in
surface tension. The latter can be induced using a temperature gradient [3], or
with a surfactant applied to the surface [7]. Each of these contexts introduces
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interesting mathematical issues, including challenges for the theory of hyperbolic
PDE (in the limit of vanishing x and p).

For flow on an incline, driven against gravity by a temperature gradient, we
find f(h) = h? — h® is non-convex, and b(h) = k(h) = 3h* [3,11]. The PDE
admits traveling waves that are smooth counterparts of undercompressive shocks.
Moreover, although there is now a comprehensive theory of scalar conservation
laws admitting undercompressive (otherwise known as nonclassical) shocks, using
the notion of kinetic relation [8], equation (1.1) does not fit into the theory, and
a new theory incorporating a nucleation condition (employed previously only for
systems that change type [1]) was devised that explains various anomalies in long-
time behavior observed in numerical simulations [9,11].

We consider thin film flow driven down an incline by gravity and Marangoni
stress induced by a layer of surfactant. The surfactant reduces surface tension in
proportion to the concentration or density I'(z,y,t) > 0 of surfactant molecules.
Thus, the concentration gradient VI enters f(h) in equation (1.1). Additionally, we
need an equation to model the transport and spreading of the surfactant itself. The
lubrication approximation to the Navier-Stokes equations gives the following system
of PDE for the height h(z,y,t) of the free surface and surfactant concentration
['(z,y,t), where z measures distance down the incline, and the y axis is in the
transverse horizontal direction.

(1.2a)
he+ (3%), = V- (§02VT) = 49 - (3h°Vh) — ¥ - (360 00)
(1.2b)
Ty + (3h°T), — V- (h['VL) = uV - (3A’T'VR) — £V - (3A’T'VAR) + 6 AT.

The parameter u measures the diffusive effect of gravity in pressing the film against
the substrate, thereby creating a tendency for the film to spread; x measures the
smoothing effect of surface tension. Each of these effects contributes to smoothing
the free surface height; their role in equation (1.2b) for I' is to modify the transport
of surfactant. Smoothing of the surfactant profile is governed by the coefficient 6,
which is proportional to the inverse of the Peclet number, modeling the diffusion
of surfactant molecules on the surface of the film [18]. Apart from this molecular
diffusion term, all the terms in the system represent transport by the fluid motion.
The transport speed for h is the depth-averaged component v of the fluid velocity
parallel to the incline, whereas the transport speed of the surfactant is the surface
speed, the value of u at the free surface.

For much of this paper, we shall be concerned with the unregularized equations,
in which g = k = § = 0, in one space dimension:

(1.3a) hy + (%hs)z - (%h2rx)z =
(1.3b) T;+ (3h°T), — (AIT:), =

This system is hyperbolic-degenerate parabolic: equation (1.3a) is a scalar conser-
vation law for h, while equation (1.3b) is a parabolic equation for the evolution of
I" that degenerates at I' = 0. Since we shall always assume h > 0 everywhere, we
avoid any singularities associated with dry patches (h = 0); this also avoids the
interesting but difficult scientific issues surrounding motion of a contact line at the
leading or trailing edge of a droplet [5].
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In [12], jump conditions for system (1.3) were formulated, and a surprising new
traveling wave was found, in which A is piecewise constant with three jumps, and T"
is continuous and piecewise linear, with jumps in I'; corresponding to the jumps in
h. We call this a triple-step traveling wave. In this paper, we present preliminary
results related to triple-step traveling waves, and the smoother versions for which
the parameters u, %, ¢ are not all zero. In §2, we summarize the existence of the
traveling waves and their overcompressive property; in §3 we analyze the lineariza-
tion of the PDE system about sections of the wave in which h is constant and I is
linear. In this section, we also give numerical results showing how small perturba-
tions propagate within the wave. In the final section, we discuss the implications
of the results, and directions for further research.

2. Traveling waves

In this section, we summarize the construction [12,13] of triple-step traveling
wave solutions of (1.3), in which h is piecewise constant, and I' is continuous and
piecewise linear. Then we discuss smooth traveling waves, for which existence is
known for small mass of surfactant or in the absence of capillarity.

T'riple-step traveling waves.

In [12], traveling waves were found for the system (1.3). Let hr, hg be given
upstream and downstream heights of the film, and let q..j = %(\/5 —1), a thresh-
old for the ratio ¢ = hgr/hr. Then, provided hr/hr < qcrit, the traveling waves
are given by explicit formulae as functions of the traveling wave variable n = x — st,
with speed

(2.1) s=1(h} + hphr + h%),
h  n<m 0 n<m
h Ir <n<
(2.2) h(n) = 1 m<n<0 I'(n) = max + G17 m<n<0
ha 0<n<m Tnax + Gan 0<n<m
hr m<n 0 M2 < 7.

Here, 11,72 are related to I'max so as to make I'(77) continuous,

(2:3) m=-2%<0, m=-"2%>0

The formula (2.2) is constrained by suitable jump conditions and the requirement
that the individual pieces satisfy the PDE system (1.3). From this, it follows that
the intermediate heights h; > hy > 0 are the two positive values of h satisfying the
cubic equation 6sh — h® = 4dhphg(hL + hr), and the intermediate slopes (surfac-
tant concentration gradients) G; > 0 > G are specific functions of hyp, hr, most
conveniently expressed in terms of Ay, ks, s :

h? —2s h3 — 2s
=g T Ga=—S

The total mass of surfactant in the traveling wave solution is given by

(2.4) e <0.

(25)  m= / I'dn = Yomax(7 = m) = AT2,(GT1 - G3Y) > 0.
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Thus, for given upstream and downstream heights hy, hg, there is a one-parameter
family of traveling waves; either the mass m or I'yax may be used to parametrize
the traveling waves. The structure of the solution is shown in Figure 1.

hy Ttnax [

n, n 0 n,

FIGURE 1. Triple-step traveling wave. Height, surfactant concen-
tration and gradient.

The traveling waves are overcompressive in the sense that small perturbations
introduced ahead of the wave travel at a slower speed than the wave whereas per-
turbations behind travel faster. More precisely, linearizing the PDE system about
the constant upstream or downstream heights h = hy or h = hg and ' = 0, we
obtain a linear system for the perturbations h,T :

(2.6a) Ok + h*0,h = Lh?8,,T

(2.6b) T + ir%8,T =0.
Let ho(z),To(z) be initial data:
(2.7) R(z,0) = ho(z); T(3,0) = To(x).

Then the solution of the Cauchy problem (2.6), (2.7) involves traveling waves with
constant speeds ¢; = $h% ¢y = h?:

(2.8) R(z,t) = ho(z — cat) + Doz — e1t) — Doz — cat);  T(z,t) = To(z — c1t).

Due to the threshold constraint kg /hr < gerit, we find that the wave speeds h?, $h?
are greater than the traveling wave speed s for h = hy, and s is larger than both
wave speeds for h = hg.

Smooth traveling waves.

The non-negative parameters u, <, § control smoothness of the traveling waves.
For k = 0, it is straightforward to examine a two-dimensional phase plane to show
that there is a one-parameter family of traveling waves. Each traveling wave is
smooth (as a function of n = z — st) for u > 0,8 > 0, but has reduced smoothness
when one of these parameters is zero. This is explained in [13]. For x > 0, the
situation is more complicated, and there are open issues of existence and uniqueness.
A recent paper of Schecter and Manukian [15] provides existence of traveling waves
provided a transversality condition is satisfied. Moreover, this condition guarantees
that all the traveling waves are parametrized smoothly by (small values of) m or

e
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3. One dimensional stability of triple-step traveling waves
For a nonlinear conservation law
(3.1) he + f(h)e =0,

in which f(h) is nonlinear, traveling waves are single-step shocks joining two con-
stants h = hp,h = hg, with speed s = (f(hr) — f(hr))/(hL — hgr). Stability is
established by considering perturbations of the two constant states, solving the
initial value problem, together with the Rankine-Hugoniot jump condition. For a
scalar equation, this is comparatively straightforward. Let h = ho be a constant,
and consider a small perturbation u : h = hgy + u. Linearizing about hgy, we find
that u satisfies the linear transport equation

U + f,(h'O)ux =0,

so that u(z,t) = ui{z — ct), where ¢ = f’(hg) is the characteristic speed. Under
the Lax entropy condition

f'(hr) < s < f'(hr),

perturbations to the shock wave, initiated away from the shock itself, approach the
shock from both sides, modifying the shock location; the shock is considered stable.
Proving nonlinear stability involves showing that the full nonlinear problem is well
posed. This theory is well established for scalar equations and for strictly hyperbolic
systems of equations [14], in which v € R™, and f : R® — R" is continuously
differentiable, with distinct and real characteristic speeds, the eigenvalues of the
Jacobian df (u). In our problem, we have a system of two equations for unknowns
h and T', but the second equation is degenerate parabolic rather than hyperbolic.
Traveling waves for the hyperbolic-parabolic system involve constant h and linear I,
The linear system resulting from linearization of (1.3) consequently has nonconstant
coeflicients, since the underlying solution is not constant in I'. The local dispersion
relation for this system, obtained by freezing the variable coeflicients, gives some
information about the short-time evolution of localized perturbations.

3.1. The linearized equations. Consider the triple-step traveling wave (2.2)
of the unregularized system (1.3). Between jumps in h and I, h is constant and I’
is linear. In particular, in those sections in which I is not identically zero, we have

(3.2) h=h;, I'=Gi(z—st), s=3ih?-nG; i=1,2,

(where we have used (2.4) to express the wave speed s in terms of the constants
hi, Gi, and have translated = by 7;). For a > 0 the equations (1.3) are unchanged
by the transformation

h—ah, ' >a®’l, - az, t—t/a.

Consequently, as long as we consider the it* section in isolation, we can take h; = 1,
so that s = % — G, in which we write G = G;.
Now consider perturbations of a section of the traveling wave

(3.3) h=14+u, I'=G(z-st)+w.

To maintain I' > 0, we consider z — st > 0if G > 0, and z — st < 0if G < 0.
Substituting (3.3) into the PDE system, and retaining only terms that are linear
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in u, v, we obtain the linear system
(3.4a) u+ (1 -Gug — vz, = 0
(3.4b) v+ (3 — Gy — [(z — st)G(vz — (1 - G)u)] 0.

It is convenient to consider.these equations in a frame moving with constant speed

s=1—G. Accordingly, let n =z — (3 — G)t :

Il

(3.5a) Ut + 3Uy — FUng
(3.5b) v — [nG(vy — (1 — G)u)]n —
Carrying out the differentiation in (3.5b) and then freezing the coefficient 7 = 1+,
we obtain the constant coefficiant linear system
(3.6a) U+ Uy — FUg, = 0
(3.6b) v — Gup + G(1 — GYu — YGugy + YG(1 -Gy, = 0
We seek solutions of the form
(3.7) u= ety = gt N =a+if,
where £ > 0 is the wave number, or spatial frequency. Writing
—“
é— )
isolates the wave speed c of the perturbation (relative to s = % —G); B > 0 indicates
decay in time and 8 < 0 growth. Substituting (3.7) into the linear PDE system
(3.6), we get simultaneous linear homogeneous equations for % and ¥ which have a

solution if and only if the determinant of the coeflicient matrix is zero; this leads
to the dispersion relation

i(A+ 36) 3¢
G(1—-G)(1+i&y) i(A—GE) +~GE?
—A? + AGE — INE+iMGE? +i3vGPE3 + LGP = 0.

(3.8) eMHEN — o=BLil(Fthm) — =Bty _ ) o=

(3.9)

Since this is a quadratic equation in A, there are two (complex) solutions for each
choice of the other parameters. Recalling that A = a + i, we get equations for the
real and imaginary parts:

(3.10a) —o? + B2+t (G- 1) - prGe: + 1G22 =0
(3.10Db) —2af + B¢ (G — %) + ayGE? + %7G2§3 =0.
Completing the square for both of these equations

(3-11a) (8 — 11G€%)° — (a— 1 (G - 1))* = —1£2 (362 — G + 1) + 1y%G2¢*

(3:115) (@=3¢(G=13)) (8- 379G = 3G (G- 3) &
These equations describe hyperbolas in the (a, 8) plane with common center,
&12) (a0, B0) = (3¢ (G - 3) , 37GE?)

Equation (3.11a) represents a hyperbola with asymptotes at 45°; (3.11b) is a hy-
perbola with asymptotes parallel to the coordinate axes. The orientations of these
hyperbolas are determined by the sign of the right hand sides of the respective
equations, which depend on the following conditions.
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(i) The right hand side of (3.11a) is positive if and only if

1 1
(3.13) y€° >3 G+4G2'
(ii) The right hand side of (3.11b) is positive if and only if
1
(3.14) G > 1

We also note from examining (3.10) that without loss of generality we can take
& > 0 due to the symmetry of the solution; if £ - —¢ then & — —a but the sign of
(21

e = 15— remains unchanged.

3.2. Analysis of the dispersion relation (3.11). In analyzing the disper-
sion relation in the form (3.11), we consider v and G fixed, and determine the
behavior of solutions (a, 8) on the wavenumber . We are specifically interested in
the signs of « and S, rather than their magnitude, so we focus on identifying in
which quadrant of the («, 3) plane the solutions lie. These solutions correspond to
the intersection of the hyperbolas. As remarked above, there are two intersections,
corresponding to two waves with different speeds and growth/decay rates.

We restrict attention to values of 7, G satisfying vG > 0, with —oo < G < 0, or
0<G< % To explain these inequalities, first note that vG > 0 is consistent with
the two interior levels A = hy, h = hy in the traveling wave. Next observe that, as
hr — 07 in the traveling wave, h; — V2hr, by = 0 and G; — —‘/%L, Gy — —00.
Thus, with the normalization h; = 1, we have Gy < % This upper bound on G also
guarantees that when (3.13) is satisfied, then v2¢2 > 2. Note that the other limit
%f — qerit causes hy, ho — hp which implies G1, G — 0. We deduce that the
center (ap, o) of the two hyperbolas, given by (3.12), lies in the second quadrant.

We first consider the case 0 < G < %,’y > 0 corresponding to the portion
h = h1,I' = Gi(z — st) of the traveling wave. It is convenient to define functions
¢, of G :

2(G - 3)?

PROPOSITION 3.1. Suppose 0 < G < %,v> 0.

o If72€2 > ¢(G), then both intersections of the hyperbolas occur in quadrant
II. In this case, both waves decay and move to the right (in the frame
moving with the traveling wave speed).

o If %% < ¢(G), then one intersection of the hyperbolas is in quadrant I
and one intersection is in quadrant II. Both waves decay but one moves
to the right and the other mowves to the left.

1

1

Proof: We consider various cases based on the structure of the hyperbolas,
determined by the sign of the right hand side of (3.11). The cases are illustrated
in Figures 2,3. In order to determine in which quadrant the hyperbolas intersect
we compare the intersections of the hyperbolas with the coordinate axes. Figures
2 and 3 show examples of where these intersections may occur.

In the figures, dashed lines represent the asymptotes, and C and D represent
the intersections of the two hyperbolas. The intersections of the hyperbola (3.11a)
with the o and § axis are labeled af and 8. Intersections of (3.11b) are c and

Bs-
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FIGURE 2. G > ;. Left: v2¢% > 4(G); Right: v2¢2 < %(G).

Setting 8 = 0 in (3.11a), (3.11b) we find

316 ai-3[o-iz@- e, a=-ka

Similarly, setting & = 0 in (3.11a), (3.11b) we find

g1 gt =C (xvPE2), B=hhoe-1E0Z)E
=3

Thus

(3.18a) af—ab=g [2G—%i,/(G—%)2+2G2]’

GE [+ (G- }) VAPE 2+ 18 (G- })]
2(G-1 '

Now we consider the cases separately, labeled as in Figures 2,3.

(3.18b) and B - B, =

Case I: G > ;.
First consider v2¢? > 4(G) (see Fig. 2(Left)). Since G¢ > 0 and G < 3, the
sign of (3.18b*) , is determined by the sign of

(3.19) P@e) = (G- 3) v -2 +2e (G- ),

Since P(G,~v€) = 0 when

_ %G _

(3-20) Ve = m = ¢(G),

we conclude for the intersection C,
o If v2¢2 > ¢(G) then B} — By > 0. The intersection is in quadrant II.
o If 4262 < ¢(G) then B} — By, < 0. The intersection is in quadrant I.
Note that in the companion case, G > ,7%¢? < 9(G) (see Fig. 2(Right)),
BZE are complex when v2£2 < 2 because then the hyperbola does not intersect the

Qy
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B axis. The intersection C is then necessarily in quadrant I. For 42¢2 > 2, the
argument above implies that C is in quadrant II.

Now we examine the intersection D in Figure 2. This intersection occurs in
either quadrant II if a7 < «; or quadrant III if o > . But af — ap changes
sign when

(3.21) RG)=2G—-1—/(G-3)2+2G?=0.

Solving for G we find that G=00or G =1. But Q@ < 0 when G =0s0 @ < 0 for
0 < G < 1. Consequently, the intersection D is in quadrant II.

CaseII:O<G<%.

’

N ’
iy v’
4
N ’
A
N ’
b N8 /
N (]
. / .
> ’
.
\

FIGURE 3. G < ;. Left: v2¢% > 9(G); Right: v2¢% < %(G).

From the location of the center (in the second quadrant of Figure 3), and
the orientation of the asymptotes, it is clear that intersection C is in the second
quadrant, and we can focus on intersection D. In this case, the sign of o} — ay is
determined by the sign of

(3.22) AG) =26 -} +4/(G- 12 +267,

which has zeros as G = 0 and G = 1, but when G =1, Q@ > 0. Thus Q > 0 for
0 < G < 1and f —a, > 0 which means the intersection occurs in quadrant I or
11
From (3.18b), in the case v2£2 > 9(G) (see Fig. 3 Left), for which both roots
are real, we deduce:
o If v2¢2 > ¢(G) then B; — By < 0. Thus the intersection D is in quadrant
1L
o If 42¢2 < ¢(G) then B; ~ By > 0. Thus the intersection D is in quadrant
I.
The only difference in the companion case 0 < G < 1, v?*¢% < 9%(G) (see Fig. 3
Right), is that 8 may be complex, when the hyperbola does not intersect the 3
axis. But then the intersection D clearly is in quadrant 1; otherwise, the intersec-
tion D is in quadrant I or II as above. This completes the proof. B
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Next, we consider the case G < 0,7 < 0 corresponding to the portion h =
h2, T = Ga(z — st) of the traveling wave. In this case, the right hand side of (3.11b)
is automatically negative. Thus the only two cases to consider are dependent on
the sign of the right hand side of (3.11a). Figure 3 shows the structure of the
hyperbolas.

PROPOSITION 3.2. Suppose G < 0,v < 0. Then one intersection is in quadrant
II and one intersection is in quadrant IV. Thus, one wave moves to the right cmd
decays while a second wave moves to the left and grows.

Proof: As before, for G < %, intersection C is necessarily in quadrant II. Regarding
the intersection D, first consider the case v2£2? < 9(G) (see Fig. 3 Right).

If the hyperbola associated with (3.11a) does not intersect the 8 axis (then
necessarily v2¢2 < 2), then the right arm of the hyperbola lies in the right half
plane, so the intersection D of the two hyperbolas occurs in quadrant I or quadrant
IV. On the other hand, for v2¢2 > 2, the hyperbola does intersect the 3 axis, and
we wish to establish the same conclusion.

Since G < 0, the lower intersection of the hyperbola (3.11a) with the § axis
is B}, given by (3.17). Moreover, from (3.18b), we see that the sign of 8} — 5
depends on the sign of

(3.23) P(G,78) = (G—3) [V -2+ 29¢(G - —)

But P(G,v¢) # 0 since 7%2¢? < ¢(G). In the limit v2¢2 — 2% we find that
P(G,~v€¢) > 0. Thus 8] — By > 0 establishing that the intersection D of the two
hyperbolas occurs in quadrant I or quadrant IV. (Note that in Fig. 3 Right, the
intersection is shown in quadrant II, which does not occur when G < 0. )

Next we compare the « values, to show that in fact, the intersection point D
lies in quadrant IV.

From (3.18a), we observe that the sign of af — o depends on the sign of

Q(G) =2G — L + /(G - 1)2 +2G?

and following the procedure used with (3.21) we find Q < 0 when G = —1 which
means o, — «p < 0. Consequently, the intersection point cannot lie in quadrant
I, and must lie in quadrant IV. In the companion case, as for the earlier proposi-
tion, the comparisons work the same way, even though the hyperbolas are oriented
differently (see Fig. 3 Left). B

3.3. Numerical results. Numerical simulations of the system of equations
(1.3) help confirm the predictions of the analysis of the dispersion relation. In
the simulations, we introduce a small smooth localized perturbation in A into the
triple-step traveling wave, away from the jumps, and integrate the equations using
a finite difference method that couples an explicit upwind scheme for the convective
terms and an implicit scheme for the time-step and the parabolic terms [10]. We
use the standard notation for spatial averages of u} = u(z;,t,),

" ujyy +uj
(324) U?+1/2 = %
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The nonlinear system

prtl 2 frpH-rph 1 G = i e
j+1/2 Ax - j—1/2 Ax

20z

(3.25) A} — b} — At

3 3
n ((hg) ~ (1) ) ey I

3Az Az?

e r e i iy D

J+1/27 j+1/2 Az j—1/2% 5—1/2 An
Y4
B}26)- I — At —
2 2

g [T = (2T
2Az ’

is solved using Newton’s method. An artificial diffusion term is included at the end
of the h equation in order to suppress spatial oscillations near jumps in A. In our
simulations, we used ¢ = 0.001.

1.35¢

1.2r 4 08
Q.61

0.4F

i P | 0.2 nmﬁj

FI1GURE 4. Left: Perturbation placed on hy. Right: Perturbation
placed on hg. Thicker line is initial condition.

When introduced ahead of or behind the traveling wave, the perturbation prop-
agates towards the middle of the wave from either side, as predicted by the equations
linearized around h = constant, T' = 0 (see (2.8) above). The perturbation then
encounters the outer discontinuity in A, and passes through with some distortion, as
seen in Figure 4. Subsequently, we are in the domain of the analysis of the previous
subsection, except of course the numerical simulations are not tracking a pertur-
bation with a single wave number, but rather a composition of all wave numbers,
with the emphasis being on low wavenumbers - the perturbation is a long wave.
When the perturbation is introduced on the levels A = h, h = hq, the evolution
is exhibited in Figure 5. On the higher level (h = h;), the perturbation dies out
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FIGURE 5. Left: Perturbation is placed on h;. Right: Perturbation is
placed on hs.

rapidly, whereas on the lower level (h = hs), the perturbation propagates towards
the big central jump in A and is absorbed by it. On this level, there is presumably
a small decaying wave moving right as well, but we have not observed it, possibly
because it is a small effect at long wavelengths.

4. Discussion

Since the triple-step wave is readily captured in numerical simulations [12,13],
it should be expected to be stable to one-dimensional perturbations. If it were a
shock wave solution of a hyperbolic conservation law (thus with a single step), then
stability would be related to short-time preservation of the shock structure under
perturbation of initial conditions; such stability is typically associated with the
Lax entropy condition, which guarantees that perturbations in the characteristic
family of the shock are transported into the shock, where they are absorbed, while
other components of the perturbation are transported through the shock and away.
However, the traveling wave under consideration here is not a hyperbolic wave, but
a traveling wave solution of a system which in essence (in the absence of higher
order derivatives) is a scalar conservation law coupled to a degenerate diffusion
equation akin to the porous medium equation. At this quasi-hyperbolic level, the
new traveling wave behaves like an overcompressive shock. In Section 2 we observe
that in the linearized equations, perturbations ahead and behind the wave converge
on the wave, as a pair of traveling waves, much as perturbations of a shock travel
along characteristics. However, if a perturbation is placed within the traveling
wave, then it is not so clear how the solution evolves. In Section 3 we analyze the
linearized system at the level of the dispersion relation, which contains information
about the direction and growth or decay of perturbations of a specified frequency.
In summary, we find that the only perturbations that can grow propagate towards
the middle layer. Numerical simulations show that such perturbations are absorbed
by the middle layer.

The analysis of Section 3 is of course not definitive. It would be more satisfac-
tory to have analysis of spectral stability through an understanding of the spectrum
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of the equations linearized around a smooth traveling wave. It will be interesting
to see how far an analysis of the Evans function can be pursued; it will be some-
what simpler in the case of negligible surface tension (x = 0) since the ODEs are
then lower order (see [4]). It would also be interesting to analyze features of insta-
bility to transverse perturbations, as was done numerically -for a similar problem
by Edmonstone, Craster and Matar [6]. As in the surfactant-free case [2], it is
to be expected that all of these traveling waves with small amounts of surfactant
are unstable unless 8 > 0 is sufficiently large compared to x. However, because of
the triple-step structure of the wave, it is not immediately clear what will control
multidimensional stability for larger amounts of surfactant.
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