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Abstract

The goal of this thesis is to explore the properties of a certain class of se-
quences, rigid divisibility sequences, generated by the iteration of certain
polynomials whose coefficients are algebraic integers. The main goal is
to provide, as far as is possible, a classification and description of those
polynomials which generate rigid divisibility sequences.
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Chapter 1

Introduction and Background

1.1 Arithmetic Dynamics

The main topic of the current work falls under the purview of a subject
known as arithmetic dynamics. Like many other subjects in mathematics,
arithmetic dynamics is a crossover field; in this case the combination is of
number theory and discrete dynamical systems. In a general sense arith-
metic dynamics is the study of the arithmetic (number-theoretic) properties
of sequences which are generated by some sort of iteration.

The iteration in question can vary substantially, but generally it is taken
to be a function which takes one or more integer (or rational) arguments
and outputs some integer (respectively, rational number). This function
can be a linear recurrence, a polynomial, a rational function, or something
more esoteric such as a function associated with an elliptic curve. When
we begin with some (given) initial values, iterating this function gives a
sequence of integers (or rational numbers). We then may ask questions
about the sequence. Some such questions regard the primes which divide
the terms of the sequence (or, in the case of rational sequences, the primes
dividing the numerators).

To clarify this, it is expedient to give some examples. Let us begin with
a well-known recurrence sequence: the Fibonacci numbers. Recall that the
Fibonacci numbers are given by the recurrence an+1 = an + an−1, together
with the initial conditions a1 = a2 = 1, so that a3 = 2, a4 = 3, a5 = 5,
a6 = 8, and so on. It is an easy result that for each prime p, there is some
Fibonacci number an such that p|an, which is a result of this kind. Thus,
the (natural) density of primes p which divide some Fibonacci number is
D({an}) = 1.



2 Introduction and Background

Consider another sequence, given by the same recursion bn+1 = bn +
bn−1, but with the initial conditions b1 = 1 and b2 = 3. This sequence is
called the Lucas sequence, and it bears many resemblances to the Fibonacci
sequence: the same growth rate, similar combinatorial interpretations, and
so on. But it has important differences in its arithmetic dynamics. It is, for
instance, a deep modern result [4] that the density of primes dividing some

Lucas number is D({bn}) =
2
3

. For many other related sequences, it is not
even known whether such a density exists.

Of course, it is not only this density D of primes dividing a sequence
that we might be interested in. Another question of interest is that of prim-
itive prime divisors. A term an of a sequence is said to have a primitive
prime divisor if there is a prime p|an such that p - ak for any 1 ≤ k < n.
A relatively recent paper [1] showed that for certain classes of sequences
(the Lucas and Lehmer sequences, some of which are given by linear recur-
rences) all but finitely many terms of the sequence have primitive prime
divisors.

The arithmetic dynamics of linear recurrence relations was (and is) a
fruitful field of study, but there are other iteratively-generated sequences
which have also proven interesting. I mentioned above polynomials and
rational functions as the function to iterate; similar sorts of questions are
considered in these cases as well. In [5] I looked at the question of prim-
itive prime divisors for certain classes of sequences generated by polyno-
mials; in [2] Ingram and Silverman explore the same question for a rational
functions where 0 is a periodic point. In [3] Jones shows that for sequences
generated by some classes of polynomials, the density D({an}) of primes
dividing some term in the sequence must by 0.

1.2 Rigid Divisibility Sequences

In addition to examining the sets of primes which divide some term of a
sequence and looking at when terms of the sequence have primitive prime
divisors, we might also consider what exactly happens when a particular
prime divides a term of the sequence. For instance, we might be interested
in sequences all of whose terms are squarefree (every prime divides each
term either with exponent 1 or not at all; this is a very strong condition),
or sequences where primes appear as divisors of a term of the sequence at
regular intervals. One such condition, which can be seen as a weakening of
the squarefree condition, is known as rigid divisibility.
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Before we can define a rigid divisibility sequence, we need another def-
inition.

Definition 1. A sequence a1, a2, . . . of (algebraic) integers is a divisibility se-
quence if whenever m|n, am|an.

The criterion of rigid divisibility strengthens this.

Definition 2. A sequence a1, a2, . . . of integers is a rigid divisibility sequence
if it is a divisibility sequence, and for every prime p, there is an exponent dp such
that for every term an of the sequence, either p - an or pdp‖an.

Essentially, this means that if a prime p divides the nth term of the se-
quence, it divides, for all m, the mnth term to exactly the same power.

Example 1. The sequence −4, 12, 140, 19596, . . . given by a1 = −4 and an+1 =
a2

n− 4 is a rigid divisibility sequence: for instance, each term is divisible by 4 = 22,
but no term is divisible by 23, and each term divisible by 3 (every other term) is
divisible by 31 but not by 32.

It turns out that it is useful to talk about rigid divisibility sequences
whose terms are elements of the ring of integersOK of some number field K
rather than just ordinary rational integers. Since in many such cases we do
not have unique factorization of elements, we need to adjust our definition
to be in terms of prime ideals instead.

Definition 3. Let K be a number field and OK its ring of integers. A sequence
a1, a2, . . . is a rigid divisibility sequence in OK if it is a divisibility sequence,
and for every prime ideal p COK, there is an exponent dp such that, for each term
an, if an ∈ p, then an ∈ pdp and an 6∈ pdp+1.

It is easy to see that this is equivalent to the first definition when OK =
Z (that is, when K = Q). Many results about rational integer rigid divisibil-
ity sequences extend easily to the more general case, and working in more
generality allows us to approach even the rational integer case better.

1.3 The Main Problem

Definition 4. Let f (x) ∈ Ok[x] be a polynomial with coefficients in OK, and
define the sequence {an} by a1 = f (0) and an+1 = f (an) for n ≥ 1. This
sequence is called the sequence generated by f (x), and conversely we say that
f (x) generates {an}.



4 Introduction and Background

A straightforward induction shows that every such sequence is a di-
visibility sequence. Sometimes it will be the case that it is also a rigid di-
visibility sequence in OK, and sometimes it will not. The main goals of
this project are to determine and classify, as explicitly as possible, the set
of polynomials f (x) ∈ OK[x] which generate rigid divisibility sequences,
and to describe any additional properties of these polynomials and the se-
quences they generate.

Since we are only concerned with sequences which are generated by
the iteration of polynomials in this way, we will from here on use “rigid
divisibility sequence” to refer to a rigid divisibility sequence generated by
some polynomial in the manner given above.

1.4 Previous Results

There are a few results which were already known about rigid divisibil-
ity sequences in Z and the polynomials which generate them. They come
from [5], where rigid divisibility sequences were considered in order to
shed light on primitive prime divisors.

Proposition 1. Suppose that f (x) ∈ Z[x] is a monic polynomial with linear
coefficient 0. Then the sequence {an} generated by f (x) is a rigid divisibility
sequence.

Example 2. The sequence−4, 12, 140, 19596, . . . given earlier is generated by the
polynomial f (x) = x2 − 4, and thus is a rigid divisibility sequence.

Proposition 2. Suppose that f (x) ∈ Z[x] is a monic polynomial all of whose
roots lie in Z. Further suppose that the sequence generated by f (x) is a rigid
divisibility sequence. Let r be a root of f (x), and define g(x) = f (x + r) − r.
Then the sequence generated by g(x) is also a rigid divisibility sequence.

Example 3. We note that this result shows that the polynomial f (x) = x3 −
2x2 − 15x + 3 generates a rigid divisibility sequence. This is because f (x) =
g(x− 3) + 3, where g(x) = (x + 6)(x− 2)(x + 3) = x3 + 7x2 − 36 has linear
coefficient 0 and thus generates a rigid divisibility sequence by Proposition 1.

The first part of my new work consists of extending and strengthening
these results to apply more generally in rings OK. Afterwords, I will work
in the opposite direction, determining necessary conditions for a polyno-
mial to generate a rigid divisibility sequence.



Chapter 2

Original Results and Proofs

This section consists of results and their proofs, together with some short
comments. K and L are always number fields, and OK and OL are their
rings of integers.

2.1 Sufficient Conditions

We begin with theorems which show that certain classes of polynomials
always generate rigid divisibility sequences. The following theorem is a
generalization of Proposition 1. It gives us a large, easily-described class of
polynomials which generate rigid divisibility sequences. These are, with
Theorem 3 the indirect source of nearly all known polynomials which gen-
erate rigid divisibility sequences.

Theorem 1. Let f (x) ∈ OK[x], and suppose that the linear coefficient of f (x)
is 0. Then the sequence generated by f (x) is a rigid divisibility sequence in OK
provided that it has no terms equal to 0.

Proof. We will show that the sequence satisfies the required property with
respect to every prime ideal p. Let p be a prime ideal of OK. If no term of
the sequence {an} is contained in p, then we are done. Otherwise, let n be
minimal such that an ∈ p, and suppose that an ∈ pd but an 6∈ pd+1. Then it
follows that an = α + β, where β ∈ pd+1 and α ∈ pd but α 6∈ pd+1.

Now we show by induction on k that for k ≥ 1, an+k = ak + βk, where
βk ∈ pd+1. Consider first k = 1. Then

an+1 = f (an) = f (0) +
D

∑
i=2

γi(α + β)i = a1 +
D

∑
i=2

γi

i

∑
`=0

(
i
`

)
α`βi−`,
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where D is the degree of f and the γi are its coefficients. Now whenever
` < i, each such term has a factor of β ∈ pd+1, and so lies in pd+1. But when
` = i > 2, the term α` lies in (pd)2 = p2d ⊆ pd+1, so those terms lie in pd+1

as well. It follows that all of the terms except for a1 lie in pd+1, so we obtain
an+1 = a1 + β1, where β1 ∈ pd+1.

This is our base case. Now we proceed to the inductive step; let us
suppose that an+k = ak + βk with βk ∈ pd+1. Then we have

an+k+1 = f (ak + βk) =
D

∑
i=0

i

∑
`=0

γi

(
i
`

)
a`

kβi−`
k .

Whenever ` < i, these terms have a factor of βk ∈ pd+1, and thus lie in pd+l .
Hence it follows that

an+k+1 =
D

∑
i=0

γiai
k + βk+1 = f (ak) + βk+1 = ak+1 + βk+1

for some βk+1 ∈ pd+1. This completes the inductive step.
Now consider am. By repeated application of the above result, we obtain

that

am = am−n + βm−n = am−2n + βm−2n + βm−n = · · · = ar + B,

where 1 ≤ r ≤ n is congruent to m modulo n and B ∈ pd+1. But we know
that ar 6∈ pd+1, since ar 6∈ p for r < n by our choice of n and an 6∈ pd+1 by
our choice of e. It follows that am 6∈ pd+l .

On the other hand, if r < n, then since ar 6∈ p, also am 6∈ p, whereas
if r = n, then ar = an + B ∈ pd, so that am ∈ pd. It follows that for every
m, if am ∈ p, then am ∈ pd but am 6∈ pd+1, which is just the property we
wanted. Since this holds for each prime p C OK, the sequence {an} is a
rigid divisibility sequence in OK.

The next result is not just about rigid divisibility sequences, or even
about polynomials with algebraic integer coefficients. It applies to any
polynomial. The sequences a(n, k) are called the sequence factors of a(n),
and this process is called sequence factorization. In case that f (x) does
have algebraic integer coefficients, so will each of fk(x), and thus this se-
quence factorization will be able to give us information about the sequences
a(n, k). The result first appeared in [5].

Proposition 3. Let f (x) ∈ C[x] be a monic polynomial of degree D, and call
the sequence it generates a(n). Let the roots of f (x) be r1, . . . , rd, and define
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fk(x) := f (x + rk)− rk. Let a(n, k) be the sequence generated by fk(x). Then for
every n ≥ 1,

a(n) =
D

∏
k=1

a(n, k).

Proof. We begin with a lemma:

Lemma 1. For each n ≥ 1, a(n + 1, k) = a(n, k)− rk.

Proof. By induction on n. We have that

a(2, k) = fk(a(1, k)) = f (−rk + rk)− rk = f (0)− rk = a(1)− rk.

This is the base case n = 1. Then we have

a(n + 2, k) = fk(a(n + 1, k)) = f (a(n)− rk + rk)− rk = f (a(n))− rk = a(n + 1)− rk.

This completes the inductive step and the proof.

Now we prove our proposition by induction on n.
First, note that fk(0) = f (rk) − rk = −rk, since rk is a root of f (x). It

follows that

d

∏
k=1

a(1, k) =
d

∏
k=1

fk(0) =
d

∏
k=1

(−rk) = (−1)d
d

∏
k=1

rk = f (0) = a(1).

This is the base case.
Now suppose that the statement holds for n, and consider n + 1. We

have
d

∏
k=1

a(n + 1, k) =
d

∏
k=1

(a(n)− rk) = f (a(n)) = a(n + 1);

the first equality holds by the lemma and the second since f (x) = ∏(x− rk)
as the rk are all the roots of f (x). This completes the inductive step and the
proof.

Example 4. Consider again the polynomial f (x) = x2 − 4, which generates the
sequence−4, 12, 140, 19596, . . .. Then we have f1(x) = x2− 4x + 2 and f2(x) =
x2 + 4x − 2. These polynomials generate the sequences 2,−2, 14, 142, . . . and
−2,−6, 10, 138, . . . respectively. We have (2)(−2) = −4, (−2)(−6) = 12,
(14)(10) = 140, and so on.
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We might want to know whether the extension of the notion of rigid
divisibility to rings of integers in arbitrary number fields is actually rea-
sonable. For instance, is it really a property of the sequence, or just of the
sequence-ring pairing? The following theorem asserts that the answer is
the former.

Theorem 2. Let f (x) ∈ OL[x], with K ≤ L. Suppose further that the terms of the
sequence generated by f (x) all lie in OK (in particular this occurs when f (x) ∈
OK[x]). Then the sequence generated by f (x) is a rigid divisibility sequence in
OK if and only if it is a rigid divisibility sequence in OL.

Proof. We have two directions to show.
First suppose that {an} is a rigid divisibility sequence in OK, and let

p COL be a prime ideal of OL. Then p lies over a unique prime p0 of OK.
Since p∩OK = p0, it follows that an ∈ p if and only if an ∈ p0.

If there is no n such that an ∈ p0, then there is no n such that an ∈ p, and
the required condition is satisfied trivially. So suppose instead that there
are some n such that an ∈ p0.

Let d be the exponent associated with p0 in the definition of rigid di-
visibility sequence in OK, and let e be the ramification index of p over p0.
Then I claim that the exponent de will work: that is, whenever an ∈ p, then
an ∈ pde, but an 6∈ pde+1.

On the one hand, we have p0OL ⊆ pe; hence exponentiating we obtain
pd

0OL ⊆ pde. Thus we have: if an ∈ p, then an ∈ p0, and so an ∈ pd
0, hence

an ∈ pd
0OL, and finally an ∈ pde.

On the other hand, suppose that an ∈ pde+1. Consider (A ∩ OK)OL for
an ideal A C OL. We have (A ∩ OK)OL ⊆ AOL = A. Now apply this
in the case A = pde+1. We thus have that (pde+1 ∩ OK)OL ⊆ pde+1. Let
B = pde+1 ∩ OK, so that BOL ⊆ pde+1. But pd

0OL =
(
∏ p

ei
i

)d = pde ∏ pdei

i 6⊆
pde+1, where the pi are the other primes lying over p0, with corresponding
ramification indices ei. It follows that B 6⊇ pd

0. Now since pe f +1 is a primary
ideal, it follows also that B is primary, since ab ∈ B, a, b ∈ OK implies that
ab ∈ pe f +1, and thus a ∈ pe f +1 or bg ∈ pe f +1, thus a ∈ B or bg ∈ B for
some positive integer g. But also B ⊂ p ∩OK = p0, so since primary ideals
in Dedekind domains are just powers of prime ideals, B = ph

0 for some h.
Since B 6⊇ pd

0, it follows that h ≥ d + 1; hence B ⊆ pd+1
0 . Thus, since an ∈ B,

it follows that an ∈ pd+1
0 , which contradicts our choice of d. It follows that

an 6∈ pde+1.
Thus it follows that {an} satisfies the rigid divisibility criterion for p

with exponent de; this shows that {an} is a rigid divisibility sequence in
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OL.
Conversely, suppose that {an} is a rigid divisibility sequence inOL. Let

p0 COK be a prime. If there is no an ∈ p0, then the condition holds trivially,
so suppose that an ∈ p0 for some n. Let d be the exponent such that an ∈ pd

0
but an 6∈ pd+1

0 , and let p be a prime in OL lying over p0. Let its ramification
index be e. Hence an ∈ pde, but as above an 6∈ pde+1. Since {an} is a rigid
divisibility sequence inOL, whenever am ∈ p, then am ∈ pde but am 6∈ pde+1.
Thus we have: whenever am ∈ p0, then am ∈ p, whence am ∈ pde but
am 6∈ pde+1, so that am ∈ pd

0 but am 6∈ pd+1. It follows that {an} satisfies the
rigid divisibility criterion for p0 with exponent d; this shows that {an} is a
rigid divisibility sequence in OK.

This is a very comforting result because it means that rigid divisibil-
ity is really a single property, not something which can vary depending on
which field we examine it in, and thus justifies the our extending of the def-
inition beyond the rational integers. It also means that we can speak about
a sequence being a rigid divisibility sequence without indicating in which
ring we are looking at it, because it must be a rigid divisibility sequence in
any ring of integers where its terms lie.

We next want to apply Proposition 3 to obtain more rigid divisibility
sequences. First, though, we need a few general lemmas about divisibility
of terms in sequences generated by polynomials.

Lemma 2. Let f (x) ∈ OK[x], and let {an} be the sequence generated by f (x),
and let p COK be a prime ideal. Suppose that an ∈ pd. Then atn ∈ pd for all
t ≥ 1.

Proof. The proof is by induction. The base case t = 1 is given.
Note that an = f m(0) (the m-th iterate of f at 0), so we have (for poly-

nomial g(x) = x−1( f tn(x)− f tn(0)))

a(t+1)n = f (t+1)n(0) = f tn(an) = f tn(0) + ang(an) ∈ pd

by the inductive hypothesis. This completes the proof.

Lemma 3. Let f (x) ∈ OK[x], and let {an} be the sequence generated by f (x),
and let p COK be a prime ideal. Suppose that m > n and an ∈ pd and am ∈ pd.
Then am−n ∈ pd.

Proof. We have similarly to above

am = f m−n(an) = ang(an, am) + f m−n(0)
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for a polynomial g(x, y). Since am ∈ pd and an ∈ pd, it follows that

am−n = f m−n(0) = am − ang(an, am) ∈ pd,

as required.

Corollary 1. Let f (x) ∈ OK[x], and let {an} be the sequence generated by f (x),
and let p COK be a prime ideal. Suppose that m > n and an ∈ pd and am ∈ pd.
Then a(m,n) ∈ pd.

Proof. This follows from Lemma 3 by the Euclidean algorithm (naive form).

The next theorem allows us to find new rigid divisibility sequences
from old ones using sequence factorization.

Theorem 3. Let f (x) ∈ OK be monic, and suppose that the sequence generated
by f (x) is a rigid divisibility sequence. Let r be a root of f (x). Then the sequence
generated by f (x + r)− r is also a rigid divisibility sequence.

Proof. Let L be the splitting field of f (x) over K. Then all of the roots of
f (x) lie inOL; hence the coefficients of all the polynomials f (x + r)− r (for
each root r) lie inOL. Let the sequence {a(n)} be the sequence generated by
f (x), and {a(n, k)} be the sequence generated by f (x + rk)− rk for each root
rk of f (x). Let the degree (and thus number of roots, including repetitions)
of f (x) be D. Note that a(n, k) ∈ OL for all n and k.

Now let p COL be a prime. If a(n) 6∈ p for any n, then it follows that
a(k, n) 6∈ p, since p is an ideal. So the rigid divisibility condition vacuously
holds for p in this case.

On the other hand, suppose that n is minimal such that a(n) ∈ p. Let
the exponent associated with p be d; so that a(n) ∈ pd but a(n) 6∈ pd+1. Now
by Corollary 1 we know that only for multiples of n is a(m) ∈ p.

For each k let dk be the exponent such that a(n, k) ∈ pdk but a(n, k) 6∈
pdk+1. Since ∏ a(n, k) = a(n) ∈ pd, it follows that ∑ dk ≥ d. And since
a(n) 6∈ pd+1, it follows that ∑ dk < d + 1. Hence ∑ dk = d.

Let m be such that a(m) ∈ p (since only for such m can a(m, k) ∈ p, as
noted above), and consider hk, the exponents such that a(n, k) ∈ phk but
a(n, k) ∈ phk . Now as noted above, n|m, and thus it follows from Lemma 2
that hk ≥ dk when dk ≥ 1, and of course hk ≥ dk trivially when dk = 0.
But since a(n) is a rigid divisibility sequence, we know that a(m) ∈ pd

but a(m) 6∈ pd+1, and thus ∑ hk = d = ∑ dk as before. Thus it follows
that adding the inequalities hk ≥ dk yields an equality: so each of those



Necessary Conditions 11

inequalities must have in fact been an equality, and thus hk = dk for each
k. But this held for any m such that a(m) ∈ p, thus for any m such that
a(m, k) ∈ p, and it therefore follows that for {a(n, k)} the rigid divisibility
condition holds for p with exponent dk.

This applied for all primes p COK, the sequences generated by f (x +
rk)− rk are rigid divisibility sequences, and in particular the sequence gen-
erated by f (x + r)− r is a rigid divisibility sequence, as claimed.

This can be expressed simply as sequence factors of rigid divisibility se-
quences are rigid divisibility sequences. It is worth noting that this result is,
even in the case OK = Z, strictly stronger than Proposition 2. For a poly-
nomial f (x) might have some integer roots and some roots which are not
integers: in that case Proposition 2 does not apply, so we cannot conclude
from it that even the sequence factors which consist of rational integers are
rigid divisibility sequences. However, the above theorem shows that this
is, in fact, the case. This is an example of the utility of expanding beyond
Z.

Example 5. The polynomial f (x) = x3− 3x2 + 3x + 1 is equal to g(x− 1) + 1,
where g(x) = x3 + 1. Since g(x) has linear coefficient 0, it generates a rigid
divisibility sequence by Theorem 1. Since −1 is a root of g(x), it follows from
Theorem 3 that the sequence 1, 2, 3, 10, 731, . . . generated by f (x) is also a rigid
divisibility sequence. Since the other roots of g(x) are not rational integers, this
result would not follow from Proposition 2.

2.2 Necessary Conditions

All of the above theorems are geared toward giving sufficient conditions
for a polynomial to generate a rigid divisibility sequence. However, if we
want to characterize the polynomials which give rise to rigid divisibility
sequences, we need necessary conditions as well. The following theorem is
a step in this direction.

Theorem 4. Let f (x) ∈ OK, and let {an} be the sequence generated by f (x).
Define the polynomials { fn(x)} by f1(x) = f (x) and fn+1(x) = f ( fn(x)); so
that, in particular, an = fn(0). Define cn to be the linear coefficient of fn(x) for
each n ≥ 1. Then {an} is a rigid divisibility sequence if and only if the following
holds:

For all prime ideals p COK, if an ∈ p then cn ∈ p.
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Proof. We note that the linear coefficient of a polynomial is the constant
term of its derivative; in particular, cn = f ′n(0). This is useful because we
can do many computations more easily by working with derivatives rather
than linear coefficients of the polynomials.

For convenience of notation we define a0 = 0. Note also that we have
dropped the number of iterations of f into a subscript to avoid confusion
with the derivative. We first wish to show the following result (the messy
part of the proof):

Lemma 4. Suppose that an ∈ pd, d ≥ 1. Then for all k ≥ 1,

an+k ∈ an

k−1

∏
r=0

f ′(ar) + ak + pd+1.

Proof. The proof is by induction on k. Let f (x) =
D

∑
i=1

γixi. For k = 1, we

have

an+1 = f (an) =
D

∑
i=0

γi(an)i = γ0 + γ1an +(an)2
D

∑
i=2

γi(an)i−2 = a1 + an f ′(a0)+ β,

where β ∈ pd+1. Thus

an+1 ∈ an

0

∏
r=0

f ′(ar) + a1 + pd+1.

This is the base case.
To do the inductive step we write

an+k = an

k−1

∏
r=0

f ′(ar) + ak + β,
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where β ∈ pd+1. Then we have

an+k+1 = f (an+k) = f

(
an

k−1

∏
r=0

f ′(ar) + ak + β

)

=
D

∑
i=0

γi

(
an

k−1

∏
r=0

f ′(ar) + ak + β

)i

=
D

∑
i=0

γi

i

∑
`=0

(
i
`

)
a`

k

(
an

k−1

∏
r=0

f ′(ar) + β

)i−`

= f (ak) +
D

∑
i=1

γi

i−1

∑
`=0

(
i
`

)
a`

k

(
an

k−1

∏
r=0

f ′(ar) + β

)

= ak+1 +
D

∑
i=1

γi

i−1

∑
`=0

(
i
`

) i−`

∑
c=0

(
i− `

c

)
a`

k

(
an

k−1

∏
r=0

f ′(ar)

)c

βi−`−c

= f (ak) +

(
an

k−1

∏
r=0

f ′(ar)

)
D

∑
i=1

γi

(
i

i− 1

)
(ak)i−1

+
D

∑
i=1

γi

i−1

∑
`=0

(
i
`

) i−`−1

∑
c=0

(
i− `

c

)
a`

k

(
an

k−1

∏
r=0

f ′(ar)

)c

βi−`−c

an+k = f (ak) +

(
an

k−1

∏
r=0

f ′(ar)

)
f ′(ak) + δ

= f (ak) + an

k

∏
r=0

f ′(ar) + δ,

where δ is a sum, each of whose terms contains either β ∈ pd+1, or two
terms an ∈ pd; in either case contained in pd+1, and thus δ ∈ pd+1. It follows
that

an+k+1 ∈ f (ak) + an

k

∏
r=0

f ′(ar) + pd+1,

as required.

Now consider the quantity f ′(an+m). We have that

f ′(an+m) = f ′( fm(an)) = f ′( fm(0) + g(an, am)an) = f ′(am + β)
= f ′(am) + h(am, β)β = f ′(am) + δ,
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where β, δ ∈ p. By induction we see that

f ′(an+m) = f ′(am) + β,

for some β ∈ p.
It follows that

an

kn−1

∏
r=0

f ′(ar) = an

(
n−1

∏
r=0

f ′(ar)

)k

+ anβ = an

(
n−1

∏
r=0

f ′(ar)

)k

+ δ,

where β ∈ p and thus δ ∈ pd+1.
Now we substitute ar = fr(0) into the product and apply the chain rule,

obtaining that
n−1

∏
r=0

f ′(ar) =
n−1

∏
r=0

f ′( fr(0)) = f ′n(0).

Now, we wish to determine under what circumstances we never have
am ∈ pd+1 while an ∈ pd but an 6∈ pd+1. By Corollary 1 and Lemma 2,
it suffices to determine such circumstances when n is minimal such that
an ∈ p. By Corollary 1, all terms am with am ∈ p have n|m for such an n.
Together with Lemma 2, this shows that if for such a minimal n, an ∈ pd,
then am ∈ pd for all m with am ∈ p.

Hence we wish to determine, for such minimal n, under what condi-
tions atn 6∈ pd+1.

We have, from Lemma 4 and the succeeding discussion, that

atn ∈ an

(t−1)n−1

∏
r=0

f ′(ar) + a(t−1) + pd+1 = an( f ′n(0))(t−1) + a(t−1)n + pd+1.

But we can apply the same result to the term a(t−1)n, yielding a similar
expression with a term a(t−2)n, and we can continue applying the result
t− 1 times to obtain

atn ∈ an( f ′n(0))(t−1) + an( f ′n(0))(t−2) + · · ·+ an( f ′n(0)) + an + pd+1

= an

(
1 +

t−1

∑
s=1

( f ′n(0))s

)
+ pd+1.

Now in the case that f ′n(0) ∈ p, then this becomes atn ∈ an + pd+1 (since
an ∈ pd), so it is impossible that an ∈ pd+1.

On the other hand, if f ′n(0) 6∈ p, then f ′n(0)z + p = 1 + p for some z,
because OK/p is a finite field, and f ′n(0) + p is a nonzero element of that
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field. Then consider apzn, where p is the characteristic of OK/p. We have,
for some β ∈ pd+1 and δi, δ, α ∈ p,

apzn = an

(
pz−1

∑
s=0

( f ′n(0))s

)
+ β = an

(
p−1

∑
q=0

(
z−1

∑
s=0

( f ′n(0))s + δqz+s

))
+ β

= an

(
δ + p

(
z−1

∑
s=0

( f ′n(0))s

))
+ β = anα + β ∈ pd+1.

Hence in this case, {an} cannot be a rigid divisibility sequence.
It follows that an is a rigid divisibility sequence if and only if, for each

prime p and each n such that an ∈ p, also f ′n(0) ∈ p. Since cn = f ′n(0), This
completes the proof.

This is a sufficient as well as a necessary condition, but it is not as nice
as the other sufficient conditions, and shows most promise at helping with
the more difficult problem of finding good necessary conditions for a poly-
nomial to generate a rigid divisibility sequence.

By using this theorem together with the fact that sequence factors of a
rigid divisibility sequence are also rigid divisibility sequences (Theorem 3),
we can give another necessary condition.

Theorem 5. Let {an} be a rigid divisibility sequence generated by f (x) ∈ OK.
Let r1, . . . , rk be the roots of f (x). Define as above fn(x) to be the n-th iterate of
f (x), and let cn be the linear coefficient of fn(x). Then one of the following holds:

1. ri = rj for some i 6= j

2. For all sufficiently large n and prime ideals p COK, an+1 ∈ p implies that
cn ∈ p.

Proof. Consider the polynomials f i(x) := f (x + ri) − ri. Analogously to
the definitions above let ai

n be the sequence generated by f i(x) and ci
n be

the linear coefficient of f i
n(x). We have that

f i
n+1(x) = fn( f (x + ri))− ri.

Now because ri is a root of f (x), f (ri) = 0 and thus f (x + ri) has no con-
stant term. It follows that the linear term of f i

n+1(x) is just the product of
the linear terms of f (x + ri) and fn(x); that is, ci

n+1 = ci
1 · cn.

Now by Theorem 3, we know that the sequences {ai
n} are also rigid

divisibility sequences. Let L be the splitting field of f (x) over K. Then each
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f i(x) ∈ OL[x]. By Theorem 4 we know that for every prime ideal p COL
with ai

n+1 ∈ p, also ci
n+1 ∈ p. Since ci

n+1 = ci
1 · cn, we know that either ci

1 ∈ p

or cn ∈ p.
Now let p C OL be a prime such that an+1 ∈ p. Then since an+1 =

∏i ai
n+1, it follows that cn ∈ p or ci

1 ∈ p for some i. There are two cases.
Either ci

1 = 0 for some i, or not. In case ci
1 = 0, it follows that fi(x) has

no linear term, hence f (x + ri) has no linear term. But f (x + ri) has no
constant term since ri is a root of f (x), so in fact f (x + ri) has a multiple
root at x = 0, and hence f (x) has a multiple root at x = ri. Thus ri = rj for
some i 6= j, which is the first case cited above.

So suppose that no ci
1 = 0. Then there are only finitely many primes

p COL such that ci
1 ∈ p for some i; let n be large enough that for all p, if

am ∈ p for some m and ci
1 ∈ p for some i, then am ∈ p for some m ≤ n.

(Certainly this is true for all sufficiently large n; in particular we may take
n to be the largest of all norms N(p) where ci

1 ∈ p for some i.)
Consider cm+1. We have

cm+1 = ∑
k≥1

kbkcmbk−1
0 ,

where k is the degree of f (x) and bk the coefficient of xk in f (x). Hence
cm ∈ p implies that cm+1 ∈ p. By induction it follows that cm ∈ p implies
that cn ∈ p for all n ≥ m.

Now by Theorem 4, am ∈ p implies that cm ∈ p; so for every p such that
am ∈ p for some m and ci

1 ∈ p, we have cm ∈ p for some m ≤ n and hence
cn ∈ p. Thus, for every prime p COL such that an+1 ∈ p, we have cn ∈ p.

Now we want to show the same for primes p COK. Let p be such a
prime such that an+1 ∈ p. Let p′ be a prime lying over p in OL. Certainly,
then, an+1 ∈ p′. Therefore, cn ∈ p′. But cn ∈ OK, so since p′ ∩ OK =
p, it follows that cn ∈ p. This gives the second case in the theorem, and
completes the proof.
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Future Work

The results presented in the last section give substantial information on
the polynomials which generate rigid divisibility sequences, but they are
far from forming a complete characterization. The general goal of future
work will be to develop Theorem 4 to get better characterizations of which
polynomials generate rigid divisibility sequences.

3.1 Conjectures and Difficulties

As of this writing, the polynomials which are known to generate rigid di-
visibility sequences can be divided into three classes.

1. Polynomials of the form f (x) = (x + a)n for some algebraic integer
a and integer n ≥ 2. It can be shown that the sequence generated
by such a polynomial f (x) has terms which are the nth power of the
terms of the sequence generated by g(x) = xn + a. Since this polyno-
mial generates a rigid divisibility sequence by Theorem 1, f (x) does
as well.

2. Polynomials f (x) which have linear coefficient 0. These all generate
rigid divisibility sequences by Theorem 1.

3. Polynomials which can by found from those in class (2) by some num-
ber of iterations of the sequence factorization process.

Since the rigid divisibility criterion, or equivalently, the conclusion of
Theorem 4, is so restrictive, it seems unlikely that there will be any sporadic
polynomials which generate rigid divisibility sequences “by accident” and
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are not part of any broader class. Though it is conceivable that some other
classes of polynomials exist which generate rigid divisibility sequences,
this also seems unlikely at this point.

Conjecture 1. The three classes describe above encompass all monic polynomials
which generate rigid divisibility sequences.

This is a very strong statement, however, so it perhaps will be useful to
give a weaker conjecture which is more intuitively connected to what we
know about these polynomials, in particular via Theorems 4 and 5. The
interesting and relevant observation is that, with the exception of class (1)
above, all polynomials which generate rigid divisibility sequences satisfy
the conclusions of those theorems in a somewhat degenerate manner. In
particular, the conclusion of Theorem 4, that an ∈ p implies that cn ∈ p, is
trivially true if cn = 0. Furthermore, it is not difficult to show that when-
ever cn = 0, then cm = 0 for all m ≥ n, so that the condition will be satisfied
for all larger n as well.

It happens that for both classes (2) and (3) of polynomials f (x), eventu-
ally fn(x) has linear coefficient 0: that is, cn = 0 for some n. This suggests
that with only a few exceptions (class (1) above, for instance), the only poly-
nomials which satisfy the conclusion of Theorem 4 satisfy it in this degen-
erate manner. Thus we make the following conjecture.

Conjecture 2. Let f (x) be a monic polynomial which generates a rigid divisibility
sequence. Then either f (x) = (x + a)n for some algebraic integer a and integer
n ≥ 2, or there is some n such that the linear coefficient of fn(x) is 0.

This, if true, would not immediately imply the first conjecture, but prov-
ing it would be a strong step on that path.

Unfortunately, the natural approaches to proving these conjectures meet
with a number of difficulties. The natural way to approach proving that
the linear coefficient of fn(x) is 0 is to try to show that it is divisible by “too
many” primes: either that an infinite number of different primes must di-
vide it, or giving a lower bound on the number of different primes which
divide it, together with an upper bound on the number of primes which
could divide it if it were nonzero. Theorem 5 suggests a way to attempt this,
but it runs into problems. Trying to iterate the argument to get p|an+m ⇒
p|cn for large m is difficult not only because of the possibility that the first
conclusion holds at some point, but because we cannot control how large n
must be in order to be sufficiently large. For larger m, the minimum size of
n depends not only on the linear terms of the polynomials obtained from
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f (x) by sequence factorization, but upon the linear terms of the polyno-
mial obtained from them by sequence factorization, and so on. Putting any
kinds of bounds on n from this is difficult, because these linear coefficients
could be contained in prime ideals with very large norms, despite being of
manageable absolute value.

This problem is one example of what makes this topic difficult in gen-
eral. While the asymptotics of such discrete dynamical systems (e.g., growth
rates) are relatively well-understood, they tell us little about their arith-
metic properties. In number rings which have units with (ordinary) ab-
solute value less than 1, the growth rate of the sequence tells us nearly
nothing about the primes dividing it. Since we need to be able to deal with
such rings to prove most of the interesting results even about Z (for exam-
ple, Theorem 3), this limits the tools at our disposal with which to attack
the problem. It seems quite likely that results like those conjectured will
be provable, but doing so will probably require developing powerful and
novel techniques.

3.2 Further Directions

In addition to the above conjectures, there are other directions in which the
notions developed here could be extended.

The first way is to expand to include sequences generated by polyno-
mials other than those which are monic with algebraic integer coefficients.
Non-monic polynomials are a natural extension, and not pursued here pri-
marily because the sequence factorization methods do not apply. Addition-
ally, there are polynomials whose coefficients are not all integers, but which
take integer values for integer inputs (e.g., f (x) = x3 + 1

2 x2 + 1
2 x + 1), and

considering these polynomials as well may prove interesting.
Another direction would be to consider rigid divisibility sequences gen-

erated by other discrete dynamical systems. For instance, by extending the
notion of rigid divisibility sequences to the rationals (perhaps looking at
the numerators), we could examine which rational functions generate rigid
divisibility sequences.

It is so far uncertain how useful the particular notion of rigid divisi-
bility will be to arithmetical dynamics as a whole, but if the results here
are any indication, it is deep enough to be worth pursuing. Identifying
the set of functions within certain classes which generate rigid divisibility
sequences could prove useful to examining other arithmetic properties of
their dynamics. This work on the rigid divisibility sequences generated by
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polynomials should serve as a beginning.
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