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Abstract

The abelian sandpile model, or chip-firing game, is a cellular automaton
on finite directed graphs often used to describe the phenomenon of self-
organized criticality. Here we present a thorough introduction to the theory
of sandpiles. Additionally, we define a symmetric sandpile configuration,
and show that such configurations form a subgroup of the sandpile group.
Given a graph, we explore the existence of a quotient graph whose sand-
pile group is isomorphic to the symmetric subgroup of the original graph.
These explorations are motivated by possible applications to counting the
domino tilings of a 2n× 2n grid.
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Chapter 1

Introduction to the Theory of
Sandpiles

Imagine vacationing at the seashore as a small child. Observing a parent
constructing a sand castle, we watch as they fill up a bucket with moist
sand, pack it tightly, and then invert the bucket onto the ground, depositing
a well-formed turret. Attempting to imitate this process, we fill up our pail
with dry sand and then invert it. Lifting it up, we watch, surprised, as the
dry sand cascades over its boundaries because the gradient of the pail is too
steep for the dry sand to maintain such a rigid shape. We scoop more sand
onto the pile to fix this problem, but instead of making the sides steeper, the
added sand rolls down the sides of the pile until the avalanche stops and
the pile stabilizes, assuming a conic shape with gradually sloping sides.
As depicted in Figure 1.1, if we continued sprinkling sand onto the pile,
we would observe that the sand pile would undergo periods of stasis with
intermittent avalanches as the sides became too steep to hold their shape.
These avalanches occur regularly and have different effects. How can we
describe these phenomena?

1.1 Origins of the Model

In 1986 the physicists Bak, Tang, and Wiesenfeld developed a cellular au-
tomaton to describe the behavior of a sand pile. They imagined a sand pile
simplified to a square grid of cells as shown in Figure 1.2. Next, a sand
grain is dropped onto a random grid cell. When a cell amasses four grains
of sand, it becomes unstable and the grains are redistributed to each of its
adjacent grid cells. If the unstable cell is on the boundary of the grid, then
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Figure 1.1: Sand piles exhibit static periods with intermittent sand slides,
(Bak, 1996).

three grains of sand will be transfered to neighboring cells, and one grain
will fall off the edge and disappear. If the cell is on the corner of the grid,
then two grains will be transferred to neighboring cells and two will fall off
the edge and disappear. The number of sand grains on a particular cell may
be thought of as the “local slope” of the sandpile. As the sand percolates
over the grid in this fashion, adjacent cells may accumulate four grains of
sand and become unstable causing an “avalanche.” What governs the fre-
quency of these avalanches?

Many physicists are very interested in the frequency, size, and dura-
tion of these avalanches. It has been demonstrated that the distribution of
avalanches has a fractal structure, and thus has nontrivial correlations with
power-law decay. Many phenomena in nature exhibit this fractal structure.
In Dhar (1999), several examples of this power-law decay are explained.
For example, the author cites spatial fractal behavior, such as the height
profile of mountain ranges or the drainage area of a river as we travel
downstream. The author also cites nonspatial examples of fractal behav-
ior, such as the the Gutenberg-Richter law, which says that the frequency
of an earthquake of total energy E is found to vary as E−z, where z is a
number close to 2, for many decades of the energy range. Another com-
pelling example comes from fluid turbulence, where the fractal behavior is
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Figure 1.2: The Bak, Tang and Wiesenfeld model of self-orgainized critical-
ity.

observed in the way mean-squared velocity difference scales with distance,
or in the spatial fractal structure of regions of high dissipation.

Systems that exhibit this significant correlation with power-law decay
are said to have critical correlations. For equilibrium systems, such as a
block of ice, these critical correlations to power-law decay are replaced by
a critical phase transition. Such critical points can only be achieved by ad-
justing some physical parameter such as the temperature of the system.
The behavior of a nonequilibrium system is independent of control param-
eters and will achieve its critical state independent of any control parame-
ter. Such a system is said to exhibit self-organized criticality. A system that
exhibits self-organized criticality will have a constant “input’ (steady ad-
dition of sand grains), and a series of events or “avalanches” as “output”
(sand avalanches). The “output” follows a power-law (fractal) frequency-
size distribution. Self-organized criticality has been used to describe sys-
tems such as forest fires, earthquakes, and stock-market fluctuations (Bak,
1996). Understanding such systems, then, should lead to numerous physi-
cal applications.

1.2 Model Structure and Definitions

The sandpile model was first generalized and developed by Dhar (1990).
To understand his generalization, we recall some basic graph theory. A
directed graph Γ is a finite, nonempty set V (the vertex set) together with a
disjoint set E (the edge set), possibly empty, that contains ordered pairs of
distinct elements of V. An element of V is called a vertex and an element of
E is called an edge. Altogether, we denote the graph Γ(V, E). Let v1, v2 ∈ V.
If there exists an edge (v1, v2) ∈ E, we say the vertices v1 and v2 are adjacent.
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v1

v2

s

Figure 1.3: This directed graph has a global sink.

In Figure 1.3, we find an example graph Γ(V, E). Here the graph has vertex
set V = {v1, v2, s} and the edge set

E = {(v1, v2), (v1, s), (v2, v1), (v2, s)}.

This graph is called a multigraph because we allow more than one edge (but
a finite number) to connect a pair of vertices. We say a graph has self-loops
if there are edges connecting a vertex to itself.

Recall that the Bak-Tang-Weisenfeld (BTW) sandpile model was defined
on square grids with cells that randomly received sand grains. These cells
had a maximum capacity of 3 sand grains; once this capacity was exceeded,
the sand would topple into adjacent cells or fall off the edge of the grid.
These square grids are a type of graph, with the cells as the vertices and
edges connecting adjacent cells and allowing sand grains to pass from one
cell to a neighboring cell.

In order to generalize this concept, Dhar decided to consider a finite
directed graph Γ = (V, E, s) with multiple edges and self-loops allowed.
The graph has a designated vertex s called the sink. We keep Figure 1.3
in mind as we define the following terms. Each non-sink vertex of Γ has
a number of edges directed away from it. This number is called the out-
degree of vertex v and is denoted dv. In our example, dv1 = 2. If a sink s
has a directed path going into it from every other vertex, then s is called a
global sink. In our example graph, s is global because both v1 and v2 have
an edge directed into it. Note that if a global sink exists it must be unique.
Suppose both s and s′ are global sinks, then s must have a directed edge to
s′, but this contradicts the definition of a sink.

We would like to have an algebraic structure for associating sand grains
to the vertices of the graph. Informally, we might think of a sandpile as a
nonnegative integer weighting on the n vertices of a graph, taking the form
of a vector σ ∈ Zn.
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More formally, let X be any finite set. Fix an ordering on the elements
of X: x1, x2, . . . , xn. Then consider the standard basis for Zn, {e1, e2, . . . , en}.
Associate to each element of X a standard basis element in the natural way,
xi := ei. Recall that a free abelian group is an abelian group in which every
group element can be written uniquely as a finite linear combination of
basis elements. Define a free abelian group on X in the following way:

ZX =

{
∑

x∈X
cxx : cx ∈ Z for all x ∈ X

}

In order to formally define a sandpile, we will also need to define an
object that restricts our “scalars” to the nonnegative integers.

NX = {c ∈ ZX : c ≥ 0}

=

{
∑

x∈X
cxx : cx ≥ 0 for all x ∈ X

}
.

Definition 1.1: Given a graph Γ(V, E, s), let Ṽ denote the non-sink vertices.
A sandpile configuration on Γ is an element of NṼ.

To capture the structure of the graph in matrix form, we define ∆ to be
the graph Laplacian. To define this matrix we first consider the adjacency
matrix A. Let V = {v1, v2, . . . , vn}, then the entries of A are given by Aij =
w(vi, vj), where w denotes the edge weight, that is the number of directed
edges from vertex vi to vertex vj. We must also consider the diagonal matrix
D, whose diagonal entries are equal to the out-degree of each vertex. The
graph Laplacian is an n× n matrix given by ∆ = D− A.

Example 1.1: Referencing the graph in Figure 1.3 we proceed to compute
the Laplacian matrix. We note that the out-degree of both vertices is 2, and
the has no out-degree. This gives us the diagonal entries of D. Next we
compute the adjacency matrix and subtract:

∆ = D− A =

 2 0 0
0 2 0
0 0 0

−
 0 1 1

1 0 1
0 0 0

 =

 2 −1 −1
−1 2 −1
0 0 0

 .

Note that the rows of the Laplacian matrix sum to zero. In the sandpile
context, this tells us that the amount of sand that topples off an unstable
vertex is the same amount gained by its adjacent vertices. We will discuss
this further in the next section.
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2

1

s

Figure 1.4: A sandpile configuration can be thought of as a nonnegative,
integer weighting on the vertices.

The reduced Laplacian of Γ is the Laplacian matrix we obtain by deleting
row and column corresponding to the sink, e.g.

∆̃ =
(

2 −1
−1 2

)
.

Notice that the original Laplacian can always be recovered from the re-
duced Laplacian by adding a row of zeros to the bottom of ∆̃, and adding
a new column with values that ensure all rows sum to zero. The reduced
Laplacian will be an important tool in describing sand avalanches. Now
that we have built a generalized structural framework for our model, we
can begin to drop on sand.

An example of a sandpile on the graph in Figure 1.4 would be σ = (2, 1),
where σ(v1) = 2 and σ(v2) = 1. We say a configuration σ is stable at vertex
v if σ(v) < dv, that is, if the number of sand grains on v is less than the out-
degree of the vertex. A configuration σ is unstable at a vertex v if σ(v) ≥ dv.
If the number of grains of sand on a vertex equals or exceeds the out-degree
of the vertex, then the sandpile topples sending one grain of sand each of
its adjacent vertices. The new sandpile obtained after an unstable vertex
topples is called a successor of σ and is denoted σ′.

Returning to the reduced Laplacian we defined earlier, we find a handy
algebraic method to describe the stabilization of sandpiles. If σ(v) > dv
then the toppling of sand on v is equivalent to subtracting the correspond-
ing row of the reduced Laplacian from σ. In Figure 1.5, we show a toppling
sequence for the sandpile σ = (2, 1). In the first frame, we note that v1 is
unstable because σ(v1) ≥ dv1 = 2.

To capture that the sand on vertex v1 has toppled, we subtract the corre-
sponding row of the reduced Laplacian, (2,−1), from the sandpile config-
uration σ = (2, 1). This gives us a new sandpile configuration (0, 2). Now,
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however, vertex v2 is unstable as shown in the second frame of Figure 1.5.
We subtract the row of the reduced Laplacian corresponding to vertex v2
from the new sandpile to obtain the stable sandpile: (0, 2) − (−1, 2) =
(1, 0). This sandpile is called the stabilization of σ and we denote it σ◦.

Alternatively, for a graph with n vertices, we can think of sandpiles as
points in affine n-space, An. Adding sand to a particular vertex then could
be thought of as an affine transformation.

Definition 1.2: An affine transformation is a map between affine spaces and
consists of a linear transformation, followed by a translation: x 7→ Ax + b.

The way we have defined our toppling rules in this popular version of
the model, adding sand to a graph is just a translation so A = I. Also, recall
that we have defined a sandpile only over the positive integers so that we
must always have σ = Ix + b ≥ 0. Consider Figure 1.5. On the right side of
each frame, we translate the sandpile via the rows of the reduced Laplacian
until it is in the stable region. One might conceive of an application of this
model that would require the notion of “negative” sand on a particular
vertex, or toppling rules that would include a linear transformation.

Considering this process, we might be concerned that the order in which
the sand grains on the vertices topple might change the long-term behavior
of the system. However, the toppling order turns out to be completely in-
consequential. In the following chapter we provide some standard proofs
adapted from Holroyd et al. (2008) for the general existence and uniqueness
of σ◦ independent of toppling order.

1.3 Standard Sandpile Theorems

Theorem 1.1 (Uniqueness of stabilization, independent of toppling order):
Let Γ be a finite directed graph, and let {σi} = σ0, σ1, . . . , σn be a sequence of
sandpile configurations on Γ, each of which is the successor of the one before it.
Let {σ′i } = σ′0, σ′1, . . . , σ′m be another such sequence with the initial states being
equivalent, σ′0 = σ0. We can conclude the following:

1. Without loss of generality, if σn is stable, then m ≤ n, and moreover, no
vertex’s sand topples more times in {σ′i } than in {σi}.

2. If σn and σm are both stable, then m = n, σn = σ′n, and each vertex’s sand
topples the same number of times in both histories.
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2

1

s

v1

v2

Stable

Stable

0

1

s

v1

v2

Stable

Stable

2

1

s

0

1

v1

v2

Stable

Stable

Figure 1.5: Stabilization sequence for an example graph. On the right, we
trace the sandpile in the affine plane as rows of the reduced Laplacian are
subtracted.
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Proof. Note that the second statement follows immediately from the first.
If the first statement fails, consider the counterexample with m + n mini-
mal. Let vi be the vertex whose sand topples when σi−1 becomes σi, and
v′i be the vertex whose sand topples when σ′i−1 becomes σ′i . The sand
on vertex v′1 must topple at some stage in the sequence of configurations
{σi}, since σn is stable. Suppose that this toppling occurs at the ith stage
in the sequence so that vi = v′1. Then there exists a toppling sequence,
vi, v1, v2, . . . , vi+1, . . . , vn that turns σ0 into σn with the same number of top-
plings at each site as the unpermuted sequence. Thus the toppling se-
quences v1, . . . , vi−1, vi+1, . . . , vn and v′2, v′3, . . . , v′m constitute a smaller coun-
terexample to the first statement (with initial configuration σ′1), contradict-
ing minimality.

With this theorem it is clear that if a stabilization exists for σ then it will
be unique. We turn to the following theorem for existence.

Theorem 1.2: On a directed graph with a global sink, through a sequence of top-
plings every configuration σ stabilizes to σo.

Proof. Suppose σ is a configuration with N grains of sand, i.e. ∑n
i=1 σ(vi) =

N, and v ∈ Ṽ. Let v0, v1, . . . , vm be a directed path from v0 = v to vm = s.
Then vm−1 can fire at most N times, vm−2 can fire at most dvm−1 N times etc.
Thus, v = v0 can fire at most dv1 . . . dvm−1 N times. Thus, each vertex can fire
at most a finite number of times.

Note that this is not true if the graph has no sink. In this case, the sum
of the sand over all the vertices is invariant. Choose a configuration σ such
that ∑n

i=1 σ(vi) > ∑n
i=1 dvi ; such a configuration exists because N is infi-

nite and dvi is finite for all i. Then there will always be at least one vertex
with the number sand grains greater than its out-degree, by the pigeon hole
principle. Thus the configuration will never stabilize.

Now that we have defined the notion of toppling and stabilization, we
would like to have a way to add more sand to our graph. To do this we
define a special addition operator as follows:

Definition 1.3: Let σ be a stable configuration, and define the sand addition
operator, Sv, such that the stable configuration Svσ is the configuration re-
alized after adding a sand grain to vertex v and then stabilizing. That is,
Svσ = (σ + 1v)◦.

Theorem 1.3 (Abelian Property): On a directed graph with a global sink, the
sand addition operators commute.
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Proof. Let σ be a sandpile configuration and v1 and v2 be vertices. Note
that the unstable vertices of σ + 1v1 form a subset of the unstable vertices
of the configuration σ′ = σ + 1v1 + 1v2 . So if we stabilize (σ + 1v1) we
obtain σ′ = Sv1 σ + 1v2 . Stabilizing once more we obtain (σ′)◦ = Sv2Sv1 σ,
the stabilization of σ′. Without loss of generality, we might have replaced
vertex v2 for vertex v1 in the above argument obtaining (σ′)◦ = Sv1Sv2 σ.
Thus, Sv2Sv1 σ = Sv1Sv2 σ, by uniqueness of stabilization. Notice that we
use the assumption of the existence of a global sink in order to ensure that
every configuration stabilizes.

With an operator and the set of sandpile configurations, we are moti-
vated to define a group structure.

Definition 1.4: The sandpile group for the graph Γ is given by

S(Γ) = ZṼ/Row(∆̃(Γ)),

that is, the quotient group obtained after modding out by the integer row
span, or image, of the reduced Laplacian of Γ.

For graphs with only two vertices, we can visualize this group as lattice
points in the affine plane as shown in Figure 1.6. Choosing an arbitrary
lattice point, we proceed to translate the sandpile by subtracting rows of
the reduced Laplacian until we reach a sandpile in the stable region. Note
that in Figure 1.6 each lattice point is associated to a distinguishing shape:
a circle, square, or diamond. If we begin at a sandpile with a particular
shape and stabilize, we find that the shape associated to the stable sandpile
matches the shape with which we started. The shapes denote the equiva-
lence classes of the group.

Throughout the process of adding sand, toppling and stabilizing, the
sandpile configuration is constantly changing. There are some configura-
tions that can never occur except as an initial state of the sandpile. These
configurations are called transient. For example consider the zero config-
uration on the 3× 3 grid graph. Once sand has been added to a cell, the
graph will never again be empty. Suppose we dropped some sand on the
cell at the center of the grid. If we keep adding sand to try and move the
other grain off the grid, the sand grains on that center cell will topple once
there are more than four grains, sending sand to the neighboring cells in
the graph. As more sand is added, some will fall off the edge, but there
will always be sand remaining on the graph. This suggests the question:
what are configurations we can get to from any other configuration in the
graph?
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v1

v2

s

v1

v2

Stable

Stable

Figure 1.6: The rows of the reduced Laplacian partition the sandpiles into
equivalence classes, delineated by the shapes.

A recurrent sandpile configuration is a stable configuration that can be
obtained from any other configuration via a sequence of sand additions
and toppings. The maximum stable configuration σmax is given by σmax(v) =
dv − 1, that is, every vertex has the most sand it can hold without toppling.
The maximum stable configuration is a clear example of a recurrent config-
uration. It can also be shown that a configuration σ is recurrent if and only
if there exists a configuration τ such that σ = (τ + σmax)◦.

As it is proved in Holroyd et al. (2008), each equivalence class of S(Γ)
contains a unique recurrent sandpile configuration and so we redefine S(Γ)
to be the group of recurrent elements of Γ. Because this is a group, we might
inquire after the identity sandpile. The identity sandpile, e ∈ S(Γ) can be
computed as follows: e = (2σmax − (2σmax)◦)◦.

Considering n× n graphs, the identity sandpile emerges as an interest-
ing object of study. Figure 1.7 lists some of the identity sandpiles for small
square grid graphs. Figure 1.8 is the identity sandpile for the 57× 57 grid.
Notice the presence of a large square in the center of the grid, which has
less sand than its surrounding cells. Such a square exists in the identity
sandpile for many very high values of n. This might suggest physically,
that somehow the sandpile is more stable towards the center. The existence
of this square in the center of the n× n grid remains an open question (Hol-
royd et al., 2008).

How large is this group? Consider that the order of S(Γ) is equal to
the index of the lattice Row(∆̃(Γ)) in ZṼ by definition. Consider also that
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Figure 1.7: Identity Sandpiles for the 2× 2 grid, 3× 3 grid, and 5× 5. The
integer indicates the height of the sand in each cell.

Figure 1.8: Identity sandpile for the 57× 57 grid. Colors: red = 1, blue = 2,
yellow = 3. Generated in Mathematica
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the volume of a parallelepiped is given by the determinant of the matrix
formed from its edge vectors. Since the order of S(Γ) is the volume of the
parallelepiped formed by the rows of the reduced Laplacian, the order of
S(Γ) is given by det(∆̃).

1.4 Sandpile Literature

Here we transition from a thorough treatment of definitions and theorems
to highlighting some results in the literature related to the abelian sandpile
model. Many of these results require a specialized knowledge of the field,
and we will not provide an in-depth discussion in this report, but include
them for completeness.

1.4.1 The BTW Results

The abelian sandpile model has its roots in statistical physics and was de-
veloped as a model of self-organized criticality. As discussed earlier, Bak
et al. (1987) were the first to explore the physical implications of self-organ-
ized criticality and they conceived a sandpile model to describe it. Many
possible applications of this model, including earthquakes, solar flares, di-
nosaur extinction, punctuated equilibria, brain models, traffic jams, and the
economy are discussed in Bak (1996).

1.4.2 Areas of Mathematics Spanned

The sandpile model was first studied in depth and generalized by Dhar
(1990, 1998, 1999), who coined the name abelian sandpile model (ASM).
In his later papers he surveys known results about the model, in particu-
lar he provides all the critical exponents characterizing the distribution of
avalanche-sizes in all dimensions. He introduces a relationship between
the ASM and the Potts model, which models interacting spins on a crys-
talline lattice. He discusses a generalization of the ASM to networks of
communicating reactive processors. In particular he develops sandpile
models with stochastic toppling rules.

How can we tell whether or not a configuration is transient or recur-
rent? Dhar (2006) presents a test called the burning algorithm. He shows
that a configuration with two adjacent vertices having a sand height of 1
must be transient. Extending this, he defines the notion of a forbidden sub-
configuration, a set of connected vertices with particular height properties
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that will render the configuration transient. Given a configuration, at first
all the sites are considered unburnt. Then, burn each site (remove its sand)
whose height is larger than the number of its unburnt neighbors. This pro-
cess is repeated recursively, until no further sites can be burnt. Then, if all
the sites have been burnt, the original configuration was recurrent, whereas
if some sites remain unburnt, then the original configuration was transient,
and the remaining sites form a forbidden subconfiguration.

From a discrete mathematics perspective, Merino (2005) introduces an
important relation between the chip-firing game and the Tutte polynomial.
This polynomial is the property of a matroid, an “independence structure”
that generalizes the notion of vector space linear independence. The Tutte
polynomial can be thought of as a normalized generalization of the chro-
matic polynomial of a graph. Here, Merino surveys the connections be-
tween chip firing and the Tutte polynomial, group theory, greedoids with
repetition and matroids. He also explores relationship between the physi-
cists’ abelian sandpile model and the Potts model.

For additional fascinating combinatorial results, Kenyon et al. (2000)
explores Temperley’s bijection between spanning trees of the square grid
and perfect matchings (dimer coverings) of the square grid. The authors
extend this result to general planar graphs, both directed and undirected,
with positively weighted edges. These weighted edges induce a weighting
on the set of spanning trees. They explore two particular cases of this bijec-
tion. They define a cylinder event for random spanning trees of directed,
weighted, planar graphs. Their main theorem allows them to compute the
measure of all such events. They also introduce Wilson’s algorithm for
quickly generating random samples of perfect matchings.

Given a sandpile group, what are the orders of its elements? That is,
how many times must we add the pile to itself and stabilize before we ar-
rive at the identity sandpile? This question was explored in Morar and
Perkinson (2007). Considering the 2 × n grid, the authors computed the
order of the element having two grains of sand at each vertex.

1.5 Alternate Approaches to Standard Theorems

The proofs included in Section 1.3 are largely algebraic in nature. If we con-
sider sandpiles as points in affine space, and toppling and sand addition as
affine transformations, then we might be able to create geometric proofs of
the same theorems. Here we present some possible approaches and proof
sketches for small graphs with only two vertices. Such cases are easier to
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Figure 1.9: For a graph with two vertices, it is easy to visualize the size of
its sandpile group.

visualize because their associated sandpiles exist in the affine plane.
For example, given a graph with only two vertices, it is very easy to

visualize why the size of its sandpile group is equal to the determinant of
its associated reduced Laplacian. Suppose we have the graph in Figure 1.9.
Recall that as we have defined a stable sandpile, each vertex v can have
any amount of sand s satisfying the condition that 0 ≤ s < dv. Being as
generous as possible then for the graph in Figure 1.9, vertex v1 might have
0, 1, 2, 3 or 4 grains of sand, and vertex v2 might have 0, 1, 2 or 3 grains
of sand. Combinatorially, the number of possible ordered pairs (i.e. the
number of stable configurations) will be 5× 4, or the product of the out-
degrees of the vertices.

Plotting all possible stable configurations in the affine plain, we obtain
region in Figure 1.10. Some of these configurations will not be recurrent.
Experimenting, we choose several sandpiles outside of the stable region
and then stabilize them by subtracting off rows of the reduced Laplacian,
until we are able to translate them into the stable region. No matter how
far out on the lattice we begin, following the rules of stabilization, we will
never reach the sandpiles delineated by the grey squares.

These configurations are not recurrent! Also note, that for this example,
the off-diagonals of the reduced Laplacian, (2, 2) give the exact dimensions
of the square of transient configurations. The stable, recurrent configura-
tions that make up the sandpile group can be counted exactly by computing
the determinate of the reduced Laplacian: (5× 4)− (2× 2).

Question 1.1: Do these geometric properties of the sandpile group found
in many small examples have any analogue for the sandpile groups of
larger graphs?
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v1
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dv1

Stable
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Figure 1.10: The stable sandpiles are marked with a shape. The black circles
are both stable and recurrent. The squares are stable but transient. Note
that the number of black dots is exactly given by the determinate of the
reduced Laplacian: (5× 4)− (2× 2).

If there were such geometric analogues for graphs with greater than
2 vertices, this approach might yield very intuitive proofs of many of the
standard sandpile theorems.

As another example, we might recast the question whether or not sand-
pile stabilization is unique as the solution to a system of linear inequalities.
Recall the 2-dimensional example 1.3 where,

∆̃ =
[

2 −1
−1 2

]
Let c = [c1, c2] be a column vector containing the coefficients of the

columns of the reduced Laplacian that stabilize a sandpile σ. Also, let d
denote the vector of out-degrees of the vertices, i.e. the vector containing
the diagonal entries of the reduced Laplacian. Then consider the systems:

σ− ∆̃Tc ≤ d− 1
σ− ∆̃Tc ≥ 0.

The first equation says that we must subtract off some linear combina-
tion of the rows of the reduced Laplacian until amount of sand falls below
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the out-degree of the vertex, d. This means that the number of sand grains
left on vertex, vi must be less than or equal to the out-degree of the vertex.
The second equation says that the final result must not be negative. In this
example, these inequalities explicitly become the two systems of inequali-
ties:

`1 := σ1 − 2c1 + c2 ≤ 1
`2 := σ2 + c1 − 2c2 ≤ 1

`3 := σ2 − 2c1 + c2 ≥ 0
`4 := σ2 + c1 − 2c2 ≥ 0

Graphing the parallelogram that surrounds possible solutions, the sta-
bilization of each sandpile does indeed lie in each of the shapes. Consider
the graphs of these parallel lines with different y-intercepts. We overlay an
integer lattice on the plane as shown in Figure 1.11

c2

c1

`1

`2

`3

`4

Figure 1.11: The parallelogram represents the possible coefficents for the
rows of the reduced Laplacian that might yield an allowable stable config-
uration
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Question 1.2: Might the stabilization of a sandpile σ on a graph with re-
duced Laplacian ∆̃ be given by some special (possibly unique) point in the
parallelogram of its coefficient lines?

We can easily compute the volume of the parallelogram for the 2-vertex
case using Cramer’s Rule,

det(D− I)
det(∆̃)

,

where D is the matrix with the out-degree of each vertex along the diago-
nal. Based on numerous examples, it seems to be true that for the 2-vertex
case this volume must be less than 1. A likely answer to Question 1.2 might
show how the volume of the parallelogram restricts lattice points, in fact
there can be at most one under the right conditions.

This approach certainly has some flaws as it has been described. One
obvious one is that the lower bound on the stabilization is not necessarily
zero. In fact it will be a burning script as discussed in Speer (1993). This
is a configuration that conceptually gives a lower bound for the amount
of sand that can be in a recurrent configuration for a given graph. This
means that, for some graphs, the linear system of inequalities will yield a
parallelogram that surrounds multiple lattice points. Additional conditions
may be required to prove uniqueness.



Chapter 2

Symmetric Sandpiles

2.1 Applications to Tiling Theorems

Consider the problem of tiling a square grid with sides of even length using
only dominos. How many domino tilings of such a 2n × 2n grid exist?
Consider the case where n = 1:

Here, there are two possible domino tilings of this grid. In general it
has been shown that the number of domino tilings is 2na2

n for some odd
integer an. A combinatorial version of the proof for this theorem can be
found in Pachter (1997). The first seven values of an are as follows:

a1 a2 a3 a4 a5 a6 a7

1 3 29 901 89893 28793575 29607089625

The matrix-tree theorem, a classic result due to Tutte, gives us a special
corollary: the number of spanning trees of the graph Γ is equal to the size
of the sandpile group S(Γ). It has also been shown in Kenyon, Propp, and
Wilson that the number of spanning trees of a graph is in one-to-one corre-
spondence with the domino tilings of a related graph. This motivates us to
find a relationship between the sandpile group and the domino tilings of a
graph.
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Figure 2.1: The subgraph P4 is invariant under the dihedral group, D4.

We say that an n×m grid graph has wired boundary if it is an undirected
graph and each corner vertex has an edge of weight 2 going to the sink,
and all other vertices on the boundary of the grid have an edge of weight
1 to the sink. Such boundary conditions give all non-sink vertices degree
4, (Holroyd et al., 2008). Specifically, let us consider a relationship between
the domino tilings of a 2n × 2n grid graph with wired boundary and the
size of its associated sandpile group S(Γ2n×2n).

Such a relationship has been explored in Perkinson (2008a). Given a
group (G, +), recall that we define the order of a group element, g ∈ G, to
be the least number of times we must add g to itself to obtain the identity,
that is to say that the order of g is the least positive integer m such that
mg = g + · · · + g = I. If no such integer m exists then we say that g
has infinite order. Consider the sandpile group of a 2n × 2n grid graph,
S(Γ2n×2n). Let gn ∈ S(Γ2n×2n) be the element with 2 grains of sand on
every vertex. It has been shown that the order of gn divides an, the number
associated with the domino tilings of Γ2n×2n.

The proof of the theorem in Perkinson (2008a) requires the construction
of a subgraph of Γ2n×2n, denoted Pn for “Pachter”, that respects the dihe-
dral symmetry of the grid graph in the following way. Let Gn := Γ2n×2n for
simplicity. Suppose n = 4 and consider Figure 2.1. Here we have a small
triangular graph that we flip around the dihedral symmetries depicted by
the dotted lines to obtain the large grid graph G4. In the following sec-
tions we will generalize the notion of a graph that captures the behavior
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of a larger graph under a symmetry group action. This might allow the
extension of the domino tiling theorem to other types of graphs.

2.2 Graphs with Symmetry

Consider the symmetric graph in Figure 2.2. Note how the vertices along
the axis of symmetry play an equivalent role in the dynamics of the model.
That is, if we place equal amounts of sand on both vertices, they will always
have equal amounts of sand on them after toppling because their structure
and instability conditions are the same. If we were to flip the graph about
the axis of symmetry, we would obtain an identical graph.

A group action on a graph Γ(V, E, s) partitions the vertex set V into
equivalence classes called orbits. More formally, we define the action the
group G on Γ to be the mapping

G×V → V
(g, v) 7→ gv,

That satisfies the following properties:

(1) if e is the identity of G, then ev = v for all v ∈ V;

(2) g(hv) = (gh)v for all g, h ∈ G and v ∈ V;

(3) if (v, w) ∈ E, the edge set, then (gv, gw) ∈ E and both edges have the
same weight.

Definition 2.1: For each v ∈ V, the orbit of v under G is

Gv = {gv : g ∈ G}.

Let VG = {Gv : v ∈ V} denote the set of orbits of the vertices of Γ under G.

Recall that we defined a sandpile configuration σ to be an element of the
free abelian group ZṼ, or more loosely to be a nonnegative integer weight-
ing on the non-sink vertices of the graph. It is natural to surmise that the
action of the group G on the vertices of the graph induces an action on the
sandpile group, S(Γ), and its associated algebraic objects. This is because,
in some sense, the vertex set under the group action, VG, becomes the set
of orbits of the vertices of Γ under G.
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v1
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Figure 2.2: The dotted line denotes an axis about which this directed graph
is symmetric.

Definition 2.2: Consider the sandpile configurations σ ∈ S(Γ). We call
σ symmetric if gσ = σ for all g ∈ G. Alternatively, we might consider
symmetric configurations to assign equal weights to the vertices of a given
equivalence class.

Given the properties of a group action listed above, it is important to
note the following implications:

1. If gv = gw for some g ∈ G, and v, w ∈ V, then v = w. (Multiplying
by g−1 we obtain:

g−1gv = g−1gw,
(g−1g)v = (g−1g)w by (2)

(e)v = (e)w
(e)v = (e)w by (1).)

2. For all g ∈ G, we have gs = s, that is, the sink is necessarily a fixed
point of Γ. This follows from (3).

3. The maximal stable configuration, σmax, is symmetric. (The degrees
of the vertices are preserved under the group action by (3).)

To better understand the symmetry group action consider Example 2.1.

Example 2.1: Note that vertex v1 and vertex v2 in Figure 2.2 both have one
directed edge to the sink and one directed edge to each other. The sym-
metry group, in cycle notation, might be represented as G = {(v1v2), (s)}.
This partitions the vertices into the orbits Gv1 = {v1, v2}, Gs = {s} so that
VG = {Gv1, Gs}.
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Figure 2.3: The symmetric sandpiles are along the line v2 = v2. If we start
with a sandpile on that line, it will stabilize to a symmetric sandpile.

If both of these vertices had equal amounts of sand, we might consider
toppling them in unison. Suppose we have a sandpile σ = (2, 2) on the ver-
tices. Subtracting the rows of the reduced Laplacian, the stabilization of this
sandpile is given by σ◦ = σ− r1 − r2 = (2, 2)− (2,−1)− (−1, 2) = (1, 1).
Note that we would have achieved the same result if we had subtracted the
two rows in unison, that is subtracted the sum of the rows in the symmetric
equivalence class.

Sum the rows in each equivalence class:

∆̃ =
( v1 v2

v1 2 −1
v2 −1 2

)

∆̃G =
( v1 v2

v1 + v2 1 1
)
→ (1)

We call this new Laplacian formed by summing rows corresponding to ver-
tices in the same orbit the symmetrized Laplacian and denote it ∆̃G.

To consider this notion of a symmetrized Laplacian in more detail, we
look to the larger Example 2.2.

Example 2.2: In Figure 2.4 we notice that both vertices v2 and v5 have all
the same properties and structure, and if we were to interchange them,
the system represented by our graph would have all the same dynamics.
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Figure 2.4: Group Action Partitions Vertices into Equivalence Classes.

They belong to the same orbit Gv2 = {v2, v5}. Likewise the corners, Gv1 =
{v1, v3, v4, v6} and the lone vertex Gv7 = {v7} all comprise orbits under the
symmetries of the graph.

The reduced Laplacian of this graph is given by the matrix:

∆̃ =



4 −1 0 −1 0 0 −1
−1 5 −1 0 −1 0 −1
0 −1 4 0 0 −1 −1
−1 0 0 4 −1 0 −1
0 −1 0 −1 5 −1 −1
0 0 −1 0 −1 4 −1
−1 −1 −1 −1 −1 −1 6


.

Now we identify the rows of the reduced Laplacian corresponding to each
orbit and we sum them to obtain new “rows.”

Orbits (v1, v2, v3, v4, v5, v6, v7)
{v1, v3, v4, v6} (3,−2, 3, 3,−2, 3,−4)
{v2, v5} (−1, 4,−1,−1, 4,−1,−2)
{v7} (−1,−1,−1,−1,−1,−1, 6)

Next we select a representative column from each equivalence class to ob-
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tain a new Laplacian matrix:

∆̃G =

 3 −2 −4
−1 4 −2
−1 −1 6

 .

With these examples in mind we can make some more observations
about the group action’s effect.

2.3 Summary of Notation

In this section we construct a table to keep track of all the algebraic ob-
jects we have defined. For examples, we refer exclusively to the graphs in
Figures 2.2 and 2.4, denoted Γ2.2 and Γ2.4.

• Γ(V, E, s): Directed graph with a vertex set, edge set, and global sink.

• NV , ZV : The set of all mappings φ that map the vertex set V into the
natural numbers or the integers, respectively.

• ZV, NV: The free abelian group on V, and NV ⊂ ZV.

• ∆Γ: The Laplacian of the graph Γ.

• Ṽ: The vertex set minus the sink, V\s.

• ∆̃Γ: The Laplacian of Γ, with the row and column corresponding to
the sink deleted.

• Row(∆̃Γ): The image of ∆̃Γ, or the integer span of its rows.

• S(Γ): The sandpile group of Γ, defined by ZṼ/Row(∆̃Γ).

• G: The group of symmetries of Γ. (For Γ2.2, the symmetry group, in
cycle notation, consists of {(s), (v1v2)}.)

• S(Γ)G: The symmetric subgroup of the sandpile group of Γ. It consists
of all sandpiles σ ∈ S(Γ) such that gσ = σ for all g ∈ G.

• ∆̃G
Γ : The symmetrized reduced Laplacian of Γ. Sum the rows in each

orbit and choose a representative column.

• VG: The set of orbits of the vertex set under the symmetry group
action G.
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2.4 The Symmetric Sandpile Subgroup

We have seen several examples of the behavior of the symmetry group ac-
tion on the graph Γ(V, E, s). Because of the relationship between the ver-
tices of the graph and the sandpiles mapped to them, it is natural to deduce
that G induces an action on the sandpile group, S(Γ). We present the fol-
lowing explorations from Perkinson (2008b).

Claim 2.1: The action of G commutes with stabilization. That is, if σ is any
configuration on Γ, the gσ◦ = (gσ)◦.

Proof. The stabilization of a sandpile σ consists of toppling sand on a se-
quence of vertices, v1, . . . , vn. Then

σ◦ = σ−
n

∑
i=1

∆̃Tvi.

At the m-th step in the stabilization process, σ has partially stabilized to the
configuration σ′ := σ− ∑m

i=1 ∆̃Tvi. If a vertex v is unstable in σ′ then gv is
unstable in gσ′ = gσ−∑m

i=1 ∆̃Tgvi. Thus, a sequence of vertices, gv1, . . . , gvt
can topple, resulting in the stable configuration

(gσ)◦ = gσ−
t

∑
i=1

∆̃Tgvi.

Corollary 2.1: The action of G preserves recurrent configurations, that is,
for each recurrent configuration σ and each g ∈ G, it follows that gσ is
recurrent.

Proof. Since σ is recurrent, we can find a configuration τ such that σ =
(τ + σmax)◦. Then,

gσ = g(τ + σmax)◦

= (gτ + gσmax)◦

= (gτ + σmax)◦.

Thus, by definition, gσ is recurrent.

Corollary 2.2: If σ is a symmetric configuration, then so is its stabiliza-
tion, σ◦.
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Proof. Consider that for all g ∈ G, if gσ = σ, then gσ◦ = (gσ)◦ by Proposi-
tion 2.1.

Theorem 2.1: The symmetric, recurrent configurations, S(Γ)G, form a subgroup
of the sandpile group S(Γ).

Proof. Since the group action respects addition and stabilization in NṼ,
the sum of two symmetric recurrent configurations is again symmetric and
recurrent. There is at least one symmetric recurrent configuration, namely,
σmax. This is enough to show that S(Γ)G forms a subgroup of S(Γ) since the
sandpile group is finite.





Chapter 3

Developing a Quotient Graph

Intriguing structure emerges as we allow the symmetry group of a graph
to act on its vertices. Section 2.4 outlines some recent theorems related to
the symmetric subgroup of a graph’s sandpile group. Recall that we are
interested in finding a graph that embodies all of the structure of the orig-
inal graph under the symmetry group action in the hope that it will help
us answer questions related to domino tilings as outlined in Section 2.1.
Consider the following question.

Question 3.1: Given a graph Γ with symmetric sandpile subgroup S(Γ)G,
does there exist a quotient graph Γ/G whose sandpile group is isomorphic
to the symmetric subgroup of the given graph, S(Γ)G?

One logical definition for a quotient graph might be to consider “folding
up” the original graph along its symmetries. Consider the vertices to be
the orbits of the vertices in the original graph under G, and simply add the

v1

v2

s
v s

Figure 3.1: “Fold up” the graph along its symmetries to obtain the quotient
graph.
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weights of edges going from orbit to orbit as depicted in Figure 3.1. More
precisely,

Definition 3.1: Given the graph Γ = (V, E, s), define the quotient graph Γ/G
to be a graph with the vertex set VG, and for each directed edge (vi, vj) ∈ E,
there is a directed edge, (Gvi, Gvj) , in Γ/G such that weight of that edge is
given by ∑g∈G w(gvi, gvj).

3.1 The Row Quotient

Recall that we defined the symmetrized Laplacian, ∆̃G, to be the matrix ob-
tained by summing up the rows corresponding to vertices in the same orbit,
and then choosing a representative row. There is a natural isomorphism be-
tween the following objects: ZṼG/Row(∆̃G) ∼= (ZṼ/Row(∆̃))G = S(Γ)G.
That is, the subset of symmetric sandpiles modulo the symmetrized Lapla-
cian is isomorphic to the symmetric sandpile subgroup.

Until now, we have defined the sandpile group S(Γ) to be the group
quotient ZṼ/Row(∆̃). To help simplify notation and allow the following
proof to proceed in a more natural way, we define the following groups.
Let

• L̃ be the integer column span of ∆̃T and

• L̃G be the integer column span of (∆̃G)T,

so, for example, we have S(Γ) = ZṼ/L̃.

Theorem 3.1: Recall that ZṼG is the free abelian group on the set ṼG, the set
of orbits of the non-sink vertices of Γ under the symmetry group action G. Then
ZṼG/L̃G ∼= (ZṼ/L̃)G.

Proof. Consider the mapping π : ZṼG → ZṼ/L̃ such that σ ∈ ZṼG ⊆ ZṼ
is sent to its equivalence class in ZṼ/L̃. The image of σ ∈ L̃G is 0 since
L̃G ⊆ L̃. This gives the induced mapping:

ψ : ZṼG/L̃G → ZṼ/L̃,

that maps equivalence classes to equivalence classes in the two quotient
groups. We divide the proof into two claims:

Claim 3.1: The image of ψ is equal to the symmetric sandpile subgroup:
Im(ψ) = S(Γ)G.
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• Im(ψ) ⊆ S(Γ)G

Note that this is not immediately clear. We need to show that if
an equivalence class in S(Γ) contains a symmetric vector, then the
(unique) recurrent configuration in that class is also symmetric. Take
any symmetric configuration τ ≥ σmax with τ = 0 modulo L̃.

for example, one could take τ = |S(Γ)|σmax. Let σ ∈ ZṼ be a sym-
metric sandpile configuration. Then so is τ + σ and τ can stabilize
by toppling symmetric vertices to see that (τ + σ)◦, the recurrent el-
ement representing σ, is symmetric. Thus, Im(ψ) ⊆ S(Γ)G, which
proves this claim.

• Im(ψ) ⊇ S(Γ)G

This containment is trivial.

Claim 3.2: The kernel of ψ is zero: ker(ψ) = 0.

We must show that any symmetric configuration σ ∈ L̃ is actually an
element of L̃G. So let σ ∈ L be symmetric. Say σ = ∆̃T β. Pick any orbit
(non-sink) of G, and pick any two vertices in that orbit (note that if the orbit
is a fixed point than there is nothing to show).

Let P represent the permutation of the vertices. Thus, thinking of P
as a matrix, we have that it is symmetric and idempotent, PT = P and
P2 = P. By the symmetry of Γ, we have that P∆̃T = ∆̃T and hence (∆̃T)−1 =
P(∆̃T)−1P. By symmetry of σ, we have Pσ = σ. Now β = (∆̃T)−1σ which
implies that Pβ = P(∆̃T)−1σ = [P(∆̃T)−1P][Pσ] = (∆̃T)−1σ = β. Thus, β is
symmetric, whence σ = ∆̃T β ∈ L̃G as required.

So we have found an abelian group in terms of the symmetrized Lapla-
cian that is isomorphic to the symmetric subgroup of the graph Γ. Ques-
tion 3.1 asks for a graph whose sandpile group might be this object. The
natural graph would come from the symmetrized Laplacian, ∆̃G. Recall
from Example 2.1 we computed the symmetric sandpile subgroup to be
only the sandpile (1, 1). Also we computed the symmetrized Laplacian to
be the matrix (1). Considering the graph with one vertex with one directed
edge to the sink, we find the only stable configuration is the zero config-
uration, (0). In this simple example, and others, the graph corresponding
to the symmetrized Laplacian answers Question 3.1. However, this is not
always the case. For the graph in Figure 3.2 recall that the symmetrized
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Figure 3.2: The graph on the right is the graph corresponding to the trans-
pose of the symmetrized Laplacian, (∆̃G)T.

Laplacian was given by the following matrix:

∆̃G =

 3 −2 −4
−1 4 −2
−1 −1 6

 (∆̃G)T =

 3 −1 −1
−2 4 −1
−4 −2 6


We note that ∆̃G does not correspond to a legitimate graph because some
of its rows sum to less than zero.

3.2 The Row Quotient Transposed

To ameliorate this issue, we take the transpose of the matrix to obtain (∆̃G)T

and we let Γr/G denote the graph it represents (the quotient obtained from
the symmetrized Laplacian, obtained by summing up the rows correspond-
ing to vertices in the same orbit). This graph obtained by taking the trans-
pose of the reduced Laplacian works under many circumstances, however,
sometimes neither the symmetrized Laplacian nor its graph correspond to
a well defined graph. This is often the case when a graph has selfish vertices.

Definition 3.2: Given a graph, Γ = (V, E, s), we call a vertex v ∈ V is selfish,
if its in-degree exceeds its out-degree.

Consider the graph in Figure 3.3. In this example, the vertex v2 is selfish.
It has out-degree 3, but in-degree 4. Note that the vertices v3 and v4 are in
the same orbit, so we sum the 3rd and 4th rows of the reduced Laplacian to
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v1

v2v3 v4

s

2

Figure 3.3: The vertex v2 is selfish: it has in-degree 4, but an out-degree of
only 3.

obtain,

∆̃G =

 4 −2 −1
0 3 −1
−2 −2 3

 (∆̃G)T =

 4 0 −2
−2 3 −2
−1 −1 3


Note that the last row of the symmetrized Laplacian sums to less than zero.
The determinant of the symmetrized Laplacian is 18, which is the order
of the symmetric subgroup of the graph’s sandpile group by Theorem 3.1.
Taking the transpose of the symmetrized Laplacian does not help here. The
second row sums to less than zero in the transpose. Trying to construct a
graph that might correspond to (∆̃G)T is futile because we can’t have a ver-
tex that has more outgoing edges than its out-degree will allow. Such a
graph is not well-defined. This counterexample disqualifies this construc-
tion as a good quotient graph in general, though it works in many cases.

3.3 The Column Quotient

Since neither the symmetrized Laplacian nor its transpose always corre-
spond to a well-defined graph, we examine another possible quotient graph.
Recall that we require all of the rows of the Laplacian to sum to zero. If we
sum the columns of the reduced Laplacian that correspond to vertices in
the same orbits, and then choose representative rows, we are always guar-
anteed a well-defined graph, Γc/G. Consider the graph with the selfish
vertex whose symmetrized Laplacian failed to produce a legitimate graph
in Figure 3.3.
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v1 v2

v3 v4

s

Figure 3.4: The sandpile group for the column quotient graph, S(Γc/G) �
S(Γ)G, for this graph.

∆̃Γ =


4 −2 −1 −1
0 3 −1 −1
−1 −1 3 0
−1 −1 0 3

 ∆̃Γc/G =


v1 v2 v3 + v4

v1 4 −2 −2
v2 0 3 −2
v3, v4 −1 −1 3


Here, using the technique were we sum the columns and then take a rep-
resentative row, we obtain a Laplacian that does indeed correspond to a
legitimate graph, Γc/G. The determinate of ∆̃Γc/G is also 18, the same as
the determinate of the symmetrize Laplacian. This equality in size is ob-
served every example tried. However, this graph too does not work in
general. Consider the following counterexample, the graph given in Fig-
ure 3.4. Note that, once again, the vertices v3 and v4 are in the same orbit.

∆̃Γ =


4 −1 −1 −1
0 3 −1 −1
−1 −1 2 0
−1 −1 0 2

 ∆̃Γc/G =


v1 v2 v3 + v4

v1 4 −1 −2
v2 0 3 −2
v3, v4 −1 −1 2


Consider also the symmetrized Laplacian,

∆̃G
Γ =


v1 v2 v3, v4

v1 4 −1 −1
v2 0 3 −1
v3 + v4 −2 −2 2
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We know from Theorem 3.1 that ZṼG/∆̃G ∼= S(Γ)G. Consider the fol-
lowing groups,

S(Γ)G = Z3/

〈 4
−1
−1

 ,

 0
3
−1

 ,

 −2
−2
2

〉 ,

and,

S(Γc/G) = Z3/

〈 4
−1
−2

 ,

 0
3
−2

 ,

 −1
−1
2

〉 .

We would like to find an isomorphism φ : S(Γ)G → S(Γc/G). However,
consider the Smith normal forms of each of the Laplacians:

∆̃Γc/G =

 4 −2 −2
0 3 −2
−1 −1 3

→
 1 0 0

0 1 0
0 0 8


⇒ S(Γc/G) ∼= Z/8Z,

however,

∆̃G
Γ =

 4 −1 −1
0 3 −1
−2 −2 2

→
 1 0 0

0 2 0
0 0 4


⇒ S(Γ)G ∼= Z/2Z×Z/4Z.

Thus there cannot exist an isomorphism, and S(Γc/G) � S(Γ)G. This
conclusion can be confirmed by computing the orders of all the elements in
the symmetric sandpile subgroup. None of the symmetric sandpiles have
order 8.

3.4 The Folded Quotient

A fourth possibility for a graph that satisfies the desired properties of Γ/G,
we might consider a graph whose vertices are the orbits of the vertices
of the original graph as before, but this time we take the total sum of the
out-degree and the edge weight of all the vertices in the orbit. Any self-
loops in the folded quotient graph are simply deleted and not accounted
for in the Laplacian. This graph would be similar to the one given by the
symmetrized Laplacian, but would generate a much larger sandpile group
because the out-degree of its vertices would be much larger.
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v1

v2

s
v s

Figure 3.5: For this folded quotient graph, Γ f /G, we sum the out-degree of
all elements of the orbit. Here, dv1 = dv2 = 2, this corresponds to the orbit
Gv1 having out-degree 2 + 2 = 4.

Example 3.1: In this example, we consider the symmetric graph in Fig-
ure 3.5. We have previously noted that vertices v1 and v2 are in the same
orbit under the symmetries of the graph. Consider folding the graph along
its symmetries. The reduced Laplacian and accompanying folded quotient
Laplacian are given as follows:

∆̃Γ =
(

2 −1
−1 2

)
∆̃Γ f /G =

( v1 + v2

v1 + v2 2
)

Example 3.2: Here we revisit Example 2.2, whose graph appears again in
Figure 3.6 along with its folded quotient graph. Consider the dynamics of
a vertex in the orbit of v1. It has one edge to the sink, one edge to the orbit
containing v7, one edge to the orbit containing v2 and finally one edge into
its own orbit. We construct a graph in Figure 3.6 that reflects the dynamics
of each orbit collectively. Note that any edges between a vertex and another
in its own equivalence class is reflected by a self-loop. A sandpile on this
new graph seems to correspond to a symmetric sandpile on the original
graph. Again, in the folded quotient Laplacian, we simply ignore the self
loops. Formally, we define the reduced Laplacian of the folded quotient
graph, ∆̃Γ f /G, to be the matrix obtained by summing both the rows and
columns of ∆̃Γ. Consider the folded quotient Laplacian for the graph in
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v1 v2 v3

v4 v5 v6

v7

s

v1 v2

v7

s

4
44

2
4

2
4 2

4 2

Figure 3.6: An edge between two vertices in the same orbit becomes a self-
loop.

Figure 3.6.

∆̃Γ =



4 −1 0 −1 0 0 −1
−1 5 −1 0 −1 0 −1
0 −1 4 0 0 −1 −1
−1 0 0 4 −1 0 −1
0 −1 0 −1 5 −1 −1
0 0 −1 0 −1 4 −1
−1 −1 −1 −1 −1 −1 6



∆̃Γ f /G =


Gv1 Gv2 Gv7

Gv1 12 −4 −4
Gv2 −4 8 −2
Gv7 −4 −2 6

.

Theorem 3.2: The map ψ : S(Γ)G → S(Γ f /G) is injective.

Proof. Given a graph, Γ(V, E, s) with symmetry group G, suppose that there
are k orbits in |ṼG|. We begin by defining a diagonal matrix, D|ṼG |, with the
size of the orbits in ṼG along the diagonals.

D|ṼG | =


|Gv1| 0 · · · 0

0 |Gv2| · · · 0
...

. . .
...

0 0 · · · |Gvk|

 .
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For the folded quotient laplacian in Figure 3.6 this diagonal matrix is given
by,

D|ṼG | =

 4 0 0
0 2 0
0 0 1

 .

Note that ∆̃GD|ṼG | = ∆̃Γ f /G, by the construction of the folded quotient
Laplacian. While a multiplicative inverse of this matrix cannot be defined
over the integers, we can create an object defined over the rational num-
bers,

D−1
|ṼG | =


1/|Gv1| 0 · · · 0

0 1/|Gv2| · · · 0
...

. . .
...

0 0 · · · 1/|Gvk|

 .

Note that the diagonal entries of this “inverse” will never be undefined,
because there will always be at least one element in each orbit. Given this
definition, we can write ∆̃G = ∆̃Γ f /GD−1

|ṼG |, which will yield a matrix over

the integers by the construction of ∆̃Γ f /G.
Define the mapping

π : ZṼ → ZṼ/Row(∆̃Γ f /G),
π : σ 7→ σD|ṼG |,

and consider that its kernel is given by

ker(π) = {σ ∈ ZṼ : π(σ) ∈ Row(∆̃Γ f /G)}.

This gives the induced mapping ψ : ZṼ/∆̃G → ZṼ/∆̃Γ f /G. To show that
ψ is an injection we must show that for σ ∈ ZṼ, the kernel of the projection
mapping is exactly the row span of the symmetrized Laplacian, that is,
σ ∈ ker(π) if and only if σ ∈ Row(∆̃G). Consider that for all σ ∈ ZṼ, there
exists a τ ∈ ZṼ such that,

σD|ṼG | = τ∆̃Γ f /G,

if and only if, σ = τ∆̃Γ f /GD−1
|ṼG |

if and only if, σ = τ∆̃G.

We have discussed four possible definitions of a quotient graph Γ/G.
None of them work in general, though all work for certain types of graphs.
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The Sandpile group objects for each of the quotient graphs of the running
example graph, depicted originally in Figure 1.3, are listed below. Note
that S(Γr/G) and S(Γc/G) have the same size as the symmetric sandpile
subgroup, S(Γ)G, while S(Γ f /G) is larger.

• S(Γ): {{1, 1}, {1, 0}, {0, 1}}

• S(Γ)G: {{1, 1}}

• S(Γr/G): {{0, 0}}

• S(Γc/G): {{0, 0}}

• S(Γ f /G): {{1, 1}, {0, 0}}

Does a quotient graph Γ/G exist for a general graph?





Chapter 4

Conclusions and Future Study

The abelian sandpile model describes many different physical phenomena
and proves to be related to computer science, combinatorics and theoretical
physics. Here we have provided a thorough introduction to the structure
and abelian property of the model. In Section 1.5, we have outlined some
possible new and simplistic approaches to the standard sandpile theory.

We introduced the notion of a symmetric sandpile on a graph, and
showed the set of such sandpiles forms a subgroup of the sandpile group.
In addition, we presented several recent theorems related to the special
properties of symmetric graphs.

For a given graph Γ with symmetric sandpile subgroup S(Γ)G, we de-
fined the quotient graph to be the graph Γ/G whose sandpile group is iso-
morphic to S(Γ)G. The question of the existence of such a quotient graph
for general directed graphs remains open. We have introduced two candi-
dates for this quotient graph and shown them to satisfy the desired defini-
tion in many cases. The answer to this question may have exciting applica-
tions to counting the number of domino tilings of the 2n× 2n grid.
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