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1. Introduction 

Power industry deregulation and electricity market restructuring, which began in 

Chile in the 1980s and then spread to Norway, New Zealand and the UK, were 

introduced in the United States with the passage of the Energy Policy Act (EPA) of 1992 

(Jameson, 1997). The EPA and subsequent Federal Energy Regulatory Commission 

(FERC) Orders led to the restructuring of vertically integrated electric utilities, the 

establishment of Independent System Operators (ISO) and Regional Transmission 

Organizations (RTO) and the development of competitive wholesale power markets. 

Deregulation also led to the creation of various electricity contract–based financial 

derivative products. In 1996, the New York Mercantile Exchange (NYMEX) created the 

US’s first electricity futures, the Palo Verde and California/Oregon Border contracts, 

which were traded for physical delivery (Warwick, 2002). While these products were 

eventually delisted in 2002, other exchange-traded and OTC contracts, for both physical 

and financial settlement, have been introduced on numerous exchanges, including the 

Intercontinental Exchange (ICE), Chicago Mercantile Exchange (CME) and markets 

operated by ISOs and RTOs. From the start, deregulation of the electricity industry has 

been a contentious and controversial subject, its economic, political and social 

ramifications hotly debated in the US and abroad. The debate continues, and as of 

September 2010, fifteen states and the District of Columbia have deregulated electricity 

markets, seven have suspended restructuring activities and twenty-eight have no 

deregulatory legislation or restructuring activities to speak of (FERC, 2010).  
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While the merits and faults of restructured power markets present the opportunity 

for many interesting and material discussions, this paper will instead focus on one of the 

markets borne of such deregulatory activities, the PJM Western Hub’s Day-Ahead Power 

Market. Specifically, this paper will attempt to determine if the addition of weather 

forecast variables improves the predictive powers of electricity pricing models. 

Electricity is considered a flow commodity, defined by its inherently non-storable 

nature and limited transportability. Unlike other commodities, it cannot be economically 

stored in large quantities and holding inventories is near impossible1. With traditional 

goods, inventories can be used as a buffer against supply and demand imbalances and can 

exert a smoothing effect on prices (Cartea, et. al., 2008). The impracticability of 

electricity storage requires that supply and demand be constantly and instantaneously 

coordinated, and the lack of inventories eliminates the possibility of any buffering effect.  

Electricity is also grid-bound, its transportation restricted not only by the location and 

extent of the power grid, but also by transmission line capacity limits, congestion and 

efficiency losses as distance increases (Wilkens, et. al., 2007). Such considerations make 

electricity a geographically concentrated regional good, produced and consumed 

relatively locally, and subject to local supply and demand conditions. These 

characteristics- non-storability and limited transportability- can explain some of the more 

distinct properties of electricity prices, and most importantly, all but preclude the ability 

to conduct arbitrage across time and space. These impediments to arbitrage complicate 

the valuation of electricity derivatives, especially futures, limiting the use of traditional 

                                                        
1 Synthetic forms of storage are available, such as dams for hydroelectric generation or 
stockpiling fuels, but are limited in their applicability. (Bhanot, 2002) 
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cost-of-carry arguments (Lucia and Schwartz, 2002). As such, finding alternate means of 

modeling electricity prices is an important and challenging endeavor.  

 

2. The PJM Interconnection 

The Pennsylvania- Maryland-New Jersey (PJM) Interconnection is a RTO 

responsible for ensuring electricity production and transmission within thirteen states, 

including the District of Columbia. Initially founded in 1927 as the PJM Pool, one of the 

world’s first power pools, the PJM Interconnection was officially established in 1997, 

when it introduced bid-based market pricing and became the United States’ first ISO 

under FERC’s new deregulatory standards. ISOs function independently of their member 

companies, managing but not owning the transmission system. In 2001, PJM became the 

nation’s first RTO, and now operates one of the largest wholesale power markets in the 

world.  PJM is regulated by the Reliability First Corporation (RFC), itself a member of 

the North American Electric Reliability Corporation (NERC), as well as by FERC.  

As an RTO, PJM operates wholesale electricity markets, balances supply and 

demand, coordinates and oversees generation and transmission and develops and 

implements short and long-term planning. Its goal is to ensure reliable electrical grid 

operation for the more than 50 million people who fall within its borders. PJM is 

comprised of over 700 member firms, though it exists as an independent entity, and 

oversees and regulates member conduct. Member firms include generation owners who 

own electric generating facilities, transmission owners who own high-voltage lines and 

deliver power to distributors, electric distributors who own local, low-voltage lines and 

deliver power to end users, power marketers, trading firms and large corporate end users 



4 

(PJM, 2011). All members participate in the wholesale markets, acting as both buyers and 

sellers of electricity.  

PJM administrates two separate wholesale power markets- the real-time market, 

and the day-ahead market. The real-time market operates as a traditional spot market with 

participants buying and selling electricity for immediate delivery. The day-ahead market 

is a forward market in which participants buy and sell contracts to deliver power for a 

specific hour-block at a specific location the following day, and reports 24 market-

clearing prices a day, one for each hour. The market-clearing prices in both the real-time 

and day-ahead markets are unique in that they are not solely dictated by the equilibrium 

of bids and offers, but instead are determined by locational marginal pricing. PJM 

introduced Locational Marginal Price (LMP) markets in 1998, to ensure that electricity 

prices reflected not only marginal production costs, but costs associated with line 

congestion and transmission constraints as well. LMP is defined to be “the marginal price 

for energy at the location where the energy is delivered or received,” and is calculated as 

the sum of three components: the system price, congestion price and loss price. The 

system price is the price at which sellers offer to provide the next additional increment of 

electricity; the congestion price is the cost associated with delivering the additional 

increment of electricity along potentially congested transmission lines; and the loss price 

accounts for any gains or losses that occur as a result of changes in marginal production 

costs as generators across the system are asked to supply more or less power. As the 

name suggests, LMP is calculated on a location-by-location basis. These designated 

locations are called busses, and in the absence of any transmission constraints or marginal 

losses, LMP will be equal for all busses across the PJM network (PJM, 2010, 2011).  
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The PJM RTO is subdivided into eleven hubs, which are defined by the collection 

of busses that comprise them, and serve as central pricing points within the RTO. Hub 

LMPs (both real-time and day-ahead) are calculated as equally weighted averages of their 

component bus LMPs, and provide a more accessible and convenient measure of 

electricity prices across the system. PJM’s Western Hub is a collection of 109 busses 

covering a region stretching roughly from Erie, PA to Washington, D.C., and includes 

parts of Pennsylvania, Maryland and Virginia (FERC 2010). It is one of the most liquid 

pricing points in the world and its real-time and day-ahead market LMPs provide the 

basis for many exchange-traded and OTC contracts. The high levels of liquidity and 

importance of Western Hub LMP in pricing financial products make it an attractive 

candidate for study.  

 

3. Literature Review 

The introduction of power industry deregulation and advent of electricity-based 

derivatives have inspired a growing literature that attempts to model and describe the 

behavior of power markets and related financial products. Prior to restructuring, 

electricity prices were controlled by regulatory agencies, and generally held at fixed 

levels. Emphasis was placed on demand forecasting and only in the past fifteen years, 

following deregulation, do we see research exploring the pricing of power and power 

derivatives.  

The literature discussing electricity pricing can be broadly categorized based on 

forecasting model choice, with research divided between reduced-form models and 

equilibrium models. While these two models may sometimes be seen as competing, 
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Bühler and Müller-Mehrbach (2009) remind us that they should be considered as 

complements to each other. The literature identifies several key characteristics of 

electricity prices that models of both forms attempt to capture. These include but are not 

limited to: daily, weekly and seasonal cycles, extreme price spikes, autocorrelation, 

mean-reversion, and volatility clustering  

Equilibrium models attempt to model electricity supply and demand and estimate 

market prices based on the interaction between two. Reflecting the realities of electricity 

markets, such models can be extremely complex, and require an intimate understanding 

of the market and its participants. Such models must correctly identify market 

participants, who are numerous and varied, and often act as both buyers and sellers. They 

must account for the heterogeneous production of an indistinguishable end product, as 

electricity can be generated from natural gas, coal, nuclear hydro or wind (with many 

plants using a combination depending on load), and equilibrium models must also 

consider transmission constraints and congestion. Several notable papers that pursue 

equilibrium pricing models include Bessembinder and Lemmon (2006), Routledge, Seppi 

and Spatt (2001) and Bühler and Müller-Mehrbach (2009). Bühler and Müller-Mehrbach 

compare a generalized, dynamic form of Bessembinder and Lemmon’s model to a basic 

ARMAX model of the sort proposed by Lucia and Schwartz (2002). They find that their 

model captures well many characteristics of power prices and that it predicts out of 

sample prices better than the reduced form model.   

Lucia and Schwartz, in their oft-cited paper “Electricity Prices and Power 

Derivatives: Evidence from the Nordic Power Exchange,” investigate spot, forward and 

futures markets at the Nordic Power Exchange. Observing autocorrelation and mean-
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reversion, they employ several variations of ARMAX type models using dummy 

variables to account for weekly and seasonal regularities in power markets. The model 

proposed by Lucia and Schwartz has served as the starting point and basis for comparison 

for subsequent research of the reduced-form variety. Wikens and Wimschulte (2007), 

applying the Lucia/Schwartz model to European Energy Exchange futures, find that 

while the model successfully accounts for spot market regularities, it is subject to biases 

when forecasting futures prices.  

In 2000, California energy markets experienced extreme price fluctuations, 

shortages and forced blackouts. Using data from these markets for the periods preceding 

and following this crisis, Knittel and Roberts (2005) expand on the ARMAX model of 

Lucia and Schwartz. They propose several jump-diffusion and GARCH models, 

attempting to account for mean-reversion, price spikes and volatility clustering, and find 

an “inverse leverage effect,” by which positive price shocks result in higher increases in 

volatility than do negative shocks.  

Noting that jump-diffusion processes do not adequately account for non-normal 

market conditions (during price spikes occur), several papers have applied Markov 

regime-switching models (see Deng (1998); Ethier and Mount (1999) and Huisman and 

Mahieu (2003)). These models typically consist of a normal regime, modeled as a mean-

reversion process, and a non-normal regime, modeled as a jump process, and dictate the 

process by which transition between regimes occurs. Mount, Ning and Cai (2006) modify 

this model by making regime switches dependant on reserve margin, and Huisman 

(2008), observing that reserve margin information is not readily available to all market 

participants, finds that temperature can be used as a proxy for reserve margin in dictating 
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spike probability. Comparing the basic ARMAX model of the type used by Lucia and 

Schwartz to several regime-switching models, Kosater and Mosler (2005) find that 

regime-switching outperform ARMAX models with respect to long-run forecasting.  

 Various studies have noted that weather variables are an important consideration 

when constructing electricity demand and pricing models, including Huisman (2007), 

Knittel and Roberts (2005) and Taylor and Buizza (2002). The study of weather and its 

effect on commodities can be traced back to Richard Roll’s seminal paper, “Orange Juice 

and Weather” (1984), which examines the effects of weather forecast on the price of 

frozen concentrated orange juice futures contracts, traded on the News York Cotton 

Exchange. He finds that temperature forecast errors, the percentage difference between 

forecasted and realized temperatures, have a statistically significant effect on orange juice 

futures, but that rainfall forecast errors do not. Importantly, he notes that orange 

production at the time of publishing was highly geographically concentrated, with 98% of 

production occurring in a relatively small region around Orlando. This regional 

concentration made orange production, and thus orange juice futures, susceptible to 

regionally specific influences, such as weather. This concept of a regional good can be 

applied to electricity as well.  

Knittel and Roberts (2005) include realized hourly temperatures as variable when 

predicting hourly spot prices, and find that they have a statistically significant, but small 

explanatory power. They observe that below 50° the price-temperature relationship is 

negative, the result of electric heating, and that above 55 °, when commercial cooling 

begins, the relationship is positive. Taylor and Buizza make use of weather ensemble 

forecasts to predict short-term load (demand) in England and Wales. Ensemble forecasts 
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consist of 51 probability-weighted predictions for a given variable, and while they have 

been found to be more accurate than single point estimates, they require a high level of 

meteorological expertise.  

In “The Power of Weather” (2007), Huurman, Ravazzolo and Zhou reevaluate 

several of the previously mentioned reduced-form models for daily day-ahead prices in 

the Nordic Power Exchange. Using variations of ARMAX, and ARMAX-GARCH 

models, they test whether the addition of next day weather forecast variables 

(temperature, precipitation and wind) improve upon the model’s predictive capabilities. 

They find that weather variables result in improved Akaike Information Criterion (AIC) 

for ARMAX and ARMAX-GARCH models and reduce the root mean square prediction 

error (RMSPE) and mean absolute percentage error (MAPE) measures of out of sample 

forecasting, for both ARMAX and ARMAX-GARCH models. Based on RMSPE, MAPE 

and AIC, they conclude that the ARMAX model modified to include weather forecast 

variables is the best at out of sample forecasting.  

This paper will contribute to the literature in several ways. The author is unaware 

of any studies analyzing the PJM Western Hub Day-Ahead Power Market. While past 

research has touched upon PJM’s Western Hub (Borenstein, Bushnell, Knittel, 1997; 

Mount, Ning and Cai, 2006), it has considered the period immediately following the 

introduction of market-based generation bidding, and used spot prices that predate the 

establishment of the Western Hub Day-Ahead Market.  

Furthermore, while the literature repeatedly confirms the influence of weather on 

electricity pricing, and several papers have included realized weather data as explanatory 

variables in their calculations (Knittel and Roberts 2005; Huisman 2008; Longstaff and 
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Wang 2004), few have made use of weather forecasts to predict day-ahead prices. 

Today’s forecast of tomorrow’s weather (not today’s realized weather) should be the best 

predictor of tomorrow’s weather, and therefore should be preferred to other presently 

available weather information as an explanatory variable when estimating the price of a 

day-ahead contract with delivery tomorrow. Huurman, Ravazzolo and Zhou, in their 

examination of the Nordic Power Exchange, do so and find that forecasts of tomorrow’s 

weather are significant predictors of day-ahead electricity prices. This paper follows their 

lead.  

It is important to note that there exist many differences between the various 

international electricity markets, and even between domestic markets within the United 

States. These dissimilarities arise from, among other things, different regulatory schema 

and degrees of deregulation (if any), differences in generation technologies (while 

hydropower is predominant in Norway, coal is popular in the US), climatological 

variation and differences in end-users. Such inconsistencies limit the degree to which we 

can extrapolate results from one market and apply them to another. While, with careful 

consideration, we can note similarities and trends, it can be fruitful to evaluate each 

market separately.  

 

4. Description of Data 

This study uses data drawn from the PJM Western Hub’s day-ahead market, 

which reports twenty four hourly settlement LMPs every day for each of its 108 busses, 

as well as hourly hub prices, which are calculated as equally weighted averages of the bus 
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prices for the same period (PJM, 2011). All price data are available from PJM’s website2 

and are updated on a daily basis. The data consists of prices for the seven-year period 

beginning January 1, 2001 and ending December 31, 2007 (2556 days), reported in US 

dollars per megawatt hour (MWh). Analysis was conducted using the arithmetic mean of 

the reported hourly prices (which will be referred to from this point forward as the daily 

price), and on the natural logarithm of the daily price.  

Table 1 shows summary statistics for the daily price, and Figure 1 shows a plot of 

the time series of the daily price.  Looking at this plot, several characteristics of power 

price behavior are apparent. Prices exhibit high levels of volatility, though they seem to 

be loosely anchored around a mean; extreme spikes in price are not uncommon; and 

prices seem to display a cyclical pattern, though the exact nature of that pattern is not 

immediately obvious.  The sample has a maximum price of $232.57, minimum of $11.22 

and mean of $43.63. Prices in the sample are leptokurtic and positively skewed; these 

non-normal distributive properties can be seen in the histogram3. The literature repeatedly 

reports autocorrelation as a defining quality of electricity prices, and these data confirm 

those findings. Graphing the autocorrelation function4 (ACF) reveals that price is highly 

correlated with lagged values of itself, significantly so past 200 lags. Studying the graph, 

a weekly pattern in autocorrelation becomes apparent, and this finding is reinforced by 

the pattern visible in the plot of average price by day of week5. Prices appear to be highly 

correlated with prices immediately preceding them and those occurring seven days prior. 

                                                        
2 www.PJM.com 
3 See Figure 2 
4 See Figure 3 
5 See Figure 4 
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As with all time series data, the question of stationarity must be addressed before 

proceeding with analysis. A time series is stationary if its probability distribution does not 

change over time. If a series is not stationary, then it must be transformed, generally 

through first-differentiation, to make it so (Stock and Watson, 2007). A Dickey-Fuller-

Generalized Least Squares (DF-GLS) test rejects the null hypothesis of a unit 

autoregressive root through 29 lags at the 1% level, indicating that the price time series is 

stationary around a linear time trend.  

Weather forecast data were obtained from the National Weather Service’s (NWS) 

National Digital Forecast Database (NDFD)6.  Next day forecasts of average, maximum 

and minimum temperature (in degrees Fahrenheit), precipitation in inches and wind speed 

in miles per hour, were collected from the Pittsburg and Washington, D.C. forecasting 

stations of the NWS. The geographic area corresponding to the PJM Western Hub is not 

precisely defined, and must be approximated. The Appalachian Mountains run through 

the middle of the area served by the Western Hub, forming in two distinct, though not 

entirely dissimilar climates, and thus single point forecasts cannot adequately account for 

weather across the region. Pittsburg and Washington are geographically and 

meteorologically representative of the area served by the Western Hub and the weather 

data are equally weighted averages of forecasts for these cities (Dello, 2011).  

 

 

                                                        
6 PJM power market participants overwhelmingly use the meteorological services of Telvent, an 
information services company. Telvent’s historical forecast data could not be obtained, but 
Telvent meteorologists, and most meteorologists in the United States, receive their weather data 
from the NWS weather satellites and models, refining said data to produce their own forecasts 
(Dello, 2011). 
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4. Model Specification 

Within the literature it is customary to model electricity prices as consisting of 

two components, a deterministic term denoted Xt representing the predictable, regular 

aspects of prices (such as seasonal and weekly trends), and a stochastic term denoted Zt           

describing a continuous diffusion process, that represents the random, mean-reverting 

behavior of prices (Wilkens et. al. 2007). Such formulations generally take the following 

form:  

Pt = Xt + Zt 

Zt = θZt-1 + ε 

in which ε is deemed a Gaussian white noise process, a type of random walk. This form 

describes exactly a model that is autoregressive in its error term, and can be represented 

as a moving average (MA) process of order one. We can rewrite the previous equation as: 

Pt = Xt + θZt-1 + ε 

Noting that:   

Zt-1 = Pt-1 – Xt-1 

We can rearrange terms and produce: 

Pt = Xt + θ(Pt-1 –Xt-1) + ε 

Xt= α + βDHt +
i=2

12

∑ βiMit 
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Where α is a constant term, Ht is binary variable taking a value of 1 for working days and 

0 for weekends and holidays7, and Mit a series of binary variables representing the 

months of the year. The model hopes to capture the weekly trend seen in prices via the 

holiday binary, and seasonal components via the monthly binaries.  

This model, employed initially by Lucia and Schwartz (2002), is attractive in that 

it is easily applied and interpreted. It tells us that today’s price is a function of conditions 

prevailing today- the time-dependent state variables described by Xt - yesterdays price, 

and yesterday’s conditions. Despite its intuitive nature, in practice it does not explain 

price behavior particularly well. Nonetheless, it provides a good basis upon which to 

build a better model. Though analysis of Bayesian and Akaike Information Criteria (BIC 

and AIC)8 at various autoregressive orders of price, with the goal of minimizing the 

information criteria, implied a very high-order lag was appropriate, a review of the 

literature suggests that fewer lags are sufficient (Huurman, et. al. 2007). Study of the 

ACF graph reveals a very high correlation of price with the previous day’s price, and the 

price seven days prior. Preserving other aspects of the Lucia-Schwarz model and 

including price lagged one and seven days as regressors yields the following model: 

Pt= Xt + γ1Pt-1+γ2Pt-7+ Zt 

Xt = α + βDHt +
i=2

12

∑ βiMit 

Zt = θZ t-1 + ε 

                                                        
7 In PJM’s electricity markets, Monday through Friday are considered “on-peak” and weekends 
and holidays (as defined by NERC) are considered “off-peak.” Studying the plot of electricity 
prices against time, we see that prices tend to be higher for on-peak days and lower for off-peak 
days.  
8 AICP=ln(SSRP/T)+(p+1)(2/T), BICP=ln(SSRP/T)+(p+1)(lnT/T), where p is the order of lags and 
T is the number of observations (Stock and Watson, 2007). 
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This model is of the ARMAX variety and can be expressed as an AR(1,7), MA(1) model, 

in which the AR term expresses the number of lags of the dependent variable Pt and the 

MA expresses lags of Zt. In order to compare models, I employed several measures of fit 

and error in addition to comparing significance of coefficients, R2 and root mean squared 

error (RMSE). These include the aforementioned AIC and BIC, and the Ljueng-Box 

white noise test, which examines the null hypothesis that the error term of the regression, 

ε, is a white noise process (Greene, 2008). Recall that this is an assumption of the initial 

theoretical model considered. If ε is a white noise process, it represents random, 

unpredictable movement in price, and the model successfully captures all of the 

predictable components of price. If the null is rejected the error terms exhibit 

autocorrelation and are predictable to a degree, indicating that the model can be improved 

(Greene, 2008). Of course none of the criteria described are a litmus test of whether the 

model is “good” or “bad” and must be examined with a critical eye.  

 Comparing the basic Lucia-Schwartz model to the modified expression of price, I 

found that, with minimal loss in significance of coefficients, the new model exhibited 

high levels of significance in the coefficients of the added variables, decreases in RMSE, 

AIC and BIC and an increase in R2. While the Ljueng-Box test indicates that the error 

terms of both models are non-random, the second model is a clear improvement upon the 

first.  

 The results of the white noise test in mind, I reexamined the ACF graph and saw 

that there still appeared to be a high degree of autocorrelation between prices seven days 

apart, past the 28th lag. This would seem to suggest that there exists a weekly pattern not 
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accounted for by the seventh order lagging of price. Hoping to capture this weekly effect, 

I added binary variables to represent days of the week, such that the deterministic 

component of the model took the form: 

Xt= α + βDHt +
i=2

12

∑ βiMit +

i=2

7

∑δiDit 

Though regression results were promising, and the on-peak binary coefficient remained 

significant at the 1% level, increases in the standard error of the coefficient indicated 

some multicollinearity, which, upon examination, was logical, as each binary represented 

a different way of classifying days of the week. Comparing regression results between 

models including on-peak and day-of-week variables, I produced the basic model for the 

study: 

Pt= Xt+ γ1Pt-1+γ2Pt-7+ Zt 

Xt= α +
i=2

12

∑ βiMit +

i=2

7

∑δiDit  

Zt = θZt-1 + ε 

Before incorporating weather variables, I studied scatter plots of forecasted temperature, 

precipitation and wind speed against price9. These plots reveal several interesting 

characteristics. Temperature and price have a nonlinear relationship, with price increases 

associated with extreme temperatures, both high and low. The relationship between wind 

and price is not obvious, though price spikes seem to occur at lower wind speeds, and 

precipitation and price have no observable relationship to speak of. Regression results 

produced by the basic model augmented by weather data seem to indicate that only wind 

                                                        
9 See Figure 5 for temperature-price plot 
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speed has a significant relationship with price- temperature and precipitation coefficients 

are small and statistically insignificant. Hoping to capture the effect of extreme 

temperature on prices, I created a binary with a value of one when temperatures exceed 

85° or drop below 32°, and zero when temperatures fall between the two. Replacing 

temperature with the temperature binary, retaining wind and removing precipitation as a 

variable delivered significant results and a model of the following form: 

Pt= Xt+ WT + γ1Pt-1+γ2Pt-7+ Zt 

Xt = α +
i=2

12

∑ βiMit +

i=2

7

∑δiDit  

Wt=ω1Tt+ω2St 

Zt = θZt-1 + ε 

 

5. Empirical Results 

Regression analysis of price and the natural logarithm of price was conducted 

using both the basic model and the weather variable-enhanced model. Results produced 

using price and the natural logarithm of price represented improvements over the 

standard Lucia-Schwartz model in RMSE, AIC and BIC10. Day-of-week variable 

coefficients were statistically significant at the 1% level, as were wind and temperature 

coefficients. The temperature binary indicates a positive relationship between electricity 

price and extreme temperatures, which is not surprising, but the negative coefficient for 

wind was, at first puzzling. Contrary to expectations, it indicates that wind chill does not 

                                                        
10 See Table 2 for regression results from Lucia- Schwartz model, basic model and weather 
variable-enhanced model for price and natural logarithm of price 
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seem to exert much influence on electricity prices. The negative effect of wind on price 

can be explained by two factors. Though wind power accounts for only 2% of total 

generation for the PJM Interconnection (PJM, 2010), we would expect that on windy 

days, wind power represents more than 2% of generation (the opposite being true on 

windless days), and that this increased generation via wind would reduce prices. Second, 

84% of heating in the area served by PJM uses natural gas or oil for heating (EIA, 2010), 

suggesting that cold temperatures and wind chill should not have a great effect on 

electricity prices. Air conditioning, however, relies almost exclusively on electricity, 

explaining in part the positive relationship between price and high temperatures. 

Increased wind on a hot day has a cooling effect, reducing the need for air conditioning 

and counteracting some of the positive effect temperature has on price.  

Huurman et. al. (2007) find that precipitation levels have a significant effect on 

price, whereas this study found its impact to be negligible. In their study, Huurman et. al. 

analyze prices for Scandinavian countries, including Norway, where hydropower 

accounts for 95% of electricity generation, and therefore it is not surprising that 

precipitation would have greater effect on power prices. Generation for the PJM 

interconnection is primarily coal and natural gas-based, and much less sensitive to 

precipitation (PJM, 2010).  

The effect individual months exert on price defy intuition and are not easily 

explained. Negative coefficients during traditionally cold or mild months can be partially 

accounted for by regional heating methods, when viewed through the prism of seasonal 

influences. However, positive coefficients for April and November, negative coefficients 

during summer months and the switching of signs of coefficients following the addition 
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of weather variables, are unexpected and resist interpretation. Despite this, removal of 

month variables significantly increased prediction error measures with negligible effect 

on the coefficients for other variables, and thus they were kept in the model.  

To test the hypothesis that inclusion of weather forecast variables improves the 

predictive power of electricity price forecasting models, I conducted out of sample 

analysis using data from the PJM Western Hub Day-Ahead Market for the period 

beginning January 1, 2009 and ending December 31, 201011. When making predictions, I 

consider data through the period immediately preceding that being forecasted, which 

means the model considers actual values of Pt-1 and Pt-7 when calculating Pt, and not the 

predicted values produced by the model. Once forecasts were obtained using each model, 

I compared them to actual prices for the period and calculated the RMSE and MAPE for 

the predictions. When predicting prices, the model including weather variables had 

RMSE of 6.175 and MAPE of 0.9324, compared with 6.230 and 0.0938 for the basic 

model, and when predicting the natural log of prices, the model including weather 

variables had RMSE of 0.119 and MAPE of 0.0243, compared with 0.121 and 0.0245 for 

the basic model.  

 

6. Conclusion 

The literature regarding electricity price forecasting has repeatedly confirmed that 

predictable behavior in electricity prices is determined by regional and temporal 

influences, and the results of this study suggests that temperature can account for part of 

that regular behavior. Furthermore, this study suggests that day-ahead electricity market 

                                                        
11 See Figure 6 for plot of Prices overlaid with predicted values 
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participants believe that weather plays a role in determining power prices, and that 

weather forecasts inform their bids and offers in the day-ahead market. The addition of 

weather variables produces improvement in out-of-sample forecasting power of both 

price and the natural logarithm of price. Results indicate that extreme temperature levels 

will have a positive effect on prices, and that prices tend to fall as wind speed increases. 

This study also suggests that while weather does influence electricity prices, regional 

variables such as methods of generation and manner of end-use determine how weather 

impacts prices, and what that impact will be.  

While decreases in forecast RMSE and MAPE due to the addition of weather 

variables are small, this may be due to misspecification within the model, or perhaps to 

the unsuitability of ARMAX-type models to predicting electricity prices. The literature 

has shown that GARCH models and models incorporating regime-switching or jump-

diffusion processes more accurately account for price spikes and can better forecast 

electricity prices.  

 This study is also hampered by the source and type of weather forecast data used. 

While Washington, D.C. and Pittsburgh can be considered representative of the general 

PJM Western Hub region, forecasts for every point within the region would be 

preferable. Again, incorporating such data in a study would prove challenging given the 

aggregate nature of hub prices. Using NWC station forecasts instead of private forecast 

data used by market participants also may have negatively impacted the results of the 

study. While most private forecasting firms make use of NOAA weather satellite models 

and data, they produce unique forecasts. Though NWC predictions are fairly accurate, 

they tend to err most during extreme weather events and conditions, times when we 
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would expect power prices to spike, and electricity to be most sensitive to weather 

variables (Dello, 2011).   

 Electricity pricing models are constantly refined, and further investigation of the 

effects of weather and weather forecasts on electricity prices would prove fruitful to such 

research. Use of GARCH models or models incorporating regime-switching and jump 

processes could stand to benefit from the inclusion of weather variables. Alternatively, 

more complex weather forecast data, such as the ensemble forecasts used by Taylor and 

Buizza (2003), could improve model accuracy. Finally, exploration of other, less-studied 

electricity markets may help create a more complete understanding of the deregulated 

power industry.   
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Table 1: Price Summary Statistics 

 

 

Figure 1: Time Series of Price 
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Figure 2: Histogram of Price

 

Figure 3: Autocorrelation Function of Price 
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Figure 4: Average Price by Day of Week 

 

Figure 5: Scatter Plot of Temperature vs. Price 
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Table. 2: Standard Error in Parenthesis; ***p<0.01, **p<0.05, *p<0.1;LS denotes Lucia-Schwartz 
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Figure 6: Price vs. Weather Variable-Enhanced Basic Model Predicted Values of Price 

 

 

 

Table 3: Out-of-Sample Prediction Errors 
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