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Abstract

Let S be a collection of convex sets in Rd with the property that any sub-
collection of d− 1 sets has a nonempty intersection. Helly’s Theorem states
that ∩s∈SS is nonempty. In a forthcoming paper, Berg et al. (Forthcoming)
interpret the one-dimensional version of Helly’s Theorem in the context of
voting in a society. They look at the effect that different intersection prop-
erties have on the proportion of a society that must agree on some point
or issue. In general, we define a society as some underlying space X and
a collection S of convex sets on the space. A society is (k, m)-agreeable if
every m-element subset of S has a k-element subset with a nonempty inter-
section. The agreement number of a society is the size of the largest subset
of S with a nonempty intersection.

In my work I focus on the case where X is a tree and the convex sets in
S are subtrees. I have developed a reduction method that makes these tree
societies more tractable. In particular, I have used this method to show that
the agreement number of (2, m)-agreeable tree societies is at least 1

3 |S| and
that the agreement number of (k, k + 1)-agreeable tree societies is at least
|S| − 1.
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Chapter 1

Background

1.1 Helly’s Theorem

The simplest version of the classical Helly’s theorem states:

Helly’s Theorem in 1-dimension. Given n convex sets, that is intervals, in R,
if every pair has a nonempty intersection then all n intersect at a common point.

Consider the example in Figure 1.1. Each of the colored lines represents
an interval of R, slightly displaced so they may be distinguished. Each pair
of intervals has a nonempty intersection and we can see that there is a point
contained in all of the intervals.

On the plane, the property that every pair of sets in a collection of con-
vex sets has a nonempty intersection is no longer sufficient to guarantee
that there will be a point contained in all of the sets. In Figure 1.2, we see
three convex sets that intersect pairwise but still have an empty intersec-

Figure 1.1: Four pairwise intersecting intervals.
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Figure 1.2: Three convex sets that intersect pairwise but have a nonempty
intersection.

tion. However, if we change the hypothesis to require that every three sets
in a collection of n convex sets has a nonempty intersection, we guaran-
tee that there is a point in the intersection of the n sets. In general, the
d-dimensional version of the classical Helly’s theorem states:

Theorem 1.1 (Helly). Given n convex sets in Rd where n > d, if every d + 1 of
them has a nonempty intersection, then they all intersect at a common point.

In moving to higher dimensions, it is necessary to change the intersec-
tion properties of the sets in the hypothesis to guarantee the same conclu-
sion. It is also interesting to consider what results can be obtained when we
alter the intersection properties in the hypothesis. This has been well ex-
plored by Berg et al. (Forthcoming) both in the linear case and in Rd. In the
linear case, Berg et al. (Forthcoming) also provide an interesting application
to approval voting systems, which we describe below.

1.2 Agreeable Societies

If we consider R as the political spectrum and an interval (convex set) as
the region of the political spectrum of which a particular voter approves ,
we can use a collection of intervals to model the political preferences of a
society. For example, in Figure 1.3 we have taken our earlier linear example
and labeled the line as a political spectrum. We can interpret the line and
collection of four intervals as a society with four voters and see that there
is a region of the political spectrum approved by all of the voters.
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Liberal Conservative

Figure 1.3: Interpreting the real line as a political spectrum.

If X is a linear space and S is a collection of convex sets of X, we call
the ordered pair (X,S) a linear society, view X as a political spectrum, and
associate a voter v to each element Av ∈ S called the voter’s approval set. If a
candidate’s position falls within Av we say that the voter v would approve
that candidate. Let the agreement number a(S) of a society (X,S) be the size
of the largest subset of S that has a nonempty mutual intersection. In a
society satisfying the hypotheses of the classical Helly’s Theorem, such as
the society in Figure 1.3, we have a(S) = |S|.

Translating Helly’s theorem in R using this context, we see that in a
linear society (R,S) in which the convex sets corresponding to every pair
of voters have a nonempty intersection, we have a(S) = |S|, that is, there
is some point on the political spectrum of which all voters in the society
approve. However, if we are having an election, it is not terribly useful to
have a point on the spectrum approved by all voters if there is no candidate
at that point for whom to vote.

To incorporate the idea of candidates, we can either assume that there
is a candidate at every point on the line or we can place a node for every
candidate on the line thus moving from R into a discrete line, that is, a
possibly infinite (if there are infinitely many candidates) linear tree. If we
move to this discrete scenario, then we require the subsets corresponding to
the voters to be subtrees of the underlying linear tree. In Figure 1.4 we add
five candidates to the linear society we were looking at earlier and convert
the intervals associated with each of the four voters into subtrees.

Furthermore, we know that any given group of people is highly un-
likely to all agree on anything, so it is interesting to ask what happens if,
for example, we know that some pair amongst every three people in a so-
ciety agree even though any given pair might not. The following theorem
gives a bound on the agreement number of a linear society in which every
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Figure 1.4: A discrete linear society.

collection of m voters has some subset of k voters that all approve of some
candidate.

Theorem 1.2 (Berg et al. (Forthcoming)). Let 2 ≤ k ≤ m. If (X,S) is a
(k, m)-agreeable linear society, then

a(S) ≥ d(|S| − ρ) /qe

where m− 1 = (k− 1)q + ρ, ρ ≤ k− 2.

In addition, Berg et al. (Forthcoming) provides a construction showing
that there are linear societies for which this lower bound is attained.

We define a circular society (X,S) analogously, where we now require X
to either be a continuous circle or a cycle graph. The following recent result
mirrors the above results for linear societies:

Theorem 1.3 (Hardin (Forthcoming)). 1. If (X,S) is a (k, m)-agreeable cir-
cular society, then

a(S)
|S| >

k− 1
m

equivalently, a(S) ≥ b k−1
m |S|c+ 1.

2. For every N ≥ m ≥ k ≥ 1, there is a (k, m)-agreeable circular society
(X,S) with |S| = N and a(S) = b k−1

m |S|c+ 1.

Hardin’s work is discussed further in Section 1.4.
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1.3 Graphs and the Helly Property

Helly’s theorem has also given rise to the definition of a Helly family of
sets. A collection of sets S form a Helly family if every pairwise intersecting
subset of S has a common intersection. In the graph theory literature, a cer-
tain class of graphs with a designated type of subgraph is said to have the
Helly property if the collection of all subgraphs of the designated type form
a Helly family. In recent years, a great deal of work has been done identi-
fying and characterizing classes of graphs with a specific type of subgraph
that have the Helly property. The simplest and most well known such class
is trees with their subtrees.

Theorem 1.4 (Helly Property for Trees). If G1, . . . , Gk are pairwise-intersecting
subtrees of a tree G, then G has a vertex that belongs to all of G1, . . . Gk.

A second class that has been well studied are the clique-Helly graphs,
those graphs for which the collection of maximal cliques form a Helly fam-
ily. Lin and Szwarcfiter (2007) provide a characterization of clique-Helly
graphs that leads to a polynomial-time algorithm for recognizing them.
In addition to clique-Helly graphs, the current literature has much to say
about biclique-Helly graphs — those graphs in which the maximal bicliques
form a Helly family, neighborhood Helly graphs — where the neighborhoods
of the graph form a Helly family, and such increasingly complicated classes
as self-clique Helly circular-arc graphs.

1.4 Agreeability on Graphs

We noted in Section 1.1 that when the classical Helly’s theorem is general-
ized in Rd, it is the intersection property that is changed in the hypothesis,
not the type of subset. Generalizations of Helly on continuous domains,
such as Berg et al. (Forthcoming) have tended to involve exploring sets
with different intersection properties. It thus seems odd that the gener-
alizations of Helly’s theorem in the graph theory literature have focused
almost exclusively on determining classes of graphs that satisfy the Helly
property rather than starting with an intersection property and exploring
what can be said about families that satisfy it.

That said, Hardin (Forthcoming) uses discrete representations, specifi-
cally cycle graphs, to study circular societies. His work provides a method
for turning any circular society into a discrete circular society, where the
underlying space is a cycle graph and each subset is a connected subgraph.
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He further shows that every discrete circular society is equivalent to a dis-
crete circular society in which none of the subsets is completely contained
in another subset and the collection of endpoints of the subsets alternates
between right and left endpoints as one proceeds around the cycle. By
showing that all circular societies are equivalent to discrete circular soci-
eties with certain structural properties, Hardin is able to make the graphs
he is working with much more manageable.

Hardin (Forthcoming) also points out that it is unknown whether or
how Theorem 1.2 generalizes to trees with collections of subtrees. My
work has been exploring this question, using Hardin’s technique of con-
verting arbitrary discrete societies into discrete societies with some amount
of known structure.

1.5 Terminology and Notation

Let T be a tree. Then a subtree s is a connected subgraph of T.
When considering the intersection of a collection of subgraphs of some

graph G, we say that the intersection of the subgraphs is nonempty if the
subgraphs have at least one common vertex.

Let G = (V, E) be any graph and v ∈ V. Then G− v is the subgraph of
G induced by all vertices of G except v.

If T is a tree and S is a collection of subtrees of T and s ∈ S , then S − s
is the result of removing one copy of s from S . Unless we specifically state
otherwise, we allow any collection S of subtrees to contain multiple, dis-
tinguishable copies of the same subtree. We will sometimes refer to subsets
of S , but if S has multiple copies of some subtree then the subsets are also
allowed to contain multiple copies of that subtree.

A tree society (T,S) is a tree T along with a collection S of subtrees.
We say that (T,S) is (k, m)-agreeable if every m-element subset of S has
a k-element subset with a nonempty intersection. The agreement number,
a(S), of a tree society (T,S) is the size of the largest subset of S that has a
nonempty intersection.

If (T,S) is a tree society and v is a vertex of T , we let

Sv = {t ∈ S|v ∈ V(t)} ;

that is, the set of subtrees in S that contain the vertex v.
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1.6 Our Main Goal

Given a (k, m)-agreeable linear society, Theorem 1.2 provides a sharp lower
bound on the agreement number for the society. Hardin (Forthcoming)
has provided a sharp lower bound for the agreement number of (k, m)-
agreeable circular societies. Our goal has been to provide a lower bound
on the agreement number for (k, m) agreeable tree societies.

While we have not found a sharp lower bound for (k, m)-agreeable tree
societies in general, we provide such bounds for (k, k + 1)-agreeable and
(2, m)-agreeable tree societies in Theorem 3.2 and Theorem 3.3 respectively.
In addition, in Chapter 2 we develop a notion of equivalence of tree soci-
eties and show that every tree society can be reduced to a tree society with
particular structural properties.





Chapter 2

A Reduction Method

In this chapter we begin by discussing what it means for two tree societies
to be equivalent. We then show that every (k, m)-agreeable tree society can
be reduced to an equivalent (k, m)-agreeable tree society with certain useful
structural properties. This reduction process and the accompanying notion
of irreducible tree societies play a vital role in the work we do to determine
lower bounds on the agreement number in Chapter 3.

2.1 Equivalent Tree Societies

Given a (k, m)-agreeable tree society (T,S), we seek a lower bound for the
agreement number of the society. Both our initial conditions on S and our
question are purely in terms of intersection properties of the subtrees in S .
Thus it makes sense to consider two tree societies to be equivalent if their
subtrees intersect in the same ways.

More formally, we say that two tree societies (T,S) and (T′,S ′) are
equivalent if there is a bijection ϕ : S → S ′ that preserves the intersection
properties of the subtrees, that is, if R ⊆ S , then

⋂
r∈R r is empty if and only

if
⋂

r∈R ϕ(r) is empty. Figure 2.1 shows a pair of equivalent tree societies.

2.2 Irreducible Tree Societies

In this section we define the notion of irreducible tree societies and explore
the structural properties of these societies. In Theorem 2.3 we show that
every tree society is equivalent to an irreducible tree society.

Let (T,S) be a tree society and suppose l is a leaf of T and v is the vertex
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v vv

v

v

v

v vv

v

v

v

Figure 2.1: These two tree societies are equivalent. The bijection is given
by pairing the subtrees of the same color.

v v v vu V

Figure 2.2: The leaf u is reducible, but the leaf v is not.

adjacent to l. If Sl ⊆ Sv, then every subtree containing l also contains its
neighbor v and we call l a reducible leaf. In Figure 2.2 we provide an example
of a tree society that has both a reducible leaf and a nonreducible leaf.

We define an irreducible tree society (T,S) as a tree society with no re-
ducible leaves. If the underlying tree of a society is a single vertex then the
society is irreducible. The following theorem provides a useful characteri-
zation of irreducible tree societies:

Theorem 2.1. A tree society (T,S) is irreducible if and only if every leaf of T is
covered by at least one single-vertex subtree from S .

Proof. Suppose (T,S) is irreducible. By definition, if a leaf is not reducible,
then there is some subtree in S that contains that leaf but not the vertex
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adjacent to it. Because every leaf of T is not reducible, we can find a single-
vertex subtree in S that covers each leaf.

If a leaf l is covered by a single-vertex subtree t, then t does not contain
the vertex adjacent to l. Thus l is not reducible. If every leaf of T is covered
by at least one single-vertex subtree from S , it follows that none of the
leaves are reducible. Thus (T,S) is irreducible.

The following structural result for irreducible tree societies follows di-
rectly from this characterization:

Lemma 2.1. In an irreducible (k, m)-agreeable tree society (T,S), the underlying
tree has at most m− k + 1 leaves.

Proof. (T,S) is irreducible, so we can find a single-vertex subtree in S that
covers each of the leaves of T. Let L ⊆ S be a minimum set of single-
vertex subtrees that together cover all of the leaves of T. Note that |L| is the
number of leaves in T and that the elements of L are pairwise disjoint. Let
R ⊆ S − L be a set of m − |L| subtrees and consider the set R ∪ L. R ∪ L
is a collection of m elements of S , so it must have a k-element subset that
shares a common vertex. Because the elements of L are disjoint, only one of
these k elements can come from L, so there must be at least k− 1 elements
in R. Therefore m− |L| ≥ k− 1, which directly implies that |L| ≤ m− k + 1.
Thus we see that T must have at most m− k + 1 leaves.

Corollary 2.1. If (T,S) is an irreducible (n, n + 1)-agreeable tree society then T
has at most two leaves and is thus either a single vertex or a path.

These structural properties of irreducible tree societies make them much
easier to work with than arbitrary tree societies.

2.3 A Reduction Process

In this section we prove that every tree society is equivalent to an irre-
ducible tree society. This will allow us to prove theorems about general
tree societies while only working directly with irreducible tree societies.

We begin by considering the effect of removing a single reducible leaf
from a tree society.

Theorem 2.2. If (T,S) is a tree society and l is a reducible leaf, then (T′,S ′) is
equivalent to (T,S) where T′ = T − l and S ′ = {t− l : t ∈ S} .
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Proof. Let v be the unique neighbor of the leaf l. It is clear that each t− l
is a nonempty subtree of T′, so (T′,S ′) is a tree society. Define a map ϕ :
S → S ′ by ϕ(t) = t− l. The construction of S ′ ensures that ϕ is a bijection.
Furthermore, as every subtree in S that contains l also contains v, the image
of any collection of subtrees will have a nonempty intersection if and only
if the original set had a nonempty intersection. Thus (T,S) and (T′,S ′) are
equivalent tree societies.

In the next theorem we extend this method for removing a single re-
ducible leaf to an algorithm that converts any tree society into an equiva-
lent irreducible tree society.

Theorem 2.3. Every finite tree society (T,S) is equivalent to an irreducible tree
society.

Proof. The following algorithm takes any finite tree society and produces
an equivalent irreducible tree society.

Input: A tree society (T,S)

Initialization: Let L be the set of reducible leaves of (T,S) and set T′ = T,
S ′ = S .

Iteration: If L is empty, we are done and (T′,S ′) is an irreducible tree so-
ciety equivalent to (T,S). Otherwise, choose l ∈ L. Set T′ = T′ − l,
S ′ = {t− l : t ∈ S ′}. Let L be the set of reducible leaves of (T′,S ′)
and iterate.

At every iteration we produce a tree society (T′,S ′) that is equivalent to
(T,S). Because each iteration decreases the number of vertices in T′, T is
finite, and every society whose underlying tree is a single vertex is irre-
ducible, the algorithm must terminate.

See Figure 2.3 for an example of the application of this algorithm.
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v vv

v

v
v vv

v

vv

v

v

v

Figure 2.3: This figure illustrates the application of the algorithm in Theo-
rem 2.3 to a specific tree society. At each step the next vertex to be removed
is marked with an arrow.





Chapter 3

(k, m)-Theorems for Tree
Societies

In this chapter we explore lower bounds on the agreement number of (k, m)-
agreeable tree societies. In particular, in Theorem 3.2 and Theorem 3.3 we
provide sharp bounds for the agreement number of (n, n + 1)- and (2, m)-
agreeable tree societies respectively. Table 3.1 summarizes our bounds for
(k, m)-agreeable tree societies when m ≤ 6.

3.1 Definitions

Recall from Section 1.5 that we define a tree society as an ordered pair (T,S)
where T is a tree and S is a collection of nonempty subtrees of T. We allow
S to contain multiple copies of a particular subtree, but we assume that we
can distinguish between these copies.

A tree society (T,S) is (k, m)-agreeable if every m-element subset of S
has a k- element subset with a nonempty intersection. We define the agree-
ment number, a(S), of a tree society (T,S) to be the size of the largest subset
of S that has a nonempty intersection.

If v is a vertex of T, we let

Sv = {t ∈ S|v ∈ V(t)} ;

that is, the set of subtrees in S that contain the vertex v.
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3.2 (n, n + 1)-Agreeable Tree Societies

In this section we provide a bound for (n, n + 1)-agreeable tree societies.
We begin by examining the case where n = 2 and then consider the n > 2
case.

Theorem 3.1. In a (2, 3)-agreeable tree society (T,S) there is some vertex in at
least 1

2 of the subtrees in S and this result is sharp.

Proof. Let (T′,S ′) be an irreducible tree society equivalent to (T,S) and let
ϕ : S → S ′ be bijective and intersection-preserving. We know by Corol-
lary 2.1 that T′ has at most two leaves.

Case 1: If T′ has fewer than two leaves, it must be a single vertex, v. In
this case,

⋂
s′∈S ′ s′ =

⋂
s∈S ϕ(s) = v and, because ϕ is intersection-

preserving, we see that there is some vertex of T that is contained in
every s ∈ S .

Case 2: T′ has two leaves, u and v. Then because (T′, S′) is reduced, Theo-
rem 2.1 implies that there exist find single-vertex subtrees x and y in
S′ covering u and v, respectively. Note that x and y are disjoint.

Because (T′,S ′) is (2, 3)-agreeable, the set {x, y, s} must have some
pair with a nonempty intersection. It follows that that every s ∈ S ′ −
{x, y}must contain at least one of u and v. Let

A′ = {s ∈ S ′ : s ∩ x 6= ∅} and B′ = {s ∈ S ′ : s ∩ y 6= ∅}.

Then A′ and B′ are not necessarily disjoint, but A′ ∪ B′ = S ′. Thus
|A′|+ |B′| ≥ |S ′|, so without loss of generality |A′| must be at least⌈
|S ′|

2

⌉
. Because A′ has a nonempty intersection in S ′, ϕ−1(A′) = A

has a nonempty intersection, so there is some vertex in at least |A| =
|A′| subtrees in (T,S).

Thus, in either case, there is some vertex in at least half of the subtrees
of S . The tree society shown in Figure 3.1 shows that this minimum is
attained.

When n > 2, we have the following much stronger result:

Theorem 3.2. Let n > 2. In every (n, n + 1)-agreeable tree society (T,S), there
is some vertex v in at least |S| − 1 of the subtrees in S .
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v v v v

Figure 3.1: (2, 3)-agreeable tree society with minimal agreement number.

Proof. Let (T′,S ′) be irreducible and equivalent to (T,S) and let ϕ : S → S ′
be bijective and intersection-preserving. We know that T′ has at most two
leaves by Corollary 2.1.

Case 1: If T′ has fewer than two leaves, it must be a single vertex, v. In this
case,

⋂
s′∈S ′ s′ =

⋂
s∈S ϕ(s) = v and as ϕ is intersection-preserving we

see that there is some vertex of T that is contained in every s ∈ S .

Case 2: T′ has two leaves, u and v. Then, because (T′, S′) is reduced, The-
orem 2.1 implies that there exist single-vertex subtrees x and y in S′

covering u and v respectively.

Suppose, for the sake of contradiction, that we could find a, b ∈ S ′ −
{x, y} such that u ∈ a, u 6∈ b and v ∈ b, v 6∈ a. Note that this construc-
tion ensures that x and b are disjoint and that y and a are disjoint. Let
R ⊆ S ′ be any collection of n + 1 subtrees such that {x, y, a, b} ⊆ R.
Any n-element subset of R must contain all but one of the subtrees
in R and thus must contain either the pair x and b or the pair y and
a. In both cases, this n-element subset contains some disjoint pair of
elements and thus must have an empty intersection. This violates the
intersection property given in the hypothesis, so no such pair a and b
can exist.

Let R ⊂ S ′ − {x, y} be an arbitrary collection of n− 1 subtrees. Be-
cause R ∪ {x, y} must have an n-element subset with a nonempty in-
tersection, R itself must have a nonempty intersection. Furthermore,
either u or v must be in

⋃
r∈R r. As this is true for any such R, we see

that every element of S ′ must contain at least one of u and v.

We have shown that every subtree in S′ must contain at least one of
u and v and that there is no pair of subtrees a, b ∈ S′ − {x, y} such
that a contains u but not v, and b contains v but not u. It follows that
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either every subtree in S ′ − {x, y} contains the leaf u or every subtree
in S ′ − {x, y} contains the leaf v. Without loss of generality, assume
that every subtree in S′ − {x, y} contains u. Then the only subtree in
S ′ that does not contain u is y, that is, u is in the intersection of the
subtrees in S′ − {y}. Because ϕ is a bijective, intersection-preserving
map, S− ϕ−1(y) must also have a nonempty intersection.

Thus there is some vertex of T in at least |S| − 1 of the subtrees in S .

3.3 (2, m)-Agreeable Tree Societies

In this section we prove that every (2, m)-agreeable tree society (T,S) has
some vertex contained in 1

m−1 |S| of the subtrees in S and that this lower
bound is attainable. First, however, we examine the specific case where
m = 4.

Theorem 3.3. If (T,S) is a (2, 4)-agreeable tree society then there is some vertex
of T contained in at least 1

3 |S| subtrees in S .

Proof. Let (T,S) be a (2, 4)-agreeable tree society and let (T′,S ′) be the
equivalent reduced society guaranteed by Theorem 2.3. Because it is re-
duced, we know by Lemma 2.1 that T′ has at most m− k + 1 = 4− 2 + 1 = 3
leaves. We consider three cases:

Case 1: If T′ has one leaf, then it is a single-vertex tree. Thus every subtree
in S ′ must contain that single vertex and so in the original society
(T,S) there must have been some vertex contained in every subtree
in S .

Case 2: Suppose T′ has two leaves, u and v. Define the collections

A = {s ∈ S ′; u ∈ s} B = {s ∈ S ′; v ∈ s}

and let C = S ′ − (A∪ B) be the complement of A∪ B in S′. Note that
this construction ensures that every subtree in A contains the vertex
u, that every subtree in B contains the vertex v and that every subtree
of S appears in at least one of A, B, and C. As (T′,S ′) is a reduced
society, we can find a ∈ A and b ∈ B such that a is a single-vertex
subtree containing u and b is a single-vertex subtree containing v. If
c, d ∈ C,then the fact that (T′,S ′) is (2, 4)-agreeable tells us that some
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pair of a, b, c, d must have a nonempty intersection. By construction,
a and b do not have a common intersection and do not intersect with
any subtree in C, so it must be the case that c and d have some vertex
in common. Thus we see that the subtrees in C are pairwise intersect-
ing. Therefore there is some vertex of T′ contained in every subtree
in C.

By construction, every subtree in S ′ is contained in at least one of
A, B and C, so we know by the pigeonhole principle that one of the
three contains 1

3 |S ′| subtrees. We have shown above that these 1
3 |S ′|

subtrees must have some vertex in common. Thus when the reduced
tree society has two leaves there is some vertex of the original tree
contained in at least 1

3 |S| of the subtrees in S .

Case 3: Suppose T′ has three leaves, call them u, v, and w. Because (T′,S ′)
is reduced, we can find single-vertex subtrees a, b, c ∈ S ′ covering
u, v, and w, respectively. Any subtree s ∈ S ′ − {a, b, c} must have a
nonempty intersection with one of a, b, and c and thus must contain at
least one of u, v, w. Because every subtree in S must contain at least
one of u, v, or w, the pigeonhole principle tells us that one of them
must be contained in at least 1

3 |S ′| of the subtrees in S ′. Thus when
the reduced tree has three leaves there must be some vertex in the
original tree T contained in at least 1

3 |S| subtrees in S .

In all three cases we see that there is some vertex of T contained in at
least 1

3 |S| subtrees in S , so this is true for all (2, 4)-agreeable tree societies.

We note that in the two-leaf case the reduced tree society is actually
linear, so we could have simply appealed to Theorem 1.2. The above ar-
gument is included to provide a more concrete example of the inductive
process we use to prove the following theorem.

Theorem 3.4. If (T,S) is a (2, m)-agreeable tree society then there is some vertex
of T contained in at least 1

m−1 |S| subtrees in S . Furthermore, this bound is sharp.

Proof. When m = 2, this is simply the Helly property for trees and we cover
the m = 3 case in Theorem 3.1.

Assume for the sake of induction that for m < n, any (2, m)-agreeable
tree society (T,S) has some vertex contained in at least 1

m−1 |S| subtrees of
S .

Let (T,S) be a (2, n)-agreeable tree society and let (T′,S ′) be an equiva-
lent (2, n)-agreeable irreducible society. Because T′ is irreducible, Lemma 2.1
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tells us that it has l ≤ n− k + 1 = n− 2 + 1 = n− 1 leaves. For i = 1, . . . , l,
let these leaves be denoted vi and define

Ai = {s ∈ S ′; vi ∈ s} B = S ′ −
l⋃

i=1

Ai.

Because the society is reduced, we know that each Ai contains a single-
vertex subtree ai covering vi. Let L be the set of these ai. Note that |L| =
l and that the subtrees in L are all pairwise disjoint. Let C ⊆ B be any
collection of n− l subtrees. By construction, C and L are disjoint collections
of subtrees, so |C ∪ L| = (n− l) + l = n.

(T′,S ′) is (2, n)-agreeable, so there must be some pair of subtrees in
C ∪ L with a nonempty intersection. Each ai ∈ L contains a single leaf of
T′ and the subtrees in C necessarily contain none of the leaves of T′, so
any two subtrees of C ∪ L with a nonempty intersection must both come
from C. Thus we see that (T′, B) is a (2, n − l)-agreeable tree society. By
the inductive hypothesis we can find some vertex u contained in 1

n−l−1 |B|
of the subtrees in B.

The subtrees in each Ai have the vertex vi in common, so if |Ai| ≥
1

n−1 |S| for any i we would be done. Suppose |Ai| < 1
n−1 |S| for all i. Now,

S = ∪{A1, . . . Al , B}, so

|S| ≤ |B|+
l

∑
i=1
|Ai| < |B|+

l
n− 1

|S|,

which implies that
n− 1− l

n− 1
|S| < |B|.

Thus u is contained in at least

1
n− l − 1

|B| > 1
n− 1

|S|

subtrees of B.
Hence, there is some vertex of T′ contained in at least 1

n−1 |S| of the sub-
trees in S ′ and the equivalent statement holds for the original unreduced
tree society (T,S).

By the principle of induction it follows that in every (2, m)-agreeable
tree society (T,S) there is some vertex of T contained in at least 1

m−1 |S|
subtrees in S .

In Figure 3.2, we provide an example of a (2, 4)-agreeable tree society
in which every vertex is contained in at most 1

3 of the subtrees. It is easy
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Figure 3.2: (2, 4)-agreeable tree society with minimal agreement number.

to modify this example to obtain a (2, m)-agreeable tree society in which
every vertex is contained in at least 1

m−1 of the subtrees.

3.4 More Small Cases

In this section I discuss a few small cases not covered by the preceding
theorems. In particular, I will provide sharp bounds on (3, 5)- and (4, 6)-
agreeable tree societies and give the best bounds I have found for (3, 6)-
agreeable tree societies.

Theorem 3.5. If (T,S) is a (3, 5)-agreeable tree society, then its agreement num-
ber is at least |S|2 . Furthermore, if an equivalent reduced tree society has three
leaves, then a(S) ≥ |S| − 3.

Proof. Let (T,S) be a finite (3, 5)-agreeable tree society. By Theorem 2.3
we can find an equivalent reduced society (T′,S ′), and, by Lemma 2.1, we
know that T′ has at most 5− 3 + 1 = 3 leaves.

Case 1: If T′ has only a single leaf, then every subtree in S ′ contains that
leaf and we have a(n) = |S ′|. If T′ has two leaves, then (T′,S ′)
is linear, so we may apply Theorem 1.2 to obtain the sharp bound
a(S ′) ≥ |S|

2 .
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v

v

Figure 3.3: A (3, 5)-agreeable tree society with |S| = 6 and a(S) = |S| −
3 = 3.

Case 2: Suppose T′ has three leaves, call them a, b, and c. Then, according
to Theorem 2.1, we can find single-vertex subtrees ta, tb, tb ∈ S ′ cov-
ering a, b, and c respectively. Let R = S ′ − {ta, tb, tc} and let u, v ∈ R.
Because (T′,S ′) is (3, 5)-agreeable and {ta, tb, tc, u, v} is a five-element
subset of S ′, some three elements of this set must have a nonempty
intersection. As ta, tb, and tc are single-vertex subtrees covering dif-
ferent vertices, they are pairwise disjoint, so the three-element subset
can contain only one of them and thus must contain both u and v. In
particular, u and v have a nonempty intersection. Hence we see that
any two arbitrary elements of R have a nonempty intersection and
that (T′, R) must be (2, 2)-agreeable. By Theorem 1.4, there must be
some vertex of T′ contained in every subtree in R. This gives us the
bound a(S ′) ≥ |R| = |S ′| − 3. Figure 3.3 shows a society in which
this bound is attained. Furthermore, |S ′| > 6 implies that |S′|/2 > 3
and hence |S| − 3 > |S|/2, and |S| = 5 necessarily gives a(S) ≥ 3, so
we see that a(S ′) satisfies the weaker bound a(S ′) > |S|/2 as well.

Now we note that by the definition of equivalent tree societies, |S| =
|S ′| and any bound on a(S ′) is also a bound on a(S ′). Thus the above
arguments show that a(S) ≥ |S|/2 in all cases and that when T′ has three
leaves we have the tighter bound a(S) ≥ |S| − 3.
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Theorem 3.6. If (T,S) is a (4, 6)-agreeable tree society, then its agreement num-
ber is at least |S| − 2.

Proof. Let (T,S) be a finite (4, 6)-agreeable tree society. By Theorem 2.3
we can find an equivalent reduced society (T′,S ′) and, by Lemma 2.1, we
know that T′ has at most 6− 4 + 1 = 3 leaves.

Case 1: If T′ has only a single leaf, then every subtree in S ′ contains that
leaf and we have a(n) = |S ′|. If T′ has two leaves, then (T′,S ′)
is linear so we may apply Theorem 1.2 to obtain the sharp bound
a(S ′) ≥ |S| − 2.

Case 2: Suppose T′ has three leaves, call them a, b, and c. Then according
to Theorem 2.1 we can find single-vertex subtrees ta, tb, tb ∈ S ′ cover-
ing a, b and c respectively. Let R = S ′ − {ta, tb, tc} and let u, v, w ∈ R
be distinct. (T′, S′) is (4, 6)-agreeable, so there must be some four el-
ement subset of {ta, tb, tc, u, v, w} with a nonempty intersection. We
know that the ti are disjoint, so this four-element set must contain
{u, v, w}. Thus we see that every three-element subset of R has a non-
empty intersection and it follows that there is some vertex contained
in every subtree in R.

Now, let V = ∩{t ∈ R}, that is, the set of vertices in every subtree
in R. If either a or b is in this set then adding the appropriate single-
vertex subtree back into R gives us a collection of |R|+ 1 = (|S ′| −
3) + 1 = |S ′| − 2 subtrees with a nonempty intersection and we are
done. Otherwise, we can find some t ∈ R such that t does not cover
a. If t covers b, then we can also find a u ∈ R that does not cover b,
otherwise, we let u be any element of R− {t}. Let v ∈ R− {t, u} be
arbitrary. Now consider {ta, tb, tc, t, u, v}. Because it is a six-element
subset of S ′, it must have a four-element subset with a nonempty
intersection. By construction, ta and tb are both disjoint from at least
three of the other subsets, so they cannot be part of the four-element
subset. Hence it must be the case that ∩{tc, t, u, v} is nonempty. This
is true for every v ∈ R, so we see that there is some vertex in ∩({t ∈
R} ∪ {tc}). Thus we have shown that there is a vertex contained in at
least |R|+ 1 = (|S ′| − 3) + 1 = |S ′| − 2 subtrees of S ′.

Now, we note that by the definition of equivalent tree societies, |S| = |S ′|
and that any bound on a(S ′) is also a bound on a(S ′). Thus the above
arguments show that a(S) ≥ |S| − 2 regardless of the number of leaves in
the reduced society.
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v

v

v

Figure 3.4: A (3, 6)-agreeable reduced tree society with four leaves and
agreement number |S| − 4.

The case where (T,S) is a (3, 6)-agreeable society has proven to be
much more difficult to understand, particularly when an equivalent re-
duced society has three leaves.

Example 3.1. An exploration of (3, 6)-agreeable tree societies

Lemma 2.1 tells us that in an equivalent reduced society (T′,S ′) there can
be at most 6 − 3 + 1 = 4 leaves. As usual, if the reduced society has a
single leaf, then we know a(S) = |S|. When T′ has two leaves, the reduced
society is linear and Theorem 1.2 tells us that

a(S) ≥
⌈
|S| − 1

2

⌉
and that this bound is sharp.

If T′ has four leaves, let ta, tb, tc, td ∈ S ′ be single-vertex subtrees cov-
ering the leaves. Let u, v be any two other distinct elements of S ′ and con-
sider {ta, tb, tc, td, u, v}. We know that some three-element subset of this
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six-element set must have a nonempty intersection, but the ti are, by con-
struction, all disjoint. Hence we see that the three-element subset must con-
tain both u and v. As this is true for any choice of u and v, the elements of
S ′ − {ta, tb, tc, td, u, v} are pairwise intersecting and thus the whole collec-
tion has a nonempty intersection. This gives us the bound a(S) = a(S ′) ≥
|S ′| − 4. Figure 3.4 gives an example of a society which attains this bound.
I suspect that the bound may improve to a(S) ≥ |S ′| − 3 when S is suffi-
ciently large, but have not managed to prove it. Regardless of whether this
potential stronger bound holds, the bound we do have is stronger than the
bound on linear societies.

Suppose T′ has three leaves a, b, c and let ta, tb, tc be the single-vertex
covers guaranteed by Theorem 2.1.

Case 1: Suppose we can find some t ∈ S ′ that does not cover any of a, b, c.
Then choosing any two other distinct subtrees u, v in S ′, we obtain a
six-element set {ta, tb, tc, t, u, v} where ta, tb, tc and t are pairwise dis-
joint. Then we can use t in the same way we used td in the four-leaf
case to obtain the bound a(S) = a(S ′) ≥ |S ′| − 4.

Case 2: If there is no t satisfying the condition in Case 1, we know that ev-
ery subtree in S ′ covers at least one of the leaves. Now, we note that
every three-leaf tree has exactly one vertex of degree 3. Call this ver-
tex d and define A = {t ∈ S ′|a ∈ t, d 6∈ t} and B and C analogously.
Note that these sets are nonempty as each contains the relevant ti.
These sets are disjoint, so if we could find two elements in each set
that would give us a six-element subset of S ′ with no three-element
subset with a nonempty intersection. Thus at least one of them must
contain only one element. Without loss of generality, we may say this
is C, that is, we have tc covering c, and every other subtree in S ′ that
covers c must also cover d. Now, removing tc from S ′ does not change
the intersection properties of the remaining subtrees, so (T′, S′−{tc})
is also a (3, 6)-agreeable society. Furthermore, we know that every
subtree that covers c also covers d, so this society reduces to a linear
society and we can apply Theorem 1.2 to obtain the bound

a(S ′ − {tc}) ≥
⌈
|S′ − {tc}| − 1

2

⌉
=
⌈
|S′| − 2

2

⌉
.

As a subset of S ′ satisfies this bound, S ′ itself must as well and we
have

a(S ′) ≥
⌈
|S′| − 2

2

⌉
.
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v

v

Figure 3.5: A (3, 6)-agreeable reduced tree society with three leaves and
a(S) =

⌈
|S|−1

2

⌉
.

This gets us very close to the linear bound, and when |S ′| is odd it
even agrees with the linear bound, but is not quite there. The fact
that S′−{tc} still satisfies (3, 6)-agreeability when tc is added back in
seems like it ought to put a stronger bound on the agreement number
of S ′ than S ′ − {tc}, but I have been unable to prove this. However,
Figure 3.5 gives an example of a three-leaf (3, 6)-agreeable reduced
tree society in which the lower bound on linear societies is obtained.
Thus we at least know that we will not be able to find a stronger
bound than the one we have for the linear case.

The following table summarizes our results for (k, m)-agreeable tree so-
cieties (T,S) where k ≤ m ≤ 6 and l is the number of leaves in an equiv-
alent reduced society. When l = 1 the agreement number is clearly |S|
regardless of k and m, so I have left that case out of the table.
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k m l Bound on a(S) Reference

2 3 2
|S|
2 Theorem 3.2

2 4 2, 3
|S|
3 Theorem 3.4

3 4 2 |S| − 1 Theorem 3.2

3 5 2
|S|
2 Theorem 3.5

3 5 3 |S| − 3 Theorem 3.5

4 5 2 |S| − 1 Theorem 3.2

2 5 2, 3, 4
|S|
4 Theorem 3.4

2 6 2, 3, 4, 5
|S|
5 Theorem 3.4

5 6 2 |S| − 1 Theorem 3.2

4 6 2 |S| − 2 Theorem 3.6

Table 3.1: Summary of Small Cases.





Chapter 4

Future Work and Discussion

4.1 Comparing Linear Societies and Tree Societies

In Theorem 3.2 and Theorem 3.3, we provide lower bounds for the agree-
ment numbers of (n, n + 1)-agreeable tree societies and (2, m)-agreeable
tree societies, respectively. Both of these results agree with the results for
(n, n + 1)-agreeable linear societies and (2, m)-agreeable linear societies giv-
en by Berg et al. (Forthcoming). In the (n, n + 1) case this is expected, as
we can use Corollary 2.1 to reduce any (n, n + 1)-agreeable tree society to
a society with at most two leaves – a linear society. Though it uses the fact
that the society is essentially linear, our proof is of a very different nature
than the proof presented by Berg et al. (Forthcoming). For the (2, m) case
this correspondence is somewhat more surprising, as our current reduc-
tion process does not suggest that all (2, m)-agreeable tree societies can be
reduced to linear societies.

For both (3, 5)- and (4, 6)-agreeable tree societies, we have shown that
having more leaves can only give us stronger bounds. In the case of (3, 6)-
agreeable societies, we have shown that the bounds on the agreement num-
ber in a reduced society with four leaves are at least as strong as those on
a linear society. For the three-leaf case, we have been unable to prove that
there cannot exist a society that does not satisfy the bounds on the linear
case, but I have also been unable to find a counter example. The most im-
mediate goal is thus to better understand this case.

The statement of Theorem 1.2, that in a (k, m)-agreeable linear society
(X,S), m− 1 = (k− 1)q + ρ, ρ ≤ k− 2 implies that a(S) ≥ d(|S| − ρ) /qe,
looks like the sort of statement that ought to be able to be shown via a
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pigeonhole argument. It seems plausible that such an argument could then
be extended from linear societies to tree societies.

4.2 Other Possible Directions

Before discovering that these questions were not yet understood on trees,
I spent some time playing with similar questions on the cube graph. It
would be interesting to explore the analogous questions on the hypercubes
or possibly other classes of graphs more fully. This brings with it the added
challenge of determining what subgraphs are appropriate to consider, as it
is less clear how we should define a convex subset of an arbitrary graph.
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