
Claremont Colleges Claremont Colleges 

Scholarship @ Claremont Scholarship @ Claremont 

HMC Senior Theses HMC Student Scholarship 

2009 

Mathematical Model of the Chronic Lymphocytic Leukemia Mathematical Model of the Chronic Lymphocytic Leukemia 

Microenvironment Microenvironment 

Ben Fogelson 
Harvey Mudd College 

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses 

Recommended Citation Recommended Citation 
Fogelson, Ben, "Mathematical Model of the Chronic Lymphocytic Leukemia Microenvironment" (2009). 
HMC Senior Theses. 219. 
https://scholarship.claremont.edu/hmc_theses/219 

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at 
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator 
of Scholarship @ Claremont. For more information, please contact scholarship@claremont.edu. 

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/219?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@claremont.edu


Mathematical Model of the Chronic
Lymphocytic Leukemia Microenvironment

Ben Fogelson

Lisette dePillis, Advisor

Rachel Levy, Reader

May, 2009

Department of Mathematics



Copyright c© 2009 Ben Fogelson.

The author grants Harvey Mudd College the nonexclusive right to make this work
available for noncommercial, educational purposes, provided that this copyright
statement appears on the reproduced materials and notice is given that the copy-
ing is by permission of the author. To disseminate otherwise or to republish re-
quires written permission from the author.



Abstract

A mathematical model of the interaction between chronic lymphocytic leu-
kemia (CLL) and CD4+ (helper) T cells was developed to study the role of T
cells in cancer survival. In particular, a system of four nonlinear advection-
diffusion-reaction partial differential equations were used to simulate spa-
tial effects such as chemical diffusion and chemotaxis on CLL survival and
proliferation.
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Chapter 1

Biological Background

B-cell chronic lymphocytic leukemia (CLL) is an incurable cancer and is the
most common leukemia in the western world (Caligaris-Cappio and Dalla-
Favera, 2005), constituting nearly 31% of all cases of human leukemia in
patients over 50 years old (Martinis et al., 2005) with an estimated 15,110
new cases in the United States in 2008 (National Cancer Institute). The
disease seldom occurs in people under 40 years of age (Vitale et al., 2003).

CLL is a cancer of the immune system, and is characterized by the un-
controlled growth of B lymphocytes (B cells), one of the main types of im-
mune system cells. While B-cell growth is necessary for a healthy immune
system (Abbas and Lichtman, 2005), the unchecked proliferation of B cells
typical of CLL can cause the immune system, the circulatory system, the
bone marrow, and other vital bodily networks to malfunction. Eventually,
these breakdowns result in death.

Despite the fact that CLL is eventually fatal, the rate at which the cancer
progresses varies greatly between individual patients. The disease can be
roughly divided into two forms: a fast-progressing pathway and a slow-
progressing pathway. Those with the slow-progressing pathway may not
require treatment for many years (Vitale et al., 2003; Messmer et al., 2005),
whereas those with the fast-progressing pathway can die in spite of treat-
ment within a year of diagnosis (Vitale et al., 2003).

CLL is obviously a clinically important disease, but many features of
the disease are still poorly understood. In particular, researchers have en-
countered extreme difficulties in keeping the malignant B cells alive in vitro
(Caligaris-Cappio and Dalla-Favera, 2005), which is not the case for most
cancer cell lines. The in vitro mortality of CLL cells suggests that other sig-
nals or forces inside the body must be responsible for keeping CLL alive
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in vivo.
Recent biological research (see, e.g., Ghia et al., 2002; Caligaris-Cappio

and Dalla-Favera, 2005) suggests that T lymphocytes (T cells), which are
also immune system cells, are capable of promoting CLL cell survival and
proliferation. The biochemical pathways involved in this interaction are
the same pathways normally used by the immune system to cause B cell
proliferation in response to an infection.

The remainder of this chapter is devoted to a brief overview of the rel-
evant biological and immunological features of B lymphocytes and T lym-
phocytes, both in the context of CLL and, as necessary, in the context of a
healthy immune system.

1.1 Overview of the Immune System

The immune system is tremendously complicated, and this section is not
intended as an exhaustive review of its features and characteristics. In-
stead, the following will give a brief discussion of the role of B and T lym-
phocytes in the immune system, how they grow in response to antigen
stimulation, and the role of B and T lymphocytes in the immune response.
Except where noted, this overview is based on the discussion in Abbas and
Lichtman (2005).

1.1.1 Antigen Stimulation and Lymphocyte Activation

Any substance (e.g., a surface protein on a virus or a bacterium) that in-
duces an immune response is called an antigen. In response to an antigen,
the body manufactures chemicals called antibodies, which can bind to the
antigen. The bound antibodies tag the antigen for destruction by cells in
the immune system. Both B and T lymphocytes play important roles in this
process of antibody production.

The antibodies produced are highly specific, and can only bind to the
particular antigen that stimulated antibody production. To achieve this
level of specificity, the individual lymphocytes (both B and T) circulating
in the body are each capable of reacting to a unique antigen. Lympho-
cyte stimulation by an antigen causes the lymphocyte to become activated.
Normally, there are only a handful of lymphocytes in the body capable of
responding to a particular antigen. Once those lymphocytes become acti-
vated, however, they undergo chemical changes and rapidly proliferate—a
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process called clonal expansion—in order to mount an effective response
to the infection.

The specific roles of activated B and T lymphocytes and the interactions
between them are discussed below.

1.1.2 B Lymphocytes

Activated B cells are responsible for secreting antibodies. Since only the
B-cell clones capable of recognizing a particular antigen become active in
response to antigen stimulation, the antibodies produced are all capable
of binding to the antigen. Normally, however, the antibodies produced
by these “naive” lymphocytes do not have a high binding affinity for the
antigen, and are not effective enough to combat the infection.

To solve this problem, activated B cells undergo a process called affinity
maturation (also called somatic hypermutation). During this process, B
cells proliferate rapidly (with a doubling time of roughly 6 to 12 hours)
while undergoing extremely high rates of mutation (between 103 and 104

times higher than the background mutation rate in mammals) in the DNA
that allows for antigen recognition.

The mutated B cells automatically enter programmed cell death (apop-
tosis) unless they are rescued by survival signals from both T lympho-
cytes and other cells in the lymphoid tissue called follicular dendritic cells
(FDCs). In order to receive these survival signals, the B lymphocytes must
be capable of binding to the relevant antigen. Affinity maturation thus uses
selection to produce B-cell mutants with high affinity for that antigen.

1.1.3 T Lymphocytes

There are two main types of T lymphocytes: “helper”, or CD4+ lympho-
cytes and “killer”, or CD8+ lymphocytes. Killer T cells are cytotoxic cells
that are capable of directly killing pathogens and, while immunologically
important, are not relevant for the present discussion of B cell activation
and CLL.

Helper T cells, on the other hand, play a critical role in the affinity mat-
uration process. Activated B cells express the surface membrane recep-
tor CD40, while helper T cells express the corresponding ligand CD40l on
the surface membrane. The CD40:CD40l interaction is one of two neces-
sary signaling pathways to rescue B lymphocytes from apoptosis. In ad-
dition to CD40l, T lymphocytes also express antigen receptors. In order to
achieve cell to cell contact between B and T cells and thus cause rescue via
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CD40:CD40l interaction, a B cell must be capable of taking up an antigen
and presenting it on its membrane. This process requires the B cell to have
a high affinity for the antigen. Therefore helper T cells are directly respon-
sible for a selective pressure on the mutating B cell population to develop
high affinity.

1.1.4 Follicular Dendritic Cells and Germinal Centers

The entire process of affinity maturation occurs in the spleen and lymph
nodes, which are collectively known as the secondary lymphoid tissue (in
contrast with the bone marrow, which is the primary lymphoid tissue).
Within the secondary lymphoid tissue, the process takes place in special-
ized microenvironments called germinal centers. The entire type of im-
mune response under discussion, including B-cell mutation and affinity
maturation as well as the behavior of CD4+ helper T cells, is called a germinal-
center reaction.

Follicular dendritic cells are structural cells located within the secondary
lymphoid tissue, and germinal-center reactions are clustered around the
FDCs (Abbas and Lichtman, 2005; Park and Choi, 2005). The mutating B
cells and the helper T cells within a germinal center are organized into dis-
tinct regions relative to the FDCs, and move between those regions during
different stages in the reaction.

Follicular dendritic cells are also responsible for exerting a selective
pressure on the mutating B lymphocytes. FDCs take up antigen and present
it on the cell surface. The mutated B cells try to bind to this antigen and,
if they are successful, receive survival and proliferation signals from the
FDC.

1.2 Chronic Lymphocytic Leukemia

In chronic lymphocytic leukemia, abnormal B lymphocytes proliferate un-
controllably. These CLL cells share many features with normal B cells. Sig-
nificantly, CLL co-opts many of the normal mechanisms of lymphocyte sur-
vival and growth in germinal-center reactions to prevent cancer-cell death
and to promote CLL proliferation.

1.2.1 Comparison of B cells and CLL cells

Recent evidence suggests that CLL cells develop from mature B lympho-
cytes that have been exposed to antigen and have undergone somatic hy-
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permutation (Keating et al., 2003). These precursor cells were likely im-
munocompetent, at one time performing the functions typical of healthy B
cells.

Just as significantly, there have been suggestions that CLL cells them-
selves are still somewhat immunocompetent. CLL cells have been shown to
spontaneously undergo many of the chemical and phenotypic changes nec-
essary for somatic hypermutation in vivo, and to do the same in response
to external stimuli in vitro (Keating et al., 2003).

1.2.2 CLL and T cells

CD4+ helper T cells have been shown to decrease the rate of apoptosis of
CLL cells in vitro (Caligaris-Cappio and Dalla-Favera, 2005). The same ex-
periment showed soluble CD40l (sCD40l) to have a similar effect, which
suggests that T-cell rescue of CLL cells is mediated by the same CD40:CD40l
interaction that rescues normal B cells.

These in vitro experiments with T lymphocytes and sCD40l were un-
able to keep CLL cells alive indefinitely. The interpretation of this finding
in the literature is unclear, but it could suggest either that the in vitro envi-
ronment does not approximate the cancer’s in vivo microenvironment—for
example the in vivo situation could include a continual resupply of CD40l
from new T cells—or that other factors are ultimately more important for
CLL survival in vitro.

1.2.3 Chronic Lymphocytic Leukemia (CLL) and Follicular Den-
dritic Cells (FDCs)

Although it will not be used for our present work, FDCs have also been
shown to promote CLL growth and survival in vitro, and over a longer
timescale than do T cells (Caligaris-Cappio and Dalla-Favera, 2005). The
mechanism behind FDC dependent rescue is not well understood.

Samples of lymphoid tissue from some cases of CLL show the existence
of cancer “proliferation centers”, which may be roughly analogous to nor-
mal germinal centers, although this feature is not present in all cases of the
disease (Keating et al., 2003).

1.2.4 Chemotaxis

CLL cells have the ability to reshape their microenvironment into one more
conducive to cancer growth by exploiting the process of chemotaxis. Chemo-
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taxis is a method of cell movement by which cells move in response to gra-
dients in the concentration of a particular chemical, called a chemokine. For
example, a population of chemotactically sensitive cells may move from a
region of low chemokine concentration to a region of high concentration. In
a normal immune system, chemotaxis is used extensively to direct specific
immune cells to different locations within the body or to regions within a
particular tissue (Abbas and Lichtman, 2005).

CLL cells are capable of secreting at least two chemokines (and po-
tentially many others). In response to CD40l stimulation, CLL cells pro-
duce the chemokine CCL22, which attracts CD4+ T cells (Ghia et al., 2002;
Caligaris-Cappio, 2003). Since CD4+ T cells express CD40l, this suggests a
positive feedback loop whereby T lymphocytes incite CCL22 production in
CLL cells, which in turn attracts more T lymphocytes.

In addition, CLL cells secrete the chemokine interleukin-8 (IL-8), which
actually attracts other CLL cells. IL-8 only allows CLL cells to move along
strands of hyaluronan (HA), a molecule which is present in certain regions
within the secondary lymphoid tissue (Till et al., 1999). So not only does
CLL attract other cells required for its survival, the cancer cells themselves
also have the potential to aggregate within the lymphoid tissue.

1.2.5 Conclusion

Altogether, these results paint a picture of CLL as disease that is dependent
on many of the same chemical pathways and processes as normal B lym-
phocyte proliferation and survival. Moreover, CLL cells are able to actively
reshape their local environment via the secretion of chemokines into a mi-
croenvironment that encourages cancer growth. Such positive feedback
mechanisms provide a compelling picture for how CLL growth is depen-
dent on—and benefits from—other cells such as CD4+ T cells and FDCs.
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Figure 1.1: Schematic diagram of interactions between CLL cells, B cells, T
cells, and FDCs. See Chapter 1 for details.





Chapter 2

Prior Mathematical Work

Very few mathematical models of CLL have been developed to date, and
no models have been developed that incorporate spatial phenomena such
as chemotaxis. There have, however, been a small number of nonspatial
models. Substantial work has also been performed on modeling chemo-
taxis in general. This chapter will briefly review earlier research done in
both of these areas.

2.1 ODE Models of CLL

Models of CLL to date have used models employing systems of ordinary
differential equations (ODEs) to study the dynamics of leukemia growth
(see Martinis et al. (2005); Vitale et al. (2003); Messmer et al. (2005); Kuz-
netsov et al. (1994)). Much of this work has focused on modeling the in-
teraction between the immune system and CLL by considering the total
populations of CLL cells and immune cells in a patient’s body. A Volterra-
type population model was used to simulate the destruction of CLL cells
by “predator” T lymphocytes (Martinis et al., 2005; Vitale et al., 2003). A
more complicated model involving reaction kinetics based on an intermedi-
ate population of CLL-immune cell complexes was developed to study the
destruction of CLL cells by cytotoxic natural killer cells (Kuznetsov et al.,
1994).

These ODE models have produced useful results using techniques from
dynamical systems to identify regions of the parameter space where the
cancer grows more quickly or less quickly. The analysis in Kuznetsov et al.
(1994) even provided an explanation for an observed phenomenon in which
the cancer appears to be under control for a long time prior to suddenly
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growing rapidly into a large tumor.
In contrast, the model in Messmer et al. (2005) focused only on CLL

cells, but used a compartmental model to separate the populations of CLL
cells in the peripheral blood from those cells in the lymphoid tissue. This
model was used in conjunction with a clinical experiment that tracked the
production of new CLL cells by giving patients doses of heavy water, which
tagged CLL cells produced during heavy-water dosing. The measurement
of tagged and untagged CLL cells over time was used to conclude that
CLL cells typically have a rapid growth rate coupled with a nearly as fast
death rate. The discovery of these high rates was contrary to the prevailing
dogma of CLL as a disease characterized by slow but steady growth of
cancer cells (Messmer et al., 2005).

To date these are the only models of CLL of which we are aware, and we
know of no other published or forthcoming mathematical models of CLL
that study the effects of microenvironmental or spatial factors on cancer
growth (with the exception of the compartment model in Messmer et al.
(2005)). Furthermore, all immunological models have focused on the role
of the immune system in limiting cancer growth, and not on the necessary
role the immune system plays in promoting CLL growth.

2.2 Models of Chemotaxis

There has been extensive work on partial differential equation models of
chemotaxis. The canonical model, called the Keller–Segel model (see Keller
and Segel, 1971), tracks the movement of one cell population in response to
a chemokine distribution as a system of advection-diffusion-reaction equa-
tions of the form

∂n
∂t

= ∇ · (Dn(c)∇n− χ(c)n∇c)

∂c
∂t

= Dc∆c− nδ(c),
(2.1)

where n(x, t) is the density of cells, c(x, t) is the concentration of chemo-
kine, and x = (x, y) is the position within a two-dimensional domain.

Cellular movement—whether directed or random—is considered to be
influenced by the chemokine. Cellular diffusion is dependent on the che-
mokine concentration through the Dn(c) coefficient, whereas advection is
dependent on the concentration of chemokine through the χ(c) coefficient
and on the chemokine gradient ∇c. The chemokine moves by linear diffu-
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sion with diffusion constant Dc, and is degraded via uptake by cells with
rate δ(c).

The functional forms of Dn(c), χ(c), and δ(c) are obviously critical to
determining the behavior and biological relevance of Equation 2.1. Several
common and mathematically simple choices for these functional forms are
discussed in Sherratt (1994).

In Sherratt et al. (1993), a new model for chemotaxis is proposed that
realistically models the chemokine-receptor dynamics on the cell surface,
which was shown to have excellent agreement with experimental data on
chemotaxis. This model involves a larger and more complicated system
of partial differential equations than the Keller–Segel model. In Sherratt
(1994), however, minor simplifications to the previous model are shown
to reduce it to a system of Keller–Segel form that also agrees well with
experiment.

These simplifications yield the following functional forms:

Dn(c) =[D0(kd + ki)2 + {2D0(1− βΓ) + D1Γ} (kd + ki)kac + {D0(1− βΓ)2

+ D1Γ(1− βΓ)− D2Γ2}k2
ac2]/[kd + ki + (1− βΓ)kac]2

(2.2a)

χ(c) =
χ0kaΓ(kd + ki)

[kd + ki + (1− βΓ)kac]2
(2.2b)

δ(c) =
Γkikac

kd + ki + (1− βΓ)kac
. (2.2c)

The constants in Equation 2.2 are all experimentally measurable quantities.
The kd, ki, and ka terms govern the chemical reaction between cell surface
receptors and chemokines; β and Γ are related to the number of receptors
on the cell surface; and D0, D1, D2, and χ0 are coefficients for the various
terms in the expressions for diffusion and chemotaxis (for details, see Sher-
ratt et al., 1993). While these equations are algebraically formidable, they
are not computationally challenging, and yield a biologically and chemi-
cally realistic picture of chemotaxis (Sherratt et al., 1993; Sherratt, 1994).

We will apply these functional forms for the Keller-Segel equations to
our model of chemotaxis for CLL and T cells in Chapter 3.





Chapter 3

Spatial Model of CLL
Dynamics

In this chapter, we develop a mathematical model of CLL that focuses on
the interactions between CLL cells and CD4+ CD40L+ T cells within the
secondary lymphoid tissue. In particular, we model the ability of T cells to
promote CLL cell survival and proliferation through direct cell-to-cell con-
tacts. Additionally, we model changes in the spatial distributions of both
CLL and T cells due to both random cell movement and directed cell move-
ment in response to chemotactic signals. To incorporate the latter effect, we
also model the secretion, diffusion, and uptake of the chemokines IL-8 and
CCL22 by CLL cells.

Section 3.1 will provide a brief overview of the model, including model
equations and intuitive explanations of the various terms in those equa-
tions. In Section 3.2 we will move into a more detailed explanation and
justification of our modeling choices. In Section 3.3 we will discuss the ge-
ometry on which the model is solved and the relevant boundary conditions
for this geometry.

3.1 Model Overview

We chose to model the populations of CLL cells and T cells and the concen-
trations of IL-8 and CCL22 as a system of four partial differential equations.

Letting our state variables be the CLL cell density b(x, t) and T-cell pop-
ulation density h(x, t)1, both in cells per liter (cells/L), and the concentra-

1The letter h was chosen in reference to the phrase “helper T cell”, another common
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tions of IL-8 i(x, t) and CCL22 c(x, t), both in mol/L, we constructed the
following general system:

∂b
∂t

(x, t) = ∇ · [Db(i)∇b− χb(i)b∇i] + fb(b, h)− gb(b, h)

∂h
∂t

(x, t) = ∇ · [Dh(c)∇h− χh(c)h∇c]

∂c
∂t

(x, t) = Dc∆c + fc(b, h, c)− gc(h, c)

∂i
∂t

(x, t) = Di∆i + fi(b, i)− gi(b, i).

(3.1)

Each of the terms in Equation 3.1 will receive a detailed treatment in
Section 3.2, but for now they can be divided into the three broad categories
of diffusion, chemotaxis, and reaction terms.

The diffusion terms are of the form

∇ · (Du∇u), (3.2)

where Du is the (possibly spatially varying) diffusion coefficient and u is
an arbitrary dependent variable (so u is a stand-in for b, h, c, or i).

In the case of chemokine diffusion (i.e., for IL-8 and CCL22), the diffu-
sion coefficient Du is taken to be constant so that Equation 3.2 reduces to
the linear diffusion equation

Du∆u,

whereas for cellular diffusion the coefficient is a function of chemokine con-
centration (see Sections 1.2.4, 2.2, and 3.2).

The chemotaxis terms, which only appear in the state equations for the
two cell populations, are of the form

−∇ · (χu(k)u∇k),

where k is the relevant chemokine concentration. The coefficient χu is called
the chemotactic coefficient for u, and is taken to be dependent on k (again,
see Sections 1.2.4, 2.2, and 3.2).

The reaction terms are those terms of the form

fu − gu.

name for CD4+ T cells.
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Throughout this thesis we adopt the convention that fu ≥ 0 and gu ≥ 0, so
that fu and gu correspond with the rates at which u is being produced and
eliminated, respectively.

Note that the physical interpretations of fu and gu may vary. For exam-
ple, in the case of one of our chemokines they may be the rates of secretion
and uptake, respectively, whereas for a cell population they will represent
rates of cell division and cell death.

Together, the diffusion, chemotaxis, and reaction terms give an intuitive
picture of how the dependent variables b, h, c, and i can change and inter-
act. With this picture in mind, we can turn to a more detailed study of each
of these expressions.

3.2 Model Explanation and Justification

3.2.1 Cell Movement

The chemotactic and diffusive movement of CLL cells and T cells follows
the general form of the Keller–Segel model discussed in Section 2.2 and
Sherratt (1994). Recall that in this model, a cell population n and a chemo-
kine concentration c are governed by the partial differential equations

∂n
∂t

= ∇ · (Dn(c)∇n− χ(c)n∇c)

∂c
∂t

= Dc∆c− nδ(c).

While the Keller–Segel model is not specific to a particular type of eu-
karyotic cell, the particular functional forms for Dn(c), χ(c), and δ(c) are.
The analysis in Sherratt (1994) produces expressions for these three terms in
the case of neutrophils being attracted by a peptide concentration gradient.

For our model, we make the assumption that both CLL and T-cell pop-
ulations can also be modeled with these particular functional forms. We
justify these assumptions in two ways. First, neutrophil–peptide interac-
tions are one of the best-studied chemotactic systems. To our knowledge,
CLL cell and T-cell chemotaxis has not been well studied. Given that neu-
trophils, CLL cells, and T cells are all motile immune cells, it seems reason-
able to approximate the movement of the latter two with the former until
better data becomes available. Second, the assumptions in Sherratt (1994)
used to produce the given functional forms are also reasonable to assume in
both CLL and T-cell chemotaxis. These assumptions are that the size of an
individual cell is small compared to the size of the whole domain, and that
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the chemical interactions between chemokines and their receptors occur on
a much faster timescale than does cell movement. So while our parameter
values may be different than in a neutrophil-peptide system, the form of
the model itself should still be valid.

3.2.2 CLL Cell T Cell reactions

In Section 1.2.2, we discussed how CD40:CD40l interactions between CLL
cells and T cells promote CLL cell survival and proliferation. Because fb
represents CLL cell growth whereas gb represents cell death, in the absence
of T cells gb should be large compared to fb and in the presence of T cells
the reverse should be true.

To model this relationship between CLL growth and death and the pres-
ence of T cells, we chose to express cell growth as

fb(b, h) = βb
bh

s + h

and

gb(b, h) = δbb
(

1− h
s + h

)
,

where βb and δb are birth-rate and death-rate constants, and s is a constant
whose role is explained below.

These functional forms are clearly phenomenological, and should not
be expected to give any insight into the mechanism of CD40:CD40l inter-
actions. However, note that as h → 0, fb → 0 and gb → δbb, and that as
h→ ∞, fb → βbb and gb → 0. This means that these terms have the desired
qualitative behavior.

The constant s is the concentration of T cells such that the ratio

h
s + h

equals 1
2 when h = s. This “halfway to maximum” value is not necessarily

physically relevant, and should just be interpreted as an additional param-
eter of the model.

3.2.3 Chemokine Secretion and Uptake

The reaction terms fc, gc, fi, and gi governing the secretion of CCL22 and
IL-8 by CLL cells and the uptake of those chemokines by T cells and CLL
cells are derived in two different ways.
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The uptake functions gc and gi are found as part of the analysis of re-
ceptor dynamics in Sherratt (1994), and we use those forms in our model
(see Section 2.2).

Recalling from Section 1.2.4 that CLL cells secrete IL-8, we choose to
model IL-8 secretion as a mass action reaction by

fi(b) = βib.

Similarly, because CLL cells secrete CCL22 in response to T-cell stimu-
lation we model CCL22 secretion as

fc(b, h) = βcbh.

These mass-action terms are, like the CLL-reaction terms, highly phe-
nomenological. We choose them mainly for mathematical convenience in
the absence of experimental data that would suggest a better functional
form.

3.3 Model Geometry and Boundary Conditions

So far, we have avoided specifying either a domain for the system of PDEs
in Equation 3.1 or boundary conditions on the edges of a domain. Since
the spatial dynamics we have been describing occur within the secondary
lymphoid tissue (the spleen and the lymph nodes), we chose to to solve our
PDEs on a 3 · 10−3 m by 1 · 10−3 m rectangular domain, roughly the size
of a small lymph node. The numerical method used to solve our equations
(see Chapter 4) allowed us to easily implement other domains, and so we
also studied a circular domain. We chose the rectangular shape for the ease
with which we could implement boundary conditions.

We chose to use a no-flux boundary condition. Thus for the CLL cell
population we have

n · (−Db(i)∇b + χb(i)b∇i) = 0, (3.3)

where n is the outward unit normal to the boundary and the term in paren-
theses is the flux of CLL cells. The equation for the T-cell population is
similar. Note that in Equation 3.3, the flux is the sum of a diffusive term
−Db(i)∇b and a chemotactic term χb(i)b∇i, and that these terms have
opposite signs from one another. This sign difference is easily explained.
When cells diffuse they move from regions of high density into regions of
low density, which means they move in the direction of −∇b. When cells
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move chemotactically, however, they move from regions of low chemokine
concentration to regions of high chemokine concentration, meaning they
move in the direction of ∇i. Since Db(i), χb(i), and b are all non-negative,
the terms in our flux expression have the correct sign.

The no-flux boundary conditions for the chemokine concentrations are
similar to those for the cell populations, but here the only contribution to
the flux is from diffusion. This gives

n · (−Dc∇c) = 0,

and similarly for i.
We justify the no-flux boundary condition by assuming that neither

cells nor chemicals can leave the lymph node under consideration. This
assumption is obviously not entirely accurate, as cells do enter and exit
lymphoid tissue at specific points. Expanding the model to incorporate
this feature is certainly an area for future work (see Chapter 6).



Chapter 4

Numerics

The partial differential equation model developed in Chapter 3 was solved
numerically using version 3.5a of the COMSOL Multiphysics software pack-
age (see http://www.comsol.com/), a commercial finite-element method
solver. No additional modules beyond the core software were required for
our problem.

4.1 COMSOL Model Setup

The system of PDEs in Equation 3.1 involves four state variables, so we
used the multiphysics feature of COMSOL to develop a model file with an
application mode for each of CLL cells, T cells, CCL22, and IL-8. For CLL
and T cells, we used the Convection and Diffusion application mode, and
for CCL22 and IL-8, we used the Diffusion application mode. In the case
of the Convection and Diffusion mode, multiple modifications to COM-
SOL’s default settings were necessary to obtain satisfactory numerical re-
sults, which we detail below.

During implementation of the model, preliminary testing of the chemo-
taxis and diffusion terms showed that COMSOL does not automatically
conserve the total cell population, because the advection diffusion equa-
tion in COMSOL is given in a nonconservative form by default, as

∂n
∂t

= ∇ · (D∇n)− u · ∇n,

where u is the local speed of advection. This form results from “multiplying
through” the divergence of the advection term in the expression for the flux
of n. To solve this problem, it was necessary to use the application mode
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properties dialog box to change the Equation type to conservative, which
required COMSOL to solve an equation of the form

∂n
∂t

= ∇ · (D∇n− un) .

Subsequent numerical experiments confirmed that this change conserved
the total quantity of cells present.

During further testing, we also discovered that COMSOL’s numerical
solver produces oscillatory solutions. We were unable to find a method
within the software package for changing to a nonoscillatory numerical
scheme. To minimize the extent of these oscillations, we chose to change
the element COMSOL used in its finite-element method from a quartic to
a quintic Lagrange polynomial. While this change did not eliminate the
oscillations, it did make them much smaller in magnitude.

Finally, we also found it necessary to introduce artificial diffusion terms
into the CLL-cell and T-cell application modes in order to prevent the solu-
tion from becoming unstable. COMSOL presents a number of artificial dif-
fusion options, and on the recommendation of COMSOL’s documentation
we chose to use Petrov–Galerkin compensated streamline diffusion with a
tuning parameter of δsd = 0.25.

Unfortunately, we could not find detailed documentation of exactly
how this type of artificial diffusion works, although the help file within
the COMSOL application suggests that it introduces diffusion in locations
where advection dominates over the actual diffusion term, while leaving
regions where diffusion dominates unaltered. This change allowed us to
produce stable solutions.
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Results

Our simulations produced two surprising results that may be both biolog-
ically and clinically relevant, as well as one numerical issue that warrants
careful investigation. We present our results here and discuss their poten-
tial implications in Chapter 6.

5.1 CLL Cells Fail to Reshape Their Microenvironment

First, recall that our purpose in developing a PDE model was to investi-
gate spatial effects on cancer growth. In Chapter 1 we mentioned that CLL
cells secrete chemokines that may be important in reshaping the cancer mi-
croenvironment. In our model, however, we were unable to find biologi-
cally realistic initial conditions for which the movement of either CLL or
T cells proved important for disease progression. In particular, we found
that when the initial density of T cells was too low for net CLL growth, it
remained too low rather than gathering together to cause a region of net
growth. This failure to reshape the microenvironment appeared to be at
least partially due to the chemokines diffusing much more quickly than
the cell populations could move, which meant that chemokine concentra-
tion gradients—and, therefore, chemotactic effects—were small.

5.2 External Chemokine Gradients Appear to Influence
Disease Progression

In light of this first result, we chose to see whether there were other ways
in which chemotaxis might be important. In particular, we investigated



22 Results

whether an externally maintained chemokine gradient might cause changes
to disease progression. To maintain such an external gradient, we reformu-
lated the boundary conditions on the edges of our 3 · 10−3 m by 1 · 10−3 m
rectangle for both chemokines to be of the form

c(x, 0, t) = 0, 0 < x < 3 · 10−3,
c(0, y, t) = 0, 0 < y < 1 · 10−3,
c(x, 1 · 10−3, t) = c0

x
3·10−3 0 < x < 3 · 10−3,

c(3 · 10−3, y, t) = c0
y

1·10−3 , 0 < y < 1 · 10−3,

and similarly for i(x, y, t). Here, the constants c0 and i0 were both set to
1 · 10−8 mol L−1 (see Appendix A for a discussion of parameter values).

With these Dirichlet boundary conditions, we used COMSOL to find the
steady-state solutions to the diffusion equations for c and i in the absence
of reactions, and used these solutions as the initial conditions for c and i
in our model (see Figure 5.1). Because chemokine diffusion was faster than
the other processes in our model, the chemokine concentrations would stay
at approximately steady state throughout the simulation.

For our cell populations, we chose to have initially constant densities of
both cell types, with 25,000 cells per liter. In the absence of cell movement,
the reaction terms in our model would have caused a net cancer decline
from these starting densities, since the T cell density was too low to cause
growth.

We simulated ten days of activity, and found that the steady chemokine
gradients were able to attract a sufficiently high number of CLL and T cells
during that time to reverse the disease course from net death to net growth
(see Figures 5.2 and 5.3). At first the overall CLL cell population declined,
but as more cells aggregated together in the top left corner of the domain,
the cancer began to grow.

5.3 Numerical Artifacts

We encountered one problem with COMSOL’s numerical solution that we
were unable to resolve. At early times in the above simulation, we observed
small regions within the domain in which the CLL cell density had either a
positive or negative peak (see Figure 5.4(a)). These peaks are certainly not
physical—a density cannot be negative—and there is no reason to expect
such behavior from the PDEs themselves. Thus we conclude that these
peaks are numerical artifacts from COMSOL’s numerical scheme. By 20
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Figure 5.1: Steady-state concentration of CCL22 chemokine with the Dirich-
let boundary conditions of zero on the lower and left walls and linearly
varying between 0 and a constant concentration on the upper and right
walls. Here C = C(x) represents the concentration of CCL22.
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Figure 5.2: CLL cell density (surface data) and IL-8 concentration (color
data) after 10 days. CLL cells were originally at a constant density and IL-8
was at steady-state concentration. Note that the CLL cells have migrated
up the IL-8 concentration gradient toward the far corner. The maximum
CLL cell density in the far corner of the domain is 8.099 · 10−14 mol m−3,
which is compared with a uniform initial density of 4.151 · 10−17 mol m−3.
Here I = I(x) and B = B(x) represent the concentration of IL-8 and the
density of CLL cells, respectively.



Numerical Artifacts 25

Figure 5.3: Normalized integral of CLL cell density over the rectangular
domain. Time ranges from 0 to 10 days, and is given in seconds. Note that
the integral initially decreases, but as the CLL and T cells cluster, the T-cell
density becomes sufficiently high to encourage CLL cell growth, and the
integral begins to increase. Here B = B(x) represents the density of CLL
cells and B0 is the initial density of CLL cells at the start of the simulation.
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hours into the 10-day simulation, these artifacts are largely overwhelmed
by the model’s expected behavior (Figure 5.4(b)), so it is unclear whether
they have a meaningful influence on the long-term solution.
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(a) One hour into simulation.

(b) Twenty hours into simulation.

Figure 5.4: Numerical artifacts produced early in simulation of CLL move-
ment with respect to steady chemokine gradient. Note that the simulation
runs for a total of 10 days, and by 20 hours the artifacts are largely over-
whelmed by the expected behavior of the system. Here B = B(x) repre-
sents the density of CLL cells.
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Discussion

The results generated by our model have interesting implications for the
biology of chronic lymphocytic leukemia. CLL cells in the model were un-
able to effectively reshape their microenvironment into one that would fos-
ter cancer growth. Of course this does not necessarily imply that the same
is true in vivo, but it does mean that more mathematical and experimental
investigation is required to nail down this issue. In particular, we should
note that neither in vitro nor in silico efforts have been able to show how
CLL cells remain viable in vivo. Moreover, while much of the work refer-
enced in Chapter 1 showed that CLL cells are capable of secreting the che-
mokines necessary for such a remodeling of the microenvironment (Ghia
et al., 2002; Caligaris-Cappio, 2003; Till et al., 1999), none of these exper-
iments demonstrated that such a phenomenon actually takes place either
in vivo or in vitro.

While we are certainly not qualified to make claims about the feasibility
of any particular biological experiment, we expect that a reasonable first
step toward resolving this issue would be to perform in vitro chemotactic
assays involving CLL cells and T cells.

Computationally, the fact that the model was unable to produce one of
our expected results means that the equations themselves should be reex-
amined. In particular, note that the reaction terms derived in Chapter 3 are
of a phenomenological origin—they were designed to reflect the observa-
tion that at low T-cell densities CLL cells die, while at high T-cell densities
they survive and proliferate. A more mechanistic approach that realisti-
cally modeled the biochemical interactions between our two cell popula-
tions, as well as the secretion of chemokines, might yield different results.
At the very least, if a more mechanistic model reproduced the result found
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here, we would be more confident in the conclusion that CLL cells cannot
reshape their environment through the CCL22 and IL-8 pathways than we
are at present.

Our model’s second result, that an externally maintained chemokine
gradient can alter the cancer’s course, is at least as biologically intriguing
as the above discussion. We do not know what could create such a gradient
in vivo, and will not even attempt to name any potential candidates. Per-
haps it is going too far to say that the existence of such an external gradient
is a prediction of our model, because it could also be the case that chemotac-
tic effects are important and that there are other nonspatial factors we have
not considered, but the experimental discovery of such a gradient would
be a form of validation for this model. A more exhaustive study of the cell
types residing in lymphoid tissue should be performed to see whether any
of them are capable of producing and maintaining a chemokine gradient of
this type.

The numerical artifacts discussed in Section 5.3 are certainly disturbing,
and every effort should be made to eliminate them in order to verify that
our numerical results correctly capture the behavior of our PDEs. COM-
SOL was used extensively on this project for the ease and speed with which
solutions to nonlinear systems of PDEs can be computed. It is likely, how-
ever, that the best way to eliminate these numerical difficulties is to switch
to a scheme designed specifically for strongly hyperbolic problems such as
ours. Such an approach would certainly allow much finer control over the
computational details than COMSOL seems to permit. One possibility is to
implement a high-order, nonoscillatory, finite-volume method specifically
designed for hyperbolic problems (see LeVeque, 2002). Such an undertak-
ing would be more time consuming than using a ready-made package such
as COMSOL, but would likely produce better results.

It is true that to be fully confident in our model’s results we need to
eliminate these numerical problems. At the same time, recall that these
problems were transient, and had become small compared to the rest of
the solution relatively early in the simulation. The solution’s long-term
behavior agreed more closely with our intuition about the types of behavior
the PDEs should produce. So it is not certain that resolving these issues
would change the biological statements of our model.
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Conclusion

We have described a simple system of four partial differential equations
that models the interplay between chronic lymphocytic leukemia and CD4+
T cells. Testing this model has had interesting outcomes from mathematical
and biological standpoints. Mathematically, we have encountered substan-
tial numerical difficulties in solving our PDEs, and future computational
work to resolve these problems should be conducted. In addition, we dis-
cussed in Chapter 6 that refining the model to include more biochemically
realistic reactions between CLL and T cells may yield interesting results and
will certainly increase our confidence in the model’s biological relevance.

Our major biological result was that—contrary to what might be con-
cluded from the experimental work discussed in Section 1.2—CLL cells
may not have the ability to actively reshape their own microenvironment,
but rather might be at the mercy of some other force responsible for the
spatial organization of lymphoid tissue. The hypotheses that CLL cells are
unable to effectively reshape their microenvironment and that other cellu-
lar or chemical players are necessary for cancer growth are both rich and
potentially clinically relevant areas for future experimental work.
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Parameter Values

Parameter values are summarized in Table A.1, and are explained below.

A.1 Derivation of Parameter Values

The parameters involved in chemotaxis were taken from earlier work on
the chemotaxis of neutrophils (Sherratt et al., 1993; Sherratt, 1994), which
we discussed in detail in Section 2.2. Recall that we argued that because
of the absence of chemotactic assays for CLL cells (or even healthy B cells),
and for T cells, we made the assumption that our cell populations could be
approximated with the parameter values for a neutrophil population.

The initial population densities b0 and h0 for CLL cells and T cells were
taken from experimental work on these cell types (Caligaris-Cappio, 2003;
Caligaris-Cappio and Dalla-Favera, 2005). The initial concentration c0 of
CCL22 was taken as an order of magnitude estimate from Ghia et al. (2002).
In the absence of data, the same concentration was assumed as a reasonable
initial concentration for i0.

The birth and death rates, βb and δb, for CLL cells were derived from
the experiments in Caligaris-Cappio and Dalla-Favera (2005) as follows.
In those experiments, populations of CLL cells were exposed to T cells as
well as soluble CD40l. We assumed that in those cultures, chemotaxis was
negligible and that all populations and chemicals were initially well-mixed.
This assumption allowed us to consider the reaction terms from our PDE
model as a simple ODE of the form

db
dt

= βb
bh

s + h
− δbb

(
1− h

s + h

)
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Parameter Value Description

Db0 1.3 · 10−10 cm2 s−1 

Parameters Db0 through χh0
are parameters involved in
chemotaxis. See Section 2.2.

Db1 4.8 · 109 cm2 s−1 mol−1

Db2 3 · 1028 cm2 s−1 mol−2

Γb 4.98 · 10−21 mol
µb 1.95 · 1020 mol−1

kbd 0.35 min−1

kbi 0.24 min−1

kba 1 · 109 L mol−1 min−1

χb0 2 · 1012 cm2 s−1 mol−1

Dh0 1.3 · 10−10 cm2 s−1

Dh1 4.8 · 109 cm2 s−1 mol−1

Dh2 3 · 1028 cm2 s−1 mol−2

Γh 4.98 · 10−21 mol
µh 1.95 · 1020 mol−1

khd 0.35 min−1

khi 0.24 min−1

kha 1 · 109 L mol−1 min−1

χh0 2 · 1012 cm2 s−1 mol−1

b0 25000 cells L−1 Initial CLL cell density
h0 25000 cells L−1 Initial T cell density
c0 1 · 10−8 mol L−1 Initial CCL22 concentration
i0 1 · 10−8 mol L−1 Initial IL-8 concentration
βb 1 · 10−6 cells s−1 CLL cell growth rate coefficient
δb 1 · 10−6 cells s−1 CLL cell death rate coefficient
s 100000 cells L−1 Constant in CLL reaction terms

Table A.1: Parameter values for the model derived in Chapter 3. Justifica-
tions and derivations are given in Appendix A, as appropriate.
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for a known density h of T cells.
This equation is easily solvable in terms of s, βb, δb, and a constant of

integration A giving
b(t) = Aert,

where r = βb
h

s+h − δb

(
1− h

s+h

)
.

We fit the temporal data for CLL cells from Caligaris-Cappio and Dalla-
Favera (2005) to this form using a least-squares method. For the sake of
finding reasonable parameter values, we made the assumption that βb and
δb were equal, and under this assumption we made a guess of the value
of s by comparing the values of βb and δb for different values of s with the
birth rates and death rates given in Messmer et al. (2005). Note that we
chose this course rather than simply using the rates given in Messmer et al.
(2005) because those rates were overall birth and death of CLL in human
patients, which we took to be appropriate as a check on the plausibility of
our calculation, but to be skewed by the fact that it already includes the
interaction between CLL cells, T cells, and numerous other cells in a way
that obscures what the T cell independent rates would be.
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