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Abstract
On Volatility, Outliers, and Uncertainty

By

Chandler Lewis Clemons

Claremont Graduate University: 2021

This dissertation is composed of three loosely related chapters, all of which are empirical.

In Chapter 1, I examine whether expectations are formed in a systematically different manner

during periods of low volatility versus periods of high volatility. I achieve this by measuring

non-linearities in relationship between the SP 500 and the VIX across different market regimes.

Three distinct market regimes are identified through a Markov Process, allowing for the capture

of non-constant behavior in the relationship between contemporaneous price changes and future

volatility expectations. The results indicate that the effect of the underlying asset on the supply

and demand dynamics of its derivative is strongest during periods of low volatility and weakest

during periods of high volatility. The decrease in magnitude of the SP 500 coefficient as the

market switches from low volatility to high, suggests that information scarcity (low volatility)

makes additional data (price changes) more impactful. Measures to limit market volatility may

make market participant prone to expect changes in the state of the system.

The purpose of Chapter 2 is to draw inference from the tail behavior of financial market price

volatility in order to compare and contrast volatility expectations with volatility realizations. In

doing so, I discuss the implications of slowly decaying tails as they relate to systems susceptible to

unpredictable and consequential events. In such caseswhere fat tails are identified, typical values

such as the average and variance, do not properly characterize the risk and unpredictability of

the dynamic process under study. Prior research has identified asset prices and asset volatility

as being drawn from a power law distribution. This paper aims to quantitatively confirm this

characterization, specifically for market volatility. Further, this paper identifies whether or

not volatility expectations exhibit similar power law characteristics. Goodness of fit and log



likelihood tests indicate that most realized volatility series are plausibly drawn from a power-

law distribution. However, none of the studied implied volatility series show evidence of

power-law behavior, suggesting that risk premia may exist for lower levels of volatility but does

not scale proportionally to the more extreme crisis events. That is, risk premia does not scale

proportionally as values move farther into the tail.

In Chapter 3, co-authored with Minh Pham, we investigate how economic uncertainty,

specifically stock market uncertainty, correlates to individuals’ life-satisfaction. Using expected

price volatility (VIX) as our anticipatory indicator and life-satisfaction as our measure of utility,

our hypothesis is built on the Anticipatory Utility framework, which suggests that people also

derive utility from their beliefs. After accounting for associations with the unemployment rate

and stock ownership, we find a positive relationship between the VIX and low self-reported life-

satisfaction. This analysis captures the contemporaneous effects of future beliefs and indicates

that economic sentiment about the future plays an important role in individuals’ feelings about

the present.

This work was inspired by a desire to understand the economic crises that redirect and

ultimately redefine our socioeconomic lives, as individuals and as nations. I began my economic

studies during one of the most profound crises in recent history, the global financial crisis of

the late 2000s. Here again in 2021, as my studies conclude, economies grapple with another,

albeit different crisis. Both the Covid-19 pandemic and the subprime financial crisis highlight a

salient fact; we never really know when, why, or from where such extreme events arrive. But

they do, and do so more frequently than we like or predict. Each of the chapters presented

in this dissertation seek to understand the ways in which we anticipate and interact with a

characteristic marker of economic and financial crises, uncertainty.
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1
A Regime Dependent Relationship - VIX and SP500
By Chandler Clemons

1.1 Introduction

Financial derivative products form a marketplace that is unique in its complexity, velocity,

and exposure. These instruments are financial securities with a value that is derived from an

underlying asset or group of assets and make up a global marketplace estimated to have a

contract value of $15.5 trillion and a notional value, or exposure, $606.8 trillion in June 2020.1 To

put this in perspective, the entire U.S. Equity Market Value is estimated at approximately $35.5

trillion in June 2020; understanding the derivatives market is of significant financial interests for

practitioners and regulators, and taxpayers.2 For this study, the derivative products of interests

are equity options with values derived from changes in the price of an underlying publicly traded

equity. This can be achieved at an aggregate level by utilizing market indices. For example, the

VIX index, which aggregates near and next term out-of-the-money calls and puts across the

S&P 500, can be thought of as a derivative of the S&P 500 index. Each of these aggregated calls

and puts has a value that is derived from an individual equity within the S&P 500. For example,

a Facebook call option has value relative to the current market price of Facebook equity. The

VIX aggregates these calls and puts in a way such that the index represents the implied volatility

that results from the clearing prices of all S&P 500 options.3 Implied volatility in this sense is

the amount of expected volatility required to set the options’ expected value equal to zero, given

the contracted prices. It is, therefore, of interest to assess how changes in the value of the VIX

index (expected volatility) varies with changes in the price of the S&P 500. One would expect
1Bank for International Settlements
2The massive exposure that derivatives markets equals taxpayer exposure in a too-big-to-fail economy (e.g. AIG

bailout).
3Not quite all S&P 500 options are considered. Some deep out-of-the-money calls and puts may not be considered

if they are proceeded by two consecutive null bids for strikes above (puts) or below (calls). See the VIX White paper
for additional information.
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Chapter 1 Clemons

changes in the price of the underlying asset to correlate with the expected value of its derivative

product, since after all, the value of a derivative depends on the future price movements of

the underlying asset. Understanding the fundamental structures of this relationship should

therefore be of value.

The velocity of derivative markets makes their study relevant and useful from a microe-

conomic perspective. Contract terms, at least for the derivatives analyzed in this study, have

short-term expirations that determine both the risk and value of the contract. In essence, the

market for short-term equity options is a repeated and natural decision making under uncer-

tainty experiment. Each trader, faced with a number of possible actions, makes a risk-adjusted

choice under uncertainty. In the aggregate, these choices determine the supply and demand

dynamics of the options market. In theory, the rational procedure is to identify all possible

outcomes, determine their values (positive or negative) and the probabilities that will result

from each course of action, and multiply the two to give an “expected value”, or the average

expectation for an outcome; the action to be chosen should be the one that gives rise to the

highest total expected value. A typical trader performs this procedure numerous times across

years of activity. Further, these market participants are generally sophisticated agents due to the

complexity of products and transactions.4 Aggregating each individual buy-sell action offers a

rather robust dataset of short-term expectations. Using this understanding of options-implied

volatility, this paper aims to achieve a parsimonious assessment of the dynamic properties of

short-term volatility expectation formation.

Born out of both academic and financial interests, a wide field of research has been devoted

to uncovering the characteristics of this relationship. Most of this work is centered around how

to precisely and efficiently price a derivative product, with the most famous and influential

being the Black-Scholes Merton pricing formula; the price of an equity option is assumed to be a

function of the constant volatility of the underlying stock, the time value of money, the option’s
4Sophisticated in that they are typically not noise traders whomake decisions without the support of professional

advice or advanced fundamental or technical analysis.
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Clemons Chapter 1

strike price, and the time to the option’s expiry (Black, Scholes 1973). Subsequent literature has

added additional levels of complexity to the original linear Black-Scholes Merton approach, such

as considerations for stochastic volatility (Wiggins 1987; Ghysels, Harvey, Renault 1996), non-

continuous price jumps (Merton 1976; Kou 2002), counterparty risk (Klein 1996; Burgard, Kjaer

2011), illiquidity (Feng 2011), transaction costs (Barles, Soner 1998; P. Amster, C.G. Averbuj,

Mariani, Rial 2005), and implied volatility skews (Skiadopoulos et al 2000; Cont and da Fonseca,

2002; Fengler, Hardle, and Villa, 2003; Benko, Hardlee, and Kneip, 2009; Bernales and Guidolin,

2015).

This study, however, takes a different approach. Rather than seeking to estimate an equilib-

rium price through partial differential equations, this analysis focuses on how an aggregation

of contracted option prices (i.e. the VIX) varies with contemporaneous price changes in the

underlying asset. It is purely a correlative assessment, not a predictive model. Principally, the

methodology applied in the paper will capture how this relationship varies depending on the

current state of the market. That is, a three-state Markov regime-switching model captures

non-linearities in the supply and demand dynamics of equity options between periods of stabil-

ity and instability. The three-state Markov chain governs the probabilistic model driving the

change between regimes, such that the contemporaneous state, st, is inferred from observed

behavior of VIXt. The probability law governing VIXt is described by the variance of the

Gaussian innovation σ2, the autoregressive coefficients (VIXt´1,...,4), the intercept, S&P500t,

and the transition probabilities, ω1, ω2, and ω3 (Hamilton 2005). If market participants always

employed a formulaic approach to options pricing, such as the Black-Scholes Merton model,

one would find a time-invariant structure between an option and its underlying, thus produc-

ing coefficients for S&P500t that are not statistically different between each regime. That is, if

time to expiration, historic volatility, interest rates, and strike price are properly accounted for,

contemporaneous changes in an asset’s price would correspond to same increase or decrease in

the price of the derivative across all market regimes; all other variables are latent in the pricing

3



Chapter 1 Clemons

formula. Therefore, capturing non-linearities leads to insights into how market participants

actually form their expectations, which may rely more on complex heuristics than complex

and assumption-sensitive formulae (Haug & Taleb 2010). Markets are complex, non-constant,

and non-linear systems (Mandelbrot 1963; Lux 1996; Liu, et al. 1999; Guillaume, et al 1997;

Gopikrishnan, Plerou, Gabaix, Stanley 2000). We shouldn’t expect “expectation formation” to

be time-invariant and linear either.

This paper is an effort to provide statistical evidence that implied volatility dynamics vary

depending on the current state of the market: low volatility regime with jumpy expectations,

normal regime with low to moderate volatility, and crisis regime with extremely high volatility.

Furthermore, the results show that implied volatility’s response to changes in the S&P 500

decreases as volatility increases. That is, in states of the world when volatility is already high, the

impact of additional price variation on volatility expectations diminishes, or when information

is scarce (i.e. low volatility), additional data is more consequential. There are a few primary

implications that result for the results presented in this paper. For monetary policy, the first

suggestion may be counterintuitive; measures to limit market volatility by over-managing

and over-intervening may increase the system’s instability and susceptibility to large market

corrections. When traders are not accustomed to volatility, the slightest price variation will

be attributed to insider information, or to changes in the state of the system, and will cause

panics.5 An active area of research on stochastic resonance has shown that one way to amplify a

signal normally too weak to be detected is to add white noise to the signal. This phenomenon

has been shown to exist in self-organizing and complex systems. Such as it may be with

biological evolution, financial and economic systems may benefit from some volatility and may

be harmed by the limiting of a natural selection process. The second implication is not new

to the literature but is worth reinforcing. Linear derivative models, such as Black-Scholes and

its stochastic variants, are not informative of real world behavior. Nor can they be trusted to
5Taleb 2019

4



Clemons Chapter 1

reliably characterize equilibrium prices across all states of the market. While derivatives pricing

has been, and continues to be, an active area of research, this is the first study to my knowledge

exploring the connection between a derivative and its underlying asset using a regime switching

approach.

The rest of the paper is organized as follows. Section 1.2 reviews the formation of the

CBOE VIX Index, standard options pricing models, the concept of implied volatility, and the

implied volatility surface. Section 1.3 introduces the data and presents the Markov Switching

method used for regime identification. Section 1.4 studies the dynamics of the relationship

between implied volatility and price changes in the underlying. Multi-regime regression results

presented and discussed in Sections 1.4.1 and 1.4.2. Section 1.4.3 addresses tail index estimation

for the residuals of each regime-conditional model across the entire data series. Understanding

differences in the tail behavior of the conditional and linearmodels helps quantify the significance

of a multi-regime approach. Finally, the concluding remarks are presented in Section 1.5.

1.2 Theoretical background

1.2.1 Implied Volatility and the Supply and Demand of OTM Options

The Black-Scholes pricing model, introduced in 1973, has been an area of significant interest

for both academic and commercial pursuits. Its exact predictions provide a benchmark to

which empirical data can be compared. Similarly, for practitioners, Black-Scholes pricing sets

a theoretical level from which market participants can base their purchase and sell decisions.

Divergences between the theoretical predictions and the realized values have thus become an

active area of research. An additional area of research emerged by inverting the Black-Scholes

model to assess the implied volatility for various strike prices, K, and various times to maturity,

T, with the same underlying security. The concept of implied volatility comes from the idea that,

given a contract price, an options pricing formula can be inverted to calculate the amount of

5



Chapter 1 Clemons

volatility required to set the option’s expected value at zero. Thus, each price has an associated

volatility expectation, which varies depending on the pricing model employed. Using this

definition, implied volatility measures are model dependent. Calculating implied volatility is

useful for several reasons, one of which is interpretability. The methodology normalizes the

price quote for a given option over different strike prices, time horizons, and underlying security

prices. This concept, however, requires a probability density function of the underlying return

series, which must be assumed, estimated, or simulated, and is therefore not a market driven

index but rather a theoretical concept. For this paper, we are concerned with market-implied,

not model-implied expectations.

In 1993 Cboe Global Markets, Incorporated (Cboe) introduced the Cboe Volatility Index,

commonly known as the VIX Index. The VIX index was originally designed to measure the

market’s expectation of 30-day volatility implied by at-the-money S&P 100 Index (OEX Index)

option prices. The VIX Index quickly became the premier benchmark for U.S. stock market

volatility. In 2003, the VIX was updated by Cboe together with Goldman Sachs to reflect a

new way to measure expected volatility. Taken from the S&P 500 Index (SPXSM), the new VIX

algorithm estimates expected volatility by aggregating the weighted prices of SPX puts and

calls over a wide range of strike prices. Because the algorithm captures and aggregates actual

market prices, the index does not rely on an inversion of a pricing model to derive expected

volatility. Instead, the VIX calculation measures 30-day expected volatility of the S&P 500 Index

using near and next-term put and call options with more than 23 days and less than 37 days to

expiration using the following generalized formula (see VIX White paper for a full explanation

of formula):

σ2 “
2
T

ÿ

i

∆Ki

K2
i

eRTQpKiq ´
1
T
r

F
K0
´ 1s2

Where:

σ “ VIX
100

6



Clemons Chapter 1

T “ Time to expiration

F “ Forward index level desired f rom index option prices

K0 “ First strike below the f orward index level, F

Ki “ Strike price o f the ith out´ o f ´ the´money option; a call i f Ki ą K0; and a put i f Ki ă

K0; both put and call i f Ki “ K0.

∆Ki “ Interval between strike prices ´ hal f the di f f erence between the strike on either side o f Ki :

∆Ki “
Ki`1´Ki´1

2

R “ Risk´ f ree interest rate to expiration

QpKiq “ The midpoint o f the bid´ ask spread f or each option with strike Ki

The contribution of a single option to the VIX Index value is proportional to ∆K and the price

of that option, and inversely proportional to the square of the option’s strike price,
?

Ki. The

key relevance of this index lies in its ability to approximate market-implied volatility using the

clearing prices of a multitude of options contracts. The index does not rely on assumptions

about the distribution of returns, the stochastic nature of volatility, and other assumptions

typically worked into derivative models that generate implied volatility statistics. Instead, the

VIX provides an excellent, even if noisy, sentiment index - model-free and options-implied

volatility.

A long literature has been devoted to assessing the predictive power of the VIX index with

varied results; see Bekaert and Hoerova (2014), Sarwar (2012). As simple Granger Causality

test indicates a bi-directional relationship between the VIX and the S&P 500, and the majority

existing literature does not support the use of the VIX as a consistent predictor of future volatility,

especially for practitioners seeking profit generating signals.6 In contrast, this paper seeks to

enhance the understanding of how volatility expectations are formed by contributing to the

branch of research surrounding the dynamics of implied volatility, its surface, and its relationship

to the underlying asset(s).
6SPY granger causes VIX with F statistic = 0.012; VIX granger causes SPY with F statistic = 0.03

7



Chapter 1 Clemons

In a related study, Low (2004) uses a linear regression to investigate the contemporaneous

relation between changes in the VIX and the S&P 100 returns (the VIX was calculated from

S&P 100 options at the time of publication). The results suggest an asymmetric response

depending on whether the contemporaneous return was positive or negative. This implies that

risk perceptions tend to increase more when downside volatility increases relative to upside

volatility, and that prior gains appear to have some mitigating effect on volatility expectations.

The majority of prior literature on this topic, however, is aimed at assessing the supply and

demand for out-of-the-money calls and puts through measurements of the implied volatility

(IV) smile or smirk.

1.2.2 The Implied Volatility Surface

The Black-Scholes model assumes that implied volatility is constant with respect to strike

prices and time to maturity. However, this theoretical prediction is not typically found in

practice. Divergences between the Black-Scholes implied volatility and market implied volatility

were found in Rubinstein (1994). When plotted against various strike prices while holding

time to expiration constant, Black-Scholes implied volatility produces a flat line while market

implied volatility produces a parabola or smile. The parabola shape indicates that implied

volatility increases as moneyness (the distance between the strike and spot price) increases. One

explanation for the increased price is that option sellers require an additional risk premium to

compensate for the tail risk observed in financial time series. This finding has been confirmed

across several different markets and assets classes; see Xu and Taylor (1994); Heynen (1994);

Dumas, Fleming, and Whaley (1998); Lin, Chang, and Paxson (2008).

It has been observed that the implied volatility smile exists in certain markets, such as

currency markets, whereas an implied volatility smirk is commonly observed in equity markets.

The smirk differs in that the implied volatility for out-of-the-money puts increases much more

sharply than out-of-the-money calls. This suggests that the market places a higher probability

8



Clemons Chapter 1

(or higher price premium) on large declines relative to large gains in equity markets, an effect

which has been found to be more pronounced for equity index options relative to individual

index options (Lin, Chang, and Paxson 2008). This may be explained by a relative abundance of

demand for downside protection, an extra risk premium to cover tail risk, or a function of the

option market’s own supply and demand dynamics, which according to Cont and da Fonseca

(2002) have become increasingly autonomous. This fact is also supported by recent empirical

evidence of violations of qualitative dynamical relations between options and their underlying

(Bakshi, Cao, and Chen 2000).

While this paper does not directly measure changes in the slope of the implied volatility

surface across regimes, it does so indirectly given that the contribution of a single option to the

VIX Index value is proportional to ∆K and the price of that option and inversely proportional

to the square of the option’s strike price. That is, holding moneyness constant, an increase

in the price of an option with strike K will increase the level of the VIX. Similarly, holding

contract prices constant, increases in the amount of contracted options with greater moneyness

will increase the VIX. Therefore, the simple model used in this paper allows for an indirect

assessment of the impact that changes in the underlying price has on the implied volatility

surface. The results presented herein indicate that future work exploring changes in slope of the

smile across different market regimesmay provide useful insight into how themarket anticipates

outlier events.

1.3 Data and Methodology

1.3.1 Variables and Transformations

Data used in the modeling process is detailed below. Each independent variable is a State Street

Global Advisors SPDR Exchange Traded Fund (ETF) listed on the NYSE ARCA Stock Exchange.

The SPDR S&P 500 ETF Trust (SPY) seeks to provide investment results that, before expenses,

9
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correspond generally to the price and yield performance of the S&P 500 Index. The S&P 500

itself is a capitalization-weighted stock market index that measures the stock performance of

505 large companies listed on stock exchanges in the United States. Due to its aggregation of the

country’s largest publicly traded companies, the index is one of the factors in computation of

the Conference Board Leading Economic Index, used to forecast the direction of the economy.

The additional ETFs used in the modeling process for Model 2 correspond to the price and

yield performance of each sector comprising the S&P 500. As dicussed below, these component

sectors allow for a more granular approach to the question addressed with Model 1. The

sector naming and grouping conventions follow the Global Industry Classification Standard

(GICS) and include: XLB (Materials), XLE (Energy), XLF (Financials), XLI (Industrials),

XLK (Technology), XLP (Consumer Staples), XLU (Utilities), XLV (Health Care), and XLY

(Consumer Discretionary).

The dependent variable, VIX, is a calculation used to estimate expected volatility by aggregat-

ing the weighted prices of SPX puts and calls over a wide range of strike prices on the Chicago

Board Options Exchange, as discussed in Section 1.2.1. All variables, dependent and indepen-

dent, were sourced from Yahoo! Finance. Several measures were taken to ensure the validity

of the data provided, including a comparison between the chosen dataset and a comparable

dataset provided by WRDS CRSP. No data discrepancies were found between the two datasets,

and an outlier and missing value assessment did not necessitate any data treatments. The data

provided by Yahoo! Finance was found to be accurate, easy to work with, and replicable. To

ensure time consistency across all extracted variables, the daily adjusted closing price was used

to construct the time series of each variable.

For modeling purposes, the log difference of each price series was calculated, which trans-

forms the each series from adjusted price to daily returns. ADF, KPSS trend, and KPSS linear

tests results indicate that stationarity is achieved through the variable transformation for each

variable, which allows one to derive the expected value of the VIX at time t, ErVIXts.

10
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Exogenous Variables
ETFs Sectors Sample Time

Model 1
SPY S&P 500 1/29/1993 to 11/27/2020

Model 2
XLF Financial 12/22/1998 to 11/27/2020
XLK Technology 12/22/1998 to 11/27/2020
XLE Energy 12/22/1998 to 11/27/2020
XLV Health Care 12/22/1998 to 11/27/2020
XLY Consumer Discretionary 12/22/1998 to 11/27/2020
XLI Industrial 12/22/1998 to 11/27/2020
XLP Consumer Staples 12/22/1998 to 11/27/2020
XLU Utilities 12/22/1998 to 11/27/2020
XLB Materials 12/22/1998 to 11/27/2020

Endogenous Variables
VIX CBOE Volatility Index 1/29/1993 to 11/27/2020

1.3.2 The VIX and Realized Volatility

Additional variables representing of the independent variable(s) variance were produced to

show the correlation between VIX implied volatility and realized volatility. For the S&P 500,

three different time series are constructed. The first is a 30-day rolling standard deviation of

S&P 500 daily log returns is estimated and subsequently squared to derive an estimate of return

variance. The second is an estimated S&P 500 volatility using a GARCH (1,1) model. Third, for

the estimated variance of the hypothetical portfolio of S&P 500 constituent sectors, I apply an

orthogonal change of basis on the 30-day rolling variance-covariance matrix of the nine sector

ETFs. The variance-covariance matrix at each time step is re-expressed by pre-multiplying a

vector containing the 30-day average market capitalization weights for each ETF, defined as

MktCap_Weight “
MktCapi

ř9
i“1 MktCapi

, and post-multiplying by the transpose of the 30-day average

market capitalization weights vector. In matrix notation, this operation is represented by ABAT.

This change of basis matrix is a 1ˆ 1 scalar representing the market capitalization-weighted

variance of the ETF portfolio.

Several characteristics are observed and presented in Figure 1.1 regarding the different

volatility series. First, the aggregated Sector ETF volatility is nearly identical to that derived
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directly from the 30-day rolling variance of S&P 500 daily log returns. This provides confirming

evidence that our sector ETFs are an appropriate decomposition of the S&P 500 index. Second,

the GARCH (1,1) process produces more extreme volatility estimates, particularly during the

crisis periods, which is likely due to the fact that GARCH point estimates are not smoothed

over a 30-day window. As a result, the GARCH estimate likely provides a better reflection of

the severity of crisis periods. Third, VIX implied volatility underestimates realized volatility,

particularly during crisis periods. This point is of particular interest given the results of our

Crisis regime model, which indicates that contemporaneous price movements in the underlying

have less of an effect on the VIX during these periods. This underestimation appears to be

present during all significant crises over the sample period and is apparent in Figure 1.2, which

shows contemporaneous GARCH estimated volatility of the S&P 500 less contemporaneous VIX

implied volatility. The color-coded series of VIX residuals shows the magnitude of the market’s

underestimation of volatility during crises relative to other states of the market. The Crisis,

Normal, and Low periods shown in Figure 1.2 are defined by the smooth probabilities generated

by the Markov model.
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Figure 1.1: VIX and Estimated Volatilities

Figure 1.2: GARCH Estimated Volatility Less VIX
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1.3.3 Markov Switching Methodology

To capture the non-linear relationship between options-implied volatility and contemporaneous

price changes in the underlying, a Markov Switching is employed to estimate differences in

parameter estimates across different market regimes. Following Psaradakis and Spagnolo (2002),

I select the number is regimes based on a minimization of AIC. Psaradakis and Spagnolo’s

Monte Carlo analysis revealed that selection procedures based on the so-called three-pattern

method (TPM) and the AIC are generally successful in choosing the correct state dimension,

provided that the sample size and parameter changes are not too small. BIC and HQC have a

tendency to underestimate the state dimension. Given the large sample size and observation

of large parameter changes, regime specification was based on AIC, interpretability, and prior

literature. Between a two-state (AIC = -25168.88) and a three-state model (AIC = -25851.57),

the latter performs better in terms of AIC. Three volatility states is also easily interpretable as 1)

a low volatility regime with jumpy expectations, 2) a normal regime with mild volatility, and 3)

a crisis regime with extreme volatility. Prior literature has explored the VIX under a switching

framework. Baba and Sakurai (2011) use a regime switching approach to investigate the role of

US macroeconomic variables as leading indicators of regime shifts in the VIX index. They found

that there are three distinct regimes in the VIX index during the 1990 to 2010 period: tranquil

regime with low volatility, turmoil regime with high volatility and crisis regime with extremely

high volatility. They also show that the regime shift from the tranquil to the turmoil regime is

significantly predicted by lower term spreads. In this paper, I consider only the dynamics of

the impulse-response relationship between implied volatility and daily prices changes in the

underlying across different regimes. However, I follow Baba and Sakurai (2011) and employ a

three-regime model when exploring the dynamics of the VIX, albeit with a slightly different

interpretations of regime states.

The three-state Markov chain that governs the probabilistic model driving the change be-

tween regimes in this paper does so in the follow manner:
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Prpst “ j|st´1 “ i, st´2 “ k, ..., yt´1, yt´2, ...q “ Prpst “ j|st´1 “ iq “ pij

The state space, st, is thus inferred from observed behavior of VIXt. The probability law

governing VIXt is described by the variance of the Gaussian innovation σ2, the autoregressive

coefficients (VIXt´1,...,4), the intercept, S&P500t, and the transition probabilities, ω1, ω2, and

ω3 (Hamilton 2005). This data-driven approach allows for the assignment of volatility regimes,

st “ 1, 2, or 3, that do not rely on subjectivity, making the research design more rigorous. The

three-state model then becomes:

VIXt “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

c1t ` β1∆SP500t `
ř4

i“1 φ1VIXt´i ` a1t if st “ 1

c2t ` β2∆SP500t `
ř4

i“1 φ2VIXt´i ` a2t if st “ 2

c2t ` β3∆SP500t `
ř4

i“1 φ3VIXt´i ` a3t if st “ 3

The magnitude of coefficients β1, β2, and β3 can then be determined to be statistically different

from one another or not, which provides support for or against the non-linear hypothesis.

Further, the first-order Markov chain used to generate the regime switching process is

governed by transition probabilities, as presented below. These probabilities, denoted here as

ωij, show the probability of switching from one regime to another, conditional on the regime of

the previous observation.

P(st “ 1|st´1 “ 2q “ ω1,2 Ppst “ 1|st´1 “ 3q “ ω1,3

P(st “ 2|st´1 “ 1q “ ω2,1 Ppst “ 2|st´1 “ 3q “ ω2,3

P(st “ 3|st´1 “ 1q “ ω3,1 Ppst “ 3|st´1 “ 2q “ ω3,2

As mentioned, this setup allows the model to capture changes in parameter weights if the

structural relationship between variables is deemed, through the Markov process, to have

varied significantly. This dynamic parameter estimation serves four main functions. First, the
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Markov process produces state probabilities and respective parameter weights that differentiate

between periods of low, high, and crisis volatility, thus generating conditional residuals that

more closely follow a desired white-noise process.

Second, because the time series properties governing expected volatility are markedly differ-

ent between periods of low and high volatility, theMarkov process generates regime probabilities

that correspond nicely to periods that we would define as crisis periods in the absence of the

regime estimating process. That is, the data speaks for itself when seeking to define when a crisis

begins and ends. For this dataset spanning from 01/29/1993 to 05/22/2020, the crisis periods

include the market turbulence during the early 2000s dot-com bubble, the financial crisis in the

late 2000s, and the Covid-19 crisis in 2020.

Third, the multi-regime model yields three sets of parameter estimates, one for each regime.

We can subsequently test the differences in parameters through simple tests of statistical signifi-

cance. This allows one to determine whether or not the change in state space is driven primarily

by changes in the dependent variable, changes in the relationship between the dependent vari-

able and the independent variables, or a combination of the two. Thus, one can assess if the

modeled relationship is non-linear. Model 2 allows for further granularity in our assessment

of non-linearities by disaggregating the S&P 500 into its component sectors, allowing us to

determine of which sectors primarily drive regime changes within the dataset.

Finally, the Markov process yields transition probabilities, which measure the persistence

of each regime. The transition matrix allows us to examine the likelihood that we will observe

a switch from one regime to another. Similarly, we can assess the persistence of low, jumpy,

and high states. True state permanence would be represented by ωi “ 1. However, the Markov

formulation allows for the more general possibility that ωi ă 1. Within business and market

cycles we know that any given situation, though perhaps enduring, is persistent but not per-

manent. Furthermore, if the regime change reflects a fundamental change in monetary policy,

fiscal policy, investor sentiment, liquidity, leverage, or debt-deflation, it would be prudent to
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allow the possibility for the regime to change back to its prior state or a new state entirely. This

suggests that ωi ă 1 is a correct specification given our data and objective.

Model Specification and Variable Switching

For the regime switching models, correct specification of the appropriate lag order for our

dependent variable helps ensure that the results are not biased by autocorrelation in the error

term. Akaike information criterion (AIC) is used to identify the correct number of autoregressive

terms. When considering the S&P 500 as an exogenous variable, an AR(4) model was shown to

minimize the AIC statistic and was therefore chosen as the preferred lag specification.7

Furthermore, when constructing the specification and constraints of the switching model,

the researcher has an option to hold certain variables constant across all regimes. I chose to

produce an unconstrained model, which permits parameter switching for all variables and

autoregressive terms.

1.3.4 Tail Index Methodology

The central point of this study is to investigate whether or not volatility expectations form in

manner that is non-linear with respect to the underlying asset. It is therefore important to

quantify the differences between a linear approach and a non-linear approach to the stated

problem. One way to capture the statistical consequences of an ill-fitted model is to measure the

distributional characteristics of the residuals. Specifically, it is useful to measure conditional

probabilities such that a residual exceeds a given threshold. Simply put, we want to assess the

model’s proclivity to produce large errors. This is known as the complementary cumulative

distribution function (ccdf) or survival function which captures both the location and shape of

the tail distribution.

Certain tail decays, such as a power law decay, are thought to be a sign of complexity and
7AIC = -22980.96
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self-organized criticality in dynamical systems (Bak 1996 and Mandelbrot 2001), and the shape

of the resulting tail distribution can characterize the magnitude and frequency of extreme events.

It has been observed that the distributions of many economic and financial series exhibit a

power-law decay in the tails (Mantegna and Stanley 1995; Clauset, Shalizi and Newman 2009;

Sornette 2004). Understanding these distributional characteristics is of particular importance for

risk analysis, hedging strategies, and derivatives pricing. For this paper, the tail characteristic of

the models’ distributions are estimated to better understand the importance of a multi-regime

approach from a model error perspective. When it comes to (mis)pricing, it is the extreme

misses, the rare miscalculation, that can be consequential for both the individual and the system.

For example, we want to characterize the conditional probabilities of model errors such that

the error exceeds some minimum threshold, xmin. Assuming that the family of extreme value

distributions falls into the Frechet type, residuals above this threshold will follow,

Ppεt ą x | εt ą xminq “ k|x|´α

where εt is the model residual, xmin is the minimum threshold that defines the location of the

tail, and the parameter α, the tail exponent, determines the rate at which the probability density

drops off as one moves out into the tail (LeBaron 2009). The same is easily applied to the left

tail.

Hill (1975) suggested that, for certain situations, it would be of interest to draw inference

about the behavior of a distribution function in the tails without assuming that a particular

parametric form for the distribution function holds globally. However, this requires that we

first identify the location of the tail. That is, if ε1, ε2, . . . , εk is a sample drawn from a population

with distribution G and εp1q ě εp2q ě ¨ ¨ ¨ ě εpkq are the order statistics, then there may exist

some number xmin such that ε ě xmin defines the region where G is believed to form a Pareto

distribution. Because xmin is not known in practice, determining the tail region of the distribution
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is non-trivial. If xmin is chosen to be too high, the variance of the estimator increases. If xmin is

too low, the bias of the estimator increases. One method for finding xmin is to apply the Hill

estimator on the entirety of the ordered sample population and determine the maximum value

for xmin such that the weighted Hill estimate converges on a single number. Beyond this number,

x˚min, the weighted Hill estimate will diverge, suggesting that the inclusion of data beyond x˚min

produces a sample that is not Pareto distributed. Another method for finding x˚min is to start

with a density plot of sorted data to visually identify a lower bound and ‘strict power law’

behavior. Further heuristics such as log-log plots and log-log rank plots can identify a linear

relationship to identify power law behavior, though these methods are not fool proof Nair et

al. (2019). In Hubert et al. (2013) there is another Pareto test which looks for linear behavior

in the QQ-plots of the log transformed data against standard exponential data. To determine

x˚min for each residual series, both heuristics and quantitative methods were tested and explored.

Ultimately, the appropriate x˚min was chosen using the extremefit package in R, which relies on a

weighted version of the Hill estimator and on the pointwise data driven procedure of Durrieu

et al 2015.

Once the x˚min threshold has been identified, the tail index, α, can be estimated using the

Maximum Likelihood Estimation (MLE) method of Newman (2005), which produces a biased

estimate of α̂:

α̂ “ N ¨ r
řN

i“1
xi

x˚min
s´1

This MLE estimate can be converted to an unbiased version α˚ following Rizzo (2009) with the

following adjustment, where n is the sample size:

α˚ “
n´ 2

n
¨ α̂

Using thesemethods, I was able to characterize and compare eachmodel’s proclivity for large

errors. Doing so allows us to quantitatively understand how a non-linear approach outperforms

its linear alternative. These results are presented in Section 1.4.3.
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1.4 Non-linear response of implied volatility to innovations in the

underlying across regimes

The research question is studied in two separate models. The first model is a simple and

parsimonious approach to assessing the response of S&P 500 implied volatility to innovations in

the underlying index, SPY, under different market regimes. The second approach decomposes

the S&P 500 into its component sectors. This approach allows us to determine if any non-

linearities between states is consistent across all sectors ETFs.

1.4.1 The Aggregate Model - VIX & S&P 500

Identifying Market Regimes

The aggregate model (S&P 500 regressed on the VIX) allows for a simple and parsimonious

assessment on the non-linearity present in the relationship between a derivative and its underly-

ing. As discussed in Section 1.3.2, the regime probabilities are identified through the Markov

process. Figures 1.3, 1.4, and 1.5 show how each regime corresponds to the S&P 500 return series

over the sample period. The data driven process identifies a few distinct characteristics. First,

crisis periods are unique and persistent, being defined primarily by the dot com volatility of

the late 90s to early 2000s, the financial crisis during the late 2000s, and the more recent market

turmoil resulting from the Covid-19 pandemic. Second, the regime labeled “Low Volatility” is

observed primarily during the eight to nine years following the last financial crisis. As will be

discussed below, sensitivity to price changes during periods of very low volatility appears to

have increased in more recent years. This idea is captured visually in Figure 1.6, which shows

the increasing volatility of the VIX during the past decade.8 Third, aside from the infrequent

jumps in expected volatility captured by the Low regime model, the Normal regime captures

almost all periods when the market is not in turmoil. This suggests that it may be more accurate
8Volatility of the VIX is estimated using a GARCH(1,1) model
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to describe the VIX - S&P 500 relationship as a two state model (Crisis and Normal regimes)

with infrequent jumps (Low regime). This description also fits the common notion of boom and

bust cycles of markets. Finally, it is reassuring to visually confirm that the Markov Switching

process does effectively capture our a priori assumption about when crisis periods begin and

end; we are able to let the data speak for itself as opposed to subjecting the model to outside

assumptions about when market regimes occur.

Figure 1.3: Low Regime Smooth Probability

Figure 1.4: Moderate Regime Smooth Probability

Figure 1.5: Crisis Regime Smooth Probability
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Figure 1.6: Volatility of VIX

In order to assess how the proposed switching model performs, it is instructive to plot

the model residuals over the sample periods to track performance across time. The same can

be done for each regime-specific model output, which provides a visual of the non-linearity

present in the system; we can quickly see how each estimated regime fit is uniquely tuned and

produces large errors in “out-of-regime” periods. For example, if we were to assume a constant

linear relationship between the VIX and the S&P 500 using the Normal period model, we would

drastically overestimate changes in the VIX during more turbulent times. Conversely, using

the Crisis model would significantly underestimate changes in the VIX during more tranquil

periods. Figures 1.7 and 1.8 demonstrate these findings.

22



Clemons Chapter 1

Figure 1.7: Residuals by Regime - Model 1

Figure 1.8: Residuals by Regime - Model 1
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Model Estimates

Table 1.1 below provides the model output for each state of the market: low volatility regime

with jumpy expectations; normal regime with low to moderate volatility; and crisis regime

with extremely high volatility. The results evidence the statement put forth in Section 1.1; in

states of the world when volatility is already high, the impact of additional price variation on

volatility expectations diminishes. That is, informational scarcity (i.e. low volatility) makes

additional data more impactful. As discussed previously, the Low regime captures the VIX’s

jumpy behavior, producing a very strong relationship between the VIX and changes in the

S&P 500 when volatility is low. If S&P 500 decreases by 1%, we would expect to see an 11%

increase in the VIX. Given that the Low regime does not correspond specifically to one particular

state of the market, this behavior is plausibly driven by the option market’s own supply and

demand mechanisms. The parameter estimate from the Normal regime falls between the Low

and Crisis regime estimates. During periods of moderate volatility, a 1% decrease in the S&P 500

corresponds to a 6% increase in the VIX. Finally, the results indicate that crisis periods exhibit a

relative weakening in the relationship between the VIX and its underlying; a 1% decrease in

the S&P 500 corresponds to a 2.6% increase in the VIX. I suggest a few possible explanations

for this seemingly counterintuitive finding. First, volatility expectations may be driven more by

latent variables, such as policy announcements and news, during turbulent periods. Second,

volatility expectations may be bounded from above, and thus do not respond as strongly during

periods when actual volatility is already high. Third, it may also be the case that high volatilility

is already “priced in” to options contracts during turbulent periods, and therefore traders do

not update their beliefs when presented with additional price changes. Fourth, the unique

supply and demand mechanism of the options market may be more prevalent during times

of high uncertainty. Therefore, movements in the underlying explain less variation in the VIX

relative to normal periods. Regardless of the exact explanation, there is strong evidence of a

multi-regime relationship. This is further evidenced by the results in Table 1.1, which show that

24



Clemons Chapter 1

the differences in the S&P 500 coefficients between regimes are highly significant.

Table 1.1: Markov Switching Regression Results - Model 1

Dependent variable: VIXt Difference in β

Low Normal Crisis Low - Low - Normal -
Regime Regime Regime Normal Crisis Crisis

S&P 500t ´10.98˚˚˚ ´6.11˚˚˚ ´2.62˚˚˚ 4.87˚˚˚ 8.36˚˚˚ 3.49˚˚˚
(0.34) (0.12) (0.06) (13.61) (24.51) (25.83)

Constant 0.01˚˚˚ 0.001˚ ´0.0003 ´0.01˚˚˚ ´0.01˚˚˚ ´0.001˚
(0.002) (0.001) (0.001) (´2.4) (´3.0) (´1.48)

VIXt´1 ´0.08˚˚˚ ´0.08˚˚˚ ´0.04˚˚ ´0.00004 0.04˚˚ 0.04˚˚˚
(0.02) (0.01) (0.01) (0.002) (1.55) (2.19)

VIXt´2 ´0.05˚˚ ´0.08˚˚˚ ´0.07˚˚˚ ´0.02 ´0.01 0.01
(0.02) (0.01) (0.013) (´0.85) (´0.47) (0.55)

VIXt´3 ´0.08˚˚˚ ´0.05˚˚˚ ´0.05˚˚˚ ´0.03 0.03 0.001
(0.02) (0.01) (0.01) (1.14) (1.12) (0.04)

VIXt´4 ´0.02 ´0.05˚˚˚ ´0.06˚˚˚ ´0.03 ´0.03 ´0.01
(0.02) (0.01) (0.01) (´0.97) (´1.26) (´0.57)

Total Obs 6,979
R2 0.78 0.75 0.56
Resid Std. Error 0.051 0.03 0.037

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01 z-scores in parenthesis

The model shows that the regime corresponding to the Crisis periods is the most persistent

at 0.98, followed by the Normal regime at 0.95, and the Low regime at 0.86. The transition matrix

is presented below in Table 1.2.

Table 1.2: Transition Matrix - Model 1

Crisis Regime Normal Regime Low Regime

Crisis Regime 0.98 0.02 0.002
Normal Regime 0.02 0.95 0.14
Low Regime 0.001 0.04 0.86

Note: Columns = VIXt´1 regime; Rows = VIXt regime
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1.4.2 Model 2

As expected, Model 2 shows very similar behavior to Model 1 when comparing the residuals of

each regime. The purpose of Model 2, however, is to identify which sectors within the S&P 500

drive the regime switching behavior. For example, between theNormal regime andCrisis regime,

the only two sectors that display significantly different behavior are the Financial Sector and the

Technology Sector. Further, not all sectors are statistically significant across all regimes. In fact,

the Financial Sector is the only sector that show statistically significant differences between all

regimes. The Materials Sector, for example, is significant during normal times but does not seem

to influence volatility expectations during crises present in the sample. Nor does this sector

contribute to the VIX’s jumpy behavior. Additional sector-specific behavior can be found in

Table 1.3 below.

Figure 1.9: Residuals by Regime - Model 2
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Table 1.3: Markov Switching Regression Results - Model 2

Dependent variable: VIXt Difference in β

Low Normal Crisis Low - Low - Normal -
Regime Regime Regime Normal Crisis Crisis

Financial ´2.026˚˚˚ ´0.659˚˚˚ ´0.235˚˚˚ -1.366˚˚˚ -1.790˚˚˚ -0.424˚˚˚
(0.362) (0.106) (0.053) (-3.591) (-4.888) (-3.618)

Technology ´3.272˚˚˚ ´1.011˚˚˚ ´0.787˚˚˚ -2.262 -2.486˚˚˚ -0.224˚˚˚
(0.371) (0.124) (0.062) (-1.611) (-6.602) (-5.775)

Energy ´0.457˚˚ ´0.519˚˚˚ ´0.362˚˚˚ 0.062˚ -0.095 -0.157
(0.204) (0.073) (0.060) (-1.670) (-0.447) (0.285)

Health Care ´1.449˚˚˚ ´1.003˚˚˚ ´0.549˚˚˚ -0.446˚˚˚ -0.900˚˚ -0.454
(0.364) (0.137) (0.091) (-2.758) (-2.395) (-1.147)

Consumer Discretionary ´1.639˚ ´0.999˚˚˚ ´0.250˚˚˚ -0.640˚˚˚ -1.389˚˚ -0.749
(0.462) (0.167) (0.090) (-3.943) (-2.951) (-1.302)

Industrial ´1.052˚˚ ´0.462˚˚˚ ´0.170 -0.590 -0.882˚ -0.292
(0.456) (0.168) (0.123) (-1.402) (-1.867) (-1.213)

Consumer Staples ´0.701˚ ´0.759˚˚˚ ´0.329˚˚˚ 0.058˚˚ -0.372 -0.430
(0.407) (0.163) (0.100) (-2.249) (-0.887) (0.132)

Utilities ´0.133 ´0.218˚˚ 0.179˚˚ 0.086˚˚˚ -0.311 -0.397
(0.267) (0.105) (0.077) (-3.057) (-1.120) (0.299)

Materials ´0.364 ´0.547˚˚˚ ´0.022 0.183˚˚˚ -0.342 -0.525
(0.335) (0.118) (0.084) (-3.631) (-0.990) (0.514)

Constant 0.006˚˚˚ 0.001 ´0.002˚˚ 0.006˚˚˚ 0.008˚˚˚ 0.003˚˚˚
(0.002) (0.001) (0.001) (2.321) (3.927) (2.764)

VIXt´1 ´0.067˚˚˚ ´0.083˚˚˚ ´0.047˚˚˚ 0.016˚ -0.019 -0.035
(0.019) (0.011) (0.015) (2.321) (3.927) (2.764)

VIXt´2 ´0.068˚˚˚ ´0.074˚˚˚ ´0.072˚˚˚ 0.006 0.005 -0.001
(0.020) (0.011) (0.015) (-0.077) (0.194) (0.274)

VIXt´3 ´0.042˚˚˚ ´0.058˚˚ ´0.064˚˚˚ 0.016 0.022 0.006
(0.021) (0.011) (0.015) (0.305) (0.851) (0.680)

VIXt´4 ´0.035 ´0.053˚˚˚ ´0.056˚˚˚ 0.018 0.021 0.003
(0.023) (0.011) (0.014) (0.170) (0.793) (0.727)

Total Observations 5,267
R2 0.83 0.77 0.61
Residual Std. Error 0.04 0.03 .04

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01 z-scores in parenthesis

Model 2’s transition matrix is similar to that of Model 1. The Crisis regime is the most

persistent, followed by the Normal regime, followed by the Low regime. The transition matrix

is presented below in Table 1.4.
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Table 1.4: Transition Matrix - Model 2

Low Regime Normal Regime Crisis Regime

Low Regime 0.89 0.03 0.003
Normal Regime 0.10 0.95 0.022
Crisis Regime 0.01 0.02 0.98

Note: Columns = VIXt´1 regime; Rows = VIXt regime

1.4.3 Tail Behavior and Model Performance

Given the above estimation results of the regime-switching model, it is important to understand

how the non-linear approach compares to its linear counterpart. To achieve a comparison

that appropriately captures the risk associated with large mispricings9, I aim to characterize

the tail behavior of each model’s residuals (see Appendix for plot of residual distributions).

Using the approach described in Section 1.3.3, one can identify the location and shape of the

tails, which helps describe the decay in the likelihood of observing an event far from the mean.

Further, because the residual distributions are two-tailed, thismethod can also recognize possible

asymmetries between the decay of the left and right tail. Asymmetries in the left and right

tail behavior describe whether the model has a propensity for large under-predictions or large

over-predictions, where model errors are defined as ε “ y´ ŷ.10

The first step in the tail index estimation procedure is to determine the location of the tail.

The Hill estimation approach discussed in Section 1.3.4 offers a method for determining the

values beyond which plausibly form a Pareto distribution. Weighted Hill estimations for each

series, and for both tails, converge and stabilize on a certain value within the identified tails

(see appendix for Hill estimation results). Further support for the Pareto hypothesis can be

shown by plotting the empirical observations within the tail against the theoretical quantiles

of a generalized Pareto distribution. These QQ plots are presented in the appendix and show
9Large mispricings are the true consequential events that determine large periodic transfers of wealth.

10The left tail contains over-predictions of volatility increase and under-predictions of volatility decreases (ε ă 0).
The right tail contains over-predictions of volatility decreases and under-predictions of volatility increases (ε ą 0).

28



Clemons Chapter 1

additional support for the Pareto hypothesis.11 The Maximum Likelihood Estimation procedure

outlined above yields estimates for the α parameter that describes the decay of the tails. For the

(Conditional) Markov Switching model, the tail index for the right tail is α “ 3.7 and the left

tail is α “ 4.01. Further, the xmin value is 0.069 for the right tail and 0.066 for the left tail. For the

(Linear) AR(4) model, the tail index for the right tail is α “ 2.84 and the left tail is α “ 3.62. The

slower decay present in the Linear model relative to the Non-linear model indicates a higher

propensity for extreme errors. This is particularly present in the right tail, which represents

over-predictions of volatility decreases and under-predictions of volatility increases. Further,

the xmin value is 0.093 for the right tail and 0.074 for the left tail. Again, the higher xmin relative

to the non-linear indicates that the expected value within the tails is higher, where Erεs “ αxmin
α´1 .

Therefore, holding α constant, increases in the xmin correspond to higher expected value for

an error conditional on it being within the tail region. Table 1.5 below demonstrates how the

parameter estimates translate in the expected values, conditional on a residual being above the

xmin threshold. We see that the Linear model has a higher expected value in both tails, especially

the right tail.

Table 1.5: Expected Value - Residual Tails

Expected Value

Conditional Right Tail 0.094
Conditional Left Tail 0.089

Linear Right Tail 0.142
Linear left Tail 0.103

Figure 1.10 below shows the log-log tail densities of both the Switching model and the Linear

model. The steepness of the slope represents the rate of decay. To put this in visual perspective,

Pareto distributions are simulated in Figure 1.11 using the above estimated shape and location

parameters. We see that the right tail of the linear model is shifted to the right and presents

a slower decay relative to the conditional model. Log-log tail densities, as well as simulated
11A straight line on the QQ plot indicates agreement with the Pareto hypothesis
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Pareto distributions, are plotted and presented for each model in the Appendix.

Figure 1.10: Log Log Plot of Tail Distribution - Switching vs. Linear Model

Figure 1.11: Pareto Simulation - Conditional vs. Linear Model

1.5 Conclusion

As demonstrated above, there is evidence that option prices vary in a non-linear and regime-

dependent fashion with contemporaneous price changes in their underlying asset. The correla-
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tive results show that the supply and demand dynamics of equity options are markedly different

between periods of stability and instability, which provides insight into how expectations are

formed when participants are faced with repeated, uncertain, and financially significant decisions.

The decrease in magnitude of the S&P 500 coefficient as the market switches from low

volatility to high suggests that information scarcity (low volatility) makes additional data (price

changes) more impactful. Conversely, crisis periods are accompanied by meaningful changes in

variables that are not included in this model, such as monetary and fiscal policy. Latent variables,

therefore, play a more significant role in risk determination when such information is more

plentiful, noisy, and multidimensional. In such instances, new information concerning the price

of the underlying asset is less significant. In fact, volatile price movement may already be “priced

in” to the option contract once the Crisis regime is initiated. Market participants may therefore

form their expectations through the use of complex heuristics rather than strict pricing formulae

that do not fully capture the complexity of markets. Further, the idea that volatility expectations

show increased sensitivity to new price information during periods of low volatility is instructive

for monetary policy. Over-intervention in financial markets through interest rate policy does

not allow the pricing mechanism to reflect accurate information about the stability of the system.

For example, low interest rate environments may allow poorly performing companies to obtain

financing that would otherwise be out of reach when credit is tight, thus allowing negative

information to remain hidden. These volatility-limiting actions may decrease system stability

similar to the way a biological system’s strength might deteriorate in the absence of mild and

frequent stressors. Therefore, when “normal” volatility is limited, traders view price variations

as a potential regime change, causing more reactionary behavior and possibly providing the

behavioral foundation for a subsequent change in system’s state.

While this paper has aimed to provide evidence of a non-linear relationship between a

derivative and its underlying, the analysis does not go beyond a correlative exploration. Nor

does this work offer an alternative pricing formula that incorporates the non-linear structure
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found above. The goal of this paper was to demonstrate that one-size-fits-all approaches are

not applicable to financial markets, and doing so can be costly. Further, this paper also aims to

understand the rationale behind the increased price sensitivity during periods of low volatility.

To do so, I have reached beyond the economics literature to explore concepts within the field of

signal processing and stochastic resonance. While I believe there is good reason to apply these

concepts to help explain the non-linearity found in the studied relationship, further research

should explore the relevance of signal-to-noise ratios of non-linear economic systems. Further,

I put forth the idea that monetary policy is a proximate cause of volatility reductions. Future

research can further analyze how monetary policy changes impact the relationship modeled in

this paper.

1.6 Appendix

(a) Hill Estimate - Right Tail (b) Hill Estimate - Left Tail

Figure 1.12: Hill Estimates
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(a) Distribution of Residuals
(b) Simulated Pareto Distribution

Figure 1.13: Residual Distributions

Figure 1.14: Log Log Plot of Tail Distribution - All Models

(a) Crisis Model - Right Tail (b) Crisis Model - Left Tail

Figure 1.15: Crisis Model QQ Plot
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(a) Normal Model - Right Tail (b) Normal Model - Left Tail

Figure 1.16: Normal Model QQ Plot

(a) Low Model - Right Tail (b) Low Model - Left Tail

Figure 1.17: Low Model QQ Plot

(a) Conditional Model - Right Tail (b) Conditional Model - Left Tail

Figure 1.18: Conditional Model QQ Plot
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(a) Linear Model - Right Tail (b) Linear Model - Left Tail

Figure 1.19: Linear Model QQ Plot
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2
Volatility Tails - Actual and Expected Volatility
By Chandler Clemons

2.1 Introduction

Most everything of interest and consequence occurs far away from normalcy. As social scientists

or students of history, we don’t typically chronicle the normal, the day-to-day, or the expected.

We care more about the events that disrupt our sense of equilibrium. These are the instances that

cause ruin, riches, war, famine, and other consequences that challenge our notions of status quo

and understanding. A natural question thus arises; how well do individuals or markets predict

such events? A quantitatively advantageous way to investigate this question is through data rich

financial markets, where participants implicitly or explicitly bet on future states of the world. In

short-term derivative markets, these bets form repeated samples of the perceived likelihood

of large price fluctuations. By capturing these expectations, we can attempt to quantify any

differences between the likelihood of out-of-the-ordinary events and the expected likelihood of

out-of-the-ordinary events.

We have, however, a relatively limited knowledge and tool set for answering this question

quantitatively. This is particularly true of economic sciences and financial economics. Although

Benoit Mandelbrot provided methodology for quantifying the non-Gaussian properties of asset

returns in 1963, the statistical consequences of far-from-equilibrium dynamics were not fully

appreciated and explored within the academic economics literature until much later. Even as of

this writing, such methods and approaches are not widely studied, taught, or practiced within

economics. The aim of this work is to add to the growing literature on the consequences of rare

economic events and overcome the typical measurement issues that impinge the quantitative

analysis of a distribution’s tail behavior. In doing so, this work’s higher goal is to look closely

at the statistical properties of both historical volatility and expected volatility, because while
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we now have tools to identify a distribution’s tail behavior, we have yet to understand how

expectations of extreme events compare to the realization of extreme events. Specifically, the

objective is to quantitatively identify the differences between actual tail risk and expected tail

risk in asset markets.

Characterizing the tail behavior of a random variable’s distribution has attracted increasing

scientific interest. Of particular interest are “fat”, “heavy”, or “long” tailed distributions, which

characterize a wide range of both natural and man-made phenomena. The presence of slowly

decaying tails signals a system susceptible to unpredictable and consequential events. In such

cases, typical values such as the average and variance, do not properly characterize the risk and

unpredictability of the dynamic process under study. This is particularly true in finance where

major transfers of wealth are the result of tail events; not minor fluctuations around the mean.

This fact is not fully captured by classical finance or econometric theory, and modern attempts

to address the breakdown of Gaussian assumptions have proved unsatisfactory. For example,

Value-at-Risk models (VaR) used for risk management help the practitioner set limits for their

exposure based on historical data and the assumed likelihood of far from equilibrium events.

These methods can even be modified to control for heteroskedasticity often observed in financial

time series. Under long tailed distributions, however, this concept breaks down and may even

increase risk if the practitioner is overconfident in the precision of their VaR limits. The reason

for the breakdown is that long tailed variables have the following property (Asmussen, S. R.,

2003):

lim
xÑ8

PrrX ą x` t |X ą x s “ 1 @ t ą 0

That is, for long tailed distributionswith certain characteristics, we cannot predict any one tail

event’s location within the tail. Once an observations is beyond some threshold, the probability

approaches 1 that it will exceed any other higher level. For example, once a virus or some other

disease reaches a certain level of connectivity, say 10,000 cases, it is not possible a priori to predict
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if the ensuing pandemic will be mild or disastrous. All we can say is that it is a tail event and

should therefore be handled with caution. This is because the a priori characteristic markers of

a mild pandemic are the same as one that is devastating. The same is true of market corrections

and crashes; the initial properties of a downturn are scale invariant, meaning that the initial

properties of a mild correction are the same as those of a major crash. This scale invariance is a

key marker of power law distributions. Therefore, the identification of tail behavior is important

for understanding, rather than predicting, the scale of the risk that may hide in the tail. For the

purposes of this paper, it is crucial to identify whether or not expected events are drawn from

the same class of distribution as realized events.

The methodology, drawn from extreme value theory, that is employed on the data in this

study indicates that realized tail risk is drawn from a power law distribution, while expected

tail risk is not. This is the case for all major large cap U.S. equity indices under examination,

including SP 500, NASDAQ, and Dow Jones Industrial Average. This phenomenon may indicate

a systematic underprediction of large price dispersions or that risk premium does not scale

proportionally as valuesmove farther into the tail. Finally, the results show that the bootstrapping

procedures used in this study help alleviate model sensitivity to slight changes in the tail

threshold value that is often found when using alternative procedures. The procedure used in

this paper may therefore provide a better method for studying and identifying how extreme

events impact economic systems.

The rest of this paper is organized as follows. Section 2.2 discusses power laws, scale

invariance, and egodicity. Section 2.3 introduces the data and discusses the derivation of both

implied volatility and the estimation procedure for realized volatility. Section 2.4 outlines the

empirical and procedural steps used to investigate the hypothesis. Section 2.5 presents the

empirical results and interprets the findings in the context of the research question. Finally, the

concluding remarks are presented in Section 2.6.
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2.2 Power Laws, Scale Invariance, and Egodicity

Why is it significant that realized volatility follows a power law and expected volatility does not?

Fat tailed distributions, particularly power law distributions, are thought to be the signature

of a complex and self-organizing system (Bak 1996; Sornette 2003). Mandelbrot (1963) first

noted that power laws appear to characterize the distribution of financial variable fluctuations.

Additionally, Lux (1996), Guillaume, et al (1997), and Gopikrishnan, Plerou, Gabaix, Stanley

(2000) show that power laws characterize a number of relevant financial returns, including index

prices, individual company prices, foreign exchangemarkets, and trade volume. Surprisingly, the

exponents that characterize these power laws are similar for different types and sizes of markets,

for differentmarket trends, and even for different countries—suggesting that a generic theoretical

basis may underlie these phenomena (Gabaix, Gopikrishnan, Plerou et al., 2003). Liu, Y. et

al (1999) demonstrates that the asymptotic behavior of SP 500 realized volatility is described

by a power law distribution characterized by an exponent 1` µ « 4. There is, therefore, a

precedent literature suggesting that realized volatility has the scale invariant and self-organizing

properties that describe power law distributions. This paper aims to quantitatively confirm

this characterization, while also seeking to understand if the market’s expectations of volatility

match the power law description of volatility realizations.

This growing literature which documents and discusses the idea that financial market

fluctuations do not obey the Gaussian assumptions has been both experienced and appreciated.

There are numerous historical events, such as 19 October 1987 (Black Monday), that simply

should not occur under a normal distribution. These large-scale events happen far too often to

be thought of simply as outliers. In fact, this paper aims to expand the literature claiming that

these “outliers” constitute the most economic and statistically significant information in our

economic histories. The effects of economic and market shocks are far-reaching, long-lasting,

and recurrent. Therefore, understanding the likelihood of such events and learning how to deal
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with them must be taken seriously. Further, the presence of fat tails in the distribution of price

and volatility fluctuations (i.e. the high likelihood of shocks) suggest that the proper approach

to risk management lies within this domain is Extreme Value Theory (EVT), which is concerned

with phenomena in which extremes are the fundamental source of risk rather than averages.

For the purposes of this paper, the discussion on so-called fat tails takes two perspectives; 1) the

Informational Consequences, and 2) Economic Consequences.

2.2.1 Informational Consequences and Moment Finiteness

Broadly speaking, the fatter or longer the tail, the more a system’s properties are determined

by the exceptional and less so by the body of the distribution. As the tail thickens, the body

becomes less informationally significant for guiding inference. For example, under fat tailed

distributions, the law of large numbers works slowly, and moments — even when they exist —

may become uninformative and unreliable (Taleb, N. N. Statistical Consequences of Fat Tails

(STEM Academic Press, 2020)). A useful visual approximation of the finiteness of the statistical

moments is the Maximum-to-Sum plot, or MS Plot. The MS Plot relies on simple consequence of

the law of large numbers (P. Embrechts, C. Klüppelberg, T. Mikosch (2003). Modelling Extremal

Events. Springer.). For a sequence X1, X2, . . . , Xn of nonnegative i.i.d. random variables, if for p

= 1, 2, 3..., ErXps ă 8, then Rp
n “

Mp
n

Sp
n

a.s.
Ñ 0 as n Ñ8, where Sp

n “
řn

i“1 “ Xp
i is the partial sum,

and Mp
n “ maxpXp

1 , ..., Xp
nq the partial maximum. The ratio is a simple tool for detecting heavy

tails of a distribution and for giving a rough estimate of the order of its finite moments. Sharp

increases in the curves of a MS Plot are a sign for heavy tail behavior, and convergence to zero

indicates that moment of order P is finite. The plots below indicate that the expected volatility

series show less evidence of heavy tail behavior than actual volatility series. Further, the plots for

actual actual volatility suggest that the third and fourth moments may not be finite, particularly

for the S&P 500, Dow Jones Industrial Average, and Nasdaq.
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(a) SP500 VIX MS Plot (b) SP500 VOL MS Plot

Figure 2.1: SP500

(a) DJIA VIX MS Plot (b) DJIA VOL MS Plot

Figure 2.2: Dow Jones Industrial Average

(a) NDX VIX MS Plot (b) NDX VOL MS Plot

Figure 2.3: Nasdaq
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(a) Russell VIX MS Plot (b) Russell VOL MS Plot

Figure 2.4: Russell 2000

2.2.2 Economic Consequences and Ergodicity

The Economic Consequences of Fat Tails refers to the fact that market and economic shock

occur with relatively high periodicity. In context of this paper, it also refers to the fact markets

appear to place a lower probability on extreme volatility events than what would be considered

sufficient ex post. For market and economic participants, whose payoffs are non-ergodic, this

can mean economic ruin when caught wrong-footed. A non-ergodic system refers to one in

which the time average does not equal the ensemble average. For example, averaging over many

systems (i.e. many portfolios) is different than the average performance of a single system (i.e.

a single portfolio) through time. A single entity’s time average can go to 0 and stay at zero

when confronted with an extreme event. However, a group of independently and identically

distributed entities can survive that same event collectively. For macroeconomies, especially in

a global context, an under-appreciation of tail risk and the consequences of non-ergodicity can

have devastating and far-reaching effects. This is particularly true when seemingly uncorrelated

entities become correlated duringmarket crashes. Therefore, understanding howour expectation

of risk differs from actual risk is paramount.
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2.2.3 Universality and Scale Invariance

Another way to interpret power law behavior is through the concept of universality, which

expresses the idea that different microscopic physics can give rise to the same scaling behaviour

at a phase transition. For example, the likelihood of an avalanche in a sand pile is in power-law

proportion to the size of the avalanche, and avalanches are seen to occur at all size scales. This

is also true of financial markets, where severe crashes appear to be nothing more than a mild

crash that doesn’t stop. This similarity in the characteristics of mild and severe crashes makes it

difficult, if not impossible, to predict the concluding severity once a crash has begun, making

the identification of power law scaling behavior important for determining the appropriate

response once one has identified a tail event. As mentioned in the introduction, power laws

typically signal scale invariance. Therefore scaling the argument by a constant factor causes

only a proportionate scaling of the function itself. Just as a small earthquake is the same as a

massive earthquake is every way except size, power law behavior in market volatility indicates

that moderate price variation is similar to extreme price variation except in magnitude.

2.3 About the Data

Because volatility is a statistical measure and not a pre-existing data point, such as quoted prices,

its value must be derived. There are several ways to complete this calculation, each with its own

intended purpose and relative advantages. However, each aims to capture a sense of dispersion

of asset price returns for a given security or index. Within this broad context there are two

main ways to approach the measuring of volatility, historical volatility and implied volatility.

Historic volatility measures a time series of past market prices, while implied volatility looks

forward in time and is derived from the market price of a market-traded derivative (in particular,

an option). Both capture a sense of market risk and uncertainty, albeit in different temporal

direction. It is, therefore, useful to think about historical volatility as realized volatility and
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implied volatility as expected volatility. Further, because options-implied volatility, such as the

VIX, is a model free calculation, such indices provide a useful aggregation of market opinion

concerning future uncertainty. VIX indices aggregate call and put options in a way such that the

index represents the implied volatility that results from the clearing prices of all equity options

for a particular market index (e.g. S&P 500). Implied volatility in this sense is the amount of

volatility required to set the options’ expected value equal to zero, given the contracted prices.

VIX variables exist for several major market indices, most of which are explored in this paper,

including S&P 500 VIX, Dow Jones Industrial Average (DJIA) VIX, Nasdaq (NDX) VIX, and

Russell 2000 (RUT) VIX. Those VIX indices that were excluded were done so due to short sample

periods, particularly where the sample did not contain significant market events.

Measures of historical volatility can be estimated in several different ways, such as a rolling

standard deviation, the local average of absolute price changes over a suitable time interval T,

or using a generalized autoregressive conditional heteroscedasticity (GARCH) model. This

paper relies on a GJR-GARCH model, which offers what vanilla GARCH has to offer, plus the

leverage effect. This more flexible GARCH variant is preferred since the goal is to fit in-sample

historical volatility as precisely as possible. In this case, overfitting the data in not a concern, and

is perhaps preferred, since this model is not intended for predictions but rather for emulating

the past. The GJR-GARCH (1,1) model is as follows:

σ2
t “ ω` pα` γItqε

2
t´1 ` βσ2

t´1 where It “

$

’

’

’

’

&

’

’

’

’

%

0 if rt´1 ě µ

1 if rt´1 ă µ

Because the main goal of this work is to assess potential differences in the tail behavior

between realized and expected volatility, it is important that apples are compared to apples.

That means that each market index volatility and its corresponding VIX index should have

matching sample windows by using the greatest common data period. For example, S&P 500

volatility is available from 1993-02-01, while the S&P 500 VIX index is available from 1990-01-02.
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In order to match the data periods, the S&P 500 VIX series was truncated such that the first

observation occurs on 1993-02-01. This same approach was taken for each specific index, as

shown in the table below.

Table 2.1: Sample Data

Index Dates n Mean Median Min Max

VIX 1993-02-01 - 2020-09-02 6919 19.47 17.34 9.14 82.69
SP500 VOL 1993-02-01 - 2020-09-02 6912 16.44 13.63 6.65 116.06

DJIA VIX 1997-10-07 - 2020-09-02 5764 19.43 17.42 7.58 74.60
DJIA VOL 1997-10-07 - 2020-09-02 5764 16.61 13.86 7.17 120.32

Nasdaq VIX 2001-02-02 - 2020-09-02 4925 24.68 20.20 10.31 80.64
Nasdaq VOL 2001-02-02 - 2020-09-02 4925 22.59 18.15 8.74 113.56

Russell 2000 VIX 2004-01-02 - 2020-09-02 4195 24.06 20.90 11.83 87.62
Russell 2000 VOL 2004-01-02 - 2020-09-02 4195 21.56 17.45 7.26 146.11

Figure 2.5 below further depicts each historical volatility series along with its implied volatil-

ity counterpart. Density plots presented in Figure 2.6 visually indicate that the center mass of

the implied volatility series are shifted right relative to historical volatility. In fact, for each index

studied, the mean and median values are always greater for implied volatility relative to its

historical counterpart. This phenomenon may be interpreted as a risk premium to cover the

downside risk faced by option sellers. However, I argue that this conclusion is not complete un-

less the significance of extreme tail events present within the actual volatility series are weighed

and considered.

46



Clemons Chapter 2

(a) SP500 (b) DJIA

(c) NDX (d) RUT

Figure 2.5: Time Series - Expected vs Actual Vol

(a) SP500 (b) DJIA

(c) NDX (d) RUT

Figure 2.6: Densities - Expected vs Actual Vol
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Financial time series data has the advantage of being abundant and readily available, which

is why it has attracted researchers from several disciplines, particularly where the objective is to

study a complex system with a large and consistent dataset. The data used in this paper comes

from two sources. First, all VIX variables were sourced from the Federal Reserve Bank of St.

Louis FRED database, which retrieves data from the Chicago Board Options Exchange for each

Implied Volatility Index. Second, all price variables were sourced from Yahoo! Finance through

the open API in R programming software. The data was then merged together using common

dates. No further data preparation was required.

2.4 Tail Index Estimation

Determining that the observations within the distribution’s tail are drawn from a power law

is non-trivial and often contains high levels of researcher judgement. Much of the subjectivity

is related to selecting the location of the tail, the threshold value above which all observations

are considered to be part of the distribution’s tail. Further, a line can be fit to any set of data.

The question is whether or not the line provides an appropriate description of the data. This

has posed a challenge for researchers seeking to quantitatively identify power law behavior.

To overcome these issues as best as possible, I use the methodology of Clauset et al (2009),

which relies on MLE estimate and bootstrapping for parameter and tail estimation. First, the

bootstrapping procedure provides a more quantitatively informed selection of the tail threshold

than alternativemethods. This helps eliminate parameter sensitively due to slight variation in the

threshold value. Second, a calculation of the goodness-of-fit between the data and the power law

fit quantifies the distance between the distribution of the empirical data and the hypothesized

model. The Kolmogorov-Smirnoff (KS) statistics is compared with distance measurements for

comparable synthetic data sets drawn from the same model, and the p-value is defined to be the

fraction of the synthetic distances that are larger than the empirical distance. If p is large (close

to 1), then the difference between the empirical data and the model can be attributed to statistical
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fluctuations alone; if it is small, the model is not a plausible fit to the data (Clauset et al, 2009).

This helps eliminate a priori biases about the distribution’s class. Finally, because this, or any

other methodology to my knowledge, does not allow one to be certain that an observed quantity

is drawn from a power-law distribution, I compare the power law to alternative hypotheses via

a likelihood ratio test.

2.4.1 Separating the Tail from the Body

Hill (1975) suggested that, for certain situations, it would be of interest to draw inference

about the behavior of a distribution function in the tails without assuming that a particular

parametric form for the distribution function holds globally. Therefore, before one can calculate

the estimate of the scaling parameter α, the correct identification of the tail’s minimum threshold

is necessary. That is if ε1, ε2, . . . , εk is a sample drawn from a population with distribution G

and εp1q ě εp2q ě ¨ ¨ ¨ ě εpkq are the order statistics, then there may exist some number xmin such

that ε ě xmin defines the region where G is believed to form a Pareto distribution. One can

then discard all observations below this point so that the power-law hypothesis can be tested

effectively.

Because xmin is not known in practice, the primary challenge when estimating tail indices is

determining the precise location of the tail. For example, in this context we are concerned with

volatility above a desired threshold. It is easy to see from a visual inspection of the variable’s

distribution that subtle deviations from the true xmin can bias the estimated tail index. In essence,

moving the threshold value higher or lower can drastically alter the shape of the tail being

estimated. As such, the validation of power-law claims is an active field of scientific research.

The approach taken in this paper aims to alleviate such issues, whereby xmin is estimated by

minimizing the Kolmogorov-Smirnoff statistic between the CDFs of the data and the fitted

model.

D “ mintxěxminu
|Spxq ´ Ppxq|
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Here Spxq is the CDF of the data for the observations with value at least xmin, and Ppxq is the

CDF for the power-law model that best fits the data in the region x ě xmin. The estimate for

x̂min is then the value of xmin that minimizes D. See Clauset et al (2009) for a detailed overview.

Further, I make use of a nonparametric bootstrap method to derive principled estimates of the

uncertainty in the originally estimated parameters.

Again, determining the threshold value is critical. If xmin is chosen to be too high, the variance

of the estimator increases. If xmin is too low, the bias of the estimator increases. A standard

method for finding xmin is to apply the Hill estimator on the entirety of the ordered sample

population and determine the maximum value for xmin such that the weighted Hill estimate

converges on a single number. Beyond this number, x˚min, the weighted Hill estimate will diverge,

suggesting that the inclusion of data beyond x˚min produces a sample that is not Pareto distributed.

Another method for finding x˚min is to start with a density plot of sorted data to visually identify

a lower bound and ‘strict power law’ behavior. Further heuristics such as log-log plots and

log-log rank plots can identify a linear relationship to identify power law behavior, though these

methods are not fool proof (Nair et al. 2019). In Hubert et al. (2013) there is another Pareto test

which looks for linear behavior in the QQ-plots of the log transformed data against standard

exponential data. The primary method used in this paper is compared to the aforementioned

standard estimation procedures, such as the Hill Estimator and visual identifiers.1 Each method

produces similar results, however bootstrapping validates parameter estimations and alleviates

threshold sensitivity, specifically for the Nasdaq historical volatility series.

2.4.2 Estimating the Exponent α

The goal of estimating the tail index is to characterize the conditional probabilities of each series

such that the volatility measure exceeds some minimum threshold, xmin. Assuming that the
1Results using both a Hill estimator for threshold identification and MLE for parameterization are presented in

the Appendix.
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family of extreme value distributions falls into the Frechet type, volatility above this threshold

will follow,

PpXt ą x | Xt ą xminq “ k|x|´α

where Xt is the measure of volatility on day t, xmin is the minimum threshold that defines the

location of the tail, and the parameter α, the tail exponent, determines the rate at which the

probability density drops off as one moves out into the tail (LeBaron 2009).

Once the x˚min threshold has been identified in the manner described above, the tail index, α,

can be estimated using the Maximum Likelihood Estimation (MLE) method of Newman (2005),

which produces a biased estimate of α̂:

α̂ “ N ¨ r
řN

i“1
xi

x˚min
s´1

This MLE estimate can be converted to an unbiased version α˚ following Rizzo (2009) with the

following adjustment, where n is the number of observations in the sample:

α˚ “
n´ 2

n
¨ α̂

2.4.3 Validating the Power Law Hypothesis

In order to validate the power law hypothesis, it is critical that the approach taken above is

not simply fitting a naive line to a set of data points. Nor should one presume that a proposed

power law is the best fit amongst other candidate distributions. These hypotheses should be

validated, which I have done using the bootstrap procedure from Clauset et al (2009). Using this

approach, goodness of fit (GOF) between the data and the power law fit is measured using the

Kolmogorov-Smirnov (KS) statistic. The KS statistics is compared with distance measurements

for comparable synthetic data sets drawn from the samemodel. This procedure defines a p-value

to test the power law hypothesis, which is defined to be the fraction of the synthetic distances
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that are larger than the empirical distance. If p is large (close to 1), then the difference between

the empirical data and the model can be attributed to statistical fluctuations alone; if it is small,

the model is not a plausible fit to the data. Further, I compare the power law with the alternative

hypotheses via a likelihood ratio test. Both the significance level of the ratio test and the sign of

the test statistic indicate whether the alternative is favored over the power-law model or not.

Positive values indicate that a power-law model is favored, and vice versa. For instances where

the likelihood ratio test statistic is not significant, we cannot make a conclusion as to whether

the power law or the alternative distribution is a more appropriate fit.

2.5 Empirical Results

Table 2.2 presents both the MLE results and the Bootstrap results for each time series. Blue

rows signify series where the p-value for the power law hypothesis is significant (p ě .10), thus

making it a possible fit for the data. This is found to be the case for the historical volatility of

S&P 500, DJIA, and Nasdaq. Conversely, the power law hypothesis does not appear to be a

valid characterization for any implied volatility series, suggesting some fundamental differences

between realized and expected market risk.

There are some additional insights to be made from Table 2.2. First, differences between the

MLE and bootstrap results appear to be minor in all cases except Nasdaq’s historical volatility.

The disparity between the MLE and the Bootstrap results of this particular series demonstrates

the usefulness of bootstrapping to alleviate threshold sensitivity. Second, it is interesting and

perhaps useful to understand what the empirical procedure considers to be the tail of the

distribution. For those series that show evidence of power law behavior, the threshold value,

xmin, is not too dissimilar from the mean of the series. This finding suggests that once risk

surpasses its average value, it displays the scale invariant and universality properties that

characterize power law behavior. Finally, for the historical volatility of SP500, DJIA, and Nasdaq,

the tail exponents, α « 3, are found to be outside the Levy regime (0 ă α ă 2). However, the
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Nasdaq historical volatility tail index of α “ 2.12 is close to the range where it would lack a

finite variance (α ď 2). Note, however, that α « 3 suggests that the third and fourth moments of

these series are not defined, which is also demonstrated by the Maximum/Sum Ratio plots in

Figures 2.1, 2.2, and 2.3. Variance of a finite variance random variable with tail exponent ă 4

will be infinite, which causes problems for stochastic volatility models when the real process

can actually be of infinite variance (Taleb 2019).

Table 2.2: Empirical Results

MLE Results Bootstrap Results
Dates n x̂min α̂ n̂tail x̂min α̂ n̂tail p

VIX 1993-02-01 - 2020-09-02 6919 23.85 4.05 1542 24.13 3.9 1530 0.08
SP500 VOL 1993-02-01 - 2020-09-02 6919 21.38 3.06 1361 22.36 2.99 1261 0.28

DJIA VIX 1997-10-07 - 2020-09-02 5764 21.47 3.88 1853 21.46 3.95 1882 0
DJIA VOL 1997-10-07 - 2020-09-02 5764 18.91 2.93 1498 18.5 2.99 1611 0.29

Nasdaq VIX 2001-02-02 - 2020-09-02 4925 15.07 2.1 4255 15.05 2.09 4283 0
Nasdaq VOL 2001-02-02 - 2020-09-02 4925 73.43 9.77 59 17.7 2.12 2606 0.9

Russell 2000 VIX 2004-01-02 - 2020-09-02 4195 18.97 2.93 2680 17.88 2.95 3128 0
Russell 2000 VOL 2004-01-02 - 2020-09-02 4195 18.82 2.42 1811 17.35 2.46 2154 0.02

Table 2.3: Support for Power-law decay

Power Law Log Normal Exponential Support for
p LR p LR p Power Law

VIX 0.080 -1.240 0.210 2.750 0.010 none
SP500 Realized VOL 0.280 -0.160 0.880 5.760 0 moderate

DJIA VIX 0 -2.760 0.010 0.180 0.860 none
DJIA Realized VOL 0.290 -0.970 0.330 4.680 0 moderate

Nasdaq VIX 0 -9.980 0 -5.580 0 none
Nasdaq Realized VOL 0.900 0.070 0.950 0.370 0.710 moderate

Russell 2000 VIX 0 -4.130 0 1.040 0.300 none
Russell 2000 Realized VOL 0.020 -1.720 0.090 5.940 0 none

Table 2.3 presents the power law hypothesis p-values and the likelihood ratios for each

alternatives hypothesis. p-values are also quoted for the significance of each of the likelihood

ratio tests (p ď .10). Where the p-value is significant, positive values of the log likelihood

ratios indicate that the power-law model is favored over the alternative and vice versa. The final

column of the table lists a judgment of the statistical support for the power-law hypothesis for

53



Chapter 2 Clemons

each data set. “None” indicates data sets that are probably not power law distributed; “moderate”

indicates that the power law is a good fit but that there are other plausible alternatives as well;

“good” indicates that the power law is a good fit and that none of the alternatives considered is

plausible. Given the p-value test statistics and likelihood ratio test, moderate power law support

is found for most realized volatility series. The only exception is the Russell 2000 volatility

series. This lack of power law behavior may be due to the relatively large number of constituent

securities that make up the index (2000 securities vs. 500 securities), or the fact that the Russell

2000 is a small-medium cap index versus the large cap securities held in the other indices.

Therefore, further research can test whether the the power law volatility phenomenon is specific

to large cap and concentrated indices. It is also clear from the results table that none of the

studied implied volatility series (VIX) show evidence of power-law behavior.

Finally, Figures 2.7, 2.8, 2.9, and 2.10 present the Log-Log plot of each sorted (from least to

greatest) volatility series. These visuals help to give an idea of just how well the power law, or

the alternative hypotheses, fit the data. As can be seen, SP 500 and DJIA GARCH plots indicate a

fairly strong power law fit, while RUT GARCH seems to be more aptly described by a log normal

or exponential distribution. On the other hand, NDX GARCH shows a very strong, albeit steep,

power law fit. This particular data provides a prime example of “threshold sensitivity” when

estimating a tail index. That is, we see a very strong power law fit in the extreme tail, but less

evidence of the classic straight line characteristic seen in power law distributions throughout

a more significant segment of the data. An alternative of the NDX GARCH Log-Log plot is

presented in the appendix. This graph shows the estimated tail index when the threshold is

constrained to equal to the xmin threshold determined by the bootstrapping procedure, xmin “

17.7. These conditions present, at least visually, a less compelling argument for a power law fit

of the NDX GARCH data.
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(a) SP 500 GARCH Log Log Plot (b) SP 500 VIX Log Log Plot

Figure 2.7: SP 500 Log Log Plots

(a) DJIA GARCH Log Log Plot (b) DJIA VIX Log Log Plot

Figure 2.8: DJIA Log Log Plots

(a) NDX GARCH Log Log Plot (b) NDX VIX Log Log Plot

Figure 2.9: NDX Log Log Plots
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(a) RUT GARCH Log Log Plot (b) RUT VIX Log Log Plot

Figure 2.10: RUT Log Log Plots

Robustness Check

As mentioned previously, the results yielded from the estimation of historical volatility can be

sensitive to the estimation procedure itself. There is no one correct way to estimate historical

volatility, and thereforemeasuring its fundamental attributes can be problematic. As a robustness

check, I performed the same tail index estimation procedure described above on a different

measure of historical volatility. This method uses a 30-day rolling window of log price returns to

calculate a standard deviation. The 30-day lookback window, defined here as M, was chosen in

an effort to capture the fluctuations in volatility while also providing enough data to reasonably

estimate the second moment. The window size also plays a role in determining the smoothness

of the volatility series. One can interpret the measure as an average of the last M days each

carrying a weight of 1/M%. For example, the contribution of a particular data point with a

30-day lookback window is 3.33%. This standard deviation is then annualized by multiplying

the derived value by
?

252.2 This method produces a similar, albeit smoother, time series of

historical volatility to that yielded from the GARCH procedure, as shown in Figure 2.11.
2252 is the number of trading days in a calendar year
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(a) SP500 Rolling SD & GARCH (b) DJIA Rolling SD & GARCH

(c) NDX Rolling SD & GARCH (d) RUT Rolling SD & GARCH

Figure 2.11: Rolling SD & GARCH Time Series

This volatility data also yields similar parameter estimates for the tail indices, α « r2.45´

3.08s. However, as seen in Figure 2.12 below, the shape of the tail (on a Log-Log plot) differs from

the more straight-line power law properties displayed by the GARCH volatility data. In fact,

due to the relative smoothness of the rolling standard deviation, the power law hypothesis is not

valid for any of the time series according to the bootstrap test statistic described in Section 2.4.3.

Table 2.4 presents the MLE and Bootstrap results for the rolling standard deviation volatility

series. Table 2.5 shows how the power law hypothesis compares to the alternative distributions,

log normal and exponential.
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(a) SP500 Rolling SD Log Log Plot (b) DJIA Rolling SD Log Log Plot

(c) NDX Rolling SD Log Log Plot (d) RUT Rolling SD Log Log Plot

Figure 2.12: Rolling SD Log Log Plots

Table 2.4: Empirical Results - Rolling Standard Deviation

MLE Results Bootstrap Results
Dates n x̂min α̂ n̂tail x̂min α̂ n̂tail p

SP500 Rolling SD 1993-03-15 - 2020-09-02 6920 0.2 3.08 1741 20 2.99 1, 553 0.050
DJIA Rolling SD 1985-03-13 - 2020-09-02 8943 0.18 2.86 2029 21 2.77 1, 327 0

Nasdaq Rolling SD 1985-11-12 - 2020-09-02 8774 0.24 2.45 2710 24 2.42 2, 794 0
Russell 2000 Rolling SD 1987-10-22 - 2020-09-02 8283 0.17 2.62 3232 22 2.72 1, 881 0

Table 2.5: Support for Power-law decay - Rolling Standard Deviation

Power Law Log Normal Exponential Support for
p LR p LR p Power Law

SP500 Rolling SD 0.050 -0.460 0.650 6.460 0 none
DJIA Rolling SD 0 0.150 0.880 8.420 0 none

Nasdaq Rolling SD 0 -7.670 0 -5.440 0 none
Russell 2000 Rolling SD 0 -2 0.050 7.780 0 none

While it is problematic that the alternative volatility measure does not validate the power

law hypothesis, this result is to be expected since the rolling standard deviation procedures

minimizes the very extreme events that I attempt to identify. Therefore, a subjective decision
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was made in favor of a GARCH estimation procedure to test this hypothesis due to its ability to

better capture the severity of single day price movements. This paper is aimed at determining

the behavior of volatility in the extremes. It, therefore, seems appropriate to favor the model

that best captures the extreme price movements over alternative estimates that by definition

smooths the rough edges of the time series. As such, I am confident in the results of the main

empirical model.

2.6 Concluding Remarks

For certain long tailed distributions, once an observations is beyond some threshold, the prob-

ability approaches 1 that it will exceed any other higher level. Identifying this distributional

behavior is crucial for risk management and for guiding policy at the onset of a crisis-like

event. This work provided evidence that historical volatility shows support for power law or fat

tailed distributions, which may invalidate the assumptions of the central limit theorem. Further,

expected (implied) volatility does not show support for the power law hypothesis. While it

may be the case the implied volatility has fat tail characteristics, it does appear to possess the

same scale invariant and universality properties that plausibly explain the behavior of actual

volatility. Visual evidence and summary statistics do, however, show that the distributional

mass of implied volatility is higher than its historical counterpart, indicating the presence of

risk premium at low to mild levels of market risk. However, this risk premium does not appear

to scale proportionally as data moves into the tail of the distribution where events are the most

consequential.

There are, however, several limitations to the work. While there is evidence of power law

behavior for large cap historical volatility, one can not be certain that this characterization is

the most appropriate. An attempt was made to compare alternative hypotheses, which yielded

inconclusive results. The evidence presented in this paper only provides support for, but does

not confirm, scale invariance, universality, and other power law characteristics. And while

59



Chapter 2 Clemons

maximum/sum ratio plots help confirm the “fat tailedness” of the historical volatility series,

this method is a heuristic approach and not quantitative confirmation. Additionally, this work is

dependent on the validity of the data used. The VIX calculationmethodology can only attempt to

aggregate option prices in a way such that the result is the best representation of market-implied

volatility. For example, the VIX algorithm aggregates out-of-the-money call and put options,

but stops once two calls/puts with consecutive strike prices are found to have a zero bid prices.

That is, no calls (puts) with higher (lower) strikes are considered for inclusion once they are

preceded by two zero bids. This technical detail may omit important deep-out-of-the-money

bids during crisis periods andmay limit the ability of the index to fully capture market sentiment

during periods of extremely high volatility. Similarly, the derivation of historical volatility relies

on an empirical model. The choice to use a GJR-GARCH model was a subjective decision which

may alter the results of this analysis. However, it was chosen for its flexibility as well as its ability

to capture instantaneous price variation, which I believe make it superior to other estimation

procedures.

While limited in some respects, the aim of this work is to contribute to the growing literature

on risk management concerning heavy tailed variables by providing additional quantitative

confirmation to previous findings. This same approach should be done for other financial

variables, such as asset price returns, that have been characterized as power law distributed in

order to fully understand the risk and consequences of financial and economic crises. Further,

this work hopes to provide a useful contribution to the area of research concerning expectations.

It is important that we understand the impact of outlier events, both in terms of the impact on

our economic life and the way in which we anticipate their occurrences as economic agents.

2.7 Appendix

The following graphs present the tail index estimation results derived using a weighted Hill

estimator to determine threshold values and Maximum Likelihood to estimate the tail index. As
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seen, the results generated from this methodology yields similar results to those presented in

the main body of this paper. However, the KS method of Section 2.4.1 gives estimates of xmin at

least as good as the Hill estimator while also having low enough computational costs that it can

be used to validate the power law hypothesis through the calculation of p-values, as described

in Section 2.4.3.

(a) SP 500 GARCH Log Log Plot - MLE (b) SP 500 VIX Log Log Plot - MLE

Figure 2.13: SP 500 Log Log Plots - MLE

(a) DJIA GARCH Log Log Plot - MLE (b) DJIA VIX Log Log Plot - MLE

Figure 2.14: DJIA Log Log Plots - MLE
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(a) NDX GARCH Log Log Plot - MLE (b) NDX VIX Log Log Plot - MLE

Figure 2.15: NDX Log Log Plots - MLE

(a) RUT GARCH Log Log Plot - MLE (b) RUT VIX Log Log Plot - MLE

Figure 2.16: RUT Log Log Plots - MLE

Figure 2.7 shows two different tail index estimations of the Nasdaq GARCH series. On the

left is an estimation using the xmin value derived from the bootstrap procedure. The power law

parameter estimate is much flatter (smaller) but seems to be a less appropriate fit for the data.

On the right is the estimation using the xmin value derived from the KS procedure described

in Section 2.4.1. The disparity between the two estimates demonstrates the issue of threshold

sensitivity when attempting to characterize the tail of the distribution.
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(a) NDXGARCHLog Log Plot - Bootstrap Threshold (b) NDX GARCH Log Log Plot - KS Threshold

Figure 2.17: NDX GARCH - Bootstrap vs KS Threshold
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3
Measuring the Impact of Volatility on life-satisfaction
By Minh Pham & Chandler Clemons

3.1 Introduction

Coping with uncertainty is a fundamental necessity of life. Our ability to do so allows us to

navigate the stochastic world we inhabit. Uncertainty is, of course, not a static concept, but

instead varies with the confidence in our predictions about that which we anticipate. The more

confidently we predict, the less uncertain we are about the consequences of our actions and

others’ actions, and the more stable we feel in the present. This paper hypothesizes that increases

in future uncertainty negatively affect our current outlook, specifically our self-reported life-

satisfaction. While uncertain times may be a harbinger of opportunity for some, for most,

unpredictability is met with contemporaneous stress and worry. Capturing the immediate

impacts of anxiety about the economic future motivates this work.

Existing psychological evidence shows that stock market uncertainty correlates with individ-

uals’ decisions to engage in unhealthy behavior. In a similar fashion, we investigate how stock

market uncertainty correlates to individuals’ life-satisfaction. To capture this effect, we build

our hypothesis through the Anticipatory Utility framework, which suggests that people care

about utility flow today and expected utility flows in the future. That is, the belief of a more

optimistic future regarding employment status or wealth can bring contemporaneous enjoyment

and correlate with higher utility. Conversely, a pessimistic future outlook can cause pain and

disutility in the present. Specifically, we hypothesize that short-term volatility expectations

relate to individuals’ life-satisfaction within the anticipatory framework in two major ways.

First, increases in market uncertainty, which is directly related to stock market performance,

negatively changes reported life-satisfaction for stockholders through the income effect. Second,

increases in market uncertainty may be negatively correlated with non-stockholders’ reported
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life-satisfaction through the fear of worsening economic conditions and other potential stressors.

Using observational survey data from the Behavioral Risk Factor Surveillance System

(BRFSS), Current Population Survey (CPS) data, and Chicago Board Options Exchange (CBOE)

Volatility Index (VIX) data from 2013 to 2017, this paper finds strong support for our hypothesis.

Stock market uncertainty is measured using the SP 500 options-implied volatility index (VIX), a

30 day-forward looking market index, which we use as our anticipatory indicator. Self-reported

life-satisfaction comes from BRFSS survey data, and stock ownership propensity is derived from

the CPS data. Following prior research on this topic, we limit the income effect that would

result from a change in macroeconomic conditions by controlling for unemployment, per capita

personal income, and current market performance. Doing so allows us to capture the effects

of market stress and uncertainty more effectively. This study reveals that the VIX negatively

influences reported life-satisfaction after adjusting for demographics, health conditions, and

different fixed effects for time and states. Specifically, our results indicate that, at the mean, an

additional percentage increase in the VIX decreases the probability of feeling “Very Satisfied” by

5.67% and increases the likelihood of feeling “Dissatisfied” by 1.14%. We also capture the pres-

ence of some income effects from stockholding activities. That is, the negative life-satisfaction

effect increases as the propensity to hold stocks increases, indicating that the stock market’s

impact is more prevalent for those with skin in the game, as expected.

During the recent stock market crashes, Americans reported large declines in self-reported

life-satisfaction (Deaton, 2011), exhibited increased symptoms of depression and poor mental

well-being (McInerney, Mellor, Nicholas, 2012), and experienced a spike in hospitalizations

for psychological disorders (Engelberg Parsons, 2013). Similar papers have used market price

indicators, such as the Dow Jones Industrial Average (DJIA) as the independent variable of

interest (Cotti, Dunn, and Tefft, 2013) to explore the market’s impact on health measures.

However, unlike previous research, we approach this question from a slightly different angle.

Instead of assessing the correlation between life-satisfaction and directional price changes in
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market indices, we measure the relationship between life-satisfaction and changes in anticipated

market uncertainty – options-implied market volatility. For example, the VIX index aggregates

the SP 500 call and put options in a way such that the index represents the implied volatility of

the clearing prices of all SP 500 options. Implied volatility in this sense is the amount of volatility

required to set the options’ expected value equal to zero, given the contracted prices. Therefore,

the VIX can be thought of as an aggregate market sentiment regarding the anticipated price

volatility of the SP 500, expressed through the supply and demand dynamics of the options

market. We believe this measure of future uncertainty is an improvement over past research for

several reasons.

First, periods of market turmoil are characteristically marked by large price movements

in both directions, a well-documented phenomenon termed volatility clustering (Mandelbrot

(1963), Granger and Ding (1993), and Ding and Granger (1996)). Large market declines may

be followed by a large transitory rebound, which is then followed by another large decline. In

fact, these transitory price increases are themselves an indicator of uncertainty, not recovery.

Therefore, we propose that these temporary price increases amidst a broader crisis do not

provide psychological relief in equal proportion to the distress caused by a price decrease of

equal magnitude. Thus, our empirical model should capture the market’s uncertainty level

(expected volatility) rather than noisy directional price changes if our goal is to capture the effect

of economic stress on life-satisfaction. Second, it is documented that theVIX is asymmetrical in its

response to price changes in the underlying SP 500 index, rising more following a price decrease

relative to a price increase (Low 2004). This evidence supports the Volatility Clustering concept

presented above, whereby price increases do not alleviate uncertainty in equal proportion to

their negative counterparts. This non-linearity of response between gain and loss domains

is consistent with Prospect Theory (Kahneman and Tversky, 1979). The VIX may, therefore,

provide an independent variable closely linked to the expected emotional responses related

to changes in economic outcomes and outlooks. Third, the VIX’s presence in the news media
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and widespread recognition as the market’s fear gauge provides an additional property of

interest for this study. Research demonstrates a significant yet complicated role for the news

media in shaping economic perceptions. Through increasingly accessible and rapid media

coverage, market signals reach a significant percentage of the general population and help

shape sentiment regarding the economic outlook and confidence about one’s current and future

socio-economic life-satisfaction (Procopio, Terrell, Wu, 2010). Within this context, signals of

increased uncertainty have a diminishing effect on one’s life-satisfaction, both economically and

emotionally. Thus, the VIX both creates and is created by a general sense of uncertainty and fear

about future macroeconomic conditions which, we propose, drives psychological and physical

malaise.

Our results have a range of significant implications. First, our findings support prior work

postulating an effect of anticipatory feelings (e.g., Lowenstein, 1987) on individual desires and

behaviors. Caplin and Leahy (2001) demonstrate, for example, that adding sentiment to the

utility function can help explain time inconsistency in preferences. We show that the effect of

forward-looking volatility fits into the Anticipatory Utility framework. Second, our findings add

to the literature regarding feedback models (e.g., Shiller, 2002). Specifically, as Engelberg and

Parsons (2016) have pointed out, most behavioral finance work concentrates on how investor

behavior affects markets and often neglects the inverse effect. As a result, our finding introduces

a new connection to how markets influence investor behavior.

This study is not the first to investigate the relationship between market uncertainty and

commodities within the utility function. In fact, our study is motivated by recent behavioral

finance papers (Engelberg and Parsons, 2016; Sias, 2017). However, this study differs from

previous studies in two significant ways. First, this study is the first to use market-implied

volatility as the leading independent variable of interest andmore effectively capture uncertainty.

Second, we link the effect of market volatility on life-satisfaction through the anticipatory

theoretical framework and show that our model deviates from the traditional Neo-classical
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model. Specifically, we show that the VIX acts as a natural anticipatory index, which can be

built into the life-satisfaction utility function (Stevenson, Wolfers 2008).

This paper proceeds as follows: Section 3.2 outlines the theoretical mechanisms of market

uncertainty and individuals’ well-being; Section 3.3 presents the data, descriptive statistics, and

the empirical approach; Section 3.4 illustrates the methodologies and empirical results. This

section also discusses the robustness check of the estimates produced in this paper; Section 3.5

concludes the paper.

3.2 Theoretical Framework

3.2.1 Can measure of life-satisfaction be interpreted as utility?

In response to Stevenson, Wolfers (2008), “Economic growth and Subjective life-satisfaction:

reassessing the Easterlin Paradox,” Becker and Rayo assert that this paper not only provides

convincing evidence that self-reported happiness and measures of life-satisfaction are positively

correlated with income, both in rich and emerging countries, but also provides an interesting

take on the relationship between utility and reported happiness or life-satisfaction. They also

conclude that, although there are grey areas in connecting self-reported life-satisfaction to

utility, it is quite acceptable to view happiness and life-satisfaction as “noisy measures of utility.”

However, while they agree that there are connections between the two dimensions, “reported

happiness and life-satisfaction are no more measures of utility than are other dimensions of

life-satisfaction, such as health or consumption of material goods.” Prior literature has shown

that happiness levels are consistent with reported happiness, whether it is self-reported or

reported by a trusted third party. Studies have also shown that we, as human beings, behave

consistently with survey reports as well. For instance, we try to avoid bad situations that may

result in a reduction in self-reported happiness.

At the same time, Becker and Rayo suggest an alternative interpretation of life-satisfaction
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and happiness data. These measures can be interpreted as a commodity in the utility function.

In many perspectives, Becker and Rayo implicitly assert that just like owning a house or being

healthy, happiness and life-satisfaction indeed describe the same commodity in the utility

function. Besides, they take an extra step to show that there are ways to use the consumer utility

maximization theory to test whether life-satisfaction can be used as utility. In other words, it is

possible to test whether happiness data is a commodity in the utility function. While discussion

on whether happiness is identical with utility still needs more research, it is crucial to accept

that life-satisfaction and happiness constitute useful measures in consumer utility maximization

theory.

Given these reasons, while we do not necessarily take life-satisfaction or happiness as our

utility measures, we are convinced that using self-reported life-satisfaction could be a reasonable

approach to measure utility, a commodity within a utility function, or at least a “noisy” measure

of utility.

3.2.2 Can the VIX be interpreted as anticipatory?

In the Neo-classical model, people derive their utility from the consumption of physical goods,

such as houses, food, health, leisure, etc. However, research has shown that people also derive

their utility from their beliefs. For instance, being excited for a trip or worrying about health are

anticipatory emotions derived from beliefs; believing food tastes better if made from quality

ingredients is belief about consumables; avoiding negative information about oneself is belief

about oneself, etc. There are some examples of belief-based preferences. Regarding consump-

tion, people also have beliefs about their future consumption which, importantly, can cause

experienced utility in the present. This phenomenon is called anticipatory utility. The belief of

diminished future wealth or a more pessimistic future can cause pain now. Similarly, the belief

of a more optimistic future regarding employment status or wealth can bring contemporaneous

enjoyment.
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The VIX can be described as an anticipatory market-driven index for short-term price move-

ments in the public equity market. It is, thus, useful for our research question since we are

interested in how the anticipation of uncertainty affects contemporaneous utility. In simple

terms, as the clearing prices for out-of-the-money options increase, so too does the value of

the VIX.1 Therefore, the VIX, which can be thought of as a derivative of the SP 500, provides

forward-looking information about anticipated uncertainty in equity markets. Further, since

equity markets are a reflection of the economy, we propose that the VIX captures relevant infor-

mation about uncertainty regarding the anticipated state of the world. The index is, therefore, a

reasonable measure of future belief, and we hypothesize that it is a relevant proxy for anticipated

uncertainty for both stockholder and non-stockholders that would influence contemporaneous

life-satisfaction under an Anticipatory Utility model.

The Anticipatory Utility model was presented in 1987 when Loewenstein first started ad-

dressing the notion of time discounting, which is the first implication of his anticipatory model.

The anticipatory utility is built from beliefs about the future. The uncertainty surrounding these

beliefs is a critical variable for our proposed hypothesis, which aims to link future uncertainty

levels to an individual’s contemporaneous life-satisfaction. By definition, we believe that the

VIX is an expression of short-term uncertainty and provides information about whether the

economy is expected to be better or worse in the near future. In other words, just like the positive

anticipation of a kiss in Loewenstein’s model, anticipation about the future economy should have

a similar effect. For instance, anticipation from a bright future economy should have both con-

sumption and anticipation benefits. These benefits translate to a better total contemporaneous

life-satisfaction.
1Out-of-the-money option prices increase when the expectation of large price fluctuations increases, which in

turn would result from new and important information. See VIX white paper for further details
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3.2.3 Neo-classical vs. Anticipatory Theory

Consider a T ´ period model, where the agent decides in period 0 when to consume. Let xt

be consumption at time t. 0 ď δ ď 1 is the discount factor. Let utility from consumption in

period t be upxtq, then the total discount utility in Neo-classical model of preferences overtime

is presented by: U0pxq “
řT

t“0 δtupxtq. In anticipatory model, utility from anticipation in

period t is α
řT

i“t`1 δi´tupxiq, where α ą 0. The total instantaneous utility at t is then presented

by: upxtq ` α
řT

i“t`1 δi´tupxiq. And the total anticipatory utility over consumption is: Ut “

řT
j“t δj´trupxjq ` α

řT
i“j`1 δi´jupxiqs.

The Neo-classical model only gives credit to physical goods, from which one’s utility can

derive. We clearly shy away from the Neo-classical model, and by adopting the anticipatory

model, we assume the VIX to be the consumption for beliefs. Therefore, the effect of beliefs on

instantaneous utility is presented by upxtq. In addition, to better present our hypothesis, we

adapt an extended model by Caplin and Leahy (2001).

Future events are indeed uncertain. They are also relevant to how one plans their actions in

the present moment. Therefore, the acquisition of forward-looking information should affect the

actions and thought processes of decision-makers. This effect can be both positive and negative

under an Anticipatory Utility framework since beliefs about the future can cause changes to

contemporaneous utility. As such, decision-makers may choose not to consume information

under certain conditions, if such information is avoidable. Where information is unavoidable,

the decision maker’s utility may be influenced by events outside their consumption of physical

goods and services. For example, a simplified Caplin and Leahy model assumes two periods.

The decision-maker may receive information in period 1, and the outcome is realized in period 2.

Let x be random variable over support S and with distribution f pxq, and the consumption utility

over x by decision-maker is presented by upxq. The decision-maker also has anticipatory utility in

period 1, bpxq, over beliefs of x, and apbpxqq is anticipatory utility. If there is no time discounting,

the total expected utility in period 1 is: U1 “ apbpxqq `
ř

xPS bpxqupxq. Without information,
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the decision-maker has prior belief f pxq. With information, the decision-maker has posterior

belief gpxq. The decision-maker only wants information if: E fx rapgpxqq `
ř

xPS gpxqupxqs ą

ap f pxqq `
ř

xPS f pxqupxq. Given the equation, the decision-maker wants information if and only

if: E fx rapgpxqqs ą ap f pxqq. Under the classical model apbpxqq does not exist, and thus with or

without beliefs, the classical decision-maker should not be affected.

To summarize the model, under a simplified two-period setup, a classical agent is entirely

indifferent to receiving future information, whether the information is negative or positive.

It implies that information on the VIX, which is forward-looking, should only influence the

utility of agents who own stocks. In other words, the classical model would predict that non-

stockholders should not be affected by this information. Controlling for stock ownership and

current market movements of the SP500, our paper shows otherwise.

3.2.4 Mechanism of Market Uncertainty and Individuals’ life-satisfaction

We propose three different explanations for the impact of market uncertainty, recorded using

VIX, on individuals’ life-satisfaction. The first explanation is straight forward, with the effects

of uncertainty explained through the anticipatory theoretical framework’s mechanisms. In

this case, market uncertainty imposes stress on life-satisfaction and behaviors, thus decreasing

reported life-satisfaction. The effect of market volatility on different behavioral measures has

been studied in many previous research efforts. For instance, Kalcheva, McLemore, Sias 2017

showed that VIX has a significant impact on different impulsive behaviors such as drinking and

smoking. Schwandt 2014 shows evidence of market volatility under the SP500 on physical health,

mental health, and survival rates. Schwandt, Hannes 2018 updated on Schwandt 2014 to estimate

the same effect during boom and bust markets in the U.S. and found that the impact of market

volatility is muchmore substantial during bust periods. The stress that people experience during

periods of poor market performance can be explained through uncertainty about their jobs,

uncertainty about their future incomes, and uncertainty about their wealth, thus imposing strong
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adverse effects on different aspects of life such as health outcomes and behavioral outcomes.

There is a possibility that market uncertainty, measured by VIX, will only affect stockholders

in the current period due to trading activity, and therefore, there is no anticipatory effect. In

other words, through this explanation, the effect of the VIX on life-satisfaction is only explained

through traders whose life-satisfaction is motivated by income derived from trading activity. In

that case, any observed effects of the VIX on life-satisfaction are likely resulting from changes

in income and wealth levels of market participants, not through anticipatory utility changes.

However, suppose there exist significant effects of the VIX on non-stockholders’ life-satisfaction,

even after controlling for the current market movements (SP500). In that case, we are convinced

that our first explanation, anticipatory utility, is plausible. In other words, the VIX does indeed

capture a general sense of economic uncertainty and turmoil, thus correlating to stress on

individuals’ life-satisfaction.

Another possibility is that the respondents are reporting their life-satisfaction biasedly. They

may be inclined to over-report their life-satisfaction in the expectation that their life-satisfaction

will improve. While they may wish to report a false sense of life-satisfaction for a myriad of

reasons, previous research has shown that reported life-satisfaction and health in survey data

are mostly consistent with individuals’ real states of being.

3.3 Data and Empirical framework

3.3.1 Data

Our measure of life-satisfaction outcome comes from the Behavioral Risk Factor Surveillance

System (BRFSS). The dataset is maintained by the Center for Disease Control and Prevention

(CDC) to monitor the health and behavioral risk in the United States of America. Using the

BRFSS data from 2013-2017, we construct each individual’s life-satisfaction measure using an

indicator for general life-satisfaction in the BRFSS survey. This variable is recorded from the
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very first general health question under the Health Status section, which asks, “In general, how

satisfied are you with your life?” with the answers ranging from “Very satisfied,” “ Satisfied,”

“Dissatisfied” to “Very dissatisfied.” We recode this variable to an ordinal outcome, ranking

from “Dissatisfied,” “Satisfied,” and “Very satisfied.” Since there are very few observations in

the group “Very dissatisfied,” we group “Very dissatisfied” and “Dissatisfied” to one group,

which we call “Dissatisfied.” While not ideal, this grouping procedure was necessary given the

large imbalance between the dataset responses. By doing so, we achieve a well-classified model.

Further, we omitted respondents who answer, “Do not know/Not Sure,” “Refused,” and

missing data. Given that the BRFSS survey is not consistent with the questions and the variable

codes, especially before 2013, it is challenging to match all the same variables historically.

Additionally, each year’s dataset asks different questions, which populate different variables.

Depending on the year, the number of variables can range from 180 to 300. Therefore, we

only match variables that are consistent over the entire sample period. To further prepare the

data, we only keep variables analyzed in this study and eliminate all NAs from this subset.

Moreover, we also get rid of observations from respondents that did not complete the survey. For

demographic variables, given the nature of the BRFSS survey, all of them are categorical variables.

Recoding for all variables including age, gender, income, education ´ status, marital ´ status,

employment´ status, race are performed consistently, where missing data, “don’t know,” and

“refused” are eliminated. For detailed descriptions and recoding process, see Appendix.

As discussed, our primary variable of interest is the Chicago BoardOptions Exchange (CBOE)

Volatility Index or VIX. VIX has been referred to as the ’investor fear gauge’ (Whaley (2000))

since high VIX levels coincided with high market turmoil degrees. The VIX index was initially

designed to measure the market’s expectation of 30-day volatility implied by the at-the-money

SP 100 Index (OEX Index) options prices. The popularity of the VIX Index made it soon become

the premier benchmark for U.S. stock market volatility. The current VIX methodology was

developed in 2003 and estimates expected volatility by averaging the weighted prices of SPX
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puts and calls over a wide range of strike prices for options across all companies in the SP 500

Index (SPXSM). Daily percent changes in the VIX are used as the primary variable of interest in

this analysis and are presented in the main panel.

Financial data is extracted from Yahoo! Finance. Since stock market data only have observa-

tions on 5 out of 7 days of the week (except some holidays), matching the VIX daily series to

BRFSS historical survey data (which covers almost every day of the year, including the week-

ends) resulted in the loss of information. The daily series for the VIX is the adjusted price for

the implied volatility index.

To better assess market volatility’s anticipatory effect on reported life-satisfaction, we attempt

to control for stock ownership in our analysis. The BRFSS survey, unfortunately, does not provide

information on whether the respondents hold stocks. However, we were able to source this

information from the Current Population Survey (CPS). 2 We perform a logistic regression to

achieve the propensity to own stocks based on age, gender, income, education-status, and race

(Kreinin et al. 1959). We then use these demographics, together with the propensity to own

stocks yielding from the logistic regression, to merge the CPS dataset with the BRFSS dataset.

Stockholding data spans from 2013 to 2017 with a total of 704,345 observations.3 For detailed

deconstructions of the CPS data and the logistic regression, see the Methodology section, 3.4.1.

3.3.2 Empirical framework

Our baseline regression specification to examine the relation between stock market volatility

and individuals’ life-satisfaction is:

Li f eSatis f actioni,s,t “ β1 MarketVolatilityt ` β2StockOwnershipi,t ` β3CurrentMarkett ` βXXi,s,t ` τt ` γs ` εi,s,t

2The CPS surveys, conducted monthly by the U.S. Bureau of the Census and the U.S. Bureau of Labor Statistics,
are representative of the entire U.S. population

3All variables from the CPS are recoded from continuous to categorical data to match the BRFSS demographic
variables
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In this model, the dependent variable is a measure of life-satisfaction. In this analysis,

Li f eSatis f actioni,s,t is measured in reported General life-satisfaction from the general American

population.4 These surveys span from 2013 to 2017 and are made by an individual i in-state s on

day t. MarketVolatilityt is the daily index value of the VIX, or the Implied Volatility Index, on day

t. We use the natural log of the VIX daily series, divided by 100. This variable takes the expression

of logpVIXq
100 . The expression does not change the significance of the estimates and helps with the

interpretation. StockOwnershipi,t is the propensity of owning stocks. This data is taken from

the Current Population survey. 5 CurrentMarkett is the SP500 return series and represents the

current market performance. The set of control variables, whichmay influence life-satisfaction, is

suggested by previous work.6 Specifically, Xi,s,t is a matrix of individual-level demographic data

including age, gender, income, education´ status, marital ´ status, employment´ status, race,

and the propensity to own stocks. In addition, τt are indicator variables for calendar months

and calendar years. γs are state fixed effects.

τt is a vector of month fixed effects and year fixed effects, which accounts for the effect of

seasonality on life-satisfaction and behaviors. We also control for state fixed effects, γs, which

would account for permanent differences across states. These controls account for lifestyle

patterns, state infrastructures, social norms, and other unobserved state-level idiosyncrasies

that may vary over time and influence life-satisfaction changes. They also help us control for

other state-level time-varying factors such as changes in health care delivery services that closely

follow tax revenues. The εi,s,t is an idiosyncratic random error term.

3.3.3 Descriptive Statistics

Our final data is presented in the most interpretable format. All variables and sub-categories are

put into two different columns based on our primary variable of interest, life-satisfaction. The
4see Descriptive Statistics for detailed deconstruction for life-satisfaction
5See Methodology
6see, e.g., Engelberg and Parsons, 2016; Cotti, Dunn, and Tefft, 2015; Davalos, Fang, and French, 2011; Fiuzat,

Shaw, Thomas, Felker and O’Connor, 2010; Ruhm, 2005; Ruhm and Black, 2002
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first column is 3, which presents respondents who reported “Very Satisfied.” The second column

is 2, which presents respondents who reported “Satisfied” while the last column represents

“Dissatisfied. While onemay argue on the reliability of these subjective questions, previousworks

(Apouey and Clark 2015) suggest that they capture an overall assessment of life-satisfaction

and a combination of mental and physical health. Further, Benjamins et al. 2004, Miilunpalo

et al. 1997, Jylha 2009 have shown that these measures can predict various health outcomes,

such as mortality and healthcare utilization. Thus, it is fair to conclude that self-reported life-

satisfaction measures from health surveys in our data plausibly correlate with objective health.

These self-reported measures from reliable sources such as the BRFSS have been used in many

economics studies. However, some previous studies suggest there may exist some reporting

errors (Baker, Stabile, and Deri 2004), which can affect our estimates. As described above, we try

our best to minimize these errors by omitting incomplete respondents, only including variables

in the main panel, and getting rid of vaguely reported observations.7

In addition, our self-reported measures are particularly useful for a study of the short-run

effects of market sentiments. It seems unlikely that more severe or objective measures of poor

life-satisfaction conditions (e.g., mortality, chronic conditions, hospitalizations) will respond in

the short run to a change in market volatility (and the associated income and time cost changes).

Thus, our analysis of self-reported life-satisfaction, which captures how a person evaluates their

life-satisfaction at a point in time, is potentially more responsive, and therefore more suitable,

for our study objectives than more severe or objective measures.

To provide a good view of the dataset, we show the following chart, representing the

number of respondents who answered the survey throughout 2013-2017. Although there is a

disproportion in the number of participants who respond to the survey across different months,

our time control variables should capture seasonality in our model analysis. Note that we do not

fully show the CPS data’s descriptive statistics since they do not necessarily play a significant
7Depending on the questions, these are respondents that answer Do not Know or Refused
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role in our analysis. However, a brief explanation of the CPS data is introduced in Section 3.4.1.

Figure 3.1: Number of People Interviewed in the Sample

As discussed in the prior section, MarketVolatilityt is the natural log of the VIX daily series.

In performing this operation, we not only get an interpretable value, but we also get a stationary

VIX times series. As shown in the graphs below, all MarketVolatilityt series appear stationary.

However, because market volatility tends to cluster into two distinct regimes, low volatility and

high volatility, the SP 500 returns exhibit non-constant variance over the full time-series. We do

not observe the same variance characteristics for the VIX, which exhibits less heteroscedasticity,

thus adhering more closely to our generalized linear estimation model’s assumptions. This fact

provides additional empirical justification for considering the VIX as our primary variable of

interest. Nevertheless, we do indeed control for the SP500 (CurrentMarkett), which controls for

the current market movements and news. The SP 500 return series, which are used as a control

in this paper, pass standard stationarity tests at the 5% level.

(a) Time Series - Log of VIX Daily (b) Time Series - Log of VIX Daily

Figure 3.2: VIX Times Series Data
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Descriptive Statistics

By life-satisfaction (1 = Dissatisfied, 2 = Satisfied, 3 = Very Satisfied)

Characteristic (1), N = 528 (2), N = 3,784 (3), N = 3,204

Age, n / N (%)

18to24 3 / 528 (0.6%) 21 / 3,784 (0.6%) 15 / 3,204 (0.5%)

25to34 13 / 528 (2.5%) 106 / 3,784 (2.8%) 90 / 3,204 (2.8%)

35to44 38 / 528 (7.2%) 220 / 3,784 (5.8%) 174 / 3,204 (5.4%)

45to54 121 / 528 (23%) 582 / 3,784 (15%) 397 / 3,204 (12%)

55to64 199 / 528 (38%) 1,058 / 3,784 (28%) 781 / 3,204 (24%)

65older 154 / 528 (29%) 1,797 / 3,784 (47%) 1,747 / 3,204 (55%)

Gender, n / N (%)

female 328 / 528 (62%) 2,146 / 3,784 (57%) 1,789 / 3,204 (56%)

male 200 / 528 (38%) 1,638 / 3,784 (43%) 1,415 / 3,204 (44%)

Income, n / N (%)

50more 82 / 528 (16%) 1,144 / 3,784 (30%) 1,481 / 3,204 (46%)

15to25K 155 / 528 (29%) 899 / 3,784 (24%) 534 / 3,204 (17%)

25to35K 74 / 528 (14%) 511 / 3,784 (14%) 404 / 3,204 (13%)

35to50K 40 / 528 (7.6%) 585 / 3,784 (15%) 477 / 3,204 (15%)

le15K 177 / 528 (34%) 645 / 3,784 (17%) 308 / 3,204 (9.6%)

Education, n / N (%)

COLgrad 115 / 528 (22%) 984 / 3,784 (26%) 1,122 / 3,204 (35%)

attendCOL 176 / 528 (33%) 1,187 / 3,784 (31%) 908 / 3,204 (28%)

HSgrad 160 / 528 (30%) 1,212 / 3,784 (32%) 934 / 3,204 (29%)

K 77 / 528 (15%) 401 / 3,784 (11%) 240 / 3,204 (7.5%)

Marital Status, n / N (%)

married 144 / 528 (27%) 1,721 / 3,784 (45%) 1,989 / 3,204 (62%)

divorced 151 / 528 (29%) 705 / 3,784 (19%) 359 / 3,204 (11%)

membermarriedcoup 16 / 528 (3.0%) 53 / 3,784 (1.4%) 40 / 3,204 (1.2%)

nevermarried 100 / 528 (19%) 492 / 3,784 (13%) 242 / 3,204 (7.6%)

separated 38 / 528 (7.2%) 90 / 3,784 (2.4%) 43 / 3,204 (1.3%)

widowed 79 / 528 (15%) 723 / 3,784 (19%) 531 / 3,204 (17%)
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Employment Status, n / N (%)

wagesemployed 95 / 528 (18%) 1,097 / 3,784 (29%) 982 / 3,204 (31%)

homemaker 14 / 528 (2.7%) 132 / 3,784 (3.5%) 139 / 3,204 (4.3%)

noworkless1 14 / 528 (2.7%) 84 / 3,784 (2.2%) 35 / 3,204 (1.1%)

noworkmore1 33 / 528 (6.2%) 97 / 3,784 (2.6%) 33 / 3,204 (1.0%)

retired 126 / 528 (24%) 1,588 / 3,784 (42%) 1,561 / 3,204 (49%)

selfemployed 12 / 528 (2.3%) 191 / 3,784 (5.0%) 217 / 3,204 (6.8%)

student 2 / 528 (0.4%) 11 / 3,784 (0.3%) 20 / 3,204 (0.6%)

unable 232 / 528 (44%) 584 / 3,784 (15%) 217 / 3,204 (6.8%)

Race, n / N (%)

white 429 / 528 (81%) 3,186 / 3,784 (84%) 2,749 / 3,204 (86%)

asian 1 / 528 (0.2%) 20 / 3,784 (0.5%) 23 / 3,204 (0.7%)

black 68 / 528 (13%) 441 / 3,784 (12%) 324 / 3,204 (10%)

native 23 / 528 (4.4%) 71 / 3,784 (1.9%) 68 / 3,204 (2.1%)

other 7 / 528 (1.3%) 60 / 3,784 (1.6%) 37 / 3,204 (1.2%)

pacific 0 / 528 (0%) 6 / 3,784 (0.2%) 3 / 3,204 (<0.1%)

Table 3.1 presents descriptive statistics based on general life-satisfaction. As presented, there

is a larger number of respondents who report ”Satisfied“ (N = 3,707) and ”Very satisfied“ (N =

3,149) compared to those who report ”Dissatisfied“ (N = 514). To put this in perspective, we

show charts based on each group’s demographics.

Table 3.2: Descriptive Statistics

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Health Insured 7,516 0.949 0.219 0 1 1 1

Heart Disease 7,516 0.142 0.349 0 0 0 1

Arthritis 7,516 0.493 0.500 0 0 1 1

Stroke 7,516 0.085 0.280 0 0 0 1

Asthma 7,516 0.155 0.362 0 0 0 1

Bronchitis 7,516 0.125 0.331 0 0 0 1
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Depression 7,516 0.266 0.442 0 0 1 1

Cancer 7,516 0.143 0.350 0 0 0 1

Diabetes 7,516 0.915 0.279 0 1 1 1

Table 3.2 shows the descriptive statistics for all chronic condition covariates in the dataset. On

average, 95% of respondents in the dataset have health insurance. About 14% of the respondents

have heart disease, 50% have arthritis, more than 8% have had a stroke, more than 15% have

asthma, 12% have bronchitis, 27% have suffered depression, 14% have cancer, and about 91%

are diabetic.

3.4 Methodology and Empirical Results

3.4.1 Methodology

One challenging element of this analysis is the processing and merging of stockholding data

extracted from the Current Population Survey. Unlike the BRFSS, where all of the variables are

categorical, variables from the CPS are continuous. Thus, we recoded all demographic variables

from the CPS to match those of the BRFSS dataset, allowing us to maintain variable consistency

during the data integration process. The stock ownership variable within the CPS dataset is

crucial to our analysis. Specifically, information regarding an individual’s stockholdings helps us

to define the effect of market uncertainty on the stockholding population and non-stock-holding

population in our sample.

In order to properly extract and integrate stock ownership information with our BRFSS data,

we developed a stock-ownership propensity score from the Current Population Survey (CPS).

We do so by employing a logistic regression to derive the relationship between demographic

variables and stock ownership. As suggested by previous literature (Kreinin et al. 1959), we

use some of the most significant demographic predictors of stock ownership, including age,

gender, income, education´ status, and race, in our regression to achieve the propensity score
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at individual levels, which we were then able to merge onto the BRFSS dataset based on the

demographics mentioned above.

(a) CPS Age Data (b) CPS Race Data

Figure 3.3: CPS Demographics - Age and Race

(a) CPS Education Data (b) CPS Income Data

Figure 3.4: CPS Demographics - Education and Income

Our propensity results indicate that males are more likely to own stocks compared to females,

as are respondents who have a college degree compared to those who do not. Further, income

and age play a predictable role in an individual’s propensity to participate in the stock market.

Respondents who make at least 50 thousand dollars a year are the most likely to own stock, as

are those 65 years of age and older. We also find that the Caucasian population is the most likely

to own stocks, followed by mixed races and Asian. Following prior literature, we believe that

propensity score methodology and subsequent results offer a decent representation of actual

stock ownership characteristics.
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Figure 3.5: Propensity Score for Stock Ownership

Table 3.3: Regression Results for Stock Ownership

Dependent Variable

Stock Ownership

(1)

Logit

gendermale 0.242˚˚˚

(0.011)

calculated_educationattendCOL ´0.954˚˚˚

(0.014)

calculated_educationHSgrad ´1.411˚˚˚

(0.014)

calculated_educationK ´2.371˚˚˚

(0.028)

calculated_income15to25K ´1.244˚˚˚

(0.027)

calculated_income25to35K ´0.972˚˚˚

(0.024)

calculated_income35to50K ´0.724˚˚˚

(0.019)

calculated_incomele15K ´1.568˚˚˚
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(0.030)

calculated_age25to34 0.661˚˚˚

(0.029)

calculated_age35to44 1.152˚˚˚

(0.028)

calculated_age45to54 1.471˚˚˚

(0.028)

calculated_age55to64 1.752˚˚˚

(0.028)

calculated_age65older 2.183˚˚˚

(0.028)

calculated_raceasian ´0.287˚˚˚

(0.022)

calculated_raceblack ´0.933˚˚˚

(0.021)

calculated_racenative ´0.405˚˚˚

(0.057)

calculated_raceother ´0.153˚˚˚

(0.043)

calculated_racepacific ´0.717˚˚˚

(0.088)

Constant ´0.385˚˚˚

(0.028)

Observations 177,296

Log Likelihood ´98,710.070

Akaike Inf. Crit. 197,458.100

Note: Panel consists of the 2013-2017 survey sample waves of CPS.
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Model estimates with a Logistic Regression. Model controls for

demographics, including age, gender, race, income, education status,

marital status, employment status. See Appendix for detailed variable

definition, data source, and construction.

˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

Full Logistic regression results of demographics on stock ownership are presented in Table 3.3.

As shown in Figure 3.5, our propensity score distribution for stock ownership spreads perfectly

from almost 0% chance of owning stock to nearly 100% chance of owning stocks. The results

from CPS data indicate two significant signals. First, the logistic regression on stock ownership

is appropriate. Each observation in the CPS dataset has its value for stock ownership. Second,

the perfect propensity score will provide an advantage when merging in the BRFSS for analysis.

It will ensure that each BRFSS observation will yield a unique propensity to own stocks, ranging

from 0% to 100%.

The analysis proceeds with the ordinal logistics model. Our dependent variable is life-

satisfaction, which takes into three categories of ”Very Satisfied,“ ”Satisfied,“ and ”Dissatis-

fied.“ The main independent variable of interest is the natural log of the VIX, divided by 100. We

also control for the current market performance (SP500 return series), stock ownership (propen-

sity to own stock), demographics, and a set of Fixed-Effects. As described above, controlling

for a set of demographics variables is extremely useful in generating precise estimates, given

different demographics in our survey. In addition, by controlling for State Fixed-Effects, Monthly

Fixed-Effects, and Yearly Fixed-Effects, we aim to achieve the most precise estimates possible.

We also control for the impact of seasonality that may exist in some behaviors such as physical

activity (Ruhm 2005), permanent differences across states that may affect health and health

behaviors, such as lifestyles patterns, state infrastructures on health care, and confounding

factors that may trend linearly. All the regressions are weighted using the BRFSS sampling
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weights.

3.4.2 Empirical Results

As previously mentioned, we have a robust set of controls, including gender, age (6 different

categories), income (5 different categories), education status (4 categories), marital status (6

different categories), race (6 different categories), chronic health conditions, and employment

status (8 different categories). Moreover, a set of fixed effects for months, years, and states

ensures that we can capture the effect while minimizing modeling errors and biases. Although

this study does not necessarily focus on the effect of demographics on life-satisfaction nor the

effect of chronic conditions on life-satisfaction, our results show that these effects across the

board are expected.

The central panel, presented in Table 3.4, shows the effects of the VIX on life-satisfaction

outcomes. Across four different models, models (2) and (4) control for additional chronic health

conditions, while models (1) and (3) do not. All models control for psvalue.cps, which is the

propensity score value for stock ownership. Our results indicate that the effects of the VIX on

life-satisfaction are reasonably consistent overall. The magnitudes of the results do not fluctuate

significantly across different specifications. Model (4) is our prime model, where it controls

for chronic conditions, propensity score of stock ownership, the interaction of propensity score

of stock ownership and the natural log of the VIX, and sample weights. The interaction term

shows that as the market is under stress, increases in the likelihood of the respondents owning

stock result in decreases in the probability of respondents moving toward the next category

(feeling satisfied). We are likely capturing the income effect in the regression, as expected. In

other words, the more likely it is that a respondent is a stockholder, the more likely they are to

have poor life-satisfaction during periods of market turmoil.
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Table 3.4: Regression Results for Life-Satisfaction and Daily VIX

Dependent Variable

life-satisfaction

(1) (2) (3) (4)

Ordinal Logit Ordinal Logit Ordinal Logit Ordinal Logit

logvixadjusted100 -26.380˚˚˚ -26.347˚˚˚ -14.041˚˚˚ -14.812˚˚˚

(1.019) (1.025) (1.627) (1.631)

psvalue.cps 0.308˚˚˚ 0.272˚˚˚ 1.092˚˚˚ 1.006˚˚˚

(0.035) (0.035) (0.088) (0.088)

logvixadjusted100 ˆ psvalue.cps -30.208˚˚˚ -28.287˚˚˚

(3.104) (3.110)

spyrets1000 0.011˚ 0.025˚˚˚ 0.011˚ 0.026˚˚˚

(0.005) (0.005) (0.005) (0.005)

health_insured 0.541˚˚˚ 0.570˚˚˚ 0.540˚˚˚ 0.569˚˚˚

(0.006) (0.006) (0.006) (0.006)

cancer 0.004 0.005

(0.004) (0.004)

heart_disease -0.036˚˚˚ -0.036˚˚˚

(0.004) (0.004)

arthritis -0.345˚˚˚ -0.345˚˚˚

(0.003) (0.003)

diabetes -0.416˚˚˚ -0.416˚˚˚

(0.006) (0.006)

stroke -0.146˚˚˚ -0.146˚˚˚

(0.005) (0.005)

asthma -0.252˚˚˚ -0.252˚˚˚

(0.004) (0.004)

bronchitis -0.446˚˚˚ -0.446˚˚˚

(0.005) (0.005)

etc.
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Month FE Yes Yes Yes Yes

State FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Interaction No No Yes Yes

Chronic Health No Yes No Yes

Demographics Yes Yes Yes Yes

Survey Weights Yes Yes Yes Yes

Observations 7,516 7,516 7,516 7,516

Note: Full Table in the Appendix. Panel consists of the 2013-2017 survey sample waves of BRFSS.

BRFSS sample weights applied. Market volatility is defined as logpVIXq
100 . All models estimated

with Logistic Regression. All models control for demographics, including age, gender, race,

education status, income, marital status, employment status. See Appendix for detailed variable

definition, data source, and construction.

˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

To better understand the effects, we want to investigate the marginal effects of the VIX on

life-satisfaction. We achieve marginal effects at the mean and average marginal effects at Table

ref(tab:marginal1). Our results indicate that at the mean, an additional percentage increase in

the VIX decreases the probability of feeling ”Very Satisfied“ by 6.17%, holding all else constant,

which is significant at the 1% level. Moreover, at the mean, an additional percentage increase in

the VIX increases the probability of feeling ”Dissatisfied“ by 1.32%, holding all else constant,

which is significant at the 1% level. On average, an additional percentage increase in the VIX

decreases the probability of feeling ”Very Satisfied“ by 5.53%, holding all else constant, which is

significant at the 1% level. Similarly, on average, an additional percentage increase in the VIX

increases the probability of feeling ”Dissatisfied“ by 1.51%, holding all else constant, which

is significant at the 1% level. Given the VIX’s standard errors, we are confident to reject the

null hypothesis, concluding a negative association between the VIX and better-reported life-
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satisfaction. Further, the 95% confidence interval lies within the negative zone of the effect,

which also confirms that this effect is negatively correlated.

Table 3.5: Marginal Effect Table

Dependent Variable

life-satisfaction

(1) (2) (3) (4)

MEM AME MEM AME

Very Satisfied Very Satisfied Dissatisfied Dissatisfied

logVIX.Adjusted -6.166˚˚˚ -5.528˚˚˚ 1.324˚˚˚ 1.513˚˚˚

(0.242) (0.212) (0.052) (0.069)

psvalue.cps 0.062˚˚˚ 0.054˚˚˚ -0.013˚˚˚ -0.017˚˚˚

(0.008) (0.007) (0.002) (0.002)

SPY.rets1000 0.006˚˚˚ .005˚˚˚ -0.001˚˚˚ -0.002˚˚˚

(0.001) (0.001) (0.000) (0.000)

Month FE Yes Yes Yes Yes

State FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Demographics Yes Yes Yes Yes

Chronic Health Yes Yes Yes Yes

Survey Weights Yes Yes Yes Yes

Observations 7,516 7,516 7,516 7,516

Note: Table includes Average Marginal Effects (AME) and Marginal Effects at

Mean (MEM). Market volatility is defined as logpVIXq
100 . All models control

for demographics, including age, gender, race, education status, income, marital

status, employment status. See Appendix for detailed variable definition, data

source, and construction.

˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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3.4.3 Additional Robustness Check

Based on previous literature, we initially did not control for chronic conditions. However, we

demonstrate our results’ robustness by controlling for a series of additional controls, including

the propensity of stock ownership, and especially chronic conditions. The results show that

our models are robust and consistent across different models of the VIX series. During the

analysis, we suspect that fluctuations in the implied volatility series, VIX, could come from the

stock market’s actual performance overall. Thus, we controlled for the return series of stock

performance using the SP 500. All of our models indeed control for the SP500 return series, and

we find strong consistency across each model’s coefficients.

It is also important to demonstrate consistency in results when using different windows

to calculate our VIX series. It is possible that the daily series of the VIX does not necessarily

affect respondents since they may not have time to check the news or their stock positions

before submitting their responses on interview day. By generating a lag series of the VIX (i.e.,

2-day lag, 4-day lag, and 1-week lag), we capture the short-term effect of market volatility on

life-satisfaction in addition to our contemporaneous model. The results are consistent across

different windows of the VIX. Although we do not interpret these results in Table 3.6, we can

see that the direction of the estimates is still consistent for both the VIX and the interaction term.

It indicates that our models are robust, and we confidently reject our null hypothesis.
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Table 3.6: Regression Results for Life-Satisfaction and Daily VIX

Dependent Variable

life-satisfaction

(1) (2) (3)

Ordinal Logit Ordinal Logit Ordinal Logit

2-day Lag 4-day Lag 1-week Lag

loglag2vixadjusted100 -0.043˚˚˚

(0.001)

loglag4vixadjusted100 -0.057˚˚˚

(0.001)

logweeklagvixadjusted100 -0.034˚˚˚

(0.001)

psvalue.cps 0.272˚˚˚ 0.247˚˚˚ 0.254˚˚˚

(0.035) (0.035) (0.035)

lag2spyrets1000 0.021˚˚˚

(0.005)

lag4spyrets1000 0.121˚˚˚

(0.005)

weeklagspyrets1000 0.095˚˚˚

(0.005)

etc.

Month FE Yes Yes Yes

State FE Yes Yes Yes

Year FE Yes Yes Yes

Chronic Health Yes Yes Yes

Demographics Yes Yes Yes

Survey Weights Yes Yes Yes
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Observations 7,516 7,516 7,516

Note: Panel consists of the 2013-2017 survey sample waves of BRFSS. BRFSS

sample weights applied. Market volatility is definedas logpVIXq
100 . All models

estimated with a Logistic Regression. All models control for demographics,

including age, gender, race,education status, income, marital status,

employment status. See Appendix for detailed variable definition, data

source, andconstruction.

˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

3.5 Conclusion

This study explores the impact of financial and economic uncertainty on self-reported life-

satisfaction. Our results show clear patterns, similar to previous research, in which self-reported

life-satisfaction is worsened during periods of market turmoil and uncertainty. Using market

volatility, or the VIX, we find evidence that self-reported life-satisfaction is more likely to be

reported in the category of ”Very Satisfied“ compared to the category of ”Dissatisfied“ when

the implied volatility index declines, or when the market volatility indicates a relative decline

in economic uncertainty. This study is novel in the sense that we employ expected volatility

as our primary variable of interest instead of other mainstream stock market indicators, such

as the SP 500 or the Dow Jones Industrial Average. Thus, we assess the relationship between

forward-looking volatility expectations and individual life-satisfaction metrics.

Furthermore, since the future economic conditions are pertinent for both non-stockholders

and stockholders, it is expected that human responses are widespread and not merely restricted

to individuals actively participating in the market. In sum, with various tests and robustness

checks, our results strongly support our hypothesis and confirm previous evidence on main-

stream market indicators, such as the Dow Jones. Further, we fit our primary model into the
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Anticipatory Utility framework and show that the VIX daily series, acting as an anticipatory

index, influences survey respondents’ life-satisfaction, which acts as our primary utility mea-

sure. This novel approach takes the financial market’s association with life-satisfaction and

life-satisfaction in a new direction. Prior research has extensively investigated the relationship

of human behaviors on the stock market, but little work explores the inverse effects. We hope

that this study can add to the behavioral economic and modern finance literature using that

particular perspective.

Previous research has shown that the effect mechanism between financial markets and

life-satisfaction is derived from several possible factors. Earlier research (Brenner Mooney,

1983; Catalano Dooley, 1983) suggests that the level of stress due to market conditions may

lead to self-medication. Risky health behaviors can also be the result of market downturns.

Behaviors such as smoking, overeating, and binge drinking are more likely to occur whenmarket

performance is poorer (Colman Dave, 2011; Cotti Tefft, 2011; 23 Ruhm Black, 2002; Ruhm,

2005). In addition, Cotti, Dunn, Tefft 2013 found a diminished income effect when assessing the

impact of the Dow Jones on health, suggesting that market and economic stress play a role in

one’s inclination to participate in risky health behaviors. Therefore, our findings help explain

why behavioral biases are more severe when expected market volatility is high (Kumar, 2009).

While the study’s estimates are intensely investigated, there are several limitations to this

study. Although we show a deep channel of how market volatility affects life-satisfaction, we

cannot conclude that this effect is causal. The income effect indeed plays a significant role in

the negative relationship between market volatility and life-satisfaction. Our partial effects

show this to be the case. Nonetheless, we are not able to fully control for potential endogeneity

issues. Individuals can be affected by market uncertainty in many ways, including market

crashes, potential job loss, etc. Although we show that the VIX can act as an anticipatory index

for the market uncertainty, we do not fully understand the link that connects market-implied

financial indicators to human behaviors. For example, stock market participation has increased
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in recent years, capturing new demographics of individuals who can now more easily open

trading accounts. Such increases in non-institutional trade activity may increase the presence of

noise traders, which in turn may influence levels of volatility. We do not fully understand the

impact of these changing market dynamics on our results.

Nonetheless, the paper underscores the exciting cross-section between the fields of behavioral

economics, finance, and health. Although a handful of previous literature inspires the study,

we are unaware of existing research that is similar or identical to our study. Finally, by better

understanding the impact of stock market behavior on human behavior and life-satisfaction,

this paper sheds additional light on the contemporaneous consequences of an individual’s

anticipated financial and economic uncertainty.

3.6 Appendix

In this analysis, we refer life-satisfaction to li f e´ satis f action. For demographic variables, given

the nature of the BRFSS survey, all of them are categorical variables. gender is recoded from

”sex“ in BRFSS from 2013-2017. The question asked, ”What is your sex? or What was your

sex at birth? Was it. . . “ We recoded this variable with 1 being ”Male“, 0 being ”Female“ and

got rid of ”Don’t know/Not Sure“, and ”Refused“. Variable marital_status is recoded from

section ”Demographics“, under label ”Marital Status.“ This variable is a categorical variable

with ”Married“, ”Divorced“, ”Widowed“, ”Separated“, ”Never married“, and ”A member of an

unmarried couple“. We got rid of options ”Refused“, andmissing data for this variable. Variable

employment_status is also under ”Demographics“ section. The question asked ”Question: Are

you currently. . . ?“ and the answers ranging from ”Employed for wages“, ”Self-employed“, ”Out

of work for 1 year or more“, ”Out of work for less than 1 year“, ”A homemaker“, ”A student“,

”Retired“, ”Unable to work.“ Options ”Refused“ and ”BLANK“ (missing data) are eliminated

from the analysis. Variable calculated_race is a calculated race variable with 6 categories ”White“,

”Black or African American“, ”American Indian or Alaskan Native“, ”Asian“, ”Native Hawaiian
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or other Pacific Islander“ and ”Other race.“ We removed responses such as ”No preferred race“,

”Don’t know/Not sure“, ”Refused“ and missing data. Variable calculated_education represents

education status with 4 main categories ”Did not graduate High School“, ”Graduated High

School“, ”Attended College or Technical School“ and ”Graduated from College or Technical

School.“ We also removed ”Don’t know/Not sure/Missing“ values from the sample. Vari-

able calculated_income represents income brackets from ”Less than $15, 000“, ”$15, 000 to less

than $25, 000“, ”$25, 000 to less than $35, 000“, ”$35, 000 to less than $50, 000“, and ”$50, 000

or more.“ Category ”Don’t know/Not sure/Missing“ is eliminated. Variable calculated_age

represent calculated age variable with categories ”Age 18 to 24“, ”Age 25 to 34“, ”Age 35 to 44“,

”Age 45 to 54“, ”Age 55 to 64“, ”Age 65 or older.“ Missing data is also eliminated.

The CPS survey spans from 2013 to 2017. Almost all variables used are continuous, and

thus we have to recode them to be categorical. Stock ownership, ownstock, is recoded from the

question, which asks, ”A anytime during 20.., did you have shares of stock in corporations or

mutual funds?“ We recoded this variable with 1 being ”Yes,“ 0 being ”No,“ and removed ”Not

in universe.“ gender is recoded with 1 being ”Male,“ 0 being ”Female.“ calculated_education

is recoded from a question regarding ”education attainment.“ In specific, ”Did not graduate

High School“ which takes in ”Less than 1st grade“, ”1st, 2nd, 3rd, or 4th grade“, ”5th or 6th

grade“, ”7th and 8th grade“, ”9th grade“, ”10th grade“, ”11th grade“ and ”12th grade no

diploma“ in the CPS. ”Graduated High School“ takes ”High school graduate - high school

diploma or equivalent“ in the CPS. ”Attended College or Technical School“ takes ”Some college

but no degree,“ ”Associate degree in college - occupation/vocation program,“ and ”Associate

degree in college - academic program“ in the CPS. ”Graduated from College or Technical

School“ takes ”Bachelor’s degree (for example: BA, AB, BS),“ ”Master’s degree (for example:

MA, MS, MENG, MED, MSW, MBA),“ ”Professional school degree (for example: MD, DDS,

DVM, LLB, JD)“ and ”Doctorate degree (for example: PHD, EDD).“ Variable calculated_age is

recoded from a continuous age variable from the CPS to fit in the age categories of the BRFSS,
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which are ”Age 18 to 24“, ”Age 25 to 34“, ”Age 35 to 44“, ”Age 45 to 54“, ”Age 55 to 64“, ”Age 65

or older.“ Variable calculated_income is also recoded from a continuous income variable from

the CPS to fit in the income categories in the BRFSS, which are ”Less than $15,000“, ”$15,000 to

less than $25,000“, ”$25,000 to less than $35,000“, ”$35,000 to less than $50,000“, and ”$50,000 or

more.“ Variable calculated_race is a calculated race variable with 6 categories ”White,“ ”Black

or African American,“ ”American Indian or Alaskan Native,“ ”Asian,“ ”Native Hawaiian or

other Pacific Islander,“ and ”Other race.“

Table 3.7: Regression Results for Life-Satisfaction and Daily VIX

Dependent Variable

life-satisfaction

(1) (2) (3) (4)

Ordinal Logit Ordinal Logit Ordinal Logit Ordinal Logit

logvixadjusted100 -26.380˚˚˚ -26.347˚˚˚ -14.041˚˚˚ -14.812˚˚˚

(1.019) (1.025) (1.627) (1.631)

psvalue.cps 0.308˚˚˚ 0.272˚˚˚ 1.092˚˚˚ 1.006˚˚˚

(0.035) (0.035) (0.088) (0.088)

logvixadjusted100 ˆ psvalue.cps -30.208˚˚˚ -28.287˚˚˚

(3.104) (3.110)

spyrets1000 0.011˚ 0.025˚˚˚ 0.011˚ 0.026˚˚˚

(0.005) (0.005) (0.005) (0.005)

health_insured 0.541˚˚˚ 0.570˚˚˚ 0.540˚˚˚ 0.569˚˚˚

(0.006) (0.006) (0.006) (0.006)

cancer 0.004 0.005

(0.004) (0.004)

heart_disease -0.036˚˚˚ -0.036˚˚˚

(0.004) (0.004)

arthritis -0.345˚˚˚ -0.345˚˚˚

(0.003) (0.003)

diabetes -0.416˚˚˚ -0.416˚˚˚
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(0.006) (0.006)

stroke -0.146˚˚˚ -0.146˚˚˚

(0.005) (0.005)

asthma -0.252˚˚˚ -0.252˚˚˚

(0.004) (0.004)

bronchitis -0.446˚˚˚ -0.446˚˚˚

(0.005) (0.005)

gender1 -0.087˚˚˚ -0.069˚˚˚ -0.086˚˚˚ -0.068˚˚˚

(0.003) (0.004) (0.003) (0.004)

HSgrad 0.033˚˚ 0.063˚˚˚ 0.031˚˚ 0.061˚˚˚

(0.011) (0.011) (0.011) (0.011)

K 0.095˚˚˚ 0.155˚˚˚ 0.089˚˚˚ 0.150˚˚˚

(0.016) (0.016) (0.016) (0.016)

attendCOL -0.086˚˚˚ -0.056˚˚˚ -0.088˚˚˚ -0.057˚˚˚

(0.008) (0.008) (0.008) (0.008)

25to35K -0.017˚˚˚ -0.054˚˚˚ -0.018˚˚˚ -0.055˚˚˚

(0.005) (0.005) (0.005) (0.005)

35to50K 0.172˚˚˚ 0.129˚˚˚ 0.173˚˚˚ 0.130˚˚˚

(0.006) (0.006) (0.006) (0.006)

50more 0.543˚˚˚ 0.475˚˚˚ 0.544˚˚˚ 0.476˚˚˚

(0.010) (0.010) (0.010) (0.010)

le15K -0.092˚˚˚ -0.085˚˚˚ -0.093˚˚˚ -0.086˚˚˚

(0.005) (0.005) (0.005) (0.005)

25to34 0.151˚˚˚ 0.072˚˚˚ 0.151˚˚˚ 0.073˚˚˚

(0.016) (0.016) (0.016) (0.016)

35to44 -0.215˚˚˚ -0.146˚˚˚ -0.215˚˚˚ -0.146˚˚˚

(0.016) (0.016) (0.016) (0.016)

45to54 -0.329˚˚˚ -0.149˚˚˚ -0.328˚˚˚ -0.148˚˚˚

(0.017) (0.017) (0.017) (0.017)

55to64 0.012 0.234˚˚˚ 0.013 0.235˚˚˚

(0.018) (0.018) (0.018) (0.018)

65older 0.155˚˚˚ 0.394˚˚˚ 0.156˚˚˚ 0.394˚˚˚
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(0.020) (0.020) (0.020) (0.020)

black 0.175˚˚˚ 0.156˚˚˚ 0.169˚˚˚ 0.151˚˚˚

(0.016) (0.016) (0.016) (0.016)

native -0.646˚˚˚ -0.525˚˚˚ -0.649˚˚˚ -0.528˚˚˚

(0.018) (0.018) (0.018) (0.018)

other 0.384˚˚˚ 0.290˚˚˚ 0.381˚˚˚ 0.287˚˚˚

(0.018) (0.018) (0.018) (0.018)

pacific 1.123˚˚˚ 1.165˚˚˚ 1.142˚˚˚ 1.184˚˚˚

(0.042) (0.041) (0.042) (0.041)

white -0.219˚˚˚ -0.167˚˚˚ -0.222˚˚˚ -0.169˚˚˚

(0.015) (0.016) (0.015) (0.016)

married 0.636˚˚˚ 0.624˚˚˚ 0.633˚˚˚ 0.621˚˚˚

(0.004) (0.004) (0.004) (0.004)

membermarriedcoup -0.145˚˚˚ -0.122˚˚˚ -0.150˚˚˚ -0.127˚˚˚

(0.012) (0.012) (0.012) (0.012)

nevermarried 0.156˚˚˚ 0.131˚˚˚ 0.153˚˚˚ 0.128˚˚˚

(0.006) (0.006) (0.006) (0.006)

separated -0.181˚˚˚ -0.169˚˚˚ -0.185˚˚˚ -0.172˚˚˚

(0.010) (0.010) (0.010) (0.010)

widowed 0.309˚˚˚ 0.301˚˚˚ 0.307˚˚˚ 0.299˚˚˚

(0.006) (0.006) (0.006) (0.006)

noworkless1 -1.195˚˚˚ -1.170˚˚˚ -1.194˚˚˚ -1.168˚˚˚

(0.012) (0.012) (0.012) (0.012)

noworkmore1 -1.914˚˚˚ -1.741˚˚˚ -1.914˚˚˚ -1.741˚˚˚

(0.012) (0.012) (0.012) (0.012)

retired -0.457˚˚˚ -0.305˚˚˚ -0.457˚˚˚ -0.304˚˚˚

(0.007) (0.007) (0.007) (0.007)

selfemployed -0.202˚˚˚ -0.161˚˚˚ -0.201˚˚˚ -0.160˚˚˚

(0.009) (0.009) (0.009) (0.009)

student 0.935˚˚˚ 1.014˚˚˚ 0.939˚˚˚ 1.018˚˚˚

(0.021) (0.021) (0.021) (0.021)

unable -1.394˚˚˚ -1.093˚˚˚ -1.395˚˚˚ -1.094˚˚˚
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(0.007) (0.008) (0.007) (0.008)

wagesemployed -0.532˚˚˚ -0.480˚˚˚ -0.533˚˚˚ -0.480˚˚˚

(0.007) (0.007) (0.007) (0.007)

logit[P(Y ď 1)]

Constant -3.942˚˚˚ -4.242˚˚˚ -3.627˚˚˚ -3.947˚˚˚

(0.037) (0.037) (0.049) (0.050)

logit[P(Y ď 2)]

Constant -0.651˚˚˚ -0.895˚˚˚ -0.336˚˚˚ -0.600˚˚˚

(0.037) (0.037) (0.049) (0.049)

Month FE Yes Yes Yes Yes

State FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Survey Weights No No Yes Yes

Observations 7,516 7,516 7,516 7,516

Note: Panel consists of the 2013-2017 survey sample waves of BRFSS. BRFSS sample weights applied.

Market volatility is defined as logpVIXq
100 . All models estimated with Logistic Regression. All models

control for demographics, including age, gender, race, education status, income, marital status,

employment status. See Appendix for detailed variable definition, data source, and construction.

˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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Table 3.8: Regression Results for Life-Satisfaction and Daily VIX

Dependent Variable

life-satisfaction

(1) (2) (3)

Ordinal Logit Ordinal Logit Ordinal Logit

2-day Lag 4-day Lag 1-week Lag

loglag2vixadjusted100 -0.043˚˚˚

(0.001)

loglag4vixadjusted100 -0.057˚˚˚

(0.001)

logweeklagvixadjusted100 -0.034˚˚˚

(0.001)

psvalue.cps 0.272˚˚˚ 0.247˚˚˚ 0.254˚˚˚

(0.035) (0.035) (0.035)

lag2spyrets1000 0.021˚˚˚

(0.005)

lag4spyrets1000 0.121˚˚˚

(0.005)

weeklagspyrets1000 0.095˚˚˚

(0.005)

health_insured 0.569˚˚˚ 0.572˚˚˚ 0.570˚˚˚

(0.006) (0.006) (0.006)

cancer 0.007 0.003 0.006

(0.004) (0.004) (0.004)

heart_disease -0.040˚˚˚ -0.038˚˚˚ -0.037˚˚˚

(0.004) (0.004) (0.004)

arthritis -0.345˚˚˚ -0.345˚˚˚ -0.343˚˚˚

(0.003) (0.003) (0.003)
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diabetes -0.420˚˚˚ -0.415˚˚˚ -0.417˚˚˚

(0.006) (0.006) (0.006)

stroke -0.146˚˚˚ -0.148˚˚˚ -0.150˚˚˚

(0.005) (0.005) (0.005)

asthma -0.248˚˚˚ -0.243˚˚˚ -0.251˚˚˚

(0.004) (0.004) (0.004)

bronchitis -0.445˚˚˚ -0.440˚˚˚ -0.445˚˚˚

(0.005) (0.005) (0.005)

gender1 -0.069˚˚˚ -0.069˚˚˚ -0.069˚˚˚

(0.004) (0.004) (0.004)

HSgrad 0.062˚˚˚ 0.060˚˚˚ 0.059˚˚˚

(0.011) (0.011) (0.011)

K 0.155˚˚˚ 0.151˚˚˚ 0.144˚˚˚

(0.016) (0.016) (0.016)

attendCOL -0.055˚˚˚ -0.059˚˚˚ -0.055˚˚˚

(0.008) (0.008) (0.008)

25to35K -0.050˚˚˚ -0.050˚˚˚ -0.052˚˚˚

(0.005) (0.005) (0.005)

35to50K 0.131˚˚˚ 0.145˚˚˚ 0.131˚˚˚

(0.006) (0.006) (0.006)

50more 0.474˚˚˚ 0.483˚˚˚ 0.477˚˚˚

(0.010) (0.010) (0.010)

le15K -0.085˚˚˚ -0.084˚˚˚ -0.085˚˚˚

(0.005) (0.005) (0.005)

25to34 0.070˚˚˚ 0.088˚˚˚ 0.075˚˚˚

(0.016) (0.016) (0.016)

35to44 -0.144˚˚˚ -0.123˚˚˚ -0.151˚˚˚

(0.016) (0.016) (0.016)

45to54 -0.151˚˚˚ -0.122˚˚˚ -0.144˚˚˚
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(0.017) (0.017) (0.017)

55to64 0.232˚˚˚ 0.257˚˚˚ 0.235˚˚˚

(0.018) (0.018) (0.018)

65older 0.390˚˚˚ 0.419˚˚˚ 0.395˚˚˚

(0.020) (0.020) (0.020)

black 0.167˚˚˚ 0.177˚˚˚ 0.179˚˚˚

(0.016) (0.016) (0.016)

native -0.527˚˚˚ -0.512˚˚˚ -0.513˚˚˚

(0.018) (0.018) (0.018)

other 0.291˚˚˚ 0.271˚˚˚ 0.312˚˚˚

(0.018) (0.018) (0.018)

pacific 1.178˚˚˚ 1.187˚˚˚ 1.190˚˚˚

(0.041) (0.041) (0.041)

white -0.162˚˚˚ -0.154˚˚˚ -0.148˚˚˚

(0.016) (0.016) (0.016)

married 0.626˚˚˚ 0.621˚˚˚ 0.628˚˚˚

(0.004) (0.004) (0.004)

membermarriedcoup -0.117˚˚˚ -0.118˚˚˚ -0.119˚˚˚

(0.012) (0.012) (0.012)

nevermarried 0.131˚˚˚ 0.125˚˚˚ 0.129˚˚˚

(0.006) (0.006) (0.006)

separated -0.169˚˚˚ -0.185˚˚˚ -0.171˚˚˚

(0.010) (0.010) (0.010)

widowed 0.306˚˚˚ 0.299˚˚˚ 0.306˚˚˚

(0.006) (0.006) (0.006)

noworkless1 -1.172˚˚˚ -1.188˚˚˚ -1.182˚˚˚

(0.012) (0.012) (0.012)

noworkmore1 -1.744˚˚˚ -1.755˚˚˚ -1.745˚˚˚

(0.012) (0.012) (0.012)
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retired -0.303˚˚˚ -0.310˚˚˚ -0.303˚˚˚

(0.007) (0.007) (0.007)

selfemployed -0.157˚˚˚ -0.162˚˚˚ -0.163˚˚˚

(0.009) (0.009) (0.009)

student 1.018˚˚˚ 1.020˚˚˚ 1.033˚˚˚

(0.021) (0.021) (0.021)

unable -1.094˚˚˚ -1.106˚˚˚ -1.092˚˚˚

(0.008) (0.008) (0.008)

wagesemployed -0.481˚˚˚ -0.488˚˚˚ -0.482˚˚˚

(0.007) (0.007) (0.007)

logit[P(Y ď 1)]

Constant -3.689˚˚˚ -3.670˚˚˚ -3.599˚˚˚

(0.025) (0.025) (0.025)

logit[P(Y ď 2)]

Constant -0.342˚˚˚ -0.321˚˚˚ -0.251˚˚˚

(0.025) (0.025) (0.025)

Month FE Yes Yes Yes

State FE Yes Yes Yes

Year FE Yes Yes Yes

Survey Weights Yes Yes Yes

Observations 7,516 7,516 7,516

Note: Panel consists of the 2013-2017 survey sample waves of BRFSS. BRFSS

sample weights applied. Market volatility is defined as logpVIXq
100 . All models

estimated with a Logistic Regression. All models control for demographics,

including age, gender, race, education status, income, marital status,

employment status. See Appendix for detailed variable definition, data

source, and construction.
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˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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