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Abstract

We prove two results; first, we show that a boundary value problem for
the semilinear wave equation with smooth, asymptotically linear nonlin-
earity and sinusoidal smooth forcing along a characteristic cannot have a
continuous solution. Thereafter, we show that if the sinusoidal forcing is
not isolated to a characteristic of the wave equation, then the problem has
a continuous solution.
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Chapter 1

Introduction

1.1 The Wave Equation

The wave equation, particularly the linear wave equation, is a ubiquitous
partial differential equation (PDE) that models the propagation, at least in
theory, of a wave. In its most general n-dimensional form, the linear, inho-
mogeneous wave equation is written

utt(x, t)− ∆u(x, t) = p(x, t), (1.1)

where x ∈ Rn, t ∈ R, and p(x, t) is a continuously differentiable function.
Here we will only be concerned with the case where n = 1. The linear,

inhomogeneous wave equation is one dimension is written

utt(x, t)− uxx(x, t) = p(x, t), (1.2)

where x, t ∈ R and again p(x, t) is a continuously differentiable function.
In general, we abbreviate this to

�(u)(x, t) = p(x, t), (1.3)

where
�(u) = utt− uxx, (1.4)

is the D’Alembert operator.
The linear wave equation arises in numerous physical applications. For

example, if p(x, t) ≡ 0, it models the vibrations of a string, and the so-
lutions are the harmonics of vibration. Similarly, solutions to the one-
dimensional wave equation can be regarded as projections of solutions to
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the three-dimensional wave equation, as arise in electricity and magnetism,
projected down on one dimension.

The linear wave equation can, at least on fairly simple subsets of R2,
usually be solved nicely if stated as an initial value problem (see below).
In general, linear PDEs are relatively tractable and may have solutions that
can be found using analytical techniques. The equation studied here, a
semilinear wave equation, is not so nice. Here semilinear implies that the
nonlinearity, or portion of the equation that deviates from the linear wave
equation, depends exclusively on the function u(x, t) and not its deriva-
tives. Consequently, the general one-dimensional semilinear wave equa-
tion is

�(u)(x, t) + g(u) = p(x, t), (1.5)

where g(t) is usually a differentiable, well-behaved function on R. We com-
monly refer to g(t) as the nonlinearity, since if g(t) ≡ 0, this reduces to the
linear wave equation.

1.2 Boundary Value Problems

Although many differential equations, particularly those involving time,
are specified at an arbitrary point (or line, in this case) defined by t = 0
in what is known as an initial value problem, this is not always practical or
desirable. Indeed, if we consider a string held fixed at both ends and forced
to vibrate, we need a way to specify that the displacement on either end
is zero at all times. When considering a finite interval of time, we might
even stipulate the initial and final configurations of the string, defining the
values of the function on the entire boundary of a rectangle in R2.

The particular equation studied here is{
�(u) + g(u) = p(x, t) = p(x, t + 2π) = p(x + 2π, t) x, t ∈ R

u(x, t) = u(x, t + 2π) = u(x + 2π, t) x, t ∈ R,
(1.6)

where the region on which this is being solved is Ω = (0, 2π) × (0, 2π).
The boundary condition here is implicit in the statement that u(x, t) is 2π-
periodic in x and t, since its values on the boundary are constrained. Note
that we also demand that p(x, t) be 2π-periodic in both variables as well.

Beyond specifying a specific boundary condition, we need also specify
the form of g(t) if we are to gain any traction in proving results about the
equation. In this problem, we stipulate that

g(t) = τt + h(t), (1.7)
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with
τ ∈ (0, ∞)− {k2 − j2 : k, j ∈ {0} ∪N}, (1.8)

for reasons outside the scope of the introduction. Here h(t) is a differen-
tiable function, although other constraints will be imposed on h(t).

Herein, we will investigate conditions on g(t) and p(x, t) for which
there either exists or does not exist a continuous solution to Equation 1.6.





Chapter 2

Background

2.1 Lp and Hilbert Spaces

Before discussing the theory involved in the wave equation itself, it’s neces-
sary to quickly define some concepts from graduate analysis. Throughout
this section, we let Ω denote a measure space. For readers not acquainted
with measure theory, simply think of Ω as a subset of Rn for some n.

Definition 2.1. Lp(Ω) denotes the space of measurable (i.e., integrable) real func-
tions f : Ω→ R such that ∫

Ω
| f |p dx < ∞. (2.1)

By the linearity of integration, Lp(Ω) is a vector space with norm

‖ f ‖p
.=
(∫

Ω
| f |p dx

) 1
p

(2.2)

for p ≥ 1. Although we will not use the fact here, Lp(Ω) is in fact complete
with respect to this norm and is thus a Banach space.

We will be particularly interested in L2(Ω); not only is the space com-
plete, but it also has an inner product that generates the norm given by

〈 f , g〉 =
∫

Ω
f g dx, (2.3)

and so L2(Ω) is a complete inner-product space, also known as a Hilbert
space. Hilbert spaces have most of the nice properties of finite-dimensional
vector spaces and can often be thought of as “taking the limit” of finite
dimensional vector spaces with dimension n as n→ ∞.
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Because we are looking at solutions to PDEs, we will usually need more
than just a constraint on the integral of a function itself; we will need a
constraint on its derivatives, too. It turns out that we actually only need for
a function’s first-order derivatives to be in L2(Ω) for the wave equation, as
will be seen later. Consequently, we introduce Sobolev space.

Definition 2.2. The Sobolev spaces Hk(Ω) consist of functions u ∈ L2(Ω) such
that all partial derivatives of u of order ≤ k are also in L2(Ω).

We will only be interested in H1(Ω) here. Letting Ω and u(x, t) be as in
Equation 1.6, we have

H1(Ω) = { f ∈ L2(Ω) : fx, ft ∈ L2(Ω)}. (2.4)

It should be noted that Hk(Ω), for k ∈N, are Hilbert spaces as well.
Note that throughout this paper we will write H = H1(Ω) for conci-

sion. Observe that u ∈ H can be thought of as a function on R2 by ex-
tending the domain under the assumption of 2π-periodicity. Although u
is not defined on the boundary of Ω, because this set has measure zero, this
extension is unique as an equivalence class in H1(R2).

2.2 Weak Derivatives

Before discussing the wave operator, we need to define the notion of a weak
derivative. It turns out that to discuss solutions of the wave equation, we
don’t need (or want, necessarily) continuity or differentiability, even of the
first order.

Definition 2.3. We say that a function f on Ω has weak derivative f ′ if for every
φ ∈ C∞

0 (Ω), we have ∫
Ω

φ f ′ dx = −
∫

Ω
φ′ f dx, (2.5)

where C∞
0 (Ω) is the set of infinitely differentiable functions on Ω that vanish on

the boundary.

With this definition, we can speak about ux and ut, even if u isn’t con-
tinuous.

2.3 Weak Solutions

In line with weak derivatives, there is a corresponding notion of a weak
solution to a PDE. Qualitatively, a weak solution is derived by multiplying
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a PDE by a test function φ and then integrating, using integration by parts
if possible. We can do so for the particular case of Equation 1.6. In contrast
to the case with weak derivatives, it is sometimes useful to modify the class
of test functions φ. In this case, because we only need φ to be differentiable
to the first order and since we are working in H to begin with, we can take
φ ∈ H.

Multiplying both sides of the PDE by φ and integrating gives∫
Ω

(utt − uxx + g(u)) φ dx =
∫

Ω
pφ dx. (2.6)

Integrating by parts on the left, subtracting the integral on the right, and
multiplying by −1 leads to the following.

Definition 2.4. We say u ∈ H is a weak solution to Equation 1.6 if for all
φ ∈ H, ∫

Ω
{(utφt − uxφx)− (g(u)− p) φ} dx = 0. (2.7)

From this point forward, we will use the terms solution and weak solu-
tion interchangeably.

2.4 The Wave Operator

We can regard �, the D’Alembert operator defined in Equation 1.4, as a
linear operator on H by the linearity of the derivative and by noting that

�(u) = v (2.8)

is equivalent to

−
∫

Ω
(utφt − uxφx) dx =

∫
Ω

�(u)φ dx =
∫

Ω
vφ dx ∀ φ ∈ C∞

0 (Ω), (2.9)

so that � is well-defined on H.
Like any linear operator, we can talk about the null space N of � in H.

In fact, because H is a Hilbert space, N is a topologically closed subspace
of H. Although we do not prove it here, N is spanned by

B = {αk,k, βk,k, γk,k, δk,k : k ∈ {0} ∪N}, (2.10)

where we write

αk,j(x, t) = sin(kx) cos(jt) βk,j(x, t) = sin(kx) sin(jt) (2.11)

γk,j(x, t) = cos(kx) cos(jt) δk,j(x, t) = cos(kx) sin(jt) (2.12)
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2.5 Previous Results

The most important previous work on Equation 1.6 is Caicedo and Castro
(2009). Therein it is shown that if h is not only differentiable on R but also
has support in some interval [0, D] for D > 0 such that

h(D/2) < −τ
D
2

, (2.13)

then the following result holds.

Theorem 2.1. There exists c0 ≥ 0 such that if |c| ≥ c0 and p(x, t) = c sin(x, t),
then Equation 1.6 has no continuous weak solution.

Much of the proof from Caicedo and Castro (2009) is repeated or in-
voked to prove the results established herein. A related problem, and one
that ultimately informed the research on this problem is

�(u) + g(u) = p(x, t) = p(x, t + 2π) (x, t) ∈ (0, π)×R

u(0, t) = u(π, t) = 0 t ∈ R

u(x, t) = u(x, t + 2π) (x, t) ∈ [0, π]×R

(2.14)

A number of results have been established regarding Equation 2.14. In
Brezis and Nirenberg (1978), the following theorem was proved.

Theorem 2.2. If g is monotone and asymptotically linear (i.e. lim|t|→∞ g(t)/t
exists and is a constant), then Equation 2.14 has a weak solution in L2([0, π]×
[0, 2π]).

It was also shown in Brezis and Nirenberg (1978) that if there exists ε >
0 such that g′(z) ≥ ε > 0 for all z ∈ R, then such a solution is smooth (class
C∞) if p is smooth. The significance of this result is that it relies heavily
on the fact that g is monotone; as the result in Caicedo and Castro (2009)
implies for Equation 1.6, this does not generalize to nonmonotone g.

In fact, Equation 2.14 has been studied for nonmonotone g in Willem
(1981) and Hofer (1982), where it was proved that Equation 2.14 has a solu-
tion for p in a dense set of L2([0, π]× [0, 2π]). Thus, although there are “a
lot” of functions p such that solutions exist, it might be the case that there
is a dense set of functions p such that no solution exists as well.

These results help inform explorations of the related problem Equa-
tion 1.6.



Chapter 3

Implementation

3.1 Preliminaries

As before, we let Ω = (0, 2π) × (0, 2π), H = H1(Ω), and N be the null
space of �, the D’Alembert operator, subject to the periodic boundary con-
dition. Because H is an inner-product space with respect to both the H1

and L2 inner-products and N is a closed subspace, we can define a closed
subspace Y of H by Y = N⊥, where orthogonality is taken with respect to
the L2 inner-product, and we then have

H = Y⊕ N (3.1)

so that every element u ∈ H may be written uniquely as u = y + v where
〈y, v〉L2 = 0. We may then modify the formulation of the weak solution to
Equation 1.6 in Equation 2.7, substituting u = y + v and φ = ŷ + v̂.

We can then say that u = y + v is a weak solution of Equation 1.6 if∫
Ω
{(ytŷt − yxŷx)− (g(u)− p)(ŷ + v̂)} dx dt = 0, (3.2)

where we have used the fact that �(u) = �(y) + �(v) = �(y) because
v ∈ N.

3.2 Regularity (Nonexistence)

Let u = y + v be a weak solution to Equation 1.6. Here we define

α1(x, t) = sin(x + t), α2(x, t) = sin(x− t), (3.3)
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although we will only use α1 for now.
Let a be the projection of v onto the linear subspace spanned by α1. Then

we can orthogonally decompose v such that v = aα1 + w, with 〈α1, w〉L2 =
0. That is, ∫

Ω
α1w dx dt = 0. (3.4)

We can then further decompose w by defining

v̄ =
1

4π

∫
Ω

v dx dt =
1

4π

∫
Ω

w dx dt, (3.5)

because α1 has zero integral over Ω. Note that Equation 3.5 is just the av-
erage of v over Ω. We then write w = v̄ + z where z = w− v̄. However,
because z ∈ N (since v ∈ N) and∫

Ω
z dx dt = 0, (3.6)

we can write
z(x, t) = z1(x + t) + z2(x− t) (3.7)

with ∫
Ω

z1(x + t) dx dt =
∫

Ω
z2(x− t) dt dt = 0 (3.8)

We can now state and prove the following.

Lemma 3.1. With the above definitions, ‖zi‖∞ ≤ 3‖h‖∞/τ and |v̄| ≤ ‖h‖∞/τ.

Proof. Because we assume u = y + v is a weak solution, we know Equa-
tion 3.2 holds for ŷ = 0 and v̂ = α1. Substituting these values in, we have∫

Ω
−(g(u)− p)α1 dx dt =

∫
Ω

(cα1 − τu− h(u)) α1 dx dt (3.9)

=
∫

Ω
(cα1 − τy− τv− h(u)) α1 dx dt (3.10)

=
∫

Ω
(cα1 − τy− τaα1 − τw− h(u)) α1 dx dt

(3.11)

=
∫

Ω

{
(c− τa) α2

1 − h(u)α1
}

dx dt (3.12)

= 0, (3.13)

where we have used the L2-orthogonality of y and α1 and w and α1. Equa-
tion 3.9 reduces to

(c− τa)‖α1‖2
2 =

∫
Ω

h(u)α1 dx dt, (3.14)
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and so we have
|τa− c|‖α1‖2

2 ≤ ‖h‖2‖α1‖2 (3.15)

by Hölder’s inequality. Clearly ‖α1‖2 =
√

2π by a simple calculation, and
because m(Ω) = 4π2, we know ‖h‖2 ≤ 2π‖h‖∞. Combining these, we are
left with

|τa− c| ≤
√

2‖h‖∞. (3.16)

Let b be a positive odd integer. Now because any function of (x + t) or
(x− t) is in N, we see that zb

1(x + t) and zb
2(x− t) are in N. Consequently,

we can set v̂(x, t) = zb
1(x + t) in Equation 1.6 while keeping ŷ = 0, and we

have, noting again that y is L2 orthogonal to all elements of N,∫
Ω
−(g(u)− p)zb

1(x + t) dx dt (3.17)

=
∫

Ω
(cα1 − τaα1 − τw− h(u)) zb

1(x + t) dx dt (3.18)

=
∫

Ω

(
cα1 − τaα1 − τv̄− τ

(
zb

1(x + t) + zb
2(x− t)

)
− h(u)

)
zb

1(x + t) dx dt

(3.19)

=
∫

Ω
{(c− τa) α1 − τ(z1(x + t) + z2(x− t))− h(u)} zb

1(x + t) dx dt

(3.20)

where we have used the fact that τv̄ is a constant, and∫
Ω

zb
1(x + t) dx dt = 0 (3.21)

because b is odd. Because functions of (x + t) and (x − t) are orthogonal,
this simplifies to

τ‖z1‖b+1
b+1 = −

∫
Ω
{h(u(x, t))− (c− τa)α1(x, t)} zb

1(x, t) dx dt (3.22)

≤ 3‖h‖∞|Ω|
1

b+1

(∫
Ω
|z1(x, t)|b+1 dx dt

) b
b+1

. (3.23)

And so we have that
τ‖z1‖∞ ≤ 4‖h‖∞|Ω|

1
b+1 . (3.24)

Letting b→ ∞ and using the fact that ‖z1‖∞ = limb→∞ ‖z1‖b+1, we have

τ‖z1‖∞ ≤ 4‖h‖∞. (3.25)
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This argument holds similarly for z2, so we also have

τ‖z2‖∞ ≤ 4‖h‖∞. (3.26)

We now have

4π2τ|v̄| = τ

∣∣∣∣∫Ω
w(x, t) dx dt

∣∣∣∣ =
∣∣∣∣∫Ω

h(u(x, t)) dx dt
∣∣∣∣ ≤ 4π2‖h‖∞, (3.27)

and we are done.

Lemma 3.2. There exists K > 0, independent of c, such that if u = y + v ∈ Y⊕
N is a weak solution to Equation 1.6, then |y(x, t)| ≤ K‖h‖∞ for all (x, t) ∈ Ω
and ‖y‖H ≤ K.

Proof. Because {αk,j, βk,j, γk,j, δk,j : k, j ∈ {0} ∪N} is a basis for H and y ∈
N⊥, we can write

y = ∑
k 6=j

(
akjαk,j + bkjβk,j + ckjγk,j + dkjδk,j

)
. (3.28)

Furthermore, writing u = y + v, we can look at the projection of h(u) onto
the subspace Y as

PY(h(y + v)) = ∑
k 6=j

(
Akjαk,j + Bkjβk,j + Ckjγk,j + Dkjδk,j

)
. (3.29)

Because PY is a projection, we have

‖PY(h(v + y))‖2 ≤ ‖h(y + v)‖2 ≤ 2π‖h‖∞. (3.30)

Now, because we assume p(x, t) ∈ N, we can project both sides of Equa-
tion 1.6 onto Y and get

�(y) + τy + τPY(h(u)) = 0. (3.31)

Substituting in for y and PY(h(u)), this equation becomes

∑
k 6=j

{(
τ + k2 − j2

) (
akjαk,j + bkjβk,j + ckjγk,j + dkjδk,j

)
(3.32)

+ τ
(

Akjαk,j + Bkjβk,j + Ckjγk,j + Dkjδk,j
)}

= 0, (3.33)

and reducing by components gives

akj =
Akj

k2 − j2 + τ
, (3.34)
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and similarly for bkj, ckj, and dkj. Parseval then gives

|y(x, t)| =
∣∣∣∣∣∑k 6=j

(
akjαk,j + bkjβk,j + ckjγk,j + dkjδk,j

)∣∣∣∣∣ (3.35)

≤
(

∑
k 6=j

(
A2

kj + B2
kj + C2

kj + D2
kj

))1/2(
∑
k 6=j

1
(k2 − j2 + τ)2

)1/2

(3.36)

≤ 2π‖h‖∞

(
∑
k 6=j

1
(k2 − j2 + τ)2

)1/2

(3.37)

≡ K1‖h‖∞, (3.38)

where K1 is simply a constant. Note that the above series does in fact con-
verge. We also have that

‖y‖2
H ≤ 2 ∑

k 6=j

(k2 + j2)(A2
kj + B2

kj + C2
kj)

(k2 − j2 + τ)2 (3.39)

≤ K2‖h(u)‖2
2 (3.40)

≤ 4π2K2‖h‖2
∞, (3.41)

where K2 is another constant. We will let K = max{K1, 2π
√

K2}, and the
lemma follows.

Let D > 0 be as in Equation 2.13. Now we have

|u(x, t)| = |a sin(x + t) + v̄ + z(x, t) + y(x, t)| (3.42)
≥ [(|c| − 2‖h‖∞)| sin(x + t)| − 7‖h‖∞] /τ. (3.43)

Thus

h(u(x, t)) = 0 if | sin(x + t) ≥ τD + 7‖h‖∞

|c| − 2‖h‖∞
. (3.44)

And this implies that there exist positive constants c0 and m such that |c| ≥
c0 implies

m({(x, t) ∈ Ω : h(u(x, t)) 6= 0}) ≤ m
c

. (3.45)

And Equation 3.45 furnishes a bound on ‖h(u)‖2. In particular,

‖h(u)‖2 ≤ m1/2‖h‖∞c−1/2, (3.46)
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for |c| ≥ c0. Using this inequality in Equation 3.35, we have

|y(x, t)| ≤ K‖h‖∞c−1/2, (3.47)

and also for |c| ≥ c0. We also need a bound on |v̄|. But note that

τ|v̄| =
∣∣∣∣∫Ω

h(u(x, t)) dx dt
∣∣∣∣ (3.48)

≤ ‖h‖∞m({(x, t) ∈ Ω : h(u(x, t)) 6= 0}) (3.49)

≤ m‖h‖∞

c
. (3.50)

And by adapted reasoning, we also have

|τa− c| ≤ m‖h‖∞

c
. (3.51)

For 0 ≤ r ≤ s ≤ 2π, define χ[r,s] to be the 2π-periodic extension of the
characteristic function of [r, s]. Furthermore, define

φ(x, t) = χ[r,s](x− t). (3.52)

Because φ ∈ N, the mean value theorem for integrals furnishes

0 =
∫

Ω
φ((aτ − c)α1 + τ(z1 + z2) + v̄ + h(u)) dx dt (3.53)

= 2π(s− r)τz2(s2) +
∫

Ω
φh(u) dx dt + 2πv̄(s− r), (3.54)

where s2 ∈ (r, s). Clearly we have∣∣∣∣∫Ω
φh(u) dx dt

∣∣∣∣ ≤ ‖h‖∞(r− s)
m
c

, (3.55)

and so

|z2(r)| ≤ M‖h‖∞

c
, (3.56)

where M is a constant independent of c. Now, letting

ψ(x, t) = χ[r,s](x + t), (3.57)

we still have ψ ∈ N, and so multiplying Equation 1.6 by ψ and integrating
yields

0 =
∫

Ω
ψ((aτ − c)α1 + τ(z1 + z2) + v̄ + h(u)) dx dt (3.58)

= 2π(s− r)((aτ − c)α1(0, s3) + τz1(s1)) + τv̄2π(s− r) (3.59)

+
∫

Ω
φ(h(u)− h(aα + z̄1)) dt dt +

∫
Ω

ψh(aα + z̄1) dx dt, (3.60)
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and here s1, s3 ∈ (r, s). Let s→ r and we have

0 = 2π((aτ − c)α1(0, r) + τz1(r) + h((aα + z̄1)(0, r)) + v̄) (3.61)

+
∫ 2π

0
φ(h′(u(x, r− x))(v̄ + z2(x, r− x) + y(x, r− x)) dx. (3.62)

Combining all results together, we see that

τz1(r) + h(aα(0, r) + z1(r)) = O(c−1/2). (3.63)

3.3 Existence

Recalling that we can write u(x, t) = y(x, t)+ v̄ + v1(x + t)+ v2(x− t), with
v̄ ∈ R and y ∈ Y, to prove the existence of a solution, we show that there
exists a quadruplet (y, v̄, v1, v2) such that Equation 1.6 is satisfied. In partic-
ular, existence is shown if we can prove that the projection of Equation 1.6
onto each of N and Y are satisfied. This is what we will do.

3.3.1 Equation in The Kernel

Let u = v + y ∈ N ⊕ Y be a weak solution to Equation 1.6. We can write
v(x, t) = v̄ + v1(x + t) + v2(x− t) with v̄ ∈ R, v1, v2 2π-periodic functions
with ∫ 2π

0
v1(s)ds =

∫ 2π

0
v2(s)ds = 0. (3.64)

For 0 ≤ r ≤ s ≤ 2π, let χ[r,s] be the 2π-periodic function such that χ[r,s](t) =
1 if t ∈ [r, s], and χ[r,s](t) = 0 if t ∈ [0, 2π]− [r, s]. Let φ(x, t) = χ[r,s](x− t),
and A = {(x, t); x ∈ [0, 2π], t ∈ [x − s, x − r]}. Using that φ ∈ N and the
mean value theorem for integrals we have∫

A
p(x, t)dxdt =

∫
Ω

φ(x, t)p(x, t)dt

=
∫

Ω
φ(x, t)(τv(x, t) + h(u(x, t)))dxdt

=
∫

A
(τv̄ + v1(x + t) + v2(x− t) + h(u(x, t))dxdt

= 2πτ(s− r)(v̄ + τv2(s2)) +
∫

A
h(u)dxdt,

(3.65)

where s2 ∈ (r, s). Dividing by s− r and taking limit as s→ r we have∫ 2π

0
p(x, x− r)dx = 2πτ(v̄ + v2(r)) +

∫ 2π

0
h(u(x, x− r))dx. (3.66)
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Letting ψ(x, t) = χ[r,s](x + t) and arguing as in Equations 3.64-3.66 we
have∫ 2π

0
p(x, r− x)dx = 2πτ(v̄ + v1(r)) +

∫ 2π

0
h(u(x, r− x))dx. (3.67)

We know that any weak solution u must satisfy Equations 3.66 and 3.67.
We now prove that, for each y and v̄, there exist v1 and v2 such that these
equations are satisfied.

We restrict to the case p(x, t) = c(sin(x + t) + sin(x− t)), so we have

2πc sin(r) = 2πτ(v̄ + v1(r)) +
∫ 2π

0
h(u(x, r− x))dx,

2πc sin(r) = 2πτ(v̄ + v2(r)) +
∫ 2π

0
h(u(x, x− r))dx.

(3.68)

Let zi(r) = (c/τ) sin(r)− vi(r) ≡ C sin(r)− vi(r), i = 1, 2. Hence

z1(r) = v̄ +
1

2πτ

∫ 2π

0
h(y(x, r− x) + v̄ + C sin(r)

+ C sin(2x− r)− z1(r)− z2(2x− r))dx,

z2(r) = v̄ +
1

2πτ

∫ 2π

0
h(y(x, x− r) + v̄ + C sin(2x− r)

+ C sin(r)− z1(2x− r)− z2(r))dx.

(3.69)

Lemma 3.3. There exists c0 > 0 and a continuous map T : Y×R→ C(0, 2π)×
C(0, 2π) such that, for |c| ≥ c0,

T(y, v̄) = (v1(y, v̄), v2(y, v̄)), (3.70)

satisfies the system in Equation 3.69.

For z1, z2 2π-periodic functions with ||zi||∞ ≤ K for some constant K,
we define N1(z1, z2)(r) as the right hand side of the first equation in Equa-
tion 3.69 and N2(z1, z2)(r) as the right hand side of the second equation in
Equation 3.69. Also we write

N(z1, z2)(r) = (N1(z1, z2)(r), N2(z1, z2)(r)). (3.71)

Let z1, z2, ẑ1, ẑ2 ∈ L2(R2/(2πZ× 2πZ)), and

W(x, t) = y(x, t) + v̄ + C sin(x + t) + C sin(x− t) (3.72)
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By the mean value theorem,

h(u(x, r− x))− h(û(x, r− x)) = h(W(x, r− x)− z1(r)− z2(2x− r))
− h(W(x, r− x)− ẑ1(r)− ẑ2(2x− r))
= h′(σ(x, r− x)) ([ẑ1(r)− z1(r)]

+[ẑ2(2x− r)− z2(2x− r)]) ,
(3.73)

where σ(x, t) is in the segment [W(x, r − x)− z1(r)− z2(2x − r), W(x, r −
x) − ẑ1(r) − ẑ2(2x − r)] ∪ [W(x, r − x) − ẑ1(r) − ẑ2(2x − r), W(x, r − x) −
z1(r)− z2(2x− r)]. From the definition of N1 and Equation 3.73, we have

|N1(z1, z2)(r)− N1(ẑ1, ẑ2)(r)| ≤∫ 2π

0
|h′(σ(x, r− x))|(‖z1 − ẑ1‖∞ + ‖z2 − ẑ2‖∞)dx.

(3.74)

Because

m{x ∈ [0, 2π]; |W(x, r− x)+ z1(r)+ z2(2x− r)| ≤ D} ≤ O(c−1/2)}, (3.75)

|N1(z1, z2)(r)− N1(ẑ1, ẑ2)(r)| ≤
≤ O(c−1/2)(‖z1 − ẑ1‖∞ + ‖z2 − ẑ2‖∞).

(3.76)

Similarly,
|N2(z1, z2)(r)− N2(ẑ1, ẑ2)(r)| ≤
≤ O(c−1/2)(‖z1 − ẑ1‖∞ + ‖z2 − ẑ2‖∞).

(3.77)

From Equations 3.76 and 3.77 we see that N defines a contraction. Hence
for each (y, v̄) there is a unique pair (z1, z2) ∈ C(0, 2π) that satisfies Equa-
tion 3.68. Moreover (z1(y, v̄), z1(y, v̄) depends continuously on (y, v̄).

Lemma 3.4. If v1, v2 satisfy Equation 3.68 then

τv + Q(h(y + v)) = Q(p), (3.78)

where Q denotes the projection of L2(Ω) onto N.

Proof. Because any function η ∈ N can be written as η(x, y) = η1(x + y) +
η2(x− y), we will show that for η = φ, ψ as defined above,∫

Ω
η (τv + Q(h(y + v))−Q(p)) dxdt = 0. (3.79)
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Because linearity implies that if the above equation holds, then it holds
for simple functions as well, dominated convergence implies that it in fact
holds for all η ∈ N. We have∫

Ω
φQ(p)dxdt =

∫
Ω

φpdxdt

=
∫ 2π

0

∫ 2π

0
χ[r,s](x− t)p(x, t)dtdx

=
∫ 2π

0
χ[r,s](v)

(∫ v

0
p(u, u− v)du

)
dv

+
∫ 4π

2π
χ[r,s](v)

(∫ 2π

v−2π
p(u, u− v)du

)
dv

=
∫ 2π

0
χ[r,s](v)

(∫ 2π

0
p(u, u− v)du

)
dv

=
∫ s

r

∫ 2π

0
p(x, x− t)dxdt

=
∫ s

r

[
2πτ(v̄ + v2(t)) +

∫ 2π

0
h(u(x, x− t))dx

]
dt

=
∫ s

r

∫ 2π

0
[τ(v̄ + v2(t)) + h(u(x, x− t))] dxdt

=
∫

Ω
φ [τv + Q(h(y + v))] dxdt,

(3.80)

where we have used a change of variables u = x and v = x − t as well as
Equation 3.66. We obtain a similar result using ψ.

3.3.2 Equation In The Range

Lemma 3.5. If v1, v2 satisfy Equation 3.68 then there exist y ∈ Y, v̄ ∈ R such
that

�y + τy + P(h(y + v)) = P(p), (3.81)

where P denotes the projection from L2(Ω) to Y.

Proof. Fix v̄ ∈ R. Define an operator T : Y → Y such that

T(y) = −(� + τ I)−1P(h(y + v̄ + v1(v̄, y) + v2(v̄, y))). (3.82)

We will show that T is compact and maps BR(0) into itself for some R > 0.
Schauder’s fixed point theorem will then imply that T has a fixed point y
satisfying the above equation.
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Because −(� + τ I)−1 is compact and because P is continuous, to show
that T is compact, we need only show that S : Y → L2 given by

S(y) = h(y + v̄ + v1(v̄, y) + v2(v̄, y)), (3.83)

is continuous. To see this, note that for y, y′ ∈ L2(Ω), we have,

||S(y)− S(y′)||L2 =
∫

Ω
[h(y + v̄ + v1(v̄, y) + v2(v̄, y))

−h(y′ + v̄ + v1(v̄, y′) + v2(v̄, y′))
]2 dxdt

=
∫

Ω

[
h′(ξ(v̄, y)(x, t))

(
[y− y′]

+ [v1(v̄, y)− v2(v̄, y′)] + [v2(v̄, y)− v2(v̄, y′)]
)]2 dxdt

≤ M
(
||y− y′||L2 + ||v2(v̄, y)− v2(v̄, y′)||L2

+ ||v2(v̄, y)− v2(v̄, y′)||L2

)
,

(3.84)
where M is a bound on h′. Because the maps (v̄, y) 7→ vi(v̄, y) are continu-
ous in L2(Ω) we see that S is continuous.

Now recall that −(� + τ I)−1 is bounded on Y, with operator norm N.
As such, we have that

||T(y)||Y ≤ N||S(y)||L2 (3.85)

But

||S(y)||L2 =
∫

Ω
h(y + v̄ + v1(v̄, y) + v2(v̄, y))2dxdt ≤ 4π2M2 (3.86)

where M is a bound on h. Thus setting R = 4π2M2N, we have that

||T(y)||Y ≤ R, (3.87)

and we are done.





Chapter 4

Results

4.1 Proof of Main Regularity Result

We now proceed to prove the following theorem.

Theorem 4.1. There exists c0 ≥ 0 such that if |c| > c0, h is defined as in Caicedo
and Castro (2009), and p(x, t) = c sin(x + t), then Equation 1.6 has no continu-
ous (weak) solution.

Proof. This is the result originally presented in Caicedo and Castro (2009).
Assume that there exists a continuous solution to Equation 1.6. We will
produce a contradiction. Without loss of generality, consider the case where
c > 0. For sufficiently large c, we have that

aα1

(
0,

π

2

)
+ z1

(π

2

)
> D, (4.1)

and

aα1

(
0,

3π

2

)
+ z1

(
3π

2

)
< 0, (4.2)

and so the intermediate value theorem furnishes t1, t2 with π/2 < t1 <
t2 < 3π/2 and so that

aα1(0, t1) + z1(t1) = D/2, (4.3)

and
aα1(0, t2) + z1(t2) = 0. (4.4)

But from Equation 3.63, we see that

τz1(t1) = −h(D/2) + O(c−1/2). (4.5)
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It follows that

aα1(0, t1) =
D
2
− z1(t1) =

D
2

+
h( D

2 )
τ

+ O(c−1/2) < 0, (4.6)

from the above conclusions. However, Equation 3.63 implies that

τz1(t2) = −h(0) + O(c−1/2), (4.7)

which implies that

aα1(0, t2) = −z1(t2) (4.8)

= O(c−1/2) (4.9)

> O(c−1/2) +
1
2

(
D
2

+
h( D

2 )
τ

)
(4.10)

> aα1(0, t1). (4.11)

But because t → α1(0, t) is a decreasing function of t on [π/2, 3π/2], since
α1(0, t) = sin(t), we have a contradiction.

4.2 Proof of Novel Regularity Result

Theorem 4.2. Let h be as in Caicedo and Castro (2009) but instead of requiring
compact support, assume that h(t)tα ≤ M0 for some constants M0, 0 < α < 1
and all t ∈ R. Then there exists c0 ≥ 0 such that if |c| > c0, h and p(x, t) =
c sin(x + t), then Equation 1.6 has no continuous (weak) solution.

Proof. The full proof is mostly a repetition of the arguments used to prove
the Caicedo and Castro (2009) result. Minor changes are needed to establish
that

m{(x, t) ∈ Ω : h(u(x, t)) > c−1/2} ≤ m
c

, (4.12)

which then replaces the corresponding equation in the proof. The rest of
the result is fundamentally identical.

4.3 Proof of Existence Result

Theorem 4.3. There exists c0 such that for |c| ≥ c0 and p(x, t) = c(sin(x +
t) + sin(x− t)), Equation 1.6 has a continuous (weak) solution.
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Proof. This is just a combination of previous lemmas. First, Lemmas 3.3 and
3.4 imply that for each (y, v̄), there exist v1 and v2, depending continuously
on y and v̄, that satisfy Equation 3.68. Moreover, if u = y + v̄ + v1 + v2,
then u satisfies the projection of Equation 1.6 in the kernel N.

Next, Lemma 3.5 implies that for |c| ≥ c0, there exist y ∈ Y and v̄ ∈ R

so that the projection of Equation 1.6 in the range Y is satisfied. Because
H = Y⊕ N, this completes the proof.





Chapter 5

Conclusion

5.1 Concluding Remarks

We have successfully shown that Equation 1.6 has no continuous solution
for p(x, t) = c sin(x + t) with c sufficiently large. Moreover, we have ex-
tended the result to account for asymptotically linear g(t). Finally, we have
shown that in the alternative case that p(x, t) = c(sin(x + t) + sin(x− t)),
Equation 1.6 does in fact possess a continuous solution. Future work will
hopefully examine the case of general forcing p ∈ N, where p(x, t) =
q1(x + t) + q2(x − t). Under fairly relaxed conditions, we speculate that
such forcing will generate continuous solutions to Equation 1.6.
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